blktrace: Report pid with note messages
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
75bb4625
JA
2/*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
320ae51f
JA
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/backing-dev.h>
11#include <linux/bio.h>
12#include <linux/blkdev.h>
f75782e4 13#include <linux/kmemleak.h>
320ae51f
JA
14#include <linux/mm.h>
15#include <linux/init.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18#include <linux/smp.h>
19#include <linux/llist.h>
20#include <linux/list_sort.h>
21#include <linux/cpu.h>
22#include <linux/cache.h>
23#include <linux/sched/sysctl.h>
105ab3d8 24#include <linux/sched/topology.h>
174cd4b1 25#include <linux/sched/signal.h>
320ae51f 26#include <linux/delay.h>
aedcd72f 27#include <linux/crash_dump.h>
88c7b2b7 28#include <linux/prefetch.h>
a892c8d5 29#include <linux/blk-crypto.h>
320ae51f
JA
30
31#include <trace/events/block.h>
32
33#include <linux/blk-mq.h>
54d4e6ab 34#include <linux/t10-pi.h>
320ae51f
JA
35#include "blk.h"
36#include "blk-mq.h"
9c1051aa 37#include "blk-mq-debugfs.h"
320ae51f 38#include "blk-mq-tag.h"
986d413b 39#include "blk-pm.h"
cf43e6be 40#include "blk-stat.h"
bd166ef1 41#include "blk-mq-sched.h"
c1c80384 42#include "blk-rq-qos.h"
320ae51f 43
34dbad5d
OS
44static void blk_mq_poll_stats_start(struct request_queue *q);
45static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
46
720b8ccc
SB
47static int blk_mq_poll_stats_bkt(const struct request *rq)
48{
3d244306 49 int ddir, sectors, bucket;
720b8ccc 50
99c749a4 51 ddir = rq_data_dir(rq);
3d244306 52 sectors = blk_rq_stats_sectors(rq);
720b8ccc 53
3d244306 54 bucket = ddir + 2 * ilog2(sectors);
720b8ccc
SB
55
56 if (bucket < 0)
57 return -1;
58 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60
61 return bucket;
62}
63
320ae51f 64/*
85fae294
YY
65 * Check if any of the ctx, dispatch list or elevator
66 * have pending work in this hardware queue.
320ae51f 67 */
79f720a7 68static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 69{
79f720a7
JA
70 return !list_empty_careful(&hctx->dispatch) ||
71 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 72 blk_mq_sched_has_work(hctx);
1429d7c9
JA
73}
74
320ae51f
JA
75/*
76 * Mark this ctx as having pending work in this hardware queue
77 */
78static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
79 struct blk_mq_ctx *ctx)
80{
f31967f0
JA
81 const int bit = ctx->index_hw[hctx->type];
82
83 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
84 sbitmap_set_bit(&hctx->ctx_map, bit);
1429d7c9
JA
85}
86
87static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
88 struct blk_mq_ctx *ctx)
89{
f31967f0
JA
90 const int bit = ctx->index_hw[hctx->type];
91
92 sbitmap_clear_bit(&hctx->ctx_map, bit);
320ae51f
JA
93}
94
f299b7c7
JA
95struct mq_inflight {
96 struct hd_struct *part;
a2e80f6f 97 unsigned int inflight[2];
f299b7c7
JA
98};
99
7baa8572 100static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
f299b7c7
JA
101 struct request *rq, void *priv,
102 bool reserved)
103{
104 struct mq_inflight *mi = priv;
105
6131837b 106 if (rq->part == mi->part)
bb4e6b14 107 mi->inflight[rq_data_dir(rq)]++;
7baa8572
JA
108
109 return true;
f299b7c7
JA
110}
111
e016b782 112unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
f299b7c7 113{
a2e80f6f 114 struct mq_inflight mi = { .part = part };
f299b7c7 115
f299b7c7 116 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
e016b782 117
a2e80f6f 118 return mi.inflight[0] + mi.inflight[1];
bf0ddaba
OS
119}
120
121void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
122 unsigned int inflight[2])
123{
a2e80f6f 124 struct mq_inflight mi = { .part = part };
bf0ddaba 125
bb4e6b14 126 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
a2e80f6f
PB
127 inflight[0] = mi.inflight[0];
128 inflight[1] = mi.inflight[1];
bf0ddaba
OS
129}
130
1671d522 131void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 132{
7996a8b5
BL
133 mutex_lock(&q->mq_freeze_lock);
134 if (++q->mq_freeze_depth == 1) {
3ef28e83 135 percpu_ref_kill(&q->q_usage_counter);
7996a8b5 136 mutex_unlock(&q->mq_freeze_lock);
344e9ffc 137 if (queue_is_mq(q))
055f6e18 138 blk_mq_run_hw_queues(q, false);
7996a8b5
BL
139 } else {
140 mutex_unlock(&q->mq_freeze_lock);
cddd5d17 141 }
f3af020b 142}
1671d522 143EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 144
6bae363e 145void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 146{
3ef28e83 147 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 148}
6bae363e 149EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 150
f91328c4
KB
151int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
152 unsigned long timeout)
153{
154 return wait_event_timeout(q->mq_freeze_wq,
155 percpu_ref_is_zero(&q->q_usage_counter),
156 timeout);
157}
158EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 159
f3af020b
TH
160/*
161 * Guarantee no request is in use, so we can change any data structure of
162 * the queue afterward.
163 */
3ef28e83 164void blk_freeze_queue(struct request_queue *q)
f3af020b 165{
3ef28e83
DW
166 /*
167 * In the !blk_mq case we are only calling this to kill the
168 * q_usage_counter, otherwise this increases the freeze depth
169 * and waits for it to return to zero. For this reason there is
170 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
171 * exported to drivers as the only user for unfreeze is blk_mq.
172 */
1671d522 173 blk_freeze_queue_start(q);
f3af020b
TH
174 blk_mq_freeze_queue_wait(q);
175}
3ef28e83
DW
176
177void blk_mq_freeze_queue(struct request_queue *q)
178{
179 /*
180 * ...just an alias to keep freeze and unfreeze actions balanced
181 * in the blk_mq_* namespace
182 */
183 blk_freeze_queue(q);
184}
c761d96b 185EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 186
b4c6a028 187void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 188{
7996a8b5
BL
189 mutex_lock(&q->mq_freeze_lock);
190 q->mq_freeze_depth--;
191 WARN_ON_ONCE(q->mq_freeze_depth < 0);
192 if (!q->mq_freeze_depth) {
bdd63160 193 percpu_ref_resurrect(&q->q_usage_counter);
320ae51f 194 wake_up_all(&q->mq_freeze_wq);
add703fd 195 }
7996a8b5 196 mutex_unlock(&q->mq_freeze_lock);
320ae51f 197}
b4c6a028 198EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 199
852ec809
BVA
200/*
201 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202 * mpt3sas driver such that this function can be removed.
203 */
204void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205{
8814ce8a 206 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
852ec809
BVA
207}
208EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
209
6a83e74d 210/**
69e07c4a 211 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
212 * @q: request queue.
213 *
214 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
215 * callback function is invoked. Once this function is returned, we make
216 * sure no dispatch can happen until the queue is unquiesced via
217 * blk_mq_unquiesce_queue().
6a83e74d
BVA
218 */
219void blk_mq_quiesce_queue(struct request_queue *q)
220{
221 struct blk_mq_hw_ctx *hctx;
222 unsigned int i;
223 bool rcu = false;
224
1d9e9bc6 225 blk_mq_quiesce_queue_nowait(q);
f4560ffe 226
6a83e74d
BVA
227 queue_for_each_hw_ctx(q, hctx, i) {
228 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 229 synchronize_srcu(hctx->srcu);
6a83e74d
BVA
230 else
231 rcu = true;
232 }
233 if (rcu)
234 synchronize_rcu();
235}
236EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
237
e4e73913
ML
238/*
239 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
240 * @q: request queue.
241 *
242 * This function recovers queue into the state before quiescing
243 * which is done by blk_mq_quiesce_queue.
244 */
245void blk_mq_unquiesce_queue(struct request_queue *q)
246{
8814ce8a 247 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
f4560ffe 248
1d9e9bc6
ML
249 /* dispatch requests which are inserted during quiescing */
250 blk_mq_run_hw_queues(q, true);
e4e73913
ML
251}
252EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
253
aed3ea94
JA
254void blk_mq_wake_waiters(struct request_queue *q)
255{
256 struct blk_mq_hw_ctx *hctx;
257 unsigned int i;
258
259 queue_for_each_hw_ctx(q, hctx, i)
260 if (blk_mq_hw_queue_mapped(hctx))
261 blk_mq_tag_wakeup_all(hctx->tags, true);
262}
263
fe1f4526 264/*
9a91b05b
HT
265 * Only need start/end time stamping if we have iostat or
266 * blk stats enabled, or using an IO scheduler.
fe1f4526
JA
267 */
268static inline bool blk_mq_need_time_stamp(struct request *rq)
269{
9a91b05b 270 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
fe1f4526
JA
271}
272
e4cdf1a1 273static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
6f816b4b 274 unsigned int tag, unsigned int op, u64 alloc_time_ns)
320ae51f 275{
e4cdf1a1
CH
276 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
277 struct request *rq = tags->static_rqs[tag];
bf9ae8c5 278 req_flags_t rq_flags = 0;
c3a148d2 279
e4cdf1a1
CH
280 if (data->flags & BLK_MQ_REQ_INTERNAL) {
281 rq->tag = -1;
282 rq->internal_tag = tag;
283 } else {
d263ed99 284 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
bf9ae8c5 285 rq_flags = RQF_MQ_INFLIGHT;
e4cdf1a1
CH
286 atomic_inc(&data->hctx->nr_active);
287 }
288 rq->tag = tag;
289 rq->internal_tag = -1;
290 data->hctx->tags->rqs[rq->tag] = rq;
291 }
292
af76e555 293 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
294 rq->q = data->q;
295 rq->mq_ctx = data->ctx;
ea4f995e 296 rq->mq_hctx = data->hctx;
bf9ae8c5 297 rq->rq_flags = rq_flags;
ef295ecf 298 rq->cmd_flags = op;
1b6d65a0
BVA
299 if (data->flags & BLK_MQ_REQ_PREEMPT)
300 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 301 if (blk_queue_io_stat(data->q))
e8064021 302 rq->rq_flags |= RQF_IO_STAT;
7c3fb70f 303 INIT_LIST_HEAD(&rq->queuelist);
af76e555
CH
304 INIT_HLIST_NODE(&rq->hash);
305 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
306 rq->rq_disk = NULL;
307 rq->part = NULL;
6f816b4b
TH
308#ifdef CONFIG_BLK_RQ_ALLOC_TIME
309 rq->alloc_time_ns = alloc_time_ns;
310#endif
fe1f4526
JA
311 if (blk_mq_need_time_stamp(rq))
312 rq->start_time_ns = ktime_get_ns();
313 else
314 rq->start_time_ns = 0;
544ccc8d 315 rq->io_start_time_ns = 0;
3d244306 316 rq->stats_sectors = 0;
af76e555
CH
317 rq->nr_phys_segments = 0;
318#if defined(CONFIG_BLK_DEV_INTEGRITY)
319 rq->nr_integrity_segments = 0;
320#endif
a892c8d5 321 blk_crypto_rq_set_defaults(rq);
af76e555 322 /* tag was already set */
079076b3 323 WRITE_ONCE(rq->deadline, 0);
af76e555 324
f6be4fb4
JA
325 rq->timeout = 0;
326
af76e555
CH
327 rq->end_io = NULL;
328 rq->end_io_data = NULL;
af76e555 329
e4cdf1a1 330 data->ctx->rq_dispatched[op_is_sync(op)]++;
12f5b931 331 refcount_set(&rq->ref, 1);
e4cdf1a1 332 return rq;
5dee8577
CH
333}
334
d2c0d383 335static struct request *blk_mq_get_request(struct request_queue *q,
f9afca4d
JA
336 struct bio *bio,
337 struct blk_mq_alloc_data *data)
d2c0d383
CH
338{
339 struct elevator_queue *e = q->elevator;
340 struct request *rq;
e4cdf1a1 341 unsigned int tag;
c05f4220 342 bool clear_ctx_on_error = false;
6f816b4b 343 u64 alloc_time_ns = 0;
d2c0d383
CH
344
345 blk_queue_enter_live(q);
6f816b4b
TH
346
347 /* alloc_time includes depth and tag waits */
348 if (blk_queue_rq_alloc_time(q))
349 alloc_time_ns = ktime_get_ns();
350
d2c0d383 351 data->q = q;
21e768b4
BVA
352 if (likely(!data->ctx)) {
353 data->ctx = blk_mq_get_ctx(q);
c05f4220 354 clear_ctx_on_error = true;
21e768b4 355 }
d2c0d383 356 if (likely(!data->hctx))
f9afca4d 357 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
8ccdf4a3 358 data->ctx);
f9afca4d 359 if (data->cmd_flags & REQ_NOWAIT)
03a07c92 360 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
361
362 if (e) {
363 data->flags |= BLK_MQ_REQ_INTERNAL;
364
365 /*
366 * Flush requests are special and go directly to the
17a51199
JA
367 * dispatch list. Don't include reserved tags in the
368 * limiting, as it isn't useful.
d2c0d383 369 */
f9afca4d
JA
370 if (!op_is_flush(data->cmd_flags) &&
371 e->type->ops.limit_depth &&
17a51199 372 !(data->flags & BLK_MQ_REQ_RESERVED))
f9afca4d 373 e->type->ops.limit_depth(data->cmd_flags, data);
d263ed99
JW
374 } else {
375 blk_mq_tag_busy(data->hctx);
d2c0d383
CH
376 }
377
e4cdf1a1
CH
378 tag = blk_mq_get_tag(data);
379 if (tag == BLK_MQ_TAG_FAIL) {
c05f4220 380 if (clear_ctx_on_error)
1ad43c00 381 data->ctx = NULL;
037cebb8
CH
382 blk_queue_exit(q);
383 return NULL;
d2c0d383
CH
384 }
385
6f816b4b 386 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
f9afca4d 387 if (!op_is_flush(data->cmd_flags)) {
037cebb8 388 rq->elv.icq = NULL;
f9cd4bfe 389 if (e && e->type->ops.prepare_request) {
e2b3fa5a
DLM
390 if (e->type->icq_cache)
391 blk_mq_sched_assign_ioc(rq);
44e8c2bf 392
f9cd4bfe 393 e->type->ops.prepare_request(rq, bio);
5bbf4e5a 394 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 395 }
037cebb8
CH
396 }
397 data->hctx->queued++;
398 return rq;
d2c0d383
CH
399}
400
cd6ce148 401struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 402 blk_mq_req_flags_t flags)
320ae51f 403{
f9afca4d 404 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
bd166ef1 405 struct request *rq;
a492f075 406 int ret;
320ae51f 407
3a0a5299 408 ret = blk_queue_enter(q, flags);
a492f075
JL
409 if (ret)
410 return ERR_PTR(ret);
320ae51f 411
f9afca4d 412 rq = blk_mq_get_request(q, NULL, &alloc_data);
3280d66a 413 blk_queue_exit(q);
841bac2c 414
bd166ef1 415 if (!rq)
a492f075 416 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
417
418 rq->__data_len = 0;
419 rq->__sector = (sector_t) -1;
420 rq->bio = rq->biotail = NULL;
320ae51f
JA
421 return rq;
422}
4bb659b1 423EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 424
cd6ce148 425struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 426 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 427{
f9afca4d 428 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
1f5bd336 429 struct request *rq;
6d2809d5 430 unsigned int cpu;
1f5bd336
ML
431 int ret;
432
433 /*
434 * If the tag allocator sleeps we could get an allocation for a
435 * different hardware context. No need to complicate the low level
436 * allocator for this for the rare use case of a command tied to
437 * a specific queue.
438 */
439 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
440 return ERR_PTR(-EINVAL);
441
442 if (hctx_idx >= q->nr_hw_queues)
443 return ERR_PTR(-EIO);
444
3a0a5299 445 ret = blk_queue_enter(q, flags);
1f5bd336
ML
446 if (ret)
447 return ERR_PTR(ret);
448
c8712c6a
CH
449 /*
450 * Check if the hardware context is actually mapped to anything.
451 * If not tell the caller that it should skip this queue.
452 */
6d2809d5
OS
453 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
454 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
455 blk_queue_exit(q);
456 return ERR_PTR(-EXDEV);
c8712c6a 457 }
20e4d813 458 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
6d2809d5 459 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 460
f9afca4d 461 rq = blk_mq_get_request(q, NULL, &alloc_data);
3280d66a 462 blk_queue_exit(q);
c8712c6a 463
6d2809d5
OS
464 if (!rq)
465 return ERR_PTR(-EWOULDBLOCK);
466
467 return rq;
1f5bd336
ML
468}
469EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
470
12f5b931
KB
471static void __blk_mq_free_request(struct request *rq)
472{
473 struct request_queue *q = rq->q;
474 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 475 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
12f5b931
KB
476 const int sched_tag = rq->internal_tag;
477
a892c8d5 478 blk_crypto_free_request(rq);
986d413b 479 blk_pm_mark_last_busy(rq);
ea4f995e 480 rq->mq_hctx = NULL;
12f5b931 481 if (rq->tag != -1)
cae740a0 482 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
12f5b931 483 if (sched_tag != -1)
cae740a0 484 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
12f5b931
KB
485 blk_mq_sched_restart(hctx);
486 blk_queue_exit(q);
487}
488
6af54051 489void blk_mq_free_request(struct request *rq)
320ae51f 490{
320ae51f 491 struct request_queue *q = rq->q;
6af54051
CH
492 struct elevator_queue *e = q->elevator;
493 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 494 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
6af54051 495
5bbf4e5a 496 if (rq->rq_flags & RQF_ELVPRIV) {
f9cd4bfe
JA
497 if (e && e->type->ops.finish_request)
498 e->type->ops.finish_request(rq);
6af54051
CH
499 if (rq->elv.icq) {
500 put_io_context(rq->elv.icq->ioc);
501 rq->elv.icq = NULL;
502 }
503 }
320ae51f 504
6af54051 505 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 506 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 507 atomic_dec(&hctx->nr_active);
87760e5e 508
7beb2f84
JA
509 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
510 laptop_io_completion(q->backing_dev_info);
511
a7905043 512 rq_qos_done(q, rq);
0d2602ca 513
12f5b931
KB
514 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
515 if (refcount_dec_and_test(&rq->ref))
516 __blk_mq_free_request(rq);
320ae51f 517}
1a3b595a 518EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 519
2a842aca 520inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 521{
fe1f4526
JA
522 u64 now = 0;
523
524 if (blk_mq_need_time_stamp(rq))
525 now = ktime_get_ns();
522a7775 526
4bc6339a
OS
527 if (rq->rq_flags & RQF_STATS) {
528 blk_mq_poll_stats_start(rq->q);
522a7775 529 blk_stat_add(rq, now);
4bc6339a
OS
530 }
531
ed88660a
OS
532 if (rq->internal_tag != -1)
533 blk_mq_sched_completed_request(rq, now);
534
522a7775 535 blk_account_io_done(rq, now);
0d11e6ac 536
91b63639 537 if (rq->end_io) {
a7905043 538 rq_qos_done(rq->q, rq);
320ae51f 539 rq->end_io(rq, error);
91b63639 540 } else {
320ae51f 541 blk_mq_free_request(rq);
91b63639 542 }
320ae51f 543}
c8a446ad 544EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 545
2a842aca 546void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
547{
548 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
549 BUG();
c8a446ad 550 __blk_mq_end_request(rq, error);
63151a44 551}
c8a446ad 552EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 553
30a91cb4 554static void __blk_mq_complete_request_remote(void *data)
320ae51f 555{
3d6efbf6 556 struct request *rq = data;
c7bb9ad1 557 struct request_queue *q = rq->q;
320ae51f 558
c7bb9ad1 559 q->mq_ops->complete(rq);
320ae51f 560}
320ae51f 561
453f8341 562static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
563{
564 struct blk_mq_ctx *ctx = rq->mq_ctx;
c7bb9ad1 565 struct request_queue *q = rq->q;
38535201 566 bool shared = false;
320ae51f
JA
567 int cpu;
568
af78ff7c 569 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
36e76539
ML
570 /*
571 * Most of single queue controllers, there is only one irq vector
572 * for handling IO completion, and the only irq's affinity is set
573 * as all possible CPUs. On most of ARCHs, this affinity means the
574 * irq is handled on one specific CPU.
575 *
576 * So complete IO reqeust in softirq context in case of single queue
577 * for not degrading IO performance by irqsoff latency.
578 */
c7bb9ad1 579 if (q->nr_hw_queues == 1) {
36e76539
ML
580 __blk_complete_request(rq);
581 return;
582 }
583
4ab32bf3
JA
584 /*
585 * For a polled request, always complete locallly, it's pointless
586 * to redirect the completion.
587 */
588 if ((rq->cmd_flags & REQ_HIPRI) ||
589 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
c7bb9ad1 590 q->mq_ops->complete(rq);
30a91cb4
CH
591 return;
592 }
320ae51f
JA
593
594 cpu = get_cpu();
c7bb9ad1 595 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
38535201
CH
596 shared = cpus_share_cache(cpu, ctx->cpu);
597
598 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 599 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
600 rq->csd.info = rq;
601 rq->csd.flags = 0;
c46fff2a 602 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 603 } else {
c7bb9ad1 604 q->mq_ops->complete(rq);
3d6efbf6 605 }
320ae51f
JA
606 put_cpu();
607}
30a91cb4 608
04ced159 609static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
b7435db8 610 __releases(hctx->srcu)
04ced159
JA
611{
612 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
613 rcu_read_unlock();
614 else
05707b64 615 srcu_read_unlock(hctx->srcu, srcu_idx);
04ced159
JA
616}
617
618static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
b7435db8 619 __acquires(hctx->srcu)
04ced159 620{
08b5a6e2
JA
621 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
622 /* shut up gcc false positive */
623 *srcu_idx = 0;
04ced159 624 rcu_read_lock();
08b5a6e2 625 } else
05707b64 626 *srcu_idx = srcu_read_lock(hctx->srcu);
04ced159
JA
627}
628
30a91cb4
CH
629/**
630 * blk_mq_complete_request - end I/O on a request
631 * @rq: the request being processed
632 *
633 * Description:
634 * Ends all I/O on a request. It does not handle partial completions.
635 * The actual completion happens out-of-order, through a IPI handler.
636 **/
16c15eb1 637bool blk_mq_complete_request(struct request *rq)
30a91cb4 638{
12f5b931 639 if (unlikely(blk_should_fake_timeout(rq->q)))
16c15eb1 640 return false;
12f5b931 641 __blk_mq_complete_request(rq);
16c15eb1 642 return true;
30a91cb4
CH
643}
644EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 645
105663f7
AA
646/**
647 * blk_mq_start_request - Start processing a request
648 * @rq: Pointer to request to be started
649 *
650 * Function used by device drivers to notify the block layer that a request
651 * is going to be processed now, so blk layer can do proper initializations
652 * such as starting the timeout timer.
653 */
e2490073 654void blk_mq_start_request(struct request *rq)
320ae51f
JA
655{
656 struct request_queue *q = rq->q;
657
658 trace_block_rq_issue(q, rq);
659
cf43e6be 660 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
544ccc8d 661 rq->io_start_time_ns = ktime_get_ns();
3d244306 662 rq->stats_sectors = blk_rq_sectors(rq);
cf43e6be 663 rq->rq_flags |= RQF_STATS;
a7905043 664 rq_qos_issue(q, rq);
cf43e6be
JA
665 }
666
1d9bd516 667 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 668
1d9bd516 669 blk_add_timer(rq);
12f5b931 670 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
49f5baa5 671
54d4e6ab
MG
672#ifdef CONFIG_BLK_DEV_INTEGRITY
673 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
674 q->integrity.profile->prepare_fn(rq);
675#endif
320ae51f 676}
e2490073 677EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 678
ed0791b2 679static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
680{
681 struct request_queue *q = rq->q;
682
923218f6
ML
683 blk_mq_put_driver_tag(rq);
684
320ae51f 685 trace_block_rq_requeue(q, rq);
a7905043 686 rq_qos_requeue(q, rq);
49f5baa5 687
12f5b931
KB
688 if (blk_mq_request_started(rq)) {
689 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
da661267 690 rq->rq_flags &= ~RQF_TIMED_OUT;
e2490073 691 }
320ae51f
JA
692}
693
2b053aca 694void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 695{
ed0791b2 696 __blk_mq_requeue_request(rq);
ed0791b2 697
105976f5
ML
698 /* this request will be re-inserted to io scheduler queue */
699 blk_mq_sched_requeue_request(rq);
700
7d692330 701 BUG_ON(!list_empty(&rq->queuelist));
2b053aca 702 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
703}
704EXPORT_SYMBOL(blk_mq_requeue_request);
705
6fca6a61
CH
706static void blk_mq_requeue_work(struct work_struct *work)
707{
708 struct request_queue *q =
2849450a 709 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
710 LIST_HEAD(rq_list);
711 struct request *rq, *next;
6fca6a61 712
18e9781d 713 spin_lock_irq(&q->requeue_lock);
6fca6a61 714 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 715 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
716
717 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
aef1897c 718 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
6fca6a61
CH
719 continue;
720
e8064021 721 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 722 list_del_init(&rq->queuelist);
aef1897c
JW
723 /*
724 * If RQF_DONTPREP, rq has contained some driver specific
725 * data, so insert it to hctx dispatch list to avoid any
726 * merge.
727 */
728 if (rq->rq_flags & RQF_DONTPREP)
01e99aec 729 blk_mq_request_bypass_insert(rq, false, false);
aef1897c
JW
730 else
731 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
732 }
733
734 while (!list_empty(&rq_list)) {
735 rq = list_entry(rq_list.next, struct request, queuelist);
736 list_del_init(&rq->queuelist);
9e97d295 737 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
738 }
739
52d7f1b5 740 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
741}
742
2b053aca
BVA
743void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
744 bool kick_requeue_list)
6fca6a61
CH
745{
746 struct request_queue *q = rq->q;
747 unsigned long flags;
748
749 /*
750 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 751 * request head insertion from the workqueue.
6fca6a61 752 */
e8064021 753 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
754
755 spin_lock_irqsave(&q->requeue_lock, flags);
756 if (at_head) {
e8064021 757 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
758 list_add(&rq->queuelist, &q->requeue_list);
759 } else {
760 list_add_tail(&rq->queuelist, &q->requeue_list);
761 }
762 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
763
764 if (kick_requeue_list)
765 blk_mq_kick_requeue_list(q);
6fca6a61 766}
6fca6a61
CH
767
768void blk_mq_kick_requeue_list(struct request_queue *q)
769{
ae943d20 770 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
6fca6a61
CH
771}
772EXPORT_SYMBOL(blk_mq_kick_requeue_list);
773
2849450a
MS
774void blk_mq_delay_kick_requeue_list(struct request_queue *q,
775 unsigned long msecs)
776{
d4acf365
BVA
777 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
778 msecs_to_jiffies(msecs));
2849450a
MS
779}
780EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
781
0e62f51f
JA
782struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
783{
88c7b2b7
JA
784 if (tag < tags->nr_tags) {
785 prefetch(tags->rqs[tag]);
4ee86bab 786 return tags->rqs[tag];
88c7b2b7 787 }
4ee86bab
HR
788
789 return NULL;
24d2f903
CH
790}
791EXPORT_SYMBOL(blk_mq_tag_to_rq);
792
3c94d83c
JA
793static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
794 void *priv, bool reserved)
ae879912
JA
795{
796 /*
3c94d83c
JA
797 * If we find a request that is inflight and the queue matches,
798 * we know the queue is busy. Return false to stop the iteration.
ae879912 799 */
3c94d83c 800 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
ae879912
JA
801 bool *busy = priv;
802
803 *busy = true;
804 return false;
805 }
806
807 return true;
808}
809
3c94d83c 810bool blk_mq_queue_inflight(struct request_queue *q)
ae879912
JA
811{
812 bool busy = false;
813
3c94d83c 814 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
ae879912
JA
815 return busy;
816}
3c94d83c 817EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
ae879912 818
358f70da 819static void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 820{
da661267 821 req->rq_flags |= RQF_TIMED_OUT;
d1210d5a
CH
822 if (req->q->mq_ops->timeout) {
823 enum blk_eh_timer_return ret;
824
825 ret = req->q->mq_ops->timeout(req, reserved);
826 if (ret == BLK_EH_DONE)
827 return;
828 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
46f92d42 829 }
d1210d5a
CH
830
831 blk_add_timer(req);
87ee7b11 832}
5b3f25fc 833
12f5b931 834static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
81481eb4 835{
12f5b931 836 unsigned long deadline;
87ee7b11 837
12f5b931
KB
838 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
839 return false;
da661267
CH
840 if (rq->rq_flags & RQF_TIMED_OUT)
841 return false;
a7af0af3 842
079076b3 843 deadline = READ_ONCE(rq->deadline);
12f5b931
KB
844 if (time_after_eq(jiffies, deadline))
845 return true;
a7af0af3 846
12f5b931
KB
847 if (*next == 0)
848 *next = deadline;
849 else if (time_after(*next, deadline))
850 *next = deadline;
851 return false;
87ee7b11
JA
852}
853
7baa8572 854static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1d9bd516
TH
855 struct request *rq, void *priv, bool reserved)
856{
12f5b931
KB
857 unsigned long *next = priv;
858
859 /*
860 * Just do a quick check if it is expired before locking the request in
861 * so we're not unnecessarilly synchronizing across CPUs.
862 */
863 if (!blk_mq_req_expired(rq, next))
7baa8572 864 return true;
12f5b931
KB
865
866 /*
867 * We have reason to believe the request may be expired. Take a
868 * reference on the request to lock this request lifetime into its
869 * currently allocated context to prevent it from being reallocated in
870 * the event the completion by-passes this timeout handler.
871 *
872 * If the reference was already released, then the driver beat the
873 * timeout handler to posting a natural completion.
874 */
875 if (!refcount_inc_not_zero(&rq->ref))
7baa8572 876 return true;
12f5b931 877
1d9bd516 878 /*
12f5b931
KB
879 * The request is now locked and cannot be reallocated underneath the
880 * timeout handler's processing. Re-verify this exact request is truly
881 * expired; if it is not expired, then the request was completed and
882 * reallocated as a new request.
1d9bd516 883 */
12f5b931 884 if (blk_mq_req_expired(rq, next))
1d9bd516 885 blk_mq_rq_timed_out(rq, reserved);
8d699663
YY
886
887 if (is_flush_rq(rq, hctx))
888 rq->end_io(rq, 0);
889 else if (refcount_dec_and_test(&rq->ref))
12f5b931 890 __blk_mq_free_request(rq);
7baa8572
JA
891
892 return true;
1d9bd516
TH
893}
894
287922eb 895static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 896{
287922eb
CH
897 struct request_queue *q =
898 container_of(work, struct request_queue, timeout_work);
12f5b931 899 unsigned long next = 0;
1d9bd516 900 struct blk_mq_hw_ctx *hctx;
81481eb4 901 int i;
320ae51f 902
71f79fb3
GKB
903 /* A deadlock might occur if a request is stuck requiring a
904 * timeout at the same time a queue freeze is waiting
905 * completion, since the timeout code would not be able to
906 * acquire the queue reference here.
907 *
908 * That's why we don't use blk_queue_enter here; instead, we use
909 * percpu_ref_tryget directly, because we need to be able to
910 * obtain a reference even in the short window between the queue
911 * starting to freeze, by dropping the first reference in
1671d522 912 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
913 * consumed, marked by the instant q_usage_counter reaches
914 * zero.
915 */
916 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
917 return;
918
12f5b931 919 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
320ae51f 920
12f5b931
KB
921 if (next != 0) {
922 mod_timer(&q->timeout, next);
0d2602ca 923 } else {
fcd36c36
BVA
924 /*
925 * Request timeouts are handled as a forward rolling timer. If
926 * we end up here it means that no requests are pending and
927 * also that no request has been pending for a while. Mark
928 * each hctx as idle.
929 */
f054b56c
ML
930 queue_for_each_hw_ctx(q, hctx, i) {
931 /* the hctx may be unmapped, so check it here */
932 if (blk_mq_hw_queue_mapped(hctx))
933 blk_mq_tag_idle(hctx);
934 }
0d2602ca 935 }
287922eb 936 blk_queue_exit(q);
320ae51f
JA
937}
938
88459642
OS
939struct flush_busy_ctx_data {
940 struct blk_mq_hw_ctx *hctx;
941 struct list_head *list;
942};
943
944static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
945{
946 struct flush_busy_ctx_data *flush_data = data;
947 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
948 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 949 enum hctx_type type = hctx->type;
88459642 950
88459642 951 spin_lock(&ctx->lock);
c16d6b5a 952 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
e9a99a63 953 sbitmap_clear_bit(sb, bitnr);
88459642
OS
954 spin_unlock(&ctx->lock);
955 return true;
956}
957
1429d7c9
JA
958/*
959 * Process software queues that have been marked busy, splicing them
960 * to the for-dispatch
961 */
2c3ad667 962void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 963{
88459642
OS
964 struct flush_busy_ctx_data data = {
965 .hctx = hctx,
966 .list = list,
967 };
1429d7c9 968
88459642 969 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 970}
2c3ad667 971EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 972
b347689f
ML
973struct dispatch_rq_data {
974 struct blk_mq_hw_ctx *hctx;
975 struct request *rq;
976};
977
978static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
979 void *data)
980{
981 struct dispatch_rq_data *dispatch_data = data;
982 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
983 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 984 enum hctx_type type = hctx->type;
b347689f
ML
985
986 spin_lock(&ctx->lock);
c16d6b5a
ML
987 if (!list_empty(&ctx->rq_lists[type])) {
988 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
b347689f 989 list_del_init(&dispatch_data->rq->queuelist);
c16d6b5a 990 if (list_empty(&ctx->rq_lists[type]))
b347689f
ML
991 sbitmap_clear_bit(sb, bitnr);
992 }
993 spin_unlock(&ctx->lock);
994
995 return !dispatch_data->rq;
996}
997
998struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
999 struct blk_mq_ctx *start)
1000{
f31967f0 1001 unsigned off = start ? start->index_hw[hctx->type] : 0;
b347689f
ML
1002 struct dispatch_rq_data data = {
1003 .hctx = hctx,
1004 .rq = NULL,
1005 };
1006
1007 __sbitmap_for_each_set(&hctx->ctx_map, off,
1008 dispatch_rq_from_ctx, &data);
1009
1010 return data.rq;
1011}
1012
703fd1c0
JA
1013static inline unsigned int queued_to_index(unsigned int queued)
1014{
1015 if (!queued)
1016 return 0;
1429d7c9 1017
703fd1c0 1018 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
1019}
1020
8ab6bb9e 1021bool blk_mq_get_driver_tag(struct request *rq)
bd166ef1
JA
1022{
1023 struct blk_mq_alloc_data data = {
1024 .q = rq->q,
ea4f995e 1025 .hctx = rq->mq_hctx,
8ab6bb9e 1026 .flags = BLK_MQ_REQ_NOWAIT,
f9afca4d 1027 .cmd_flags = rq->cmd_flags,
bd166ef1 1028 };
d263ed99 1029 bool shared;
5feeacdd 1030
81380ca1 1031 if (rq->tag != -1)
1fead718 1032 return true;
bd166ef1 1033
415b806d
SG
1034 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1035 data.flags |= BLK_MQ_REQ_RESERVED;
1036
d263ed99 1037 shared = blk_mq_tag_busy(data.hctx);
bd166ef1
JA
1038 rq->tag = blk_mq_get_tag(&data);
1039 if (rq->tag >= 0) {
d263ed99 1040 if (shared) {
200e86b3
JA
1041 rq->rq_flags |= RQF_MQ_INFLIGHT;
1042 atomic_inc(&data.hctx->nr_active);
1043 }
bd166ef1 1044 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
1045 }
1046
81380ca1 1047 return rq->tag != -1;
bd166ef1
JA
1048}
1049
eb619fdb
JA
1050static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1051 int flags, void *key)
da55f2cc
OS
1052{
1053 struct blk_mq_hw_ctx *hctx;
1054
1055 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1056
5815839b 1057 spin_lock(&hctx->dispatch_wait_lock);
e8618575
JA
1058 if (!list_empty(&wait->entry)) {
1059 struct sbitmap_queue *sbq;
1060
1061 list_del_init(&wait->entry);
1062 sbq = &hctx->tags->bitmap_tags;
1063 atomic_dec(&sbq->ws_active);
1064 }
5815839b
ML
1065 spin_unlock(&hctx->dispatch_wait_lock);
1066
da55f2cc
OS
1067 blk_mq_run_hw_queue(hctx, true);
1068 return 1;
1069}
1070
f906a6a0
JA
1071/*
1072 * Mark us waiting for a tag. For shared tags, this involves hooking us into
ee3e4de5
BVA
1073 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1074 * restart. For both cases, take care to check the condition again after
f906a6a0
JA
1075 * marking us as waiting.
1076 */
2278d69f 1077static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
f906a6a0 1078 struct request *rq)
da55f2cc 1079{
e8618575 1080 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
5815839b 1081 struct wait_queue_head *wq;
f906a6a0
JA
1082 wait_queue_entry_t *wait;
1083 bool ret;
da55f2cc 1084
2278d69f 1085 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
684b7324 1086 blk_mq_sched_mark_restart_hctx(hctx);
f906a6a0 1087
c27d53fb
BVA
1088 /*
1089 * It's possible that a tag was freed in the window between the
1090 * allocation failure and adding the hardware queue to the wait
1091 * queue.
1092 *
1093 * Don't clear RESTART here, someone else could have set it.
1094 * At most this will cost an extra queue run.
1095 */
8ab6bb9e 1096 return blk_mq_get_driver_tag(rq);
eb619fdb 1097 }
eb619fdb 1098
2278d69f 1099 wait = &hctx->dispatch_wait;
c27d53fb
BVA
1100 if (!list_empty_careful(&wait->entry))
1101 return false;
1102
e8618575 1103 wq = &bt_wait_ptr(sbq, hctx)->wait;
5815839b
ML
1104
1105 spin_lock_irq(&wq->lock);
1106 spin_lock(&hctx->dispatch_wait_lock);
c27d53fb 1107 if (!list_empty(&wait->entry)) {
5815839b
ML
1108 spin_unlock(&hctx->dispatch_wait_lock);
1109 spin_unlock_irq(&wq->lock);
c27d53fb 1110 return false;
eb619fdb
JA
1111 }
1112
e8618575 1113 atomic_inc(&sbq->ws_active);
5815839b
ML
1114 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1115 __add_wait_queue(wq, wait);
c27d53fb 1116
da55f2cc 1117 /*
eb619fdb
JA
1118 * It's possible that a tag was freed in the window between the
1119 * allocation failure and adding the hardware queue to the wait
1120 * queue.
da55f2cc 1121 */
8ab6bb9e 1122 ret = blk_mq_get_driver_tag(rq);
c27d53fb 1123 if (!ret) {
5815839b
ML
1124 spin_unlock(&hctx->dispatch_wait_lock);
1125 spin_unlock_irq(&wq->lock);
c27d53fb 1126 return false;
eb619fdb 1127 }
c27d53fb
BVA
1128
1129 /*
1130 * We got a tag, remove ourselves from the wait queue to ensure
1131 * someone else gets the wakeup.
1132 */
c27d53fb 1133 list_del_init(&wait->entry);
e8618575 1134 atomic_dec(&sbq->ws_active);
5815839b
ML
1135 spin_unlock(&hctx->dispatch_wait_lock);
1136 spin_unlock_irq(&wq->lock);
c27d53fb
BVA
1137
1138 return true;
da55f2cc
OS
1139}
1140
6e768717
ML
1141#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1142#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1143/*
1144 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1145 * - EWMA is one simple way to compute running average value
1146 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1147 * - take 4 as factor for avoiding to get too small(0) result, and this
1148 * factor doesn't matter because EWMA decreases exponentially
1149 */
1150static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1151{
1152 unsigned int ewma;
1153
1154 if (hctx->queue->elevator)
1155 return;
1156
1157 ewma = hctx->dispatch_busy;
1158
1159 if (!ewma && !busy)
1160 return;
1161
1162 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1163 if (busy)
1164 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1165 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1166
1167 hctx->dispatch_busy = ewma;
1168}
1169
86ff7c2a
ML
1170#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1171
c92a4103
JT
1172static void blk_mq_handle_dev_resource(struct request *rq,
1173 struct list_head *list)
1174{
1175 struct request *next =
1176 list_first_entry_or_null(list, struct request, queuelist);
1177
1178 /*
1179 * If an I/O scheduler has been configured and we got a driver tag for
1180 * the next request already, free it.
1181 */
1182 if (next)
1183 blk_mq_put_driver_tag(next);
1184
1185 list_add(&rq->queuelist, list);
1186 __blk_mq_requeue_request(rq);
1187}
1188
0512a75b
KB
1189static void blk_mq_handle_zone_resource(struct request *rq,
1190 struct list_head *zone_list)
1191{
1192 /*
1193 * If we end up here it is because we cannot dispatch a request to a
1194 * specific zone due to LLD level zone-write locking or other zone
1195 * related resource not being available. In this case, set the request
1196 * aside in zone_list for retrying it later.
1197 */
1198 list_add(&rq->queuelist, zone_list);
1199 __blk_mq_requeue_request(rq);
1200}
1201
1f57f8d4
JA
1202/*
1203 * Returns true if we did some work AND can potentially do more.
1204 */
de148297 1205bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1206 bool got_budget)
320ae51f 1207{
81380ca1 1208 struct blk_mq_hw_ctx *hctx;
6d6f167c 1209 struct request *rq, *nxt;
eb619fdb 1210 bool no_tag = false;
fc17b653 1211 int errors, queued;
86ff7c2a 1212 blk_status_t ret = BLK_STS_OK;
ab3cee37 1213 bool no_budget_avail = false;
0512a75b 1214 LIST_HEAD(zone_list);
320ae51f 1215
81380ca1
OS
1216 if (list_empty(list))
1217 return false;
1218
de148297
ML
1219 WARN_ON(!list_is_singular(list) && got_budget);
1220
320ae51f
JA
1221 /*
1222 * Now process all the entries, sending them to the driver.
1223 */
93efe981 1224 errors = queued = 0;
81380ca1 1225 do {
74c45052 1226 struct blk_mq_queue_data bd;
320ae51f 1227
f04c3df3 1228 rq = list_first_entry(list, struct request, queuelist);
0bca799b 1229
ea4f995e 1230 hctx = rq->mq_hctx;
5fe56de7
JG
1231 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1232 blk_mq_put_driver_tag(rq);
ab3cee37 1233 no_budget_avail = true;
0bca799b 1234 break;
5fe56de7 1235 }
0bca799b 1236
8ab6bb9e 1237 if (!blk_mq_get_driver_tag(rq)) {
3c782d67 1238 /*
da55f2cc 1239 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1240 * rerun the hardware queue when a tag is freed. The
1241 * waitqueue takes care of that. If the queue is run
1242 * before we add this entry back on the dispatch list,
1243 * we'll re-run it below.
3c782d67 1244 */
2278d69f 1245 if (!blk_mq_mark_tag_wait(hctx, rq)) {
0bca799b 1246 blk_mq_put_dispatch_budget(hctx);
f906a6a0
JA
1247 /*
1248 * For non-shared tags, the RESTART check
1249 * will suffice.
1250 */
1251 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1252 no_tag = true;
de148297
ML
1253 break;
1254 }
1255 }
1256
320ae51f 1257 list_del_init(&rq->queuelist);
320ae51f 1258
74c45052 1259 bd.rq = rq;
113285b4
JA
1260
1261 /*
1262 * Flag last if we have no more requests, or if we have more
1263 * but can't assign a driver tag to it.
1264 */
1265 if (list_empty(list))
1266 bd.last = true;
1267 else {
113285b4 1268 nxt = list_first_entry(list, struct request, queuelist);
8ab6bb9e 1269 bd.last = !blk_mq_get_driver_tag(nxt);
113285b4 1270 }
74c45052
JA
1271
1272 ret = q->mq_ops->queue_rq(hctx, &bd);
86ff7c2a 1273 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
c92a4103 1274 blk_mq_handle_dev_resource(rq, list);
320ae51f 1275 break;
0512a75b
KB
1276 } else if (ret == BLK_STS_ZONE_RESOURCE) {
1277 /*
1278 * Move the request to zone_list and keep going through
1279 * the dispatch list to find more requests the drive can
1280 * accept.
1281 */
1282 blk_mq_handle_zone_resource(rq, &zone_list);
1283 if (list_empty(list))
1284 break;
1285 continue;
fc17b653
CH
1286 }
1287
1288 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1289 errors++;
2a842aca 1290 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1291 continue;
320ae51f
JA
1292 }
1293
fc17b653 1294 queued++;
81380ca1 1295 } while (!list_empty(list));
320ae51f 1296
0512a75b
KB
1297 if (!list_empty(&zone_list))
1298 list_splice_tail_init(&zone_list, list);
1299
703fd1c0 1300 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1301
1302 /*
1303 * Any items that need requeuing? Stuff them into hctx->dispatch,
1304 * that is where we will continue on next queue run.
1305 */
f04c3df3 1306 if (!list_empty(list)) {
86ff7c2a
ML
1307 bool needs_restart;
1308
d666ba98
JA
1309 /*
1310 * If we didn't flush the entire list, we could have told
1311 * the driver there was more coming, but that turned out to
1312 * be a lie.
1313 */
536167d4 1314 if (q->mq_ops->commit_rqs && queued)
d666ba98
JA
1315 q->mq_ops->commit_rqs(hctx);
1316
320ae51f 1317 spin_lock(&hctx->lock);
01e99aec 1318 list_splice_tail_init(list, &hctx->dispatch);
320ae51f 1319 spin_unlock(&hctx->lock);
f04c3df3 1320
9ba52e58 1321 /*
710c785f
BVA
1322 * If SCHED_RESTART was set by the caller of this function and
1323 * it is no longer set that means that it was cleared by another
1324 * thread and hence that a queue rerun is needed.
9ba52e58 1325 *
eb619fdb
JA
1326 * If 'no_tag' is set, that means that we failed getting
1327 * a driver tag with an I/O scheduler attached. If our dispatch
1328 * waitqueue is no longer active, ensure that we run the queue
1329 * AFTER adding our entries back to the list.
bd166ef1 1330 *
710c785f
BVA
1331 * If no I/O scheduler has been configured it is possible that
1332 * the hardware queue got stopped and restarted before requests
1333 * were pushed back onto the dispatch list. Rerun the queue to
1334 * avoid starvation. Notes:
1335 * - blk_mq_run_hw_queue() checks whether or not a queue has
1336 * been stopped before rerunning a queue.
1337 * - Some but not all block drivers stop a queue before
fc17b653 1338 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1339 * and dm-rq.
86ff7c2a
ML
1340 *
1341 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1342 * bit is set, run queue after a delay to avoid IO stalls
ab3cee37
DA
1343 * that could otherwise occur if the queue is idle. We'll do
1344 * similar if we couldn't get budget and SCHED_RESTART is set.
bd166ef1 1345 */
86ff7c2a
ML
1346 needs_restart = blk_mq_sched_needs_restart(hctx);
1347 if (!needs_restart ||
eb619fdb 1348 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1349 blk_mq_run_hw_queue(hctx, true);
ab3cee37
DA
1350 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1351 no_budget_avail))
86ff7c2a 1352 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1f57f8d4 1353
6e768717 1354 blk_mq_update_dispatch_busy(hctx, true);
1f57f8d4 1355 return false;
6e768717
ML
1356 } else
1357 blk_mq_update_dispatch_busy(hctx, false);
f04c3df3 1358
1f57f8d4
JA
1359 /*
1360 * If the host/device is unable to accept more work, inform the
1361 * caller of that.
1362 */
1363 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1364 return false;
1365
93efe981 1366 return (queued + errors) != 0;
f04c3df3
JA
1367}
1368
105663f7
AA
1369/**
1370 * __blk_mq_run_hw_queue - Run a hardware queue.
1371 * @hctx: Pointer to the hardware queue to run.
1372 *
1373 * Send pending requests to the hardware.
1374 */
6a83e74d
BVA
1375static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1376{
1377 int srcu_idx;
1378
b7a71e66
JA
1379 /*
1380 * We should be running this queue from one of the CPUs that
1381 * are mapped to it.
7df938fb
ML
1382 *
1383 * There are at least two related races now between setting
1384 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1385 * __blk_mq_run_hw_queue():
1386 *
1387 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1388 * but later it becomes online, then this warning is harmless
1389 * at all
1390 *
1391 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1392 * but later it becomes offline, then the warning can't be
1393 * triggered, and we depend on blk-mq timeout handler to
1394 * handle dispatched requests to this hctx
b7a71e66 1395 */
7df938fb
ML
1396 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1397 cpu_online(hctx->next_cpu)) {
1398 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1399 raw_smp_processor_id(),
1400 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1401 dump_stack();
1402 }
6a83e74d 1403
b7a71e66
JA
1404 /*
1405 * We can't run the queue inline with ints disabled. Ensure that
1406 * we catch bad users of this early.
1407 */
1408 WARN_ON_ONCE(in_interrupt());
1409
04ced159 1410 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1411
04ced159
JA
1412 hctx_lock(hctx, &srcu_idx);
1413 blk_mq_sched_dispatch_requests(hctx);
1414 hctx_unlock(hctx, srcu_idx);
6a83e74d
BVA
1415}
1416
f82ddf19
ML
1417static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1418{
1419 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1420
1421 if (cpu >= nr_cpu_ids)
1422 cpu = cpumask_first(hctx->cpumask);
1423 return cpu;
1424}
1425
506e931f
JA
1426/*
1427 * It'd be great if the workqueue API had a way to pass
1428 * in a mask and had some smarts for more clever placement.
1429 * For now we just round-robin here, switching for every
1430 * BLK_MQ_CPU_WORK_BATCH queued items.
1431 */
1432static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1433{
7bed4595 1434 bool tried = false;
476f8c98 1435 int next_cpu = hctx->next_cpu;
7bed4595 1436
b657d7e6
CH
1437 if (hctx->queue->nr_hw_queues == 1)
1438 return WORK_CPU_UNBOUND;
506e931f
JA
1439
1440 if (--hctx->next_cpu_batch <= 0) {
7bed4595 1441select_cpu:
476f8c98 1442 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
20e4d813 1443 cpu_online_mask);
506e931f 1444 if (next_cpu >= nr_cpu_ids)
f82ddf19 1445 next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
1446 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1447 }
1448
7bed4595
ML
1449 /*
1450 * Do unbound schedule if we can't find a online CPU for this hctx,
1451 * and it should only happen in the path of handling CPU DEAD.
1452 */
476f8c98 1453 if (!cpu_online(next_cpu)) {
7bed4595
ML
1454 if (!tried) {
1455 tried = true;
1456 goto select_cpu;
1457 }
1458
1459 /*
1460 * Make sure to re-select CPU next time once after CPUs
1461 * in hctx->cpumask become online again.
1462 */
476f8c98 1463 hctx->next_cpu = next_cpu;
7bed4595
ML
1464 hctx->next_cpu_batch = 1;
1465 return WORK_CPU_UNBOUND;
1466 }
476f8c98
ML
1467
1468 hctx->next_cpu = next_cpu;
1469 return next_cpu;
506e931f
JA
1470}
1471
105663f7
AA
1472/**
1473 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1474 * @hctx: Pointer to the hardware queue to run.
1475 * @async: If we want to run the queue asynchronously.
1476 * @msecs: Microseconds of delay to wait before running the queue.
1477 *
1478 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1479 * with a delay of @msecs.
1480 */
7587a5ae
BVA
1481static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1482 unsigned long msecs)
320ae51f 1483{
5435c023 1484 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1485 return;
1486
1b792f2f 1487 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1488 int cpu = get_cpu();
1489 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1490 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1491 put_cpu();
398205b8
PB
1492 return;
1493 }
e4043dcf 1494
2a90d4aa 1495 put_cpu();
e4043dcf 1496 }
398205b8 1497
ae943d20
BVA
1498 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1499 msecs_to_jiffies(msecs));
7587a5ae
BVA
1500}
1501
105663f7
AA
1502/**
1503 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1504 * @hctx: Pointer to the hardware queue to run.
1505 * @msecs: Microseconds of delay to wait before running the queue.
1506 *
1507 * Run a hardware queue asynchronously with a delay of @msecs.
1508 */
7587a5ae
BVA
1509void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1510{
1511 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1512}
1513EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1514
105663f7
AA
1515/**
1516 * blk_mq_run_hw_queue - Start to run a hardware queue.
1517 * @hctx: Pointer to the hardware queue to run.
1518 * @async: If we want to run the queue asynchronously.
1519 *
1520 * Check if the request queue is not in a quiesced state and if there are
1521 * pending requests to be sent. If this is true, run the queue to send requests
1522 * to hardware.
1523 */
626fb735 1524void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1525{
24f5a90f
ML
1526 int srcu_idx;
1527 bool need_run;
1528
1529 /*
1530 * When queue is quiesced, we may be switching io scheduler, or
1531 * updating nr_hw_queues, or other things, and we can't run queue
1532 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1533 *
1534 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1535 * quiesced.
1536 */
04ced159
JA
1537 hctx_lock(hctx, &srcu_idx);
1538 need_run = !blk_queue_quiesced(hctx->queue) &&
1539 blk_mq_hctx_has_pending(hctx);
1540 hctx_unlock(hctx, srcu_idx);
24f5a90f 1541
626fb735 1542 if (need_run)
79f720a7 1543 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f 1544}
5b727272 1545EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1546
105663f7
AA
1547/**
1548 * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1549 * @q: Pointer to the request queue to run.
1550 * @async: If we want to run the queue asynchronously.
1551 */
b94ec296 1552void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1553{
1554 struct blk_mq_hw_ctx *hctx;
1555 int i;
1556
1557 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1558 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1559 continue;
1560
b94ec296 1561 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1562 }
1563}
b94ec296 1564EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1565
b9151e7b
DA
1566/**
1567 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1568 * @q: Pointer to the request queue to run.
1569 * @msecs: Microseconds of delay to wait before running the queues.
1570 */
1571void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1572{
1573 struct blk_mq_hw_ctx *hctx;
1574 int i;
1575
1576 queue_for_each_hw_ctx(q, hctx, i) {
1577 if (blk_mq_hctx_stopped(hctx))
1578 continue;
1579
1580 blk_mq_delay_run_hw_queue(hctx, msecs);
1581 }
1582}
1583EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1584
fd001443
BVA
1585/**
1586 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1587 * @q: request queue.
1588 *
1589 * The caller is responsible for serializing this function against
1590 * blk_mq_{start,stop}_hw_queue().
1591 */
1592bool blk_mq_queue_stopped(struct request_queue *q)
1593{
1594 struct blk_mq_hw_ctx *hctx;
1595 int i;
1596
1597 queue_for_each_hw_ctx(q, hctx, i)
1598 if (blk_mq_hctx_stopped(hctx))
1599 return true;
1600
1601 return false;
1602}
1603EXPORT_SYMBOL(blk_mq_queue_stopped);
1604
39a70c76
ML
1605/*
1606 * This function is often used for pausing .queue_rq() by driver when
1607 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1608 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1609 *
1610 * We do not guarantee that dispatch can be drained or blocked
1611 * after blk_mq_stop_hw_queue() returns. Please use
1612 * blk_mq_quiesce_queue() for that requirement.
1613 */
2719aa21
JA
1614void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1615{
641a9ed6 1616 cancel_delayed_work(&hctx->run_work);
280d45f6 1617
641a9ed6 1618 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1619}
641a9ed6 1620EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1621
39a70c76
ML
1622/*
1623 * This function is often used for pausing .queue_rq() by driver when
1624 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1625 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1626 *
1627 * We do not guarantee that dispatch can be drained or blocked
1628 * after blk_mq_stop_hw_queues() returns. Please use
1629 * blk_mq_quiesce_queue() for that requirement.
1630 */
2719aa21
JA
1631void blk_mq_stop_hw_queues(struct request_queue *q)
1632{
641a9ed6
ML
1633 struct blk_mq_hw_ctx *hctx;
1634 int i;
1635
1636 queue_for_each_hw_ctx(q, hctx, i)
1637 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1638}
1639EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1640
320ae51f
JA
1641void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1642{
1643 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1644
0ffbce80 1645 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1646}
1647EXPORT_SYMBOL(blk_mq_start_hw_queue);
1648
2f268556
CH
1649void blk_mq_start_hw_queues(struct request_queue *q)
1650{
1651 struct blk_mq_hw_ctx *hctx;
1652 int i;
1653
1654 queue_for_each_hw_ctx(q, hctx, i)
1655 blk_mq_start_hw_queue(hctx);
1656}
1657EXPORT_SYMBOL(blk_mq_start_hw_queues);
1658
ae911c5e
JA
1659void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1660{
1661 if (!blk_mq_hctx_stopped(hctx))
1662 return;
1663
1664 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1665 blk_mq_run_hw_queue(hctx, async);
1666}
1667EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1668
1b4a3258 1669void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1670{
1671 struct blk_mq_hw_ctx *hctx;
1672 int i;
1673
ae911c5e
JA
1674 queue_for_each_hw_ctx(q, hctx, i)
1675 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1676}
1677EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1678
70f4db63 1679static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1680{
1681 struct blk_mq_hw_ctx *hctx;
1682
9f993737 1683 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1684
21c6e939 1685 /*
15fe8a90 1686 * If we are stopped, don't run the queue.
21c6e939 1687 */
15fe8a90 1688 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
0196d6b4 1689 return;
7587a5ae
BVA
1690
1691 __blk_mq_run_hw_queue(hctx);
1692}
1693
cfd0c552 1694static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1695 struct request *rq,
1696 bool at_head)
320ae51f 1697{
e57690fe 1698 struct blk_mq_ctx *ctx = rq->mq_ctx;
c16d6b5a 1699 enum hctx_type type = hctx->type;
e57690fe 1700
7b607814
BVA
1701 lockdep_assert_held(&ctx->lock);
1702
01b983c9
JA
1703 trace_block_rq_insert(hctx->queue, rq);
1704
72a0a36e 1705 if (at_head)
c16d6b5a 1706 list_add(&rq->queuelist, &ctx->rq_lists[type]);
72a0a36e 1707 else
c16d6b5a 1708 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
cfd0c552 1709}
4bb659b1 1710
2c3ad667
JA
1711void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1712 bool at_head)
cfd0c552
ML
1713{
1714 struct blk_mq_ctx *ctx = rq->mq_ctx;
1715
7b607814
BVA
1716 lockdep_assert_held(&ctx->lock);
1717
e57690fe 1718 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1719 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1720}
1721
105663f7
AA
1722/**
1723 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1724 * @rq: Pointer to request to be inserted.
1725 * @run_queue: If we should run the hardware queue after inserting the request.
1726 *
157f377b
JA
1727 * Should only be used carefully, when the caller knows we want to
1728 * bypass a potential IO scheduler on the target device.
1729 */
01e99aec
ML
1730void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1731 bool run_queue)
157f377b 1732{
ea4f995e 1733 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
157f377b
JA
1734
1735 spin_lock(&hctx->lock);
01e99aec
ML
1736 if (at_head)
1737 list_add(&rq->queuelist, &hctx->dispatch);
1738 else
1739 list_add_tail(&rq->queuelist, &hctx->dispatch);
157f377b
JA
1740 spin_unlock(&hctx->lock);
1741
b0850297
ML
1742 if (run_queue)
1743 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1744}
1745
bd166ef1
JA
1746void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1747 struct list_head *list)
320ae51f
JA
1748
1749{
3f0cedc7 1750 struct request *rq;
c16d6b5a 1751 enum hctx_type type = hctx->type;
3f0cedc7 1752
320ae51f
JA
1753 /*
1754 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1755 * offline now
1756 */
3f0cedc7 1757 list_for_each_entry(rq, list, queuelist) {
e57690fe 1758 BUG_ON(rq->mq_ctx != ctx);
3f0cedc7 1759 trace_block_rq_insert(hctx->queue, rq);
320ae51f 1760 }
3f0cedc7
ML
1761
1762 spin_lock(&ctx->lock);
c16d6b5a 1763 list_splice_tail_init(list, &ctx->rq_lists[type]);
cfd0c552 1764 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1765 spin_unlock(&ctx->lock);
320ae51f
JA
1766}
1767
3110fc79 1768static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
320ae51f
JA
1769{
1770 struct request *rqa = container_of(a, struct request, queuelist);
1771 struct request *rqb = container_of(b, struct request, queuelist);
1772
7d30a621
PB
1773 if (rqa->mq_ctx != rqb->mq_ctx)
1774 return rqa->mq_ctx > rqb->mq_ctx;
1775 if (rqa->mq_hctx != rqb->mq_hctx)
1776 return rqa->mq_hctx > rqb->mq_hctx;
3110fc79
JA
1777
1778 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
320ae51f
JA
1779}
1780
1781void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1782{
320ae51f 1783 LIST_HEAD(list);
320ae51f 1784
95ed0c5b
PB
1785 if (list_empty(&plug->mq_list))
1786 return;
320ae51f
JA
1787 list_splice_init(&plug->mq_list, &list);
1788
ce5b009c
JA
1789 if (plug->rq_count > 2 && plug->multiple_queues)
1790 list_sort(NULL, &list, plug_rq_cmp);
320ae51f 1791
bcc816df
DZ
1792 plug->rq_count = 0;
1793
95ed0c5b
PB
1794 do {
1795 struct list_head rq_list;
1796 struct request *rq, *head_rq = list_entry_rq(list.next);
1797 struct list_head *pos = &head_rq->queuelist; /* skip first */
1798 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1799 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1800 unsigned int depth = 1;
1801
1802 list_for_each_continue(pos, &list) {
1803 rq = list_entry_rq(pos);
1804 BUG_ON(!rq->q);
1805 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1806 break;
1807 depth++;
320ae51f
JA
1808 }
1809
95ed0c5b
PB
1810 list_cut_before(&rq_list, &list, pos);
1811 trace_block_unplug(head_rq->q, depth, !from_schedule);
67cae4c9 1812 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
bd166ef1 1813 from_schedule);
95ed0c5b 1814 } while(!list_empty(&list));
320ae51f
JA
1815}
1816
14ccb66b
CH
1817static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1818 unsigned int nr_segs)
320ae51f 1819{
f924cdde
CH
1820 if (bio->bi_opf & REQ_RAHEAD)
1821 rq->cmd_flags |= REQ_FAILFAST_MASK;
1822
1823 rq->__sector = bio->bi_iter.bi_sector;
1824 rq->write_hint = bio->bi_write_hint;
14ccb66b 1825 blk_rq_bio_prep(rq, bio, nr_segs);
a892c8d5 1826 blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
4b570521 1827
6e85eaf3 1828 blk_account_io_start(rq, true);
320ae51f
JA
1829}
1830
0f95549c
MS
1831static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1832 struct request *rq,
be94f058 1833 blk_qc_t *cookie, bool last)
f984df1f 1834{
f984df1f 1835 struct request_queue *q = rq->q;
f984df1f
SL
1836 struct blk_mq_queue_data bd = {
1837 .rq = rq,
be94f058 1838 .last = last,
f984df1f 1839 };
bd166ef1 1840 blk_qc_t new_cookie;
f06345ad 1841 blk_status_t ret;
0f95549c
MS
1842
1843 new_cookie = request_to_qc_t(hctx, rq);
1844
1845 /*
1846 * For OK queue, we are done. For error, caller may kill it.
1847 * Any other error (busy), just add it to our list as we
1848 * previously would have done.
1849 */
1850 ret = q->mq_ops->queue_rq(hctx, &bd);
1851 switch (ret) {
1852 case BLK_STS_OK:
6ce3dd6e 1853 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1854 *cookie = new_cookie;
1855 break;
1856 case BLK_STS_RESOURCE:
86ff7c2a 1857 case BLK_STS_DEV_RESOURCE:
6ce3dd6e 1858 blk_mq_update_dispatch_busy(hctx, true);
0f95549c
MS
1859 __blk_mq_requeue_request(rq);
1860 break;
1861 default:
6ce3dd6e 1862 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1863 *cookie = BLK_QC_T_NONE;
1864 break;
1865 }
1866
1867 return ret;
1868}
1869
fd9c40f6 1870static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
0f95549c 1871 struct request *rq,
396eaf21 1872 blk_qc_t *cookie,
fd9c40f6 1873 bool bypass_insert, bool last)
0f95549c
MS
1874{
1875 struct request_queue *q = rq->q;
d964f04a
ML
1876 bool run_queue = true;
1877
23d4ee19 1878 /*
fd9c40f6 1879 * RCU or SRCU read lock is needed before checking quiesced flag.
23d4ee19 1880 *
fd9c40f6
BVA
1881 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1882 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1883 * and avoid driver to try to dispatch again.
23d4ee19 1884 */
fd9c40f6 1885 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a 1886 run_queue = false;
fd9c40f6
BVA
1887 bypass_insert = false;
1888 goto insert;
d964f04a 1889 }
f984df1f 1890
fd9c40f6
BVA
1891 if (q->elevator && !bypass_insert)
1892 goto insert;
2253efc8 1893
0bca799b 1894 if (!blk_mq_get_dispatch_budget(hctx))
fd9c40f6 1895 goto insert;
bd166ef1 1896
8ab6bb9e 1897 if (!blk_mq_get_driver_tag(rq)) {
0bca799b 1898 blk_mq_put_dispatch_budget(hctx);
fd9c40f6 1899 goto insert;
88022d72 1900 }
de148297 1901
fd9c40f6
BVA
1902 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1903insert:
1904 if (bypass_insert)
1905 return BLK_STS_RESOURCE;
1906
01e99aec 1907 blk_mq_request_bypass_insert(rq, false, run_queue);
fd9c40f6
BVA
1908 return BLK_STS_OK;
1909}
1910
105663f7
AA
1911/**
1912 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
1913 * @hctx: Pointer of the associated hardware queue.
1914 * @rq: Pointer to request to be sent.
1915 * @cookie: Request queue cookie.
1916 *
1917 * If the device has enough resources to accept a new request now, send the
1918 * request directly to device driver. Else, insert at hctx->dispatch queue, so
1919 * we can try send it another time in the future. Requests inserted at this
1920 * queue have higher priority.
1921 */
fd9c40f6
BVA
1922static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1923 struct request *rq, blk_qc_t *cookie)
1924{
1925 blk_status_t ret;
1926 int srcu_idx;
1927
1928 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1929
1930 hctx_lock(hctx, &srcu_idx);
1931
1932 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1933 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
01e99aec 1934 blk_mq_request_bypass_insert(rq, false, true);
fd9c40f6
BVA
1935 else if (ret != BLK_STS_OK)
1936 blk_mq_end_request(rq, ret);
1937
1938 hctx_unlock(hctx, srcu_idx);
1939}
1940
1941blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1942{
1943 blk_status_t ret;
1944 int srcu_idx;
1945 blk_qc_t unused_cookie;
1946 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1947
1948 hctx_lock(hctx, &srcu_idx);
1949 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
04ced159 1950 hctx_unlock(hctx, srcu_idx);
7f556a44
JW
1951
1952 return ret;
5eb6126e
CH
1953}
1954
6ce3dd6e
ML
1955void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1956 struct list_head *list)
1957{
536167d4
KB
1958 int queued = 0;
1959
6ce3dd6e 1960 while (!list_empty(list)) {
fd9c40f6 1961 blk_status_t ret;
6ce3dd6e
ML
1962 struct request *rq = list_first_entry(list, struct request,
1963 queuelist);
1964
1965 list_del_init(&rq->queuelist);
fd9c40f6
BVA
1966 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1967 if (ret != BLK_STS_OK) {
1968 if (ret == BLK_STS_RESOURCE ||
1969 ret == BLK_STS_DEV_RESOURCE) {
01e99aec 1970 blk_mq_request_bypass_insert(rq, false,
c616cbee 1971 list_empty(list));
fd9c40f6
BVA
1972 break;
1973 }
1974 blk_mq_end_request(rq, ret);
536167d4
KB
1975 } else
1976 queued++;
6ce3dd6e 1977 }
d666ba98
JA
1978
1979 /*
1980 * If we didn't flush the entire list, we could have told
1981 * the driver there was more coming, but that turned out to
1982 * be a lie.
1983 */
536167d4 1984 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued)
d666ba98 1985 hctx->queue->mq_ops->commit_rqs(hctx);
6ce3dd6e
ML
1986}
1987
ce5b009c
JA
1988static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1989{
1990 list_add_tail(&rq->queuelist, &plug->mq_list);
1991 plug->rq_count++;
1992 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1993 struct request *tmp;
1994
1995 tmp = list_first_entry(&plug->mq_list, struct request,
1996 queuelist);
1997 if (tmp->q != rq->q)
1998 plug->multiple_queues = true;
1999 }
2000}
2001
105663f7
AA
2002/**
2003 * blk_mq_make_request - Create and send a request to block device.
2004 * @q: Request queue pointer.
2005 * @bio: Bio pointer.
2006 *
2007 * Builds up a request structure from @q and @bio and send to the device. The
2008 * request may not be queued directly to hardware if:
2009 * * This request can be merged with another one
2010 * * We want to place request at plug queue for possible future merging
2011 * * There is an IO scheduler active at this queue
2012 *
2013 * It will not queue the request if there is an error with the bio, or at the
2014 * request creation.
2015 *
2016 * Returns: Request queue cookie.
2017 */
8cf7961d 2018blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 2019{
ef295ecf 2020 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 2021 const int is_flush_fua = op_is_flush(bio->bi_opf);
7809167d 2022 struct blk_mq_alloc_data data = { .flags = 0};
07068d5b 2023 struct request *rq;
f984df1f 2024 struct blk_plug *plug;
5b3f341f 2025 struct request *same_queue_rq = NULL;
14ccb66b 2026 unsigned int nr_segs;
7b371636 2027 blk_qc_t cookie;
a892c8d5 2028 blk_status_t ret;
07068d5b
JA
2029
2030 blk_queue_bounce(q, &bio);
14ccb66b 2031 __blk_queue_split(q, &bio, &nr_segs);
f36ea50c 2032
e23947bd 2033 if (!bio_integrity_prep(bio))
dece1635 2034 return BLK_QC_T_NONE;
07068d5b 2035
87c279e6 2036 if (!is_flush_fua && !blk_queue_nomerges(q) &&
14ccb66b 2037 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
87c279e6 2038 return BLK_QC_T_NONE;
f984df1f 2039
14ccb66b 2040 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
bd166ef1
JA
2041 return BLK_QC_T_NONE;
2042
d5337560 2043 rq_qos_throttle(q, bio);
87760e5e 2044
7809167d 2045 data.cmd_flags = bio->bi_opf;
f9afca4d 2046 rq = blk_mq_get_request(q, bio, &data);
87760e5e 2047 if (unlikely(!rq)) {
c1c80384 2048 rq_qos_cleanup(q, bio);
7b6620d7 2049 if (bio->bi_opf & REQ_NOWAIT)
03a07c92 2050 bio_wouldblock_error(bio);
7b6620d7 2051 return BLK_QC_T_NONE;
87760e5e
JA
2052 }
2053
d6f1dda2
XW
2054 trace_block_getrq(q, bio, bio->bi_opf);
2055
c1c80384 2056 rq_qos_track(q, rq, bio);
07068d5b 2057
fd2d3326 2058 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 2059
970d168d
BVA
2060 blk_mq_bio_to_request(rq, bio, nr_segs);
2061
a892c8d5
ST
2062 ret = blk_crypto_init_request(rq);
2063 if (ret != BLK_STS_OK) {
2064 bio->bi_status = ret;
2065 bio_endio(bio);
2066 blk_mq_free_request(rq);
2067 return BLK_QC_T_NONE;
2068 }
2069
b49773e7 2070 plug = blk_mq_plug(q, bio);
07068d5b 2071 if (unlikely(is_flush_fua)) {
105663f7 2072 /* Bypass scheduler for flush requests */
923218f6
ML
2073 blk_insert_flush(rq);
2074 blk_mq_run_hw_queue(data.hctx, true);
3154df26
ML
2075 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2076 !blk_queue_nonrot(q))) {
b2c5d16b
JA
2077 /*
2078 * Use plugging if we have a ->commit_rqs() hook as well, as
2079 * we know the driver uses bd->last in a smart fashion.
3154df26
ML
2080 *
2081 * Use normal plugging if this disk is slow HDD, as sequential
2082 * IO may benefit a lot from plug merging.
b2c5d16b 2083 */
5f0ed774 2084 unsigned int request_count = plug->rq_count;
600271d9
SL
2085 struct request *last = NULL;
2086
676d0607 2087 if (!request_count)
e6c4438b 2088 trace_block_plug(q);
600271d9
SL
2089 else
2090 last = list_entry_rq(plug->mq_list.prev);
b094f89c 2091
600271d9
SL
2092 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2093 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
2094 blk_flush_plug_list(plug, false);
2095 trace_block_plug(q);
320ae51f 2096 }
b094f89c 2097
ce5b009c 2098 blk_add_rq_to_plug(plug, rq);
a12de1d4 2099 } else if (q->elevator) {
105663f7 2100 /* Insert the request at the IO scheduler queue */
a12de1d4 2101 blk_mq_sched_insert_request(rq, false, true, true);
2299722c 2102 } else if (plug && !blk_queue_nomerges(q)) {
07068d5b 2103 /*
6a83e74d 2104 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
2105 * Otherwise the existing request in the plug list will be
2106 * issued. So the plug list will have one request at most
2299722c
CH
2107 * The plug list might get flushed before this. If that happens,
2108 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 2109 */
2299722c
CH
2110 if (list_empty(&plug->mq_list))
2111 same_queue_rq = NULL;
4711b573 2112 if (same_queue_rq) {
2299722c 2113 list_del_init(&same_queue_rq->queuelist);
4711b573
JA
2114 plug->rq_count--;
2115 }
ce5b009c 2116 blk_add_rq_to_plug(plug, rq);
ff3b74b8 2117 trace_block_plug(q);
2299722c 2118
dad7a3be 2119 if (same_queue_rq) {
ea4f995e 2120 data.hctx = same_queue_rq->mq_hctx;
ff3b74b8 2121 trace_block_unplug(q, 1, true);
2299722c 2122 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
fd9c40f6 2123 &cookie);
dad7a3be 2124 }
a12de1d4
ML
2125 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2126 !data.hctx->dispatch_busy) {
105663f7
AA
2127 /*
2128 * There is no scheduler and we can try to send directly
2129 * to the hardware.
2130 */
fd9c40f6 2131 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
ab42f35d 2132 } else {
105663f7 2133 /* Default case. */
8fa9f556 2134 blk_mq_sched_insert_request(rq, false, true, true);
ab42f35d 2135 }
320ae51f 2136
7b371636 2137 return cookie;
320ae51f 2138}
8cf7961d 2139EXPORT_SYMBOL_GPL(blk_mq_make_request); /* only for request based dm */
320ae51f 2140
cc71a6f4
JA
2141void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2142 unsigned int hctx_idx)
95363efd 2143{
e9b267d9 2144 struct page *page;
320ae51f 2145
24d2f903 2146 if (tags->rqs && set->ops->exit_request) {
e9b267d9 2147 int i;
320ae51f 2148
24d2f903 2149 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
2150 struct request *rq = tags->static_rqs[i];
2151
2152 if (!rq)
e9b267d9 2153 continue;
d6296d39 2154 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 2155 tags->static_rqs[i] = NULL;
e9b267d9 2156 }
320ae51f 2157 }
320ae51f 2158
24d2f903
CH
2159 while (!list_empty(&tags->page_list)) {
2160 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 2161 list_del_init(&page->lru);
f75782e4
CM
2162 /*
2163 * Remove kmemleak object previously allocated in
273938bf 2164 * blk_mq_alloc_rqs().
f75782e4
CM
2165 */
2166 kmemleak_free(page_address(page));
320ae51f
JA
2167 __free_pages(page, page->private);
2168 }
cc71a6f4 2169}
320ae51f 2170
cc71a6f4
JA
2171void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2172{
24d2f903 2173 kfree(tags->rqs);
cc71a6f4 2174 tags->rqs = NULL;
2af8cbe3
JA
2175 kfree(tags->static_rqs);
2176 tags->static_rqs = NULL;
320ae51f 2177
24d2f903 2178 blk_mq_free_tags(tags);
320ae51f
JA
2179}
2180
cc71a6f4
JA
2181struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2182 unsigned int hctx_idx,
2183 unsigned int nr_tags,
2184 unsigned int reserved_tags)
320ae51f 2185{
24d2f903 2186 struct blk_mq_tags *tags;
59f082e4 2187 int node;
320ae51f 2188
7d76f856 2189 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
59f082e4
SL
2190 if (node == NUMA_NO_NODE)
2191 node = set->numa_node;
2192
2193 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 2194 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
2195 if (!tags)
2196 return NULL;
320ae51f 2197
590b5b7d 2198 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
36e1f3d1 2199 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 2200 node);
24d2f903
CH
2201 if (!tags->rqs) {
2202 blk_mq_free_tags(tags);
2203 return NULL;
2204 }
320ae51f 2205
590b5b7d
KC
2206 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2207 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2208 node);
2af8cbe3
JA
2209 if (!tags->static_rqs) {
2210 kfree(tags->rqs);
2211 blk_mq_free_tags(tags);
2212 return NULL;
2213 }
2214
cc71a6f4
JA
2215 return tags;
2216}
2217
2218static size_t order_to_size(unsigned int order)
2219{
2220 return (size_t)PAGE_SIZE << order;
2221}
2222
1d9bd516
TH
2223static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2224 unsigned int hctx_idx, int node)
2225{
2226 int ret;
2227
2228 if (set->ops->init_request) {
2229 ret = set->ops->init_request(set, rq, hctx_idx, node);
2230 if (ret)
2231 return ret;
2232 }
2233
12f5b931 2234 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1d9bd516
TH
2235 return 0;
2236}
2237
cc71a6f4
JA
2238int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2239 unsigned int hctx_idx, unsigned int depth)
2240{
2241 unsigned int i, j, entries_per_page, max_order = 4;
2242 size_t rq_size, left;
59f082e4
SL
2243 int node;
2244
7d76f856 2245 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
59f082e4
SL
2246 if (node == NUMA_NO_NODE)
2247 node = set->numa_node;
cc71a6f4
JA
2248
2249 INIT_LIST_HEAD(&tags->page_list);
2250
320ae51f
JA
2251 /*
2252 * rq_size is the size of the request plus driver payload, rounded
2253 * to the cacheline size
2254 */
24d2f903 2255 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 2256 cache_line_size());
cc71a6f4 2257 left = rq_size * depth;
320ae51f 2258
cc71a6f4 2259 for (i = 0; i < depth; ) {
320ae51f
JA
2260 int this_order = max_order;
2261 struct page *page;
2262 int to_do;
2263 void *p;
2264
b3a834b1 2265 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
2266 this_order--;
2267
2268 do {
59f082e4 2269 page = alloc_pages_node(node,
36e1f3d1 2270 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 2271 this_order);
320ae51f
JA
2272 if (page)
2273 break;
2274 if (!this_order--)
2275 break;
2276 if (order_to_size(this_order) < rq_size)
2277 break;
2278 } while (1);
2279
2280 if (!page)
24d2f903 2281 goto fail;
320ae51f
JA
2282
2283 page->private = this_order;
24d2f903 2284 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
2285
2286 p = page_address(page);
f75782e4
CM
2287 /*
2288 * Allow kmemleak to scan these pages as they contain pointers
2289 * to additional allocations like via ops->init_request().
2290 */
36e1f3d1 2291 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 2292 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 2293 to_do = min(entries_per_page, depth - i);
320ae51f
JA
2294 left -= to_do * rq_size;
2295 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
2296 struct request *rq = p;
2297
2298 tags->static_rqs[i] = rq;
1d9bd516
TH
2299 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2300 tags->static_rqs[i] = NULL;
2301 goto fail;
e9b267d9
CH
2302 }
2303
320ae51f
JA
2304 p += rq_size;
2305 i++;
2306 }
2307 }
cc71a6f4 2308 return 0;
320ae51f 2309
24d2f903 2310fail:
cc71a6f4
JA
2311 blk_mq_free_rqs(set, tags, hctx_idx);
2312 return -ENOMEM;
320ae51f
JA
2313}
2314
e57690fe
JA
2315/*
2316 * 'cpu' is going away. splice any existing rq_list entries from this
2317 * software queue to the hw queue dispatch list, and ensure that it
2318 * gets run.
2319 */
9467f859 2320static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 2321{
9467f859 2322 struct blk_mq_hw_ctx *hctx;
484b4061
JA
2323 struct blk_mq_ctx *ctx;
2324 LIST_HEAD(tmp);
c16d6b5a 2325 enum hctx_type type;
484b4061 2326
9467f859 2327 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 2328 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
c16d6b5a 2329 type = hctx->type;
484b4061
JA
2330
2331 spin_lock(&ctx->lock);
c16d6b5a
ML
2332 if (!list_empty(&ctx->rq_lists[type])) {
2333 list_splice_init(&ctx->rq_lists[type], &tmp);
484b4061
JA
2334 blk_mq_hctx_clear_pending(hctx, ctx);
2335 }
2336 spin_unlock(&ctx->lock);
2337
2338 if (list_empty(&tmp))
9467f859 2339 return 0;
484b4061 2340
e57690fe
JA
2341 spin_lock(&hctx->lock);
2342 list_splice_tail_init(&tmp, &hctx->dispatch);
2343 spin_unlock(&hctx->lock);
484b4061
JA
2344
2345 blk_mq_run_hw_queue(hctx, true);
9467f859 2346 return 0;
484b4061
JA
2347}
2348
9467f859 2349static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2350{
9467f859
TG
2351 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2352 &hctx->cpuhp_dead);
484b4061
JA
2353}
2354
c3b4afca 2355/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2356static void blk_mq_exit_hctx(struct request_queue *q,
2357 struct blk_mq_tag_set *set,
2358 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2359{
8ab0b7dc
ML
2360 if (blk_mq_hw_queue_mapped(hctx))
2361 blk_mq_tag_idle(hctx);
08e98fc6 2362
f70ced09 2363 if (set->ops->exit_request)
d6296d39 2364 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2365
08e98fc6
ML
2366 if (set->ops->exit_hctx)
2367 set->ops->exit_hctx(hctx, hctx_idx);
2368
9467f859 2369 blk_mq_remove_cpuhp(hctx);
2f8f1336
ML
2370
2371 spin_lock(&q->unused_hctx_lock);
2372 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2373 spin_unlock(&q->unused_hctx_lock);
08e98fc6
ML
2374}
2375
624dbe47
ML
2376static void blk_mq_exit_hw_queues(struct request_queue *q,
2377 struct blk_mq_tag_set *set, int nr_queue)
2378{
2379 struct blk_mq_hw_ctx *hctx;
2380 unsigned int i;
2381
2382 queue_for_each_hw_ctx(q, hctx, i) {
2383 if (i == nr_queue)
2384 break;
477e19de 2385 blk_mq_debugfs_unregister_hctx(hctx);
08e98fc6 2386 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2387 }
624dbe47
ML
2388}
2389
7c6c5b7c
ML
2390static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2391{
2392 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2393
2394 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2395 __alignof__(struct blk_mq_hw_ctx)) !=
2396 sizeof(struct blk_mq_hw_ctx));
2397
2398 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2399 hw_ctx_size += sizeof(struct srcu_struct);
2400
2401 return hw_ctx_size;
2402}
2403
08e98fc6
ML
2404static int blk_mq_init_hctx(struct request_queue *q,
2405 struct blk_mq_tag_set *set,
2406 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2407{
7c6c5b7c
ML
2408 hctx->queue_num = hctx_idx;
2409
2410 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2411
2412 hctx->tags = set->tags[hctx_idx];
2413
2414 if (set->ops->init_hctx &&
2415 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2416 goto unregister_cpu_notifier;
08e98fc6 2417
7c6c5b7c
ML
2418 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2419 hctx->numa_node))
2420 goto exit_hctx;
2421 return 0;
2422
2423 exit_hctx:
2424 if (set->ops->exit_hctx)
2425 set->ops->exit_hctx(hctx, hctx_idx);
2426 unregister_cpu_notifier:
2427 blk_mq_remove_cpuhp(hctx);
2428 return -1;
2429}
2430
2431static struct blk_mq_hw_ctx *
2432blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2433 int node)
2434{
2435 struct blk_mq_hw_ctx *hctx;
2436 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2437
2438 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2439 if (!hctx)
2440 goto fail_alloc_hctx;
2441
2442 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2443 goto free_hctx;
2444
2445 atomic_set(&hctx->nr_active, 0);
08e98fc6 2446 if (node == NUMA_NO_NODE)
7c6c5b7c
ML
2447 node = set->numa_node;
2448 hctx->numa_node = node;
08e98fc6 2449
9f993737 2450 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2451 spin_lock_init(&hctx->lock);
2452 INIT_LIST_HEAD(&hctx->dispatch);
2453 hctx->queue = q;
2404e607 2454 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2455
2f8f1336
ML
2456 INIT_LIST_HEAD(&hctx->hctx_list);
2457
320ae51f 2458 /*
08e98fc6
ML
2459 * Allocate space for all possible cpus to avoid allocation at
2460 * runtime
320ae51f 2461 */
d904bfa7 2462 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
7c6c5b7c 2463 gfp, node);
08e98fc6 2464 if (!hctx->ctxs)
7c6c5b7c 2465 goto free_cpumask;
320ae51f 2466
5b202853 2467 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
7c6c5b7c 2468 gfp, node))
08e98fc6 2469 goto free_ctxs;
08e98fc6 2470 hctx->nr_ctx = 0;
320ae51f 2471
5815839b 2472 spin_lock_init(&hctx->dispatch_wait_lock);
eb619fdb
JA
2473 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2474 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2475
754a1572 2476 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
f70ced09 2477 if (!hctx->fq)
7c6c5b7c 2478 goto free_bitmap;
320ae51f 2479
6a83e74d 2480 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2481 init_srcu_struct(hctx->srcu);
7c6c5b7c 2482 blk_mq_hctx_kobj_init(hctx);
6a83e74d 2483
7c6c5b7c 2484 return hctx;
320ae51f 2485
08e98fc6 2486 free_bitmap:
88459642 2487 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2488 free_ctxs:
2489 kfree(hctx->ctxs);
7c6c5b7c
ML
2490 free_cpumask:
2491 free_cpumask_var(hctx->cpumask);
2492 free_hctx:
2493 kfree(hctx);
2494 fail_alloc_hctx:
2495 return NULL;
08e98fc6 2496}
320ae51f 2497
320ae51f
JA
2498static void blk_mq_init_cpu_queues(struct request_queue *q,
2499 unsigned int nr_hw_queues)
2500{
b3c661b1
JA
2501 struct blk_mq_tag_set *set = q->tag_set;
2502 unsigned int i, j;
320ae51f
JA
2503
2504 for_each_possible_cpu(i) {
2505 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2506 struct blk_mq_hw_ctx *hctx;
c16d6b5a 2507 int k;
320ae51f 2508
320ae51f
JA
2509 __ctx->cpu = i;
2510 spin_lock_init(&__ctx->lock);
c16d6b5a
ML
2511 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2512 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2513
320ae51f
JA
2514 __ctx->queue = q;
2515
320ae51f
JA
2516 /*
2517 * Set local node, IFF we have more than one hw queue. If
2518 * not, we remain on the home node of the device
2519 */
b3c661b1
JA
2520 for (j = 0; j < set->nr_maps; j++) {
2521 hctx = blk_mq_map_queue_type(q, j, i);
2522 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2523 hctx->numa_node = local_memory_node(cpu_to_node(i));
2524 }
320ae51f
JA
2525 }
2526}
2527
03b63b02
WZ
2528static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2529 int hctx_idx)
cc71a6f4
JA
2530{
2531 int ret = 0;
2532
2533 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2534 set->queue_depth, set->reserved_tags);
2535 if (!set->tags[hctx_idx])
2536 return false;
2537
2538 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2539 set->queue_depth);
2540 if (!ret)
2541 return true;
2542
2543 blk_mq_free_rq_map(set->tags[hctx_idx]);
2544 set->tags[hctx_idx] = NULL;
2545 return false;
2546}
2547
2548static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2549 unsigned int hctx_idx)
2550{
4e6db0f2 2551 if (set->tags && set->tags[hctx_idx]) {
bd166ef1
JA
2552 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2553 blk_mq_free_rq_map(set->tags[hctx_idx]);
2554 set->tags[hctx_idx] = NULL;
2555 }
cc71a6f4
JA
2556}
2557
4b855ad3 2558static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2559{
b3c661b1 2560 unsigned int i, j, hctx_idx;
320ae51f
JA
2561 struct blk_mq_hw_ctx *hctx;
2562 struct blk_mq_ctx *ctx;
2a34c087 2563 struct blk_mq_tag_set *set = q->tag_set;
320ae51f
JA
2564
2565 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2566 cpumask_clear(hctx->cpumask);
320ae51f 2567 hctx->nr_ctx = 0;
d416c92c 2568 hctx->dispatch_from = NULL;
320ae51f
JA
2569 }
2570
2571 /*
4b855ad3 2572 * Map software to hardware queues.
4412efec
ML
2573 *
2574 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2575 */
20e4d813 2576 for_each_possible_cpu(i) {
4412efec 2577
897bb0c7 2578 ctx = per_cpu_ptr(q->queue_ctx, i);
b3c661b1 2579 for (j = 0; j < set->nr_maps; j++) {
bb94aea1
JW
2580 if (!set->map[j].nr_queues) {
2581 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2582 HCTX_TYPE_DEFAULT, i);
e5edd5f2 2583 continue;
bb94aea1 2584 }
fd689871
ML
2585 hctx_idx = set->map[j].mq_map[i];
2586 /* unmapped hw queue can be remapped after CPU topo changed */
2587 if (!set->tags[hctx_idx] &&
03b63b02 2588 !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
fd689871
ML
2589 /*
2590 * If tags initialization fail for some hctx,
2591 * that hctx won't be brought online. In this
2592 * case, remap the current ctx to hctx[0] which
2593 * is guaranteed to always have tags allocated
2594 */
2595 set->map[j].mq_map[i] = 0;
2596 }
e5edd5f2 2597
b3c661b1 2598 hctx = blk_mq_map_queue_type(q, j, i);
8ccdf4a3 2599 ctx->hctxs[j] = hctx;
b3c661b1
JA
2600 /*
2601 * If the CPU is already set in the mask, then we've
2602 * mapped this one already. This can happen if
2603 * devices share queues across queue maps.
2604 */
2605 if (cpumask_test_cpu(i, hctx->cpumask))
2606 continue;
2607
2608 cpumask_set_cpu(i, hctx->cpumask);
2609 hctx->type = j;
2610 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2611 hctx->ctxs[hctx->nr_ctx++] = ctx;
2612
2613 /*
2614 * If the nr_ctx type overflows, we have exceeded the
2615 * amount of sw queues we can support.
2616 */
2617 BUG_ON(!hctx->nr_ctx);
2618 }
bb94aea1
JW
2619
2620 for (; j < HCTX_MAX_TYPES; j++)
2621 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2622 HCTX_TYPE_DEFAULT, i);
320ae51f 2623 }
506e931f
JA
2624
2625 queue_for_each_hw_ctx(q, hctx, i) {
4412efec
ML
2626 /*
2627 * If no software queues are mapped to this hardware queue,
2628 * disable it and free the request entries.
2629 */
2630 if (!hctx->nr_ctx) {
2631 /* Never unmap queue 0. We need it as a
2632 * fallback in case of a new remap fails
2633 * allocation
2634 */
2635 if (i && set->tags[i])
2636 blk_mq_free_map_and_requests(set, i);
2637
2638 hctx->tags = NULL;
2639 continue;
2640 }
484b4061 2641
2a34c087
ML
2642 hctx->tags = set->tags[i];
2643 WARN_ON(!hctx->tags);
2644
889fa31f
CY
2645 /*
2646 * Set the map size to the number of mapped software queues.
2647 * This is more accurate and more efficient than looping
2648 * over all possibly mapped software queues.
2649 */
88459642 2650 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2651
484b4061
JA
2652 /*
2653 * Initialize batch roundrobin counts
2654 */
f82ddf19 2655 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
2656 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2657 }
320ae51f
JA
2658}
2659
8e8320c9
JA
2660/*
2661 * Caller needs to ensure that we're either frozen/quiesced, or that
2662 * the queue isn't live yet.
2663 */
2404e607 2664static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2665{
2666 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2667 int i;
2668
2404e607 2669 queue_for_each_hw_ctx(q, hctx, i) {
97889f9a 2670 if (shared)
2404e607 2671 hctx->flags |= BLK_MQ_F_TAG_SHARED;
97889f9a 2672 else
2404e607
JM
2673 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2674 }
2675}
2676
8e8320c9
JA
2677static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2678 bool shared)
2404e607
JM
2679{
2680 struct request_queue *q;
0d2602ca 2681
705cda97
BVA
2682 lockdep_assert_held(&set->tag_list_lock);
2683
0d2602ca
JA
2684 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2685 blk_mq_freeze_queue(q);
2404e607 2686 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2687 blk_mq_unfreeze_queue(q);
2688 }
2689}
2690
2691static void blk_mq_del_queue_tag_set(struct request_queue *q)
2692{
2693 struct blk_mq_tag_set *set = q->tag_set;
2694
0d2602ca 2695 mutex_lock(&set->tag_list_lock);
705cda97 2696 list_del_rcu(&q->tag_set_list);
2404e607
JM
2697 if (list_is_singular(&set->tag_list)) {
2698 /* just transitioned to unshared */
2699 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2700 /* update existing queue */
2701 blk_mq_update_tag_set_depth(set, false);
2702 }
0d2602ca 2703 mutex_unlock(&set->tag_list_lock);
a347c7ad 2704 INIT_LIST_HEAD(&q->tag_set_list);
0d2602ca
JA
2705}
2706
2707static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2708 struct request_queue *q)
2709{
0d2602ca 2710 mutex_lock(&set->tag_list_lock);
2404e607 2711
ff821d27
JA
2712 /*
2713 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2714 */
2715 if (!list_empty(&set->tag_list) &&
2716 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404e607
JM
2717 set->flags |= BLK_MQ_F_TAG_SHARED;
2718 /* update existing queue */
2719 blk_mq_update_tag_set_depth(set, true);
2720 }
2721 if (set->flags & BLK_MQ_F_TAG_SHARED)
2722 queue_set_hctx_shared(q, true);
705cda97 2723 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2724
0d2602ca
JA
2725 mutex_unlock(&set->tag_list_lock);
2726}
2727
1db4909e
ML
2728/* All allocations will be freed in release handler of q->mq_kobj */
2729static int blk_mq_alloc_ctxs(struct request_queue *q)
2730{
2731 struct blk_mq_ctxs *ctxs;
2732 int cpu;
2733
2734 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2735 if (!ctxs)
2736 return -ENOMEM;
2737
2738 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2739 if (!ctxs->queue_ctx)
2740 goto fail;
2741
2742 for_each_possible_cpu(cpu) {
2743 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2744 ctx->ctxs = ctxs;
2745 }
2746
2747 q->mq_kobj = &ctxs->kobj;
2748 q->queue_ctx = ctxs->queue_ctx;
2749
2750 return 0;
2751 fail:
2752 kfree(ctxs);
2753 return -ENOMEM;
2754}
2755
e09aae7e
ML
2756/*
2757 * It is the actual release handler for mq, but we do it from
2758 * request queue's release handler for avoiding use-after-free
2759 * and headache because q->mq_kobj shouldn't have been introduced,
2760 * but we can't group ctx/kctx kobj without it.
2761 */
2762void blk_mq_release(struct request_queue *q)
2763{
2f8f1336
ML
2764 struct blk_mq_hw_ctx *hctx, *next;
2765 int i;
e09aae7e 2766
2f8f1336
ML
2767 queue_for_each_hw_ctx(q, hctx, i)
2768 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2769
2770 /* all hctx are in .unused_hctx_list now */
2771 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2772 list_del_init(&hctx->hctx_list);
6c8b232e 2773 kobject_put(&hctx->kobj);
c3b4afca 2774 }
e09aae7e
ML
2775
2776 kfree(q->queue_hw_ctx);
2777
7ea5fe31
ML
2778 /*
2779 * release .mq_kobj and sw queue's kobject now because
2780 * both share lifetime with request queue.
2781 */
2782 blk_mq_sysfs_deinit(q);
e09aae7e
ML
2783}
2784
2f227bb9
CH
2785struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
2786 void *queuedata)
b62c21b7
MS
2787{
2788 struct request_queue *uninit_q, *q;
2789
3d745ea5 2790 uninit_q = __blk_alloc_queue(set->numa_node);
b62c21b7
MS
2791 if (!uninit_q)
2792 return ERR_PTR(-ENOMEM);
2f227bb9 2793 uninit_q->queuedata = queuedata;
b62c21b7 2794
737eb78e
DLM
2795 /*
2796 * Initialize the queue without an elevator. device_add_disk() will do
2797 * the initialization.
2798 */
2799 q = blk_mq_init_allocated_queue(set, uninit_q, false);
b62c21b7
MS
2800 if (IS_ERR(q))
2801 blk_cleanup_queue(uninit_q);
2802
2803 return q;
2804}
2f227bb9
CH
2805EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
2806
2807struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2808{
2809 return blk_mq_init_queue_data(set, NULL);
2810}
b62c21b7
MS
2811EXPORT_SYMBOL(blk_mq_init_queue);
2812
9316a9ed
JA
2813/*
2814 * Helper for setting up a queue with mq ops, given queue depth, and
2815 * the passed in mq ops flags.
2816 */
2817struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2818 const struct blk_mq_ops *ops,
2819 unsigned int queue_depth,
2820 unsigned int set_flags)
2821{
2822 struct request_queue *q;
2823 int ret;
2824
2825 memset(set, 0, sizeof(*set));
2826 set->ops = ops;
2827 set->nr_hw_queues = 1;
b3c661b1 2828 set->nr_maps = 1;
9316a9ed
JA
2829 set->queue_depth = queue_depth;
2830 set->numa_node = NUMA_NO_NODE;
2831 set->flags = set_flags;
2832
2833 ret = blk_mq_alloc_tag_set(set);
2834 if (ret)
2835 return ERR_PTR(ret);
2836
2837 q = blk_mq_init_queue(set);
2838 if (IS_ERR(q)) {
2839 blk_mq_free_tag_set(set);
2840 return q;
2841 }
2842
2843 return q;
2844}
2845EXPORT_SYMBOL(blk_mq_init_sq_queue);
2846
34d11ffa
JW
2847static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2848 struct blk_mq_tag_set *set, struct request_queue *q,
2849 int hctx_idx, int node)
2850{
2f8f1336 2851 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
34d11ffa 2852
2f8f1336
ML
2853 /* reuse dead hctx first */
2854 spin_lock(&q->unused_hctx_lock);
2855 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2856 if (tmp->numa_node == node) {
2857 hctx = tmp;
2858 break;
2859 }
2860 }
2861 if (hctx)
2862 list_del_init(&hctx->hctx_list);
2863 spin_unlock(&q->unused_hctx_lock);
2864
2865 if (!hctx)
2866 hctx = blk_mq_alloc_hctx(q, set, node);
34d11ffa 2867 if (!hctx)
7c6c5b7c 2868 goto fail;
34d11ffa 2869
7c6c5b7c
ML
2870 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2871 goto free_hctx;
34d11ffa
JW
2872
2873 return hctx;
7c6c5b7c
ML
2874
2875 free_hctx:
2876 kobject_put(&hctx->kobj);
2877 fail:
2878 return NULL;
34d11ffa
JW
2879}
2880
868f2f0b
KB
2881static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2882 struct request_queue *q)
320ae51f 2883{
e01ad46d 2884 int i, j, end;
868f2f0b 2885 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2886
ac0d6b92
BVA
2887 if (q->nr_hw_queues < set->nr_hw_queues) {
2888 struct blk_mq_hw_ctx **new_hctxs;
2889
2890 new_hctxs = kcalloc_node(set->nr_hw_queues,
2891 sizeof(*new_hctxs), GFP_KERNEL,
2892 set->numa_node);
2893 if (!new_hctxs)
2894 return;
2895 if (hctxs)
2896 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
2897 sizeof(*hctxs));
2898 q->queue_hw_ctx = new_hctxs;
ac0d6b92
BVA
2899 kfree(hctxs);
2900 hctxs = new_hctxs;
2901 }
2902
fb350e0a
ML
2903 /* protect against switching io scheduler */
2904 mutex_lock(&q->sysfs_lock);
24d2f903 2905 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2906 int node;
34d11ffa 2907 struct blk_mq_hw_ctx *hctx;
868f2f0b 2908
7d76f856 2909 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
34d11ffa
JW
2910 /*
2911 * If the hw queue has been mapped to another numa node,
2912 * we need to realloc the hctx. If allocation fails, fallback
2913 * to use the previous one.
2914 */
2915 if (hctxs[i] && (hctxs[i]->numa_node == node))
2916 continue;
868f2f0b 2917
34d11ffa
JW
2918 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2919 if (hctx) {
2f8f1336 2920 if (hctxs[i])
34d11ffa 2921 blk_mq_exit_hctx(q, set, hctxs[i], i);
34d11ffa
JW
2922 hctxs[i] = hctx;
2923 } else {
2924 if (hctxs[i])
2925 pr_warn("Allocate new hctx on node %d fails,\
2926 fallback to previous one on node %d\n",
2927 node, hctxs[i]->numa_node);
2928 else
2929 break;
868f2f0b 2930 }
320ae51f 2931 }
e01ad46d
JW
2932 /*
2933 * Increasing nr_hw_queues fails. Free the newly allocated
2934 * hctxs and keep the previous q->nr_hw_queues.
2935 */
2936 if (i != set->nr_hw_queues) {
2937 j = q->nr_hw_queues;
2938 end = i;
2939 } else {
2940 j = i;
2941 end = q->nr_hw_queues;
2942 q->nr_hw_queues = set->nr_hw_queues;
2943 }
34d11ffa 2944
e01ad46d 2945 for (; j < end; j++) {
868f2f0b
KB
2946 struct blk_mq_hw_ctx *hctx = hctxs[j];
2947
2948 if (hctx) {
cc71a6f4
JA
2949 if (hctx->tags)
2950 blk_mq_free_map_and_requests(set, j);
868f2f0b 2951 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2952 hctxs[j] = NULL;
868f2f0b
KB
2953 }
2954 }
fb350e0a 2955 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
2956}
2957
2958struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
737eb78e
DLM
2959 struct request_queue *q,
2960 bool elevator_init)
868f2f0b 2961{
66841672
ML
2962 /* mark the queue as mq asap */
2963 q->mq_ops = set->ops;
2964
34dbad5d 2965 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2966 blk_mq_poll_stats_bkt,
2967 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2968 if (!q->poll_cb)
2969 goto err_exit;
2970
1db4909e 2971 if (blk_mq_alloc_ctxs(q))
41de54c6 2972 goto err_poll;
868f2f0b 2973
737f98cf
ML
2974 /* init q->mq_kobj and sw queues' kobjects */
2975 blk_mq_sysfs_init(q);
2976
2f8f1336
ML
2977 INIT_LIST_HEAD(&q->unused_hctx_list);
2978 spin_lock_init(&q->unused_hctx_lock);
2979
868f2f0b
KB
2980 blk_mq_realloc_hw_ctxs(set, q);
2981 if (!q->nr_hw_queues)
2982 goto err_hctxs;
320ae51f 2983
287922eb 2984 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2985 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f 2986
a8908939 2987 q->tag_set = set;
320ae51f 2988
94eddfbe 2989 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
cd19181b
ML
2990 if (set->nr_maps > HCTX_TYPE_POLL &&
2991 set->map[HCTX_TYPE_POLL].nr_queues)
6544d229 2992 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
320ae51f 2993
1be036e9
CH
2994 q->sg_reserved_size = INT_MAX;
2995
2849450a 2996 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2997 INIT_LIST_HEAD(&q->requeue_list);
2998 spin_lock_init(&q->requeue_lock);
2999
eba71768
JA
3000 q->nr_requests = set->queue_depth;
3001
64f1c21e
JA
3002 /*
3003 * Default to classic polling
3004 */
29ece8b4 3005 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
64f1c21e 3006
24d2f903 3007 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 3008 blk_mq_add_queue_tag_set(set, q);
4b855ad3 3009 blk_mq_map_swqueue(q);
4593fdbe 3010
737eb78e
DLM
3011 if (elevator_init)
3012 elevator_init_mq(q);
d3484991 3013
320ae51f 3014 return q;
18741986 3015
320ae51f 3016err_hctxs:
868f2f0b 3017 kfree(q->queue_hw_ctx);
73d9c8d4 3018 q->nr_hw_queues = 0;
1db4909e 3019 blk_mq_sysfs_deinit(q);
41de54c6
JS
3020err_poll:
3021 blk_stat_free_callback(q->poll_cb);
3022 q->poll_cb = NULL;
c7de5726
ML
3023err_exit:
3024 q->mq_ops = NULL;
320ae51f
JA
3025 return ERR_PTR(-ENOMEM);
3026}
b62c21b7 3027EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f 3028
c7e2d94b
ML
3029/* tags can _not_ be used after returning from blk_mq_exit_queue */
3030void blk_mq_exit_queue(struct request_queue *q)
320ae51f 3031{
624dbe47 3032 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 3033
0d2602ca 3034 blk_mq_del_queue_tag_set(q);
624dbe47 3035 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 3036}
320ae51f 3037
a5164405
JA
3038static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3039{
3040 int i;
3041
cc71a6f4 3042 for (i = 0; i < set->nr_hw_queues; i++)
03b63b02 3043 if (!__blk_mq_alloc_map_and_request(set, i))
a5164405 3044 goto out_unwind;
a5164405
JA
3045
3046 return 0;
3047
3048out_unwind:
3049 while (--i >= 0)
2e194422 3050 blk_mq_free_map_and_requests(set, i);
a5164405 3051
a5164405
JA
3052 return -ENOMEM;
3053}
3054
3055/*
3056 * Allocate the request maps associated with this tag_set. Note that this
3057 * may reduce the depth asked for, if memory is tight. set->queue_depth
3058 * will be updated to reflect the allocated depth.
3059 */
79fab528 3060static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
a5164405
JA
3061{
3062 unsigned int depth;
3063 int err;
3064
3065 depth = set->queue_depth;
3066 do {
3067 err = __blk_mq_alloc_rq_maps(set);
3068 if (!err)
3069 break;
3070
3071 set->queue_depth >>= 1;
3072 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3073 err = -ENOMEM;
3074 break;
3075 }
3076 } while (set->queue_depth);
3077
3078 if (!set->queue_depth || err) {
3079 pr_err("blk-mq: failed to allocate request map\n");
3080 return -ENOMEM;
3081 }
3082
3083 if (depth != set->queue_depth)
3084 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3085 depth, set->queue_depth);
3086
3087 return 0;
3088}
3089
ebe8bddb
OS
3090static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3091{
6e66b493
BVA
3092 /*
3093 * blk_mq_map_queues() and multiple .map_queues() implementations
3094 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3095 * number of hardware queues.
3096 */
3097 if (set->nr_maps == 1)
3098 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3099
59388702 3100 if (set->ops->map_queues && !is_kdump_kernel()) {
b3c661b1
JA
3101 int i;
3102
7d4901a9
ML
3103 /*
3104 * transport .map_queues is usually done in the following
3105 * way:
3106 *
3107 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3108 * mask = get_cpu_mask(queue)
3109 * for_each_cpu(cpu, mask)
b3c661b1 3110 * set->map[x].mq_map[cpu] = queue;
7d4901a9
ML
3111 * }
3112 *
3113 * When we need to remap, the table has to be cleared for
3114 * killing stale mapping since one CPU may not be mapped
3115 * to any hw queue.
3116 */
b3c661b1
JA
3117 for (i = 0; i < set->nr_maps; i++)
3118 blk_mq_clear_mq_map(&set->map[i]);
7d4901a9 3119
ebe8bddb 3120 return set->ops->map_queues(set);
b3c661b1
JA
3121 } else {
3122 BUG_ON(set->nr_maps > 1);
7d76f856 3123 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
b3c661b1 3124 }
ebe8bddb
OS
3125}
3126
f7e76dbc
BVA
3127static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3128 int cur_nr_hw_queues, int new_nr_hw_queues)
3129{
3130 struct blk_mq_tags **new_tags;
3131
3132 if (cur_nr_hw_queues >= new_nr_hw_queues)
3133 return 0;
3134
3135 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3136 GFP_KERNEL, set->numa_node);
3137 if (!new_tags)
3138 return -ENOMEM;
3139
3140 if (set->tags)
3141 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3142 sizeof(*set->tags));
3143 kfree(set->tags);
3144 set->tags = new_tags;
3145 set->nr_hw_queues = new_nr_hw_queues;
3146
3147 return 0;
3148}
3149
a4391c64
JA
3150/*
3151 * Alloc a tag set to be associated with one or more request queues.
3152 * May fail with EINVAL for various error conditions. May adjust the
c018c84f 3153 * requested depth down, if it's too large. In that case, the set
a4391c64
JA
3154 * value will be stored in set->queue_depth.
3155 */
24d2f903
CH
3156int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3157{
b3c661b1 3158 int i, ret;
da695ba2 3159
205fb5f5
BVA
3160 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3161
24d2f903
CH
3162 if (!set->nr_hw_queues)
3163 return -EINVAL;
a4391c64 3164 if (!set->queue_depth)
24d2f903
CH
3165 return -EINVAL;
3166 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3167 return -EINVAL;
3168
7d7e0f90 3169 if (!set->ops->queue_rq)
24d2f903
CH
3170 return -EINVAL;
3171
de148297
ML
3172 if (!set->ops->get_budget ^ !set->ops->put_budget)
3173 return -EINVAL;
3174
a4391c64
JA
3175 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3176 pr_info("blk-mq: reduced tag depth to %u\n",
3177 BLK_MQ_MAX_DEPTH);
3178 set->queue_depth = BLK_MQ_MAX_DEPTH;
3179 }
24d2f903 3180
b3c661b1
JA
3181 if (!set->nr_maps)
3182 set->nr_maps = 1;
3183 else if (set->nr_maps > HCTX_MAX_TYPES)
3184 return -EINVAL;
3185
6637fadf
SL
3186 /*
3187 * If a crashdump is active, then we are potentially in a very
3188 * memory constrained environment. Limit us to 1 queue and
3189 * 64 tags to prevent using too much memory.
3190 */
3191 if (is_kdump_kernel()) {
3192 set->nr_hw_queues = 1;
59388702 3193 set->nr_maps = 1;
6637fadf
SL
3194 set->queue_depth = min(64U, set->queue_depth);
3195 }
868f2f0b 3196 /*
392546ae
JA
3197 * There is no use for more h/w queues than cpus if we just have
3198 * a single map
868f2f0b 3199 */
392546ae 3200 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
868f2f0b 3201 set->nr_hw_queues = nr_cpu_ids;
6637fadf 3202
f7e76dbc 3203 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
a5164405 3204 return -ENOMEM;
24d2f903 3205
da695ba2 3206 ret = -ENOMEM;
b3c661b1
JA
3207 for (i = 0; i < set->nr_maps; i++) {
3208 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
07b35eb5 3209 sizeof(set->map[i].mq_map[0]),
b3c661b1
JA
3210 GFP_KERNEL, set->numa_node);
3211 if (!set->map[i].mq_map)
3212 goto out_free_mq_map;
59388702 3213 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
b3c661b1 3214 }
bdd17e75 3215
ebe8bddb 3216 ret = blk_mq_update_queue_map(set);
da695ba2
CH
3217 if (ret)
3218 goto out_free_mq_map;
3219
79fab528 3220 ret = blk_mq_alloc_map_and_requests(set);
da695ba2 3221 if (ret)
bdd17e75 3222 goto out_free_mq_map;
24d2f903 3223
0d2602ca
JA
3224 mutex_init(&set->tag_list_lock);
3225 INIT_LIST_HEAD(&set->tag_list);
3226
24d2f903 3227 return 0;
bdd17e75
CH
3228
3229out_free_mq_map:
b3c661b1
JA
3230 for (i = 0; i < set->nr_maps; i++) {
3231 kfree(set->map[i].mq_map);
3232 set->map[i].mq_map = NULL;
3233 }
5676e7b6
RE
3234 kfree(set->tags);
3235 set->tags = NULL;
da695ba2 3236 return ret;
24d2f903
CH
3237}
3238EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3239
3240void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3241{
b3c661b1 3242 int i, j;
24d2f903 3243
f7e76dbc 3244 for (i = 0; i < set->nr_hw_queues; i++)
cc71a6f4 3245 blk_mq_free_map_and_requests(set, i);
484b4061 3246
b3c661b1
JA
3247 for (j = 0; j < set->nr_maps; j++) {
3248 kfree(set->map[j].mq_map);
3249 set->map[j].mq_map = NULL;
3250 }
bdd17e75 3251
981bd189 3252 kfree(set->tags);
5676e7b6 3253 set->tags = NULL;
24d2f903
CH
3254}
3255EXPORT_SYMBOL(blk_mq_free_tag_set);
3256
e3a2b3f9
JA
3257int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3258{
3259 struct blk_mq_tag_set *set = q->tag_set;
3260 struct blk_mq_hw_ctx *hctx;
3261 int i, ret;
3262
bd166ef1 3263 if (!set)
e3a2b3f9
JA
3264 return -EINVAL;
3265
e5fa8140
AZ
3266 if (q->nr_requests == nr)
3267 return 0;
3268
70f36b60 3269 blk_mq_freeze_queue(q);
24f5a90f 3270 blk_mq_quiesce_queue(q);
70f36b60 3271
e3a2b3f9
JA
3272 ret = 0;
3273 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
3274 if (!hctx->tags)
3275 continue;
bd166ef1
JA
3276 /*
3277 * If we're using an MQ scheduler, just update the scheduler
3278 * queue depth. This is similar to what the old code would do.
3279 */
70f36b60 3280 if (!hctx->sched_tags) {
c2e82a23 3281 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
3282 false);
3283 } else {
3284 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3285 nr, true);
3286 }
e3a2b3f9
JA
3287 if (ret)
3288 break;
77f1e0a5
JA
3289 if (q->elevator && q->elevator->type->ops.depth_updated)
3290 q->elevator->type->ops.depth_updated(hctx);
e3a2b3f9
JA
3291 }
3292
3293 if (!ret)
3294 q->nr_requests = nr;
3295
24f5a90f 3296 blk_mq_unquiesce_queue(q);
70f36b60 3297 blk_mq_unfreeze_queue(q);
70f36b60 3298
e3a2b3f9
JA
3299 return ret;
3300}
3301
d48ece20
JW
3302/*
3303 * request_queue and elevator_type pair.
3304 * It is just used by __blk_mq_update_nr_hw_queues to cache
3305 * the elevator_type associated with a request_queue.
3306 */
3307struct blk_mq_qe_pair {
3308 struct list_head node;
3309 struct request_queue *q;
3310 struct elevator_type *type;
3311};
3312
3313/*
3314 * Cache the elevator_type in qe pair list and switch the
3315 * io scheduler to 'none'
3316 */
3317static bool blk_mq_elv_switch_none(struct list_head *head,
3318 struct request_queue *q)
3319{
3320 struct blk_mq_qe_pair *qe;
3321
3322 if (!q->elevator)
3323 return true;
3324
3325 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3326 if (!qe)
3327 return false;
3328
3329 INIT_LIST_HEAD(&qe->node);
3330 qe->q = q;
3331 qe->type = q->elevator->type;
3332 list_add(&qe->node, head);
3333
3334 mutex_lock(&q->sysfs_lock);
3335 /*
3336 * After elevator_switch_mq, the previous elevator_queue will be
3337 * released by elevator_release. The reference of the io scheduler
3338 * module get by elevator_get will also be put. So we need to get
3339 * a reference of the io scheduler module here to prevent it to be
3340 * removed.
3341 */
3342 __module_get(qe->type->elevator_owner);
3343 elevator_switch_mq(q, NULL);
3344 mutex_unlock(&q->sysfs_lock);
3345
3346 return true;
3347}
3348
3349static void blk_mq_elv_switch_back(struct list_head *head,
3350 struct request_queue *q)
3351{
3352 struct blk_mq_qe_pair *qe;
3353 struct elevator_type *t = NULL;
3354
3355 list_for_each_entry(qe, head, node)
3356 if (qe->q == q) {
3357 t = qe->type;
3358 break;
3359 }
3360
3361 if (!t)
3362 return;
3363
3364 list_del(&qe->node);
3365 kfree(qe);
3366
3367 mutex_lock(&q->sysfs_lock);
3368 elevator_switch_mq(q, t);
3369 mutex_unlock(&q->sysfs_lock);
3370}
3371
e4dc2b32
KB
3372static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3373 int nr_hw_queues)
868f2f0b
KB
3374{
3375 struct request_queue *q;
d48ece20 3376 LIST_HEAD(head);
e01ad46d 3377 int prev_nr_hw_queues;
868f2f0b 3378
705cda97
BVA
3379 lockdep_assert_held(&set->tag_list_lock);
3380
392546ae 3381 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
868f2f0b
KB
3382 nr_hw_queues = nr_cpu_ids;
3383 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3384 return;
3385
3386 list_for_each_entry(q, &set->tag_list, tag_set_list)
3387 blk_mq_freeze_queue(q);
d48ece20
JW
3388 /*
3389 * Switch IO scheduler to 'none', cleaning up the data associated
3390 * with the previous scheduler. We will switch back once we are done
3391 * updating the new sw to hw queue mappings.
3392 */
3393 list_for_each_entry(q, &set->tag_list, tag_set_list)
3394 if (!blk_mq_elv_switch_none(&head, q))
3395 goto switch_back;
868f2f0b 3396
477e19de
JW
3397 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3398 blk_mq_debugfs_unregister_hctxs(q);
3399 blk_mq_sysfs_unregister(q);
3400 }
3401
a2584e43 3402 prev_nr_hw_queues = set->nr_hw_queues;
f7e76dbc
BVA
3403 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3404 0)
3405 goto reregister;
3406
868f2f0b 3407 set->nr_hw_queues = nr_hw_queues;
e01ad46d 3408fallback:
aa880ad6 3409 blk_mq_update_queue_map(set);
868f2f0b
KB
3410 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3411 blk_mq_realloc_hw_ctxs(set, q);
e01ad46d
JW
3412 if (q->nr_hw_queues != set->nr_hw_queues) {
3413 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3414 nr_hw_queues, prev_nr_hw_queues);
3415 set->nr_hw_queues = prev_nr_hw_queues;
7d76f856 3416 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
e01ad46d
JW
3417 goto fallback;
3418 }
477e19de
JW
3419 blk_mq_map_swqueue(q);
3420 }
3421
f7e76dbc 3422reregister:
477e19de
JW
3423 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3424 blk_mq_sysfs_register(q);
3425 blk_mq_debugfs_register_hctxs(q);
868f2f0b
KB
3426 }
3427
d48ece20
JW
3428switch_back:
3429 list_for_each_entry(q, &set->tag_list, tag_set_list)
3430 blk_mq_elv_switch_back(&head, q);
3431
868f2f0b
KB
3432 list_for_each_entry(q, &set->tag_list, tag_set_list)
3433 blk_mq_unfreeze_queue(q);
3434}
e4dc2b32
KB
3435
3436void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3437{
3438 mutex_lock(&set->tag_list_lock);
3439 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3440 mutex_unlock(&set->tag_list_lock);
3441}
868f2f0b
KB
3442EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3443
34dbad5d
OS
3444/* Enable polling stats and return whether they were already enabled. */
3445static bool blk_poll_stats_enable(struct request_queue *q)
3446{
3447 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
7dfdbc73 3448 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
34dbad5d
OS
3449 return true;
3450 blk_stat_add_callback(q, q->poll_cb);
3451 return false;
3452}
3453
3454static void blk_mq_poll_stats_start(struct request_queue *q)
3455{
3456 /*
3457 * We don't arm the callback if polling stats are not enabled or the
3458 * callback is already active.
3459 */
3460 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3461 blk_stat_is_active(q->poll_cb))
3462 return;
3463
3464 blk_stat_activate_msecs(q->poll_cb, 100);
3465}
3466
3467static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3468{
3469 struct request_queue *q = cb->data;
720b8ccc 3470 int bucket;
34dbad5d 3471
720b8ccc
SB
3472 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3473 if (cb->stat[bucket].nr_samples)
3474 q->poll_stat[bucket] = cb->stat[bucket];
3475 }
34dbad5d
OS
3476}
3477
64f1c21e 3478static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
64f1c21e
JA
3479 struct request *rq)
3480{
64f1c21e 3481 unsigned long ret = 0;
720b8ccc 3482 int bucket;
64f1c21e
JA
3483
3484 /*
3485 * If stats collection isn't on, don't sleep but turn it on for
3486 * future users
3487 */
34dbad5d 3488 if (!blk_poll_stats_enable(q))
64f1c21e
JA
3489 return 0;
3490
64f1c21e
JA
3491 /*
3492 * As an optimistic guess, use half of the mean service time
3493 * for this type of request. We can (and should) make this smarter.
3494 * For instance, if the completion latencies are tight, we can
3495 * get closer than just half the mean. This is especially
3496 * important on devices where the completion latencies are longer
720b8ccc
SB
3497 * than ~10 usec. We do use the stats for the relevant IO size
3498 * if available which does lead to better estimates.
64f1c21e 3499 */
720b8ccc
SB
3500 bucket = blk_mq_poll_stats_bkt(rq);
3501 if (bucket < 0)
3502 return ret;
3503
3504 if (q->poll_stat[bucket].nr_samples)
3505 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
3506
3507 return ret;
3508}
3509
06426adf
JA
3510static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3511 struct request *rq)
3512{
3513 struct hrtimer_sleeper hs;
3514 enum hrtimer_mode mode;
64f1c21e 3515 unsigned int nsecs;
06426adf
JA
3516 ktime_t kt;
3517
76a86f9d 3518 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
64f1c21e
JA
3519 return false;
3520
3521 /*
1052b8ac 3522 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
64f1c21e 3523 *
64f1c21e
JA
3524 * 0: use half of prev avg
3525 * >0: use this specific value
3526 */
1052b8ac 3527 if (q->poll_nsec > 0)
64f1c21e
JA
3528 nsecs = q->poll_nsec;
3529 else
cae740a0 3530 nsecs = blk_mq_poll_nsecs(q, rq);
64f1c21e
JA
3531
3532 if (!nsecs)
06426adf
JA
3533 return false;
3534
76a86f9d 3535 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
06426adf
JA
3536
3537 /*
3538 * This will be replaced with the stats tracking code, using
3539 * 'avg_completion_time / 2' as the pre-sleep target.
3540 */
8b0e1953 3541 kt = nsecs;
06426adf
JA
3542
3543 mode = HRTIMER_MODE_REL;
dbc1625f 3544 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
06426adf
JA
3545 hrtimer_set_expires(&hs.timer, kt);
3546
06426adf 3547 do {
5a61c363 3548 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
06426adf
JA
3549 break;
3550 set_current_state(TASK_UNINTERRUPTIBLE);
9dd8813e 3551 hrtimer_sleeper_start_expires(&hs, mode);
06426adf
JA
3552 if (hs.task)
3553 io_schedule();
3554 hrtimer_cancel(&hs.timer);
3555 mode = HRTIMER_MODE_ABS;
3556 } while (hs.task && !signal_pending(current));
3557
3558 __set_current_state(TASK_RUNNING);
3559 destroy_hrtimer_on_stack(&hs.timer);
3560 return true;
3561}
3562
1052b8ac
JA
3563static bool blk_mq_poll_hybrid(struct request_queue *q,
3564 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
bbd7bb70 3565{
1052b8ac
JA
3566 struct request *rq;
3567
29ece8b4 3568 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
1052b8ac
JA
3569 return false;
3570
3571 if (!blk_qc_t_is_internal(cookie))
3572 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3573 else {
3574 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3575 /*
3576 * With scheduling, if the request has completed, we'll
3577 * get a NULL return here, as we clear the sched tag when
3578 * that happens. The request still remains valid, like always,
3579 * so we should be safe with just the NULL check.
3580 */
3581 if (!rq)
3582 return false;
3583 }
3584
cae740a0 3585 return blk_mq_poll_hybrid_sleep(q, rq);
1052b8ac
JA
3586}
3587
529262d5
CH
3588/**
3589 * blk_poll - poll for IO completions
3590 * @q: the queue
3591 * @cookie: cookie passed back at IO submission time
3592 * @spin: whether to spin for completions
3593 *
3594 * Description:
3595 * Poll for completions on the passed in queue. Returns number of
3596 * completed entries found. If @spin is true, then blk_poll will continue
3597 * looping until at least one completion is found, unless the task is
3598 * otherwise marked running (or we need to reschedule).
3599 */
3600int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
1052b8ac
JA
3601{
3602 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
3603 long state;
3604
529262d5
CH
3605 if (!blk_qc_t_valid(cookie) ||
3606 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1052b8ac
JA
3607 return 0;
3608
529262d5
CH
3609 if (current->plug)
3610 blk_flush_plug_list(current->plug, false);
3611
1052b8ac
JA
3612 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3613
06426adf
JA
3614 /*
3615 * If we sleep, have the caller restart the poll loop to reset
3616 * the state. Like for the other success return cases, the
3617 * caller is responsible for checking if the IO completed. If
3618 * the IO isn't complete, we'll get called again and will go
3619 * straight to the busy poll loop.
3620 */
1052b8ac 3621 if (blk_mq_poll_hybrid(q, hctx, cookie))
85f4d4b6 3622 return 1;
06426adf 3623
bbd7bb70
JA
3624 hctx->poll_considered++;
3625
3626 state = current->state;
aa61bec3 3627 do {
bbd7bb70
JA
3628 int ret;
3629
3630 hctx->poll_invoked++;
3631
9743139c 3632 ret = q->mq_ops->poll(hctx);
bbd7bb70
JA
3633 if (ret > 0) {
3634 hctx->poll_success++;
849a3700 3635 __set_current_state(TASK_RUNNING);
85f4d4b6 3636 return ret;
bbd7bb70
JA
3637 }
3638
3639 if (signal_pending_state(state, current))
849a3700 3640 __set_current_state(TASK_RUNNING);
bbd7bb70
JA
3641
3642 if (current->state == TASK_RUNNING)
85f4d4b6 3643 return 1;
0a1b8b87 3644 if (ret < 0 || !spin)
bbd7bb70
JA
3645 break;
3646 cpu_relax();
aa61bec3 3647 } while (!need_resched());
bbd7bb70 3648
67b4110f 3649 __set_current_state(TASK_RUNNING);
85f4d4b6 3650 return 0;
bbd7bb70 3651}
529262d5 3652EXPORT_SYMBOL_GPL(blk_poll);
bbd7bb70 3653
9cf2bab6
JA
3654unsigned int blk_mq_rq_cpu(struct request *rq)
3655{
3656 return rq->mq_ctx->cpu;
3657}
3658EXPORT_SYMBOL(blk_mq_rq_cpu);
3659
320ae51f
JA
3660static int __init blk_mq_init(void)
3661{
9467f859
TG
3662 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3663 blk_mq_hctx_notify_dead);
320ae51f
JA
3664 return 0;
3665}
3666subsys_initcall(blk_mq_init);