genirq/affinity: assign vectors to all possible CPUs
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
cf43e6be 36#include "blk-stat.h"
87760e5e 37#include "blk-wbt.h"
bd166ef1 38#include "blk-mq-sched.h"
320ae51f 39
ea435e1b 40static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
34dbad5d
OS
41static void blk_mq_poll_stats_start(struct request_queue *q);
42static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
720b8ccc
SB
44static int blk_mq_poll_stats_bkt(const struct request *rq)
45{
46 int ddir, bytes, bucket;
47
99c749a4 48 ddir = rq_data_dir(rq);
720b8ccc
SB
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59}
60
320ae51f
JA
61/*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
79f720a7 64static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 65{
79f720a7
JA
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 68 blk_mq_sched_has_work(hctx);
1429d7c9
JA
69}
70
320ae51f
JA
71/*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76{
88459642
OS
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
79}
80
81static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83{
88459642 84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
85}
86
f299b7c7
JA
87struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90};
91
92static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95{
96 struct mq_inflight *mi = priv;
97
67818d25 98 if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
f299b7c7 99 /*
b8d62b3a
JA
100 * index[0] counts the specific partition that was asked
101 * for. index[1] counts the ones that are active on the
102 * whole device, so increment that if mi->part is indeed
103 * a partition, and not a whole device.
f299b7c7 104 */
b8d62b3a 105 if (rq->part == mi->part)
f299b7c7 106 mi->inflight[0]++;
b8d62b3a
JA
107 if (mi->part->partno)
108 mi->inflight[1]++;
f299b7c7
JA
109 }
110}
111
112void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113 unsigned int inflight[2])
114{
115 struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
b8d62b3a 117 inflight[0] = inflight[1] = 0;
f299b7c7
JA
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119}
120
1671d522 121void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 122{
4ecd4fef 123 int freeze_depth;
cddd5d17 124
4ecd4fef
CH
125 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126 if (freeze_depth == 1) {
3ef28e83 127 percpu_ref_kill(&q->q_usage_counter);
055f6e18
ML
128 if (q->mq_ops)
129 blk_mq_run_hw_queues(q, false);
cddd5d17 130 }
f3af020b 131}
1671d522 132EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 133
6bae363e 134void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 135{
3ef28e83 136 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 137}
6bae363e 138EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 139
f91328c4
KB
140int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141 unsigned long timeout)
142{
143 return wait_event_timeout(q->mq_freeze_wq,
144 percpu_ref_is_zero(&q->q_usage_counter),
145 timeout);
146}
147EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 148
f3af020b
TH
149/*
150 * Guarantee no request is in use, so we can change any data structure of
151 * the queue afterward.
152 */
3ef28e83 153void blk_freeze_queue(struct request_queue *q)
f3af020b 154{
3ef28e83
DW
155 /*
156 * In the !blk_mq case we are only calling this to kill the
157 * q_usage_counter, otherwise this increases the freeze depth
158 * and waits for it to return to zero. For this reason there is
159 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160 * exported to drivers as the only user for unfreeze is blk_mq.
161 */
1671d522 162 blk_freeze_queue_start(q);
f3af020b
TH
163 blk_mq_freeze_queue_wait(q);
164}
3ef28e83
DW
165
166void blk_mq_freeze_queue(struct request_queue *q)
167{
168 /*
169 * ...just an alias to keep freeze and unfreeze actions balanced
170 * in the blk_mq_* namespace
171 */
172 blk_freeze_queue(q);
173}
c761d96b 174EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 175
b4c6a028 176void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 177{
4ecd4fef 178 int freeze_depth;
320ae51f 179
4ecd4fef
CH
180 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
181 WARN_ON_ONCE(freeze_depth < 0);
182 if (!freeze_depth) {
3ef28e83 183 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 184 wake_up_all(&q->mq_freeze_wq);
add703fd 185 }
320ae51f 186}
b4c6a028 187EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 188
852ec809
BVA
189/*
190 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
191 * mpt3sas driver such that this function can be removed.
192 */
193void blk_mq_quiesce_queue_nowait(struct request_queue *q)
194{
195 unsigned long flags;
196
197 spin_lock_irqsave(q->queue_lock, flags);
198 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
199 spin_unlock_irqrestore(q->queue_lock, flags);
200}
201EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
202
6a83e74d 203/**
69e07c4a 204 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
205 * @q: request queue.
206 *
207 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
208 * callback function is invoked. Once this function is returned, we make
209 * sure no dispatch can happen until the queue is unquiesced via
210 * blk_mq_unquiesce_queue().
6a83e74d
BVA
211 */
212void blk_mq_quiesce_queue(struct request_queue *q)
213{
214 struct blk_mq_hw_ctx *hctx;
215 unsigned int i;
216 bool rcu = false;
217
1d9e9bc6 218 blk_mq_quiesce_queue_nowait(q);
f4560ffe 219
6a83e74d
BVA
220 queue_for_each_hw_ctx(q, hctx, i) {
221 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 222 synchronize_srcu(hctx->srcu);
6a83e74d
BVA
223 else
224 rcu = true;
225 }
226 if (rcu)
227 synchronize_rcu();
228}
229EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
230
e4e73913
ML
231/*
232 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
233 * @q: request queue.
234 *
235 * This function recovers queue into the state before quiescing
236 * which is done by blk_mq_quiesce_queue.
237 */
238void blk_mq_unquiesce_queue(struct request_queue *q)
239{
852ec809
BVA
240 unsigned long flags;
241
242 spin_lock_irqsave(q->queue_lock, flags);
f4560ffe 243 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
852ec809 244 spin_unlock_irqrestore(q->queue_lock, flags);
f4560ffe 245
1d9e9bc6
ML
246 /* dispatch requests which are inserted during quiescing */
247 blk_mq_run_hw_queues(q, true);
e4e73913
ML
248}
249EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
250
aed3ea94
JA
251void blk_mq_wake_waiters(struct request_queue *q)
252{
253 struct blk_mq_hw_ctx *hctx;
254 unsigned int i;
255
256 queue_for_each_hw_ctx(q, hctx, i)
257 if (blk_mq_hw_queue_mapped(hctx))
258 blk_mq_tag_wakeup_all(hctx->tags, true);
259}
260
320ae51f
JA
261bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
262{
263 return blk_mq_has_free_tags(hctx->tags);
264}
265EXPORT_SYMBOL(blk_mq_can_queue);
266
e4cdf1a1
CH
267static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
268 unsigned int tag, unsigned int op)
320ae51f 269{
e4cdf1a1
CH
270 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
271 struct request *rq = tags->static_rqs[tag];
272
273 if (data->flags & BLK_MQ_REQ_INTERNAL) {
274 rq->tag = -1;
275 rq->internal_tag = tag;
276 } else {
277 if (blk_mq_tag_busy(data->hctx)) {
278 rq->rq_flags = RQF_MQ_INFLIGHT;
279 atomic_inc(&data->hctx->nr_active);
280 }
281 rq->tag = tag;
282 rq->internal_tag = -1;
283 data->hctx->tags->rqs[rq->tag] = rq;
284 }
285
af76e555 286 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
287 rq->q = data->q;
288 rq->mq_ctx = data->ctx;
7c3fb70f
JA
289 rq->rq_flags = 0;
290 rq->cpu = -1;
ef295ecf 291 rq->cmd_flags = op;
1b6d65a0
BVA
292 if (data->flags & BLK_MQ_REQ_PREEMPT)
293 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 294 if (blk_queue_io_stat(data->q))
e8064021 295 rq->rq_flags |= RQF_IO_STAT;
7c3fb70f 296 INIT_LIST_HEAD(&rq->queuelist);
af76e555
CH
297 INIT_HLIST_NODE(&rq->hash);
298 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
299 rq->rq_disk = NULL;
300 rq->part = NULL;
3ee32372 301 rq->start_time = jiffies;
af76e555
CH
302 rq->nr_phys_segments = 0;
303#if defined(CONFIG_BLK_DEV_INTEGRITY)
304 rq->nr_integrity_segments = 0;
305#endif
af76e555
CH
306 rq->special = NULL;
307 /* tag was already set */
af76e555 308 rq->extra_len = 0;
e14575b3 309 rq->__deadline = 0;
af76e555 310
af76e555 311 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
312 rq->timeout = 0;
313
af76e555
CH
314 rq->end_io = NULL;
315 rq->end_io_data = NULL;
316 rq->next_rq = NULL;
317
7c3fb70f
JA
318#ifdef CONFIG_BLK_CGROUP
319 rq->rl = NULL;
320 set_start_time_ns(rq);
321 rq->io_start_time_ns = 0;
322#endif
323
e4cdf1a1
CH
324 data->ctx->rq_dispatched[op_is_sync(op)]++;
325 return rq;
5dee8577
CH
326}
327
d2c0d383
CH
328static struct request *blk_mq_get_request(struct request_queue *q,
329 struct bio *bio, unsigned int op,
330 struct blk_mq_alloc_data *data)
331{
332 struct elevator_queue *e = q->elevator;
333 struct request *rq;
e4cdf1a1 334 unsigned int tag;
21e768b4 335 bool put_ctx_on_error = false;
d2c0d383
CH
336
337 blk_queue_enter_live(q);
338 data->q = q;
21e768b4
BVA
339 if (likely(!data->ctx)) {
340 data->ctx = blk_mq_get_ctx(q);
341 put_ctx_on_error = true;
342 }
d2c0d383
CH
343 if (likely(!data->hctx))
344 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
03a07c92
GR
345 if (op & REQ_NOWAIT)
346 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
347
348 if (e) {
349 data->flags |= BLK_MQ_REQ_INTERNAL;
350
351 /*
352 * Flush requests are special and go directly to the
353 * dispatch list.
354 */
5bbf4e5a
CH
355 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
356 e->type->ops.mq.limit_depth(op, data);
d2c0d383
CH
357 }
358
e4cdf1a1
CH
359 tag = blk_mq_get_tag(data);
360 if (tag == BLK_MQ_TAG_FAIL) {
21e768b4
BVA
361 if (put_ctx_on_error) {
362 blk_mq_put_ctx(data->ctx);
1ad43c00
ML
363 data->ctx = NULL;
364 }
037cebb8
CH
365 blk_queue_exit(q);
366 return NULL;
d2c0d383
CH
367 }
368
e4cdf1a1 369 rq = blk_mq_rq_ctx_init(data, tag, op);
037cebb8
CH
370 if (!op_is_flush(op)) {
371 rq->elv.icq = NULL;
5bbf4e5a 372 if (e && e->type->ops.mq.prepare_request) {
44e8c2bf
CH
373 if (e->type->icq_cache && rq_ioc(bio))
374 blk_mq_sched_assign_ioc(rq, bio);
375
5bbf4e5a
CH
376 e->type->ops.mq.prepare_request(rq, bio);
377 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 378 }
037cebb8
CH
379 }
380 data->hctx->queued++;
381 return rq;
d2c0d383
CH
382}
383
cd6ce148 384struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 385 blk_mq_req_flags_t flags)
320ae51f 386{
5a797e00 387 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 388 struct request *rq;
a492f075 389 int ret;
320ae51f 390
3a0a5299 391 ret = blk_queue_enter(q, flags);
a492f075
JL
392 if (ret)
393 return ERR_PTR(ret);
320ae51f 394
cd6ce148 395 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 396 blk_queue_exit(q);
841bac2c 397
bd166ef1 398 if (!rq)
a492f075 399 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3 400
1ad43c00 401 blk_mq_put_ctx(alloc_data.ctx);
1ad43c00 402
0c4de0f3
CH
403 rq->__data_len = 0;
404 rq->__sector = (sector_t) -1;
405 rq->bio = rq->biotail = NULL;
320ae51f
JA
406 return rq;
407}
4bb659b1 408EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 409
cd6ce148 410struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 411 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 412{
6d2809d5 413 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 414 struct request *rq;
6d2809d5 415 unsigned int cpu;
1f5bd336
ML
416 int ret;
417
418 /*
419 * If the tag allocator sleeps we could get an allocation for a
420 * different hardware context. No need to complicate the low level
421 * allocator for this for the rare use case of a command tied to
422 * a specific queue.
423 */
424 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
425 return ERR_PTR(-EINVAL);
426
427 if (hctx_idx >= q->nr_hw_queues)
428 return ERR_PTR(-EIO);
429
3a0a5299 430 ret = blk_queue_enter(q, flags);
1f5bd336
ML
431 if (ret)
432 return ERR_PTR(ret);
433
c8712c6a
CH
434 /*
435 * Check if the hardware context is actually mapped to anything.
436 * If not tell the caller that it should skip this queue.
437 */
6d2809d5
OS
438 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
439 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
440 blk_queue_exit(q);
441 return ERR_PTR(-EXDEV);
c8712c6a 442 }
6d2809d5
OS
443 cpu = cpumask_first(alloc_data.hctx->cpumask);
444 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 445
cd6ce148 446 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 447 blk_queue_exit(q);
c8712c6a 448
6d2809d5
OS
449 if (!rq)
450 return ERR_PTR(-EWOULDBLOCK);
451
452 return rq;
1f5bd336
ML
453}
454EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
455
6af54051 456void blk_mq_free_request(struct request *rq)
320ae51f 457{
320ae51f 458 struct request_queue *q = rq->q;
6af54051
CH
459 struct elevator_queue *e = q->elevator;
460 struct blk_mq_ctx *ctx = rq->mq_ctx;
461 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
462 const int sched_tag = rq->internal_tag;
463
5bbf4e5a 464 if (rq->rq_flags & RQF_ELVPRIV) {
6af54051
CH
465 if (e && e->type->ops.mq.finish_request)
466 e->type->ops.mq.finish_request(rq);
467 if (rq->elv.icq) {
468 put_io_context(rq->elv.icq->ioc);
469 rq->elv.icq = NULL;
470 }
471 }
320ae51f 472
6af54051 473 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 474 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 475 atomic_dec(&hctx->nr_active);
87760e5e 476
7beb2f84
JA
477 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
478 laptop_io_completion(q->backing_dev_info);
479
87760e5e 480 wbt_done(q->rq_wb, &rq->issue_stat);
0d2602ca 481
85acb3ba
SL
482 if (blk_rq_rl(rq))
483 blk_put_rl(blk_rq_rl(rq));
484
1d9bd516 485 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
bd166ef1
JA
486 if (rq->tag != -1)
487 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
488 if (sched_tag != -1)
c05f8525 489 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
6d8c6c0f 490 blk_mq_sched_restart(hctx);
3ef28e83 491 blk_queue_exit(q);
320ae51f 492}
1a3b595a 493EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 494
2a842aca 495inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 496{
0d11e6ac
ML
497 blk_account_io_done(rq);
498
91b63639 499 if (rq->end_io) {
87760e5e 500 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 501 rq->end_io(rq, error);
91b63639
CH
502 } else {
503 if (unlikely(blk_bidi_rq(rq)))
504 blk_mq_free_request(rq->next_rq);
320ae51f 505 blk_mq_free_request(rq);
91b63639 506 }
320ae51f 507}
c8a446ad 508EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 509
2a842aca 510void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
511{
512 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
513 BUG();
c8a446ad 514 __blk_mq_end_request(rq, error);
63151a44 515}
c8a446ad 516EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 517
30a91cb4 518static void __blk_mq_complete_request_remote(void *data)
320ae51f 519{
3d6efbf6 520 struct request *rq = data;
320ae51f 521
30a91cb4 522 rq->q->softirq_done_fn(rq);
320ae51f 523}
320ae51f 524
453f8341 525static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
526{
527 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 528 bool shared = false;
320ae51f
JA
529 int cpu;
530
1d9bd516 531 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
5a61c363 532 blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
1d9bd516 533
453f8341
CH
534 if (rq->internal_tag != -1)
535 blk_mq_sched_completed_request(rq);
536 if (rq->rq_flags & RQF_STATS) {
537 blk_mq_poll_stats_start(rq->q);
538 blk_stat_add(rq);
539 }
540
38535201 541 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
542 rq->q->softirq_done_fn(rq);
543 return;
544 }
320ae51f
JA
545
546 cpu = get_cpu();
38535201
CH
547 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
548 shared = cpus_share_cache(cpu, ctx->cpu);
549
550 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 551 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
552 rq->csd.info = rq;
553 rq->csd.flags = 0;
c46fff2a 554 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 555 } else {
30a91cb4 556 rq->q->softirq_done_fn(rq);
3d6efbf6 557 }
320ae51f
JA
558 put_cpu();
559}
30a91cb4 560
04ced159 561static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
b7435db8 562 __releases(hctx->srcu)
04ced159
JA
563{
564 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
565 rcu_read_unlock();
566 else
05707b64 567 srcu_read_unlock(hctx->srcu, srcu_idx);
04ced159
JA
568}
569
570static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
b7435db8 571 __acquires(hctx->srcu)
04ced159 572{
08b5a6e2
JA
573 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
574 /* shut up gcc false positive */
575 *srcu_idx = 0;
04ced159 576 rcu_read_lock();
08b5a6e2 577 } else
05707b64 578 *srcu_idx = srcu_read_lock(hctx->srcu);
04ced159
JA
579}
580
1d9bd516
TH
581static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
582{
583 unsigned long flags;
584
585 /*
586 * blk_mq_rq_aborted_gstate() is used from the completion path and
587 * can thus be called from irq context. u64_stats_fetch in the
588 * middle of update on the same CPU leads to lockup. Disable irq
589 * while updating.
590 */
591 local_irq_save(flags);
592 u64_stats_update_begin(&rq->aborted_gstate_sync);
593 rq->aborted_gstate = gstate;
594 u64_stats_update_end(&rq->aborted_gstate_sync);
595 local_irq_restore(flags);
596}
597
598static u64 blk_mq_rq_aborted_gstate(struct request *rq)
599{
600 unsigned int start;
601 u64 aborted_gstate;
602
603 do {
604 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
605 aborted_gstate = rq->aborted_gstate;
606 } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
607
608 return aborted_gstate;
609}
610
30a91cb4
CH
611/**
612 * blk_mq_complete_request - end I/O on a request
613 * @rq: the request being processed
614 *
615 * Description:
616 * Ends all I/O on a request. It does not handle partial completions.
617 * The actual completion happens out-of-order, through a IPI handler.
618 **/
08e0029a 619void blk_mq_complete_request(struct request *rq)
30a91cb4 620{
95f09684 621 struct request_queue *q = rq->q;
5197c05e
TH
622 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
623 int srcu_idx;
95f09684
JA
624
625 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 626 return;
5197c05e 627
1d9bd516
TH
628 /*
629 * If @rq->aborted_gstate equals the current instance, timeout is
630 * claiming @rq and we lost. This is synchronized through
631 * hctx_lock(). See blk_mq_timeout_work() for details.
632 *
633 * Completion path never blocks and we can directly use RCU here
634 * instead of hctx_lock() which can be either RCU or SRCU.
635 * However, that would complicate paths which want to synchronize
636 * against us. Let stay in sync with the issue path so that
637 * hctx_lock() covers both issue and completion paths.
638 */
5197c05e 639 hctx_lock(hctx, &srcu_idx);
634f9e46 640 if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
ed851860 641 __blk_mq_complete_request(rq);
5197c05e 642 hctx_unlock(hctx, srcu_idx);
30a91cb4
CH
643}
644EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 645
973c0191
KB
646int blk_mq_request_started(struct request *rq)
647{
5a61c363 648 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
973c0191
KB
649}
650EXPORT_SYMBOL_GPL(blk_mq_request_started);
651
e2490073 652void blk_mq_start_request(struct request *rq)
320ae51f
JA
653{
654 struct request_queue *q = rq->q;
655
bd166ef1
JA
656 blk_mq_sched_started_request(rq);
657
320ae51f
JA
658 trace_block_rq_issue(q, rq);
659
cf43e6be 660 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 661 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 662 rq->rq_flags |= RQF_STATS;
87760e5e 663 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
664 }
665
1d9bd516 666 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 667
87ee7b11 668 /*
1d9bd516
TH
669 * Mark @rq in-flight which also advances the generation number,
670 * and register for timeout. Protect with a seqcount to allow the
671 * timeout path to read both @rq->gstate and @rq->deadline
672 * coherently.
a7af0af3 673 *
1d9bd516
TH
674 * This is the only place where a request is marked in-flight. If
675 * the timeout path reads an in-flight @rq->gstate, the
676 * @rq->deadline it reads together under @rq->gstate_seq is
677 * guaranteed to be the matching one.
87ee7b11 678 */
1d9bd516
TH
679 preempt_disable();
680 write_seqcount_begin(&rq->gstate_seq);
681
682 blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
683 blk_add_timer(rq);
684
685 write_seqcount_end(&rq->gstate_seq);
686 preempt_enable();
687
49f5baa5
CH
688 if (q->dma_drain_size && blk_rq_bytes(rq)) {
689 /*
690 * Make sure space for the drain appears. We know we can do
691 * this because max_hw_segments has been adjusted to be one
692 * fewer than the device can handle.
693 */
694 rq->nr_phys_segments++;
695 }
320ae51f 696}
e2490073 697EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 698
d9d149a3 699/*
5a61c363
TH
700 * When we reach here because queue is busy, it's safe to change the state
701 * to IDLE without checking @rq->aborted_gstate because we should still be
702 * holding the RCU read lock and thus protected against timeout.
d9d149a3 703 */
ed0791b2 704static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
705{
706 struct request_queue *q = rq->q;
707
923218f6
ML
708 blk_mq_put_driver_tag(rq);
709
320ae51f 710 trace_block_rq_requeue(q, rq);
87760e5e 711 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 712 blk_mq_sched_requeue_request(rq);
49f5baa5 713
5a61c363 714 if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
1d9bd516 715 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
e2490073
CH
716 if (q->dma_drain_size && blk_rq_bytes(rq))
717 rq->nr_phys_segments--;
718 }
320ae51f
JA
719}
720
2b053aca 721void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 722{
ed0791b2 723 __blk_mq_requeue_request(rq);
ed0791b2 724
ed0791b2 725 BUG_ON(blk_queued_rq(rq));
2b053aca 726 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
727}
728EXPORT_SYMBOL(blk_mq_requeue_request);
729
6fca6a61
CH
730static void blk_mq_requeue_work(struct work_struct *work)
731{
732 struct request_queue *q =
2849450a 733 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
734 LIST_HEAD(rq_list);
735 struct request *rq, *next;
6fca6a61 736
18e9781d 737 spin_lock_irq(&q->requeue_lock);
6fca6a61 738 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 739 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
740
741 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 742 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
743 continue;
744
e8064021 745 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 746 list_del_init(&rq->queuelist);
bd6737f1 747 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
748 }
749
750 while (!list_empty(&rq_list)) {
751 rq = list_entry(rq_list.next, struct request, queuelist);
752 list_del_init(&rq->queuelist);
bd6737f1 753 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
754 }
755
52d7f1b5 756 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
757}
758
2b053aca
BVA
759void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
760 bool kick_requeue_list)
6fca6a61
CH
761{
762 struct request_queue *q = rq->q;
763 unsigned long flags;
764
765 /*
766 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 767 * request head insertion from the workqueue.
6fca6a61 768 */
e8064021 769 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
770
771 spin_lock_irqsave(&q->requeue_lock, flags);
772 if (at_head) {
e8064021 773 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
774 list_add(&rq->queuelist, &q->requeue_list);
775 } else {
776 list_add_tail(&rq->queuelist, &q->requeue_list);
777 }
778 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
779
780 if (kick_requeue_list)
781 blk_mq_kick_requeue_list(q);
6fca6a61
CH
782}
783EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
784
785void blk_mq_kick_requeue_list(struct request_queue *q)
786{
2849450a 787 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
788}
789EXPORT_SYMBOL(blk_mq_kick_requeue_list);
790
2849450a
MS
791void blk_mq_delay_kick_requeue_list(struct request_queue *q,
792 unsigned long msecs)
793{
d4acf365
BVA
794 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
795 msecs_to_jiffies(msecs));
2849450a
MS
796}
797EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
798
0e62f51f
JA
799struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
800{
88c7b2b7
JA
801 if (tag < tags->nr_tags) {
802 prefetch(tags->rqs[tag]);
4ee86bab 803 return tags->rqs[tag];
88c7b2b7 804 }
4ee86bab
HR
805
806 return NULL;
24d2f903
CH
807}
808EXPORT_SYMBOL(blk_mq_tag_to_rq);
809
320ae51f 810struct blk_mq_timeout_data {
46f92d42
CH
811 unsigned long next;
812 unsigned int next_set;
1d9bd516 813 unsigned int nr_expired;
320ae51f
JA
814};
815
358f70da 816static void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 817{
f8a5b122 818 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 819 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11 820
634f9e46
TH
821 req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
822
46f92d42 823 if (ops->timeout)
0152fb6b 824 ret = ops->timeout(req, reserved);
46f92d42
CH
825
826 switch (ret) {
827 case BLK_EH_HANDLED:
828 __blk_mq_complete_request(req);
829 break;
830 case BLK_EH_RESET_TIMER:
1d9bd516
TH
831 /*
832 * As nothing prevents from completion happening while
833 * ->aborted_gstate is set, this may lead to ignored
834 * completions and further spurious timeouts.
835 */
836 blk_mq_rq_update_aborted_gstate(req, 0);
46f92d42 837 blk_add_timer(req);
46f92d42
CH
838 break;
839 case BLK_EH_NOT_HANDLED:
840 break;
841 default:
842 printk(KERN_ERR "block: bad eh return: %d\n", ret);
843 break;
844 }
87ee7b11 845}
5b3f25fc 846
81481eb4
CH
847static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
848 struct request *rq, void *priv, bool reserved)
849{
850 struct blk_mq_timeout_data *data = priv;
1d9bd516
TH
851 unsigned long gstate, deadline;
852 int start;
853
854 might_sleep();
87ee7b11 855
5a61c363 856 if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
46f92d42 857 return;
87ee7b11 858
1d9bd516
TH
859 /* read coherent snapshots of @rq->state_gen and @rq->deadline */
860 while (true) {
861 start = read_seqcount_begin(&rq->gstate_seq);
862 gstate = READ_ONCE(rq->gstate);
0a72e7f4 863 deadline = blk_rq_deadline(rq);
1d9bd516
TH
864 if (!read_seqcount_retry(&rq->gstate_seq, start))
865 break;
866 cond_resched();
867 }
a7af0af3 868
1d9bd516
TH
869 /* if in-flight && overdue, mark for abortion */
870 if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
871 time_after_eq(jiffies, deadline)) {
872 blk_mq_rq_update_aborted_gstate(rq, gstate);
873 data->nr_expired++;
874 hctx->nr_expired++;
a7af0af3
PZ
875 } else if (!data->next_set || time_after(data->next, deadline)) {
876 data->next = deadline;
46f92d42
CH
877 data->next_set = 1;
878 }
87ee7b11
JA
879}
880
1d9bd516
TH
881static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
882 struct request *rq, void *priv, bool reserved)
883{
884 /*
885 * We marked @rq->aborted_gstate and waited for RCU. If there were
886 * completions that we lost to, they would have finished and
887 * updated @rq->gstate by now; otherwise, the completion path is
888 * now guaranteed to see @rq->aborted_gstate and yield. If
889 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
890 */
634f9e46
TH
891 if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
892 READ_ONCE(rq->gstate) == rq->aborted_gstate)
1d9bd516
TH
893 blk_mq_rq_timed_out(rq, reserved);
894}
895
287922eb 896static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 897{
287922eb
CH
898 struct request_queue *q =
899 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
900 struct blk_mq_timeout_data data = {
901 .next = 0,
902 .next_set = 0,
1d9bd516 903 .nr_expired = 0,
81481eb4 904 };
1d9bd516 905 struct blk_mq_hw_ctx *hctx;
81481eb4 906 int i;
320ae51f 907
71f79fb3
GKB
908 /* A deadlock might occur if a request is stuck requiring a
909 * timeout at the same time a queue freeze is waiting
910 * completion, since the timeout code would not be able to
911 * acquire the queue reference here.
912 *
913 * That's why we don't use blk_queue_enter here; instead, we use
914 * percpu_ref_tryget directly, because we need to be able to
915 * obtain a reference even in the short window between the queue
916 * starting to freeze, by dropping the first reference in
1671d522 917 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
918 * consumed, marked by the instant q_usage_counter reaches
919 * zero.
920 */
921 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
922 return;
923
1d9bd516 924 /* scan for the expired ones and set their ->aborted_gstate */
0bf6cd5b 925 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 926
1d9bd516
TH
927 if (data.nr_expired) {
928 bool has_rcu = false;
929
930 /*
931 * Wait till everyone sees ->aborted_gstate. The
932 * sequential waits for SRCUs aren't ideal. If this ever
933 * becomes a problem, we can add per-hw_ctx rcu_head and
934 * wait in parallel.
935 */
936 queue_for_each_hw_ctx(q, hctx, i) {
937 if (!hctx->nr_expired)
938 continue;
939
940 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
941 has_rcu = true;
942 else
05707b64 943 synchronize_srcu(hctx->srcu);
1d9bd516
TH
944
945 hctx->nr_expired = 0;
946 }
947 if (has_rcu)
948 synchronize_rcu();
949
950 /* terminate the ones we won */
951 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
952 }
953
81481eb4
CH
954 if (data.next_set) {
955 data.next = blk_rq_timeout(round_jiffies_up(data.next));
956 mod_timer(&q->timeout, data.next);
0d2602ca 957 } else {
fcd36c36
BVA
958 /*
959 * Request timeouts are handled as a forward rolling timer. If
960 * we end up here it means that no requests are pending and
961 * also that no request has been pending for a while. Mark
962 * each hctx as idle.
963 */
f054b56c
ML
964 queue_for_each_hw_ctx(q, hctx, i) {
965 /* the hctx may be unmapped, so check it here */
966 if (blk_mq_hw_queue_mapped(hctx))
967 blk_mq_tag_idle(hctx);
968 }
0d2602ca 969 }
287922eb 970 blk_queue_exit(q);
320ae51f
JA
971}
972
88459642
OS
973struct flush_busy_ctx_data {
974 struct blk_mq_hw_ctx *hctx;
975 struct list_head *list;
976};
977
978static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
979{
980 struct flush_busy_ctx_data *flush_data = data;
981 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
982 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
983
984 sbitmap_clear_bit(sb, bitnr);
985 spin_lock(&ctx->lock);
986 list_splice_tail_init(&ctx->rq_list, flush_data->list);
987 spin_unlock(&ctx->lock);
988 return true;
989}
990
1429d7c9
JA
991/*
992 * Process software queues that have been marked busy, splicing them
993 * to the for-dispatch
994 */
2c3ad667 995void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 996{
88459642
OS
997 struct flush_busy_ctx_data data = {
998 .hctx = hctx,
999 .list = list,
1000 };
1429d7c9 1001
88459642 1002 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 1003}
2c3ad667 1004EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 1005
b347689f
ML
1006struct dispatch_rq_data {
1007 struct blk_mq_hw_ctx *hctx;
1008 struct request *rq;
1009};
1010
1011static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1012 void *data)
1013{
1014 struct dispatch_rq_data *dispatch_data = data;
1015 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1016 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1017
1018 spin_lock(&ctx->lock);
1019 if (unlikely(!list_empty(&ctx->rq_list))) {
1020 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1021 list_del_init(&dispatch_data->rq->queuelist);
1022 if (list_empty(&ctx->rq_list))
1023 sbitmap_clear_bit(sb, bitnr);
1024 }
1025 spin_unlock(&ctx->lock);
1026
1027 return !dispatch_data->rq;
1028}
1029
1030struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1031 struct blk_mq_ctx *start)
1032{
1033 unsigned off = start ? start->index_hw : 0;
1034 struct dispatch_rq_data data = {
1035 .hctx = hctx,
1036 .rq = NULL,
1037 };
1038
1039 __sbitmap_for_each_set(&hctx->ctx_map, off,
1040 dispatch_rq_from_ctx, &data);
1041
1042 return data.rq;
1043}
1044
703fd1c0
JA
1045static inline unsigned int queued_to_index(unsigned int queued)
1046{
1047 if (!queued)
1048 return 0;
1429d7c9 1049
703fd1c0 1050 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
1051}
1052
bd6737f1
JA
1053bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1054 bool wait)
bd166ef1
JA
1055{
1056 struct blk_mq_alloc_data data = {
1057 .q = rq->q,
bd166ef1
JA
1058 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1059 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1060 };
1061
5feeacdd
JA
1062 might_sleep_if(wait);
1063
81380ca1
OS
1064 if (rq->tag != -1)
1065 goto done;
bd166ef1 1066
415b806d
SG
1067 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1068 data.flags |= BLK_MQ_REQ_RESERVED;
1069
bd166ef1
JA
1070 rq->tag = blk_mq_get_tag(&data);
1071 if (rq->tag >= 0) {
200e86b3
JA
1072 if (blk_mq_tag_busy(data.hctx)) {
1073 rq->rq_flags |= RQF_MQ_INFLIGHT;
1074 atomic_inc(&data.hctx->nr_active);
1075 }
bd166ef1 1076 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
1077 }
1078
81380ca1
OS
1079done:
1080 if (hctx)
1081 *hctx = data.hctx;
1082 return rq->tag != -1;
bd166ef1
JA
1083}
1084
eb619fdb
JA
1085static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1086 int flags, void *key)
da55f2cc
OS
1087{
1088 struct blk_mq_hw_ctx *hctx;
1089
1090 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1091
eb619fdb 1092 list_del_init(&wait->entry);
da55f2cc
OS
1093 blk_mq_run_hw_queue(hctx, true);
1094 return 1;
1095}
1096
f906a6a0
JA
1097/*
1098 * Mark us waiting for a tag. For shared tags, this involves hooking us into
ee3e4de5
BVA
1099 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1100 * restart. For both cases, take care to check the condition again after
f906a6a0
JA
1101 * marking us as waiting.
1102 */
1103static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1104 struct request *rq)
da55f2cc 1105{
eb619fdb 1106 struct blk_mq_hw_ctx *this_hctx = *hctx;
da55f2cc 1107 struct sbq_wait_state *ws;
f906a6a0
JA
1108 wait_queue_entry_t *wait;
1109 bool ret;
da55f2cc 1110
c27d53fb 1111 if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
f906a6a0
JA
1112 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1113 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
eb619fdb 1114
c27d53fb
BVA
1115 /*
1116 * It's possible that a tag was freed in the window between the
1117 * allocation failure and adding the hardware queue to the wait
1118 * queue.
1119 *
1120 * Don't clear RESTART here, someone else could have set it.
1121 * At most this will cost an extra queue run.
1122 */
1123 return blk_mq_get_driver_tag(rq, hctx, false);
eb619fdb
JA
1124 }
1125
c27d53fb
BVA
1126 wait = &this_hctx->dispatch_wait;
1127 if (!list_empty_careful(&wait->entry))
1128 return false;
1129
1130 spin_lock(&this_hctx->lock);
1131 if (!list_empty(&wait->entry)) {
1132 spin_unlock(&this_hctx->lock);
1133 return false;
1134 }
1135
1136 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1137 add_wait_queue(&ws->wait, wait);
1138
da55f2cc 1139 /*
eb619fdb
JA
1140 * It's possible that a tag was freed in the window between the
1141 * allocation failure and adding the hardware queue to the wait
1142 * queue.
da55f2cc 1143 */
f906a6a0 1144 ret = blk_mq_get_driver_tag(rq, hctx, false);
c27d53fb 1145 if (!ret) {
eb619fdb 1146 spin_unlock(&this_hctx->lock);
c27d53fb 1147 return false;
eb619fdb 1148 }
c27d53fb
BVA
1149
1150 /*
1151 * We got a tag, remove ourselves from the wait queue to ensure
1152 * someone else gets the wakeup.
1153 */
1154 spin_lock_irq(&ws->wait.lock);
1155 list_del_init(&wait->entry);
1156 spin_unlock_irq(&ws->wait.lock);
1157 spin_unlock(&this_hctx->lock);
1158
1159 return true;
da55f2cc
OS
1160}
1161
de148297 1162bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1163 bool got_budget)
320ae51f 1164{
81380ca1 1165 struct blk_mq_hw_ctx *hctx;
6d6f167c 1166 struct request *rq, *nxt;
eb619fdb 1167 bool no_tag = false;
fc17b653 1168 int errors, queued;
320ae51f 1169
81380ca1
OS
1170 if (list_empty(list))
1171 return false;
1172
de148297
ML
1173 WARN_ON(!list_is_singular(list) && got_budget);
1174
320ae51f
JA
1175 /*
1176 * Now process all the entries, sending them to the driver.
1177 */
93efe981 1178 errors = queued = 0;
81380ca1 1179 do {
74c45052 1180 struct blk_mq_queue_data bd;
fc17b653 1181 blk_status_t ret;
320ae51f 1182
f04c3df3 1183 rq = list_first_entry(list, struct request, queuelist);
bd166ef1 1184 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
3c782d67 1185 /*
da55f2cc 1186 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1187 * rerun the hardware queue when a tag is freed. The
1188 * waitqueue takes care of that. If the queue is run
1189 * before we add this entry back on the dispatch list,
1190 * we'll re-run it below.
3c782d67 1191 */
f906a6a0 1192 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
de148297
ML
1193 if (got_budget)
1194 blk_mq_put_dispatch_budget(hctx);
f906a6a0
JA
1195 /*
1196 * For non-shared tags, the RESTART check
1197 * will suffice.
1198 */
1199 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1200 no_tag = true;
de148297
ML
1201 break;
1202 }
1203 }
1204
0c6af1cc
ML
1205 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1206 blk_mq_put_driver_tag(rq);
88022d72 1207 break;
0c6af1cc 1208 }
da55f2cc 1209
320ae51f 1210 list_del_init(&rq->queuelist);
320ae51f 1211
74c45052 1212 bd.rq = rq;
113285b4
JA
1213
1214 /*
1215 * Flag last if we have no more requests, or if we have more
1216 * but can't assign a driver tag to it.
1217 */
1218 if (list_empty(list))
1219 bd.last = true;
1220 else {
113285b4
JA
1221 nxt = list_first_entry(list, struct request, queuelist);
1222 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1223 }
74c45052
JA
1224
1225 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653 1226 if (ret == BLK_STS_RESOURCE) {
6d6f167c
JW
1227 /*
1228 * If an I/O scheduler has been configured and we got a
ff821d27
JA
1229 * driver tag for the next request already, free it
1230 * again.
6d6f167c
JW
1231 */
1232 if (!list_empty(list)) {
1233 nxt = list_first_entry(list, struct request, queuelist);
1234 blk_mq_put_driver_tag(nxt);
1235 }
f04c3df3 1236 list_add(&rq->queuelist, list);
ed0791b2 1237 __blk_mq_requeue_request(rq);
320ae51f 1238 break;
fc17b653
CH
1239 }
1240
1241 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1242 errors++;
2a842aca 1243 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1244 continue;
320ae51f
JA
1245 }
1246
fc17b653 1247 queued++;
81380ca1 1248 } while (!list_empty(list));
320ae51f 1249
703fd1c0 1250 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1251
1252 /*
1253 * Any items that need requeuing? Stuff them into hctx->dispatch,
1254 * that is where we will continue on next queue run.
1255 */
f04c3df3 1256 if (!list_empty(list)) {
320ae51f 1257 spin_lock(&hctx->lock);
c13660a0 1258 list_splice_init(list, &hctx->dispatch);
320ae51f 1259 spin_unlock(&hctx->lock);
f04c3df3 1260
9ba52e58 1261 /*
710c785f
BVA
1262 * If SCHED_RESTART was set by the caller of this function and
1263 * it is no longer set that means that it was cleared by another
1264 * thread and hence that a queue rerun is needed.
9ba52e58 1265 *
eb619fdb
JA
1266 * If 'no_tag' is set, that means that we failed getting
1267 * a driver tag with an I/O scheduler attached. If our dispatch
1268 * waitqueue is no longer active, ensure that we run the queue
1269 * AFTER adding our entries back to the list.
bd166ef1 1270 *
710c785f
BVA
1271 * If no I/O scheduler has been configured it is possible that
1272 * the hardware queue got stopped and restarted before requests
1273 * were pushed back onto the dispatch list. Rerun the queue to
1274 * avoid starvation. Notes:
1275 * - blk_mq_run_hw_queue() checks whether or not a queue has
1276 * been stopped before rerunning a queue.
1277 * - Some but not all block drivers stop a queue before
fc17b653 1278 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1279 * and dm-rq.
bd166ef1 1280 */
eb619fdb
JA
1281 if (!blk_mq_sched_needs_restart(hctx) ||
1282 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1283 blk_mq_run_hw_queue(hctx, true);
320ae51f 1284 }
f04c3df3 1285
93efe981 1286 return (queued + errors) != 0;
f04c3df3
JA
1287}
1288
6a83e74d
BVA
1289static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1290{
1291 int srcu_idx;
1292
b7a71e66
JA
1293 /*
1294 * We should be running this queue from one of the CPUs that
1295 * are mapped to it.
1296 */
6a83e74d
BVA
1297 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1298 cpu_online(hctx->next_cpu));
1299
b7a71e66
JA
1300 /*
1301 * We can't run the queue inline with ints disabled. Ensure that
1302 * we catch bad users of this early.
1303 */
1304 WARN_ON_ONCE(in_interrupt());
1305
04ced159 1306 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1307
04ced159
JA
1308 hctx_lock(hctx, &srcu_idx);
1309 blk_mq_sched_dispatch_requests(hctx);
1310 hctx_unlock(hctx, srcu_idx);
6a83e74d
BVA
1311}
1312
506e931f
JA
1313/*
1314 * It'd be great if the workqueue API had a way to pass
1315 * in a mask and had some smarts for more clever placement.
1316 * For now we just round-robin here, switching for every
1317 * BLK_MQ_CPU_WORK_BATCH queued items.
1318 */
1319static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1320{
b657d7e6
CH
1321 if (hctx->queue->nr_hw_queues == 1)
1322 return WORK_CPU_UNBOUND;
506e931f
JA
1323
1324 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1325 int next_cpu;
506e931f
JA
1326
1327 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1328 if (next_cpu >= nr_cpu_ids)
1329 next_cpu = cpumask_first(hctx->cpumask);
1330
1331 hctx->next_cpu = next_cpu;
1332 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1333 }
1334
b657d7e6 1335 return hctx->next_cpu;
506e931f
JA
1336}
1337
7587a5ae
BVA
1338static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1339 unsigned long msecs)
320ae51f 1340{
5435c023
BVA
1341 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1342 return;
1343
1344 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1345 return;
1346
1b792f2f 1347 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1348 int cpu = get_cpu();
1349 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1350 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1351 put_cpu();
398205b8
PB
1352 return;
1353 }
e4043dcf 1354
2a90d4aa 1355 put_cpu();
e4043dcf 1356 }
398205b8 1357
9f993737
JA
1358 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1359 &hctx->run_work,
1360 msecs_to_jiffies(msecs));
7587a5ae
BVA
1361}
1362
1363void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1364{
1365 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1366}
1367EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1368
79f720a7 1369bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1370{
24f5a90f
ML
1371 int srcu_idx;
1372 bool need_run;
1373
1374 /*
1375 * When queue is quiesced, we may be switching io scheduler, or
1376 * updating nr_hw_queues, or other things, and we can't run queue
1377 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1378 *
1379 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1380 * quiesced.
1381 */
04ced159
JA
1382 hctx_lock(hctx, &srcu_idx);
1383 need_run = !blk_queue_quiesced(hctx->queue) &&
1384 blk_mq_hctx_has_pending(hctx);
1385 hctx_unlock(hctx, srcu_idx);
24f5a90f
ML
1386
1387 if (need_run) {
79f720a7
JA
1388 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1389 return true;
1390 }
1391
1392 return false;
320ae51f 1393}
5b727272 1394EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1395
b94ec296 1396void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1397{
1398 struct blk_mq_hw_ctx *hctx;
1399 int i;
1400
1401 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1402 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1403 continue;
1404
b94ec296 1405 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1406 }
1407}
b94ec296 1408EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1409
fd001443
BVA
1410/**
1411 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1412 * @q: request queue.
1413 *
1414 * The caller is responsible for serializing this function against
1415 * blk_mq_{start,stop}_hw_queue().
1416 */
1417bool blk_mq_queue_stopped(struct request_queue *q)
1418{
1419 struct blk_mq_hw_ctx *hctx;
1420 int i;
1421
1422 queue_for_each_hw_ctx(q, hctx, i)
1423 if (blk_mq_hctx_stopped(hctx))
1424 return true;
1425
1426 return false;
1427}
1428EXPORT_SYMBOL(blk_mq_queue_stopped);
1429
39a70c76
ML
1430/*
1431 * This function is often used for pausing .queue_rq() by driver when
1432 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1433 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1434 *
1435 * We do not guarantee that dispatch can be drained or blocked
1436 * after blk_mq_stop_hw_queue() returns. Please use
1437 * blk_mq_quiesce_queue() for that requirement.
1438 */
2719aa21
JA
1439void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1440{
641a9ed6 1441 cancel_delayed_work(&hctx->run_work);
280d45f6 1442
641a9ed6 1443 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1444}
641a9ed6 1445EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1446
39a70c76
ML
1447/*
1448 * This function is often used for pausing .queue_rq() by driver when
1449 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1450 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1451 *
1452 * We do not guarantee that dispatch can be drained or blocked
1453 * after blk_mq_stop_hw_queues() returns. Please use
1454 * blk_mq_quiesce_queue() for that requirement.
1455 */
2719aa21
JA
1456void blk_mq_stop_hw_queues(struct request_queue *q)
1457{
641a9ed6
ML
1458 struct blk_mq_hw_ctx *hctx;
1459 int i;
1460
1461 queue_for_each_hw_ctx(q, hctx, i)
1462 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1463}
1464EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1465
320ae51f
JA
1466void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1467{
1468 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1469
0ffbce80 1470 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1471}
1472EXPORT_SYMBOL(blk_mq_start_hw_queue);
1473
2f268556
CH
1474void blk_mq_start_hw_queues(struct request_queue *q)
1475{
1476 struct blk_mq_hw_ctx *hctx;
1477 int i;
1478
1479 queue_for_each_hw_ctx(q, hctx, i)
1480 blk_mq_start_hw_queue(hctx);
1481}
1482EXPORT_SYMBOL(blk_mq_start_hw_queues);
1483
ae911c5e
JA
1484void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1485{
1486 if (!blk_mq_hctx_stopped(hctx))
1487 return;
1488
1489 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1490 blk_mq_run_hw_queue(hctx, async);
1491}
1492EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1493
1b4a3258 1494void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1495{
1496 struct blk_mq_hw_ctx *hctx;
1497 int i;
1498
ae911c5e
JA
1499 queue_for_each_hw_ctx(q, hctx, i)
1500 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1501}
1502EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1503
70f4db63 1504static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1505{
1506 struct blk_mq_hw_ctx *hctx;
1507
9f993737 1508 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1509
21c6e939
JA
1510 /*
1511 * If we are stopped, don't run the queue. The exception is if
1512 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1513 * the STOPPED bit and run it.
1514 */
1515 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1516 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1517 return;
7587a5ae 1518
21c6e939
JA
1519 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1520 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1521 }
7587a5ae
BVA
1522
1523 __blk_mq_run_hw_queue(hctx);
1524}
1525
70f4db63
CH
1526
1527void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1528{
5435c023 1529 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
19c66e59 1530 return;
70f4db63 1531
21c6e939
JA
1532 /*
1533 * Stop the hw queue, then modify currently delayed work.
1534 * This should prevent us from running the queue prematurely.
1535 * Mark the queue as auto-clearing STOPPED when it runs.
1536 */
7e79dadc 1537 blk_mq_stop_hw_queue(hctx);
21c6e939
JA
1538 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1539 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1540 &hctx->run_work,
1541 msecs_to_jiffies(msecs));
70f4db63
CH
1542}
1543EXPORT_SYMBOL(blk_mq_delay_queue);
1544
cfd0c552 1545static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1546 struct request *rq,
1547 bool at_head)
320ae51f 1548{
e57690fe
JA
1549 struct blk_mq_ctx *ctx = rq->mq_ctx;
1550
7b607814
BVA
1551 lockdep_assert_held(&ctx->lock);
1552
01b983c9
JA
1553 trace_block_rq_insert(hctx->queue, rq);
1554
72a0a36e
CH
1555 if (at_head)
1556 list_add(&rq->queuelist, &ctx->rq_list);
1557 else
1558 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1559}
4bb659b1 1560
2c3ad667
JA
1561void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1562 bool at_head)
cfd0c552
ML
1563{
1564 struct blk_mq_ctx *ctx = rq->mq_ctx;
1565
7b607814
BVA
1566 lockdep_assert_held(&ctx->lock);
1567
e57690fe 1568 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1569 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1570}
1571
157f377b
JA
1572/*
1573 * Should only be used carefully, when the caller knows we want to
1574 * bypass a potential IO scheduler on the target device.
1575 */
b0850297 1576void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
157f377b
JA
1577{
1578 struct blk_mq_ctx *ctx = rq->mq_ctx;
1579 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1580
1581 spin_lock(&hctx->lock);
1582 list_add_tail(&rq->queuelist, &hctx->dispatch);
1583 spin_unlock(&hctx->lock);
1584
b0850297
ML
1585 if (run_queue)
1586 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1587}
1588
bd166ef1
JA
1589void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1590 struct list_head *list)
320ae51f
JA
1591
1592{
320ae51f
JA
1593 /*
1594 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1595 * offline now
1596 */
1597 spin_lock(&ctx->lock);
1598 while (!list_empty(list)) {
1599 struct request *rq;
1600
1601 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1602 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1603 list_del_init(&rq->queuelist);
e57690fe 1604 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1605 }
cfd0c552 1606 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1607 spin_unlock(&ctx->lock);
320ae51f
JA
1608}
1609
1610static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1611{
1612 struct request *rqa = container_of(a, struct request, queuelist);
1613 struct request *rqb = container_of(b, struct request, queuelist);
1614
1615 return !(rqa->mq_ctx < rqb->mq_ctx ||
1616 (rqa->mq_ctx == rqb->mq_ctx &&
1617 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1618}
1619
1620void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1621{
1622 struct blk_mq_ctx *this_ctx;
1623 struct request_queue *this_q;
1624 struct request *rq;
1625 LIST_HEAD(list);
1626 LIST_HEAD(ctx_list);
1627 unsigned int depth;
1628
1629 list_splice_init(&plug->mq_list, &list);
1630
1631 list_sort(NULL, &list, plug_ctx_cmp);
1632
1633 this_q = NULL;
1634 this_ctx = NULL;
1635 depth = 0;
1636
1637 while (!list_empty(&list)) {
1638 rq = list_entry_rq(list.next);
1639 list_del_init(&rq->queuelist);
1640 BUG_ON(!rq->q);
1641 if (rq->mq_ctx != this_ctx) {
1642 if (this_ctx) {
bd166ef1
JA
1643 trace_block_unplug(this_q, depth, from_schedule);
1644 blk_mq_sched_insert_requests(this_q, this_ctx,
1645 &ctx_list,
1646 from_schedule);
320ae51f
JA
1647 }
1648
1649 this_ctx = rq->mq_ctx;
1650 this_q = rq->q;
1651 depth = 0;
1652 }
1653
1654 depth++;
1655 list_add_tail(&rq->queuelist, &ctx_list);
1656 }
1657
1658 /*
1659 * If 'this_ctx' is set, we know we have entries to complete
1660 * on 'ctx_list'. Do those.
1661 */
1662 if (this_ctx) {
bd166ef1
JA
1663 trace_block_unplug(this_q, depth, from_schedule);
1664 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1665 from_schedule);
320ae51f
JA
1666 }
1667}
1668
1669static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1670{
da8d7f07 1671 blk_init_request_from_bio(rq, bio);
4b570521 1672
85acb3ba
SL
1673 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1674
6e85eaf3 1675 blk_account_io_start(rq, true);
320ae51f
JA
1676}
1677
ab42f35d
ML
1678static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1679 struct blk_mq_ctx *ctx,
1680 struct request *rq)
1681{
1682 spin_lock(&ctx->lock);
1683 __blk_mq_insert_request(hctx, rq, false);
1684 spin_unlock(&ctx->lock);
07068d5b 1685}
14ec77f3 1686
fd2d3326
JA
1687static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1688{
bd166ef1
JA
1689 if (rq->tag != -1)
1690 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1691
1692 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1693}
1694
d964f04a
ML
1695static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1696 struct request *rq,
04ced159 1697 blk_qc_t *cookie)
f984df1f 1698{
f984df1f 1699 struct request_queue *q = rq->q;
f984df1f
SL
1700 struct blk_mq_queue_data bd = {
1701 .rq = rq,
d945a365 1702 .last = true,
f984df1f 1703 };
bd166ef1 1704 blk_qc_t new_cookie;
f06345ad 1705 blk_status_t ret;
d964f04a
ML
1706 bool run_queue = true;
1707
f4560ffe
ML
1708 /* RCU or SRCU read lock is needed before checking quiesced flag */
1709 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a
ML
1710 run_queue = false;
1711 goto insert;
1712 }
f984df1f 1713
bd166ef1 1714 if (q->elevator)
2253efc8
BVA
1715 goto insert;
1716
d964f04a 1717 if (!blk_mq_get_driver_tag(rq, NULL, false))
bd166ef1
JA
1718 goto insert;
1719
88022d72 1720 if (!blk_mq_get_dispatch_budget(hctx)) {
de148297
ML
1721 blk_mq_put_driver_tag(rq);
1722 goto insert;
88022d72 1723 }
de148297 1724
bd166ef1
JA
1725 new_cookie = request_to_qc_t(hctx, rq);
1726
f984df1f
SL
1727 /*
1728 * For OK queue, we are done. For error, kill it. Any other
1729 * error (busy), just add it to our list as we previously
1730 * would have done
1731 */
1732 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653
CH
1733 switch (ret) {
1734 case BLK_STS_OK:
7b371636 1735 *cookie = new_cookie;
2253efc8 1736 return;
fc17b653
CH
1737 case BLK_STS_RESOURCE:
1738 __blk_mq_requeue_request(rq);
1739 goto insert;
1740 default:
7b371636 1741 *cookie = BLK_QC_T_NONE;
fc17b653 1742 blk_mq_end_request(rq, ret);
2253efc8 1743 return;
f984df1f 1744 }
7b371636 1745
2253efc8 1746insert:
04ced159
JA
1747 blk_mq_sched_insert_request(rq, false, run_queue, false,
1748 hctx->flags & BLK_MQ_F_BLOCKING);
f984df1f
SL
1749}
1750
5eb6126e
CH
1751static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1752 struct request *rq, blk_qc_t *cookie)
1753{
04ced159 1754 int srcu_idx;
bf4907c0 1755
04ced159 1756 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1757
04ced159
JA
1758 hctx_lock(hctx, &srcu_idx);
1759 __blk_mq_try_issue_directly(hctx, rq, cookie);
1760 hctx_unlock(hctx, srcu_idx);
5eb6126e
CH
1761}
1762
dece1635 1763static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1764{
ef295ecf 1765 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1766 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1767 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1768 struct request *rq;
5eb6126e 1769 unsigned int request_count = 0;
f984df1f 1770 struct blk_plug *plug;
5b3f341f 1771 struct request *same_queue_rq = NULL;
7b371636 1772 blk_qc_t cookie;
87760e5e 1773 unsigned int wb_acct;
07068d5b
JA
1774
1775 blk_queue_bounce(q, &bio);
1776
af67c31f 1777 blk_queue_split(q, &bio);
f36ea50c 1778
e23947bd 1779 if (!bio_integrity_prep(bio))
dece1635 1780 return BLK_QC_T_NONE;
07068d5b 1781
87c279e6
OS
1782 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1783 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1784 return BLK_QC_T_NONE;
f984df1f 1785
bd166ef1
JA
1786 if (blk_mq_sched_bio_merge(q, bio))
1787 return BLK_QC_T_NONE;
1788
87760e5e
JA
1789 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1790
bd166ef1
JA
1791 trace_block_getrq(q, bio, bio->bi_opf);
1792
d2c0d383 1793 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1794 if (unlikely(!rq)) {
1795 __wbt_done(q->rq_wb, wb_acct);
03a07c92
GR
1796 if (bio->bi_opf & REQ_NOWAIT)
1797 bio_wouldblock_error(bio);
dece1635 1798 return BLK_QC_T_NONE;
87760e5e
JA
1799 }
1800
1801 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1802
fd2d3326 1803 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1804
f984df1f 1805 plug = current->plug;
07068d5b 1806 if (unlikely(is_flush_fua)) {
f984df1f 1807 blk_mq_put_ctx(data.ctx);
07068d5b 1808 blk_mq_bio_to_request(rq, bio);
923218f6
ML
1809
1810 /* bypass scheduler for flush rq */
1811 blk_insert_flush(rq);
1812 blk_mq_run_hw_queue(data.hctx, true);
a4d907b6 1813 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1814 struct request *last = NULL;
1815
b00c53e8 1816 blk_mq_put_ctx(data.ctx);
e6c4438b 1817 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1818
1819 /*
1820 * @request_count may become stale because of schedule
1821 * out, so check the list again.
1822 */
1823 if (list_empty(&plug->mq_list))
1824 request_count = 0;
254d259d
CH
1825 else if (blk_queue_nomerges(q))
1826 request_count = blk_plug_queued_count(q);
1827
676d0607 1828 if (!request_count)
e6c4438b 1829 trace_block_plug(q);
600271d9
SL
1830 else
1831 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1832
600271d9
SL
1833 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1834 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1835 blk_flush_plug_list(plug, false);
1836 trace_block_plug(q);
320ae51f 1837 }
b094f89c 1838
e6c4438b 1839 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1840 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1841 blk_mq_bio_to_request(rq, bio);
07068d5b 1842
07068d5b 1843 /*
6a83e74d 1844 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1845 * Otherwise the existing request in the plug list will be
1846 * issued. So the plug list will have one request at most
2299722c
CH
1847 * The plug list might get flushed before this. If that happens,
1848 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1849 */
2299722c
CH
1850 if (list_empty(&plug->mq_list))
1851 same_queue_rq = NULL;
1852 if (same_queue_rq)
1853 list_del_init(&same_queue_rq->queuelist);
1854 list_add_tail(&rq->queuelist, &plug->mq_list);
1855
bf4907c0
JA
1856 blk_mq_put_ctx(data.ctx);
1857
dad7a3be
ML
1858 if (same_queue_rq) {
1859 data.hctx = blk_mq_map_queue(q,
1860 same_queue_rq->mq_ctx->cpu);
2299722c
CH
1861 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1862 &cookie);
dad7a3be 1863 }
a4d907b6 1864 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1865 blk_mq_put_ctx(data.ctx);
2299722c 1866 blk_mq_bio_to_request(rq, bio);
2299722c 1867 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1868 } else if (q->elevator) {
b00c53e8 1869 blk_mq_put_ctx(data.ctx);
bd166ef1 1870 blk_mq_bio_to_request(rq, bio);
a4d907b6 1871 blk_mq_sched_insert_request(rq, false, true, true, true);
ab42f35d 1872 } else {
b00c53e8 1873 blk_mq_put_ctx(data.ctx);
ab42f35d
ML
1874 blk_mq_bio_to_request(rq, bio);
1875 blk_mq_queue_io(data.hctx, data.ctx, rq);
a4d907b6 1876 blk_mq_run_hw_queue(data.hctx, true);
ab42f35d 1877 }
320ae51f 1878
7b371636 1879 return cookie;
320ae51f
JA
1880}
1881
cc71a6f4
JA
1882void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1883 unsigned int hctx_idx)
95363efd 1884{
e9b267d9 1885 struct page *page;
320ae51f 1886
24d2f903 1887 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1888 int i;
320ae51f 1889
24d2f903 1890 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1891 struct request *rq = tags->static_rqs[i];
1892
1893 if (!rq)
e9b267d9 1894 continue;
d6296d39 1895 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1896 tags->static_rqs[i] = NULL;
e9b267d9 1897 }
320ae51f 1898 }
320ae51f 1899
24d2f903
CH
1900 while (!list_empty(&tags->page_list)) {
1901 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1902 list_del_init(&page->lru);
f75782e4
CM
1903 /*
1904 * Remove kmemleak object previously allocated in
1905 * blk_mq_init_rq_map().
1906 */
1907 kmemleak_free(page_address(page));
320ae51f
JA
1908 __free_pages(page, page->private);
1909 }
cc71a6f4 1910}
320ae51f 1911
cc71a6f4
JA
1912void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1913{
24d2f903 1914 kfree(tags->rqs);
cc71a6f4 1915 tags->rqs = NULL;
2af8cbe3
JA
1916 kfree(tags->static_rqs);
1917 tags->static_rqs = NULL;
320ae51f 1918
24d2f903 1919 blk_mq_free_tags(tags);
320ae51f
JA
1920}
1921
cc71a6f4
JA
1922struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1923 unsigned int hctx_idx,
1924 unsigned int nr_tags,
1925 unsigned int reserved_tags)
320ae51f 1926{
24d2f903 1927 struct blk_mq_tags *tags;
59f082e4 1928 int node;
320ae51f 1929
59f082e4
SL
1930 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1931 if (node == NUMA_NO_NODE)
1932 node = set->numa_node;
1933
1934 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1935 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1936 if (!tags)
1937 return NULL;
320ae51f 1938
cc71a6f4 1939 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1940 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1941 node);
24d2f903
CH
1942 if (!tags->rqs) {
1943 blk_mq_free_tags(tags);
1944 return NULL;
1945 }
320ae51f 1946
2af8cbe3
JA
1947 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1948 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1949 node);
2af8cbe3
JA
1950 if (!tags->static_rqs) {
1951 kfree(tags->rqs);
1952 blk_mq_free_tags(tags);
1953 return NULL;
1954 }
1955
cc71a6f4
JA
1956 return tags;
1957}
1958
1959static size_t order_to_size(unsigned int order)
1960{
1961 return (size_t)PAGE_SIZE << order;
1962}
1963
1d9bd516
TH
1964static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1965 unsigned int hctx_idx, int node)
1966{
1967 int ret;
1968
1969 if (set->ops->init_request) {
1970 ret = set->ops->init_request(set, rq, hctx_idx, node);
1971 if (ret)
1972 return ret;
1973 }
1974
1975 seqcount_init(&rq->gstate_seq);
1976 u64_stats_init(&rq->aborted_gstate_sync);
1977 return 0;
1978}
1979
cc71a6f4
JA
1980int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1981 unsigned int hctx_idx, unsigned int depth)
1982{
1983 unsigned int i, j, entries_per_page, max_order = 4;
1984 size_t rq_size, left;
59f082e4
SL
1985 int node;
1986
1987 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1988 if (node == NUMA_NO_NODE)
1989 node = set->numa_node;
cc71a6f4
JA
1990
1991 INIT_LIST_HEAD(&tags->page_list);
1992
320ae51f
JA
1993 /*
1994 * rq_size is the size of the request plus driver payload, rounded
1995 * to the cacheline size
1996 */
24d2f903 1997 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1998 cache_line_size());
cc71a6f4 1999 left = rq_size * depth;
320ae51f 2000
cc71a6f4 2001 for (i = 0; i < depth; ) {
320ae51f
JA
2002 int this_order = max_order;
2003 struct page *page;
2004 int to_do;
2005 void *p;
2006
b3a834b1 2007 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
2008 this_order--;
2009
2010 do {
59f082e4 2011 page = alloc_pages_node(node,
36e1f3d1 2012 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 2013 this_order);
320ae51f
JA
2014 if (page)
2015 break;
2016 if (!this_order--)
2017 break;
2018 if (order_to_size(this_order) < rq_size)
2019 break;
2020 } while (1);
2021
2022 if (!page)
24d2f903 2023 goto fail;
320ae51f
JA
2024
2025 page->private = this_order;
24d2f903 2026 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
2027
2028 p = page_address(page);
f75782e4
CM
2029 /*
2030 * Allow kmemleak to scan these pages as they contain pointers
2031 * to additional allocations like via ops->init_request().
2032 */
36e1f3d1 2033 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 2034 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 2035 to_do = min(entries_per_page, depth - i);
320ae51f
JA
2036 left -= to_do * rq_size;
2037 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
2038 struct request *rq = p;
2039
2040 tags->static_rqs[i] = rq;
1d9bd516
TH
2041 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2042 tags->static_rqs[i] = NULL;
2043 goto fail;
e9b267d9
CH
2044 }
2045
320ae51f
JA
2046 p += rq_size;
2047 i++;
2048 }
2049 }
cc71a6f4 2050 return 0;
320ae51f 2051
24d2f903 2052fail:
cc71a6f4
JA
2053 blk_mq_free_rqs(set, tags, hctx_idx);
2054 return -ENOMEM;
320ae51f
JA
2055}
2056
e57690fe
JA
2057/*
2058 * 'cpu' is going away. splice any existing rq_list entries from this
2059 * software queue to the hw queue dispatch list, and ensure that it
2060 * gets run.
2061 */
9467f859 2062static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 2063{
9467f859 2064 struct blk_mq_hw_ctx *hctx;
484b4061
JA
2065 struct blk_mq_ctx *ctx;
2066 LIST_HEAD(tmp);
2067
9467f859 2068 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 2069 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
2070
2071 spin_lock(&ctx->lock);
2072 if (!list_empty(&ctx->rq_list)) {
2073 list_splice_init(&ctx->rq_list, &tmp);
2074 blk_mq_hctx_clear_pending(hctx, ctx);
2075 }
2076 spin_unlock(&ctx->lock);
2077
2078 if (list_empty(&tmp))
9467f859 2079 return 0;
484b4061 2080
e57690fe
JA
2081 spin_lock(&hctx->lock);
2082 list_splice_tail_init(&tmp, &hctx->dispatch);
2083 spin_unlock(&hctx->lock);
484b4061
JA
2084
2085 blk_mq_run_hw_queue(hctx, true);
9467f859 2086 return 0;
484b4061
JA
2087}
2088
9467f859 2089static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2090{
9467f859
TG
2091 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2092 &hctx->cpuhp_dead);
484b4061
JA
2093}
2094
c3b4afca 2095/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2096static void blk_mq_exit_hctx(struct request_queue *q,
2097 struct blk_mq_tag_set *set,
2098 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2099{
9c1051aa
OS
2100 blk_mq_debugfs_unregister_hctx(hctx);
2101
8ab0b7dc
ML
2102 if (blk_mq_hw_queue_mapped(hctx))
2103 blk_mq_tag_idle(hctx);
08e98fc6 2104
f70ced09 2105 if (set->ops->exit_request)
d6296d39 2106 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2107
93252632
OS
2108 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2109
08e98fc6
ML
2110 if (set->ops->exit_hctx)
2111 set->ops->exit_hctx(hctx, hctx_idx);
2112
6a83e74d 2113 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2114 cleanup_srcu_struct(hctx->srcu);
6a83e74d 2115
9467f859 2116 blk_mq_remove_cpuhp(hctx);
f70ced09 2117 blk_free_flush_queue(hctx->fq);
88459642 2118 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2119}
2120
624dbe47
ML
2121static void blk_mq_exit_hw_queues(struct request_queue *q,
2122 struct blk_mq_tag_set *set, int nr_queue)
2123{
2124 struct blk_mq_hw_ctx *hctx;
2125 unsigned int i;
2126
2127 queue_for_each_hw_ctx(q, hctx, i) {
2128 if (i == nr_queue)
2129 break;
08e98fc6 2130 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2131 }
624dbe47
ML
2132}
2133
08e98fc6
ML
2134static int blk_mq_init_hctx(struct request_queue *q,
2135 struct blk_mq_tag_set *set,
2136 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2137{
08e98fc6
ML
2138 int node;
2139
2140 node = hctx->numa_node;
2141 if (node == NUMA_NO_NODE)
2142 node = hctx->numa_node = set->numa_node;
2143
9f993737 2144 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2145 spin_lock_init(&hctx->lock);
2146 INIT_LIST_HEAD(&hctx->dispatch);
2147 hctx->queue = q;
2404e607 2148 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2149
9467f859 2150 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
2151
2152 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
2153
2154 /*
08e98fc6
ML
2155 * Allocate space for all possible cpus to avoid allocation at
2156 * runtime
320ae51f 2157 */
d904bfa7 2158 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
08e98fc6
ML
2159 GFP_KERNEL, node);
2160 if (!hctx->ctxs)
2161 goto unregister_cpu_notifier;
320ae51f 2162
88459642
OS
2163 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2164 node))
08e98fc6 2165 goto free_ctxs;
320ae51f 2166
08e98fc6 2167 hctx->nr_ctx = 0;
320ae51f 2168
eb619fdb
JA
2169 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2170 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2171
08e98fc6
ML
2172 if (set->ops->init_hctx &&
2173 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2174 goto free_bitmap;
320ae51f 2175
93252632
OS
2176 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2177 goto exit_hctx;
2178
f70ced09
ML
2179 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2180 if (!hctx->fq)
93252632 2181 goto sched_exit_hctx;
320ae51f 2182
1d9bd516 2183 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
f70ced09 2184 goto free_fq;
320ae51f 2185
6a83e74d 2186 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2187 init_srcu_struct(hctx->srcu);
6a83e74d 2188
9c1051aa
OS
2189 blk_mq_debugfs_register_hctx(q, hctx);
2190
08e98fc6 2191 return 0;
320ae51f 2192
f70ced09
ML
2193 free_fq:
2194 kfree(hctx->fq);
93252632
OS
2195 sched_exit_hctx:
2196 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
2197 exit_hctx:
2198 if (set->ops->exit_hctx)
2199 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 2200 free_bitmap:
88459642 2201 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2202 free_ctxs:
2203 kfree(hctx->ctxs);
2204 unregister_cpu_notifier:
9467f859 2205 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2206 return -1;
2207}
320ae51f 2208
320ae51f
JA
2209static void blk_mq_init_cpu_queues(struct request_queue *q,
2210 unsigned int nr_hw_queues)
2211{
2212 unsigned int i;
2213
2214 for_each_possible_cpu(i) {
2215 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2216 struct blk_mq_hw_ctx *hctx;
2217
320ae51f
JA
2218 __ctx->cpu = i;
2219 spin_lock_init(&__ctx->lock);
2220 INIT_LIST_HEAD(&__ctx->rq_list);
2221 __ctx->queue = q;
2222
4b855ad3
CH
2223 /* If the cpu isn't present, the cpu is mapped to first hctx */
2224 if (!cpu_present(i))
320ae51f
JA
2225 continue;
2226
7d7e0f90 2227 hctx = blk_mq_map_queue(q, i);
e4043dcf 2228
320ae51f
JA
2229 /*
2230 * Set local node, IFF we have more than one hw queue. If
2231 * not, we remain on the home node of the device
2232 */
2233 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 2234 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
2235 }
2236}
2237
cc71a6f4
JA
2238static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2239{
2240 int ret = 0;
2241
2242 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2243 set->queue_depth, set->reserved_tags);
2244 if (!set->tags[hctx_idx])
2245 return false;
2246
2247 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2248 set->queue_depth);
2249 if (!ret)
2250 return true;
2251
2252 blk_mq_free_rq_map(set->tags[hctx_idx]);
2253 set->tags[hctx_idx] = NULL;
2254 return false;
2255}
2256
2257static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2258 unsigned int hctx_idx)
2259{
bd166ef1
JA
2260 if (set->tags[hctx_idx]) {
2261 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2262 blk_mq_free_rq_map(set->tags[hctx_idx]);
2263 set->tags[hctx_idx] = NULL;
2264 }
cc71a6f4
JA
2265}
2266
4b855ad3 2267static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2268{
d1b1cea1 2269 unsigned int i, hctx_idx;
320ae51f
JA
2270 struct blk_mq_hw_ctx *hctx;
2271 struct blk_mq_ctx *ctx;
2a34c087 2272 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2273
60de074b
AM
2274 /*
2275 * Avoid others reading imcomplete hctx->cpumask through sysfs
2276 */
2277 mutex_lock(&q->sysfs_lock);
2278
320ae51f 2279 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2280 cpumask_clear(hctx->cpumask);
320ae51f
JA
2281 hctx->nr_ctx = 0;
2282 }
2283
2284 /*
4b855ad3
CH
2285 * Map software to hardware queues.
2286 *
2287 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2288 */
4b855ad3 2289 for_each_present_cpu(i) {
d1b1cea1
GKB
2290 hctx_idx = q->mq_map[i];
2291 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2292 if (!set->tags[hctx_idx] &&
2293 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2294 /*
2295 * If tags initialization fail for some hctx,
2296 * that hctx won't be brought online. In this
2297 * case, remap the current ctx to hctx[0] which
2298 * is guaranteed to always have tags allocated
2299 */
cc71a6f4 2300 q->mq_map[i] = 0;
d1b1cea1
GKB
2301 }
2302
897bb0c7 2303 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2304 hctx = blk_mq_map_queue(q, i);
868f2f0b 2305
e4043dcf 2306 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2307 ctx->index_hw = hctx->nr_ctx;
2308 hctx->ctxs[hctx->nr_ctx++] = ctx;
2309 }
506e931f 2310
60de074b
AM
2311 mutex_unlock(&q->sysfs_lock);
2312
506e931f 2313 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2314 /*
a68aafa5
JA
2315 * If no software queues are mapped to this hardware queue,
2316 * disable it and free the request entries.
484b4061
JA
2317 */
2318 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2319 /* Never unmap queue 0. We need it as a
2320 * fallback in case of a new remap fails
2321 * allocation
2322 */
cc71a6f4
JA
2323 if (i && set->tags[i])
2324 blk_mq_free_map_and_requests(set, i);
2325
2a34c087 2326 hctx->tags = NULL;
484b4061
JA
2327 continue;
2328 }
2329
2a34c087
ML
2330 hctx->tags = set->tags[i];
2331 WARN_ON(!hctx->tags);
2332
889fa31f
CY
2333 /*
2334 * Set the map size to the number of mapped software queues.
2335 * This is more accurate and more efficient than looping
2336 * over all possibly mapped software queues.
2337 */
88459642 2338 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2339
484b4061
JA
2340 /*
2341 * Initialize batch roundrobin counts
2342 */
506e931f
JA
2343 hctx->next_cpu = cpumask_first(hctx->cpumask);
2344 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2345 }
320ae51f
JA
2346}
2347
8e8320c9
JA
2348/*
2349 * Caller needs to ensure that we're either frozen/quiesced, or that
2350 * the queue isn't live yet.
2351 */
2404e607 2352static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2353{
2354 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2355 int i;
2356
2404e607 2357 queue_for_each_hw_ctx(q, hctx, i) {
8e8320c9
JA
2358 if (shared) {
2359 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2360 atomic_inc(&q->shared_hctx_restart);
2404e607 2361 hctx->flags |= BLK_MQ_F_TAG_SHARED;
8e8320c9
JA
2362 } else {
2363 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2364 atomic_dec(&q->shared_hctx_restart);
2404e607 2365 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
8e8320c9 2366 }
2404e607
JM
2367 }
2368}
2369
8e8320c9
JA
2370static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2371 bool shared)
2404e607
JM
2372{
2373 struct request_queue *q;
0d2602ca 2374
705cda97
BVA
2375 lockdep_assert_held(&set->tag_list_lock);
2376
0d2602ca
JA
2377 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2378 blk_mq_freeze_queue(q);
2404e607 2379 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2380 blk_mq_unfreeze_queue(q);
2381 }
2382}
2383
2384static void blk_mq_del_queue_tag_set(struct request_queue *q)
2385{
2386 struct blk_mq_tag_set *set = q->tag_set;
2387
0d2602ca 2388 mutex_lock(&set->tag_list_lock);
705cda97
BVA
2389 list_del_rcu(&q->tag_set_list);
2390 INIT_LIST_HEAD(&q->tag_set_list);
2404e607
JM
2391 if (list_is_singular(&set->tag_list)) {
2392 /* just transitioned to unshared */
2393 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2394 /* update existing queue */
2395 blk_mq_update_tag_set_depth(set, false);
2396 }
0d2602ca 2397 mutex_unlock(&set->tag_list_lock);
705cda97
BVA
2398
2399 synchronize_rcu();
0d2602ca
JA
2400}
2401
2402static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2403 struct request_queue *q)
2404{
2405 q->tag_set = set;
2406
2407 mutex_lock(&set->tag_list_lock);
2404e607 2408
ff821d27
JA
2409 /*
2410 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2411 */
2412 if (!list_empty(&set->tag_list) &&
2413 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404e607
JM
2414 set->flags |= BLK_MQ_F_TAG_SHARED;
2415 /* update existing queue */
2416 blk_mq_update_tag_set_depth(set, true);
2417 }
2418 if (set->flags & BLK_MQ_F_TAG_SHARED)
2419 queue_set_hctx_shared(q, true);
705cda97 2420 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2421
0d2602ca
JA
2422 mutex_unlock(&set->tag_list_lock);
2423}
2424
e09aae7e
ML
2425/*
2426 * It is the actual release handler for mq, but we do it from
2427 * request queue's release handler for avoiding use-after-free
2428 * and headache because q->mq_kobj shouldn't have been introduced,
2429 * but we can't group ctx/kctx kobj without it.
2430 */
2431void blk_mq_release(struct request_queue *q)
2432{
2433 struct blk_mq_hw_ctx *hctx;
2434 unsigned int i;
2435
2436 /* hctx kobj stays in hctx */
c3b4afca
ML
2437 queue_for_each_hw_ctx(q, hctx, i) {
2438 if (!hctx)
2439 continue;
6c8b232e 2440 kobject_put(&hctx->kobj);
c3b4afca 2441 }
e09aae7e 2442
a723bab3
AM
2443 q->mq_map = NULL;
2444
e09aae7e
ML
2445 kfree(q->queue_hw_ctx);
2446
7ea5fe31
ML
2447 /*
2448 * release .mq_kobj and sw queue's kobject now because
2449 * both share lifetime with request queue.
2450 */
2451 blk_mq_sysfs_deinit(q);
2452
e09aae7e
ML
2453 free_percpu(q->queue_ctx);
2454}
2455
24d2f903 2456struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2457{
2458 struct request_queue *uninit_q, *q;
2459
2460 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2461 if (!uninit_q)
2462 return ERR_PTR(-ENOMEM);
2463
2464 q = blk_mq_init_allocated_queue(set, uninit_q);
2465 if (IS_ERR(q))
2466 blk_cleanup_queue(uninit_q);
2467
2468 return q;
2469}
2470EXPORT_SYMBOL(blk_mq_init_queue);
2471
07319678
BVA
2472static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2473{
2474 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2475
05707b64 2476 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
07319678
BVA
2477 __alignof__(struct blk_mq_hw_ctx)) !=
2478 sizeof(struct blk_mq_hw_ctx));
2479
2480 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2481 hw_ctx_size += sizeof(struct srcu_struct);
2482
2483 return hw_ctx_size;
2484}
2485
868f2f0b
KB
2486static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2487 struct request_queue *q)
320ae51f 2488{
868f2f0b
KB
2489 int i, j;
2490 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2491
868f2f0b 2492 blk_mq_sysfs_unregister(q);
fb350e0a
ML
2493
2494 /* protect against switching io scheduler */
2495 mutex_lock(&q->sysfs_lock);
24d2f903 2496 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2497 int node;
f14bbe77 2498
868f2f0b
KB
2499 if (hctxs[i])
2500 continue;
2501
2502 node = blk_mq_hw_queue_to_node(q->mq_map, i);
07319678 2503 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
cdef54dd 2504 GFP_KERNEL, node);
320ae51f 2505 if (!hctxs[i])
868f2f0b 2506 break;
320ae51f 2507
a86073e4 2508 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2509 node)) {
2510 kfree(hctxs[i]);
2511 hctxs[i] = NULL;
2512 break;
2513 }
e4043dcf 2514
0d2602ca 2515 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2516 hctxs[i]->numa_node = node;
320ae51f 2517 hctxs[i]->queue_num = i;
868f2f0b
KB
2518
2519 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2520 free_cpumask_var(hctxs[i]->cpumask);
2521 kfree(hctxs[i]);
2522 hctxs[i] = NULL;
2523 break;
2524 }
2525 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2526 }
868f2f0b
KB
2527 for (j = i; j < q->nr_hw_queues; j++) {
2528 struct blk_mq_hw_ctx *hctx = hctxs[j];
2529
2530 if (hctx) {
cc71a6f4
JA
2531 if (hctx->tags)
2532 blk_mq_free_map_and_requests(set, j);
868f2f0b 2533 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2534 kobject_put(&hctx->kobj);
868f2f0b
KB
2535 hctxs[j] = NULL;
2536
2537 }
2538 }
2539 q->nr_hw_queues = i;
fb350e0a 2540 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
2541 blk_mq_sysfs_register(q);
2542}
2543
2544struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2545 struct request_queue *q)
2546{
66841672
ML
2547 /* mark the queue as mq asap */
2548 q->mq_ops = set->ops;
2549
34dbad5d 2550 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2551 blk_mq_poll_stats_bkt,
2552 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2553 if (!q->poll_cb)
2554 goto err_exit;
2555
868f2f0b
KB
2556 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2557 if (!q->queue_ctx)
c7de5726 2558 goto err_exit;
868f2f0b 2559
737f98cf
ML
2560 /* init q->mq_kobj and sw queues' kobjects */
2561 blk_mq_sysfs_init(q);
2562
868f2f0b
KB
2563 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2564 GFP_KERNEL, set->numa_node);
2565 if (!q->queue_hw_ctx)
2566 goto err_percpu;
2567
bdd17e75 2568 q->mq_map = set->mq_map;
868f2f0b
KB
2569
2570 blk_mq_realloc_hw_ctxs(set, q);
2571 if (!q->nr_hw_queues)
2572 goto err_hctxs;
320ae51f 2573
287922eb 2574 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2575 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2576
2577 q->nr_queues = nr_cpu_ids;
320ae51f 2578
94eddfbe 2579 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2580
05f1dd53
JA
2581 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2582 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2583
1be036e9
CH
2584 q->sg_reserved_size = INT_MAX;
2585
2849450a 2586 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2587 INIT_LIST_HEAD(&q->requeue_list);
2588 spin_lock_init(&q->requeue_lock);
2589
254d259d 2590 blk_queue_make_request(q, blk_mq_make_request);
ea435e1b
CH
2591 if (q->mq_ops->poll)
2592 q->poll_fn = blk_mq_poll;
07068d5b 2593
eba71768
JA
2594 /*
2595 * Do this after blk_queue_make_request() overrides it...
2596 */
2597 q->nr_requests = set->queue_depth;
2598
64f1c21e
JA
2599 /*
2600 * Default to classic polling
2601 */
2602 q->poll_nsec = -1;
2603
24d2f903
CH
2604 if (set->ops->complete)
2605 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2606
24d2f903 2607 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2608 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2609 blk_mq_map_swqueue(q);
4593fdbe 2610
d3484991
JA
2611 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2612 int ret;
2613
2614 ret = blk_mq_sched_init(q);
2615 if (ret)
2616 return ERR_PTR(ret);
2617 }
2618
320ae51f 2619 return q;
18741986 2620
320ae51f 2621err_hctxs:
868f2f0b 2622 kfree(q->queue_hw_ctx);
320ae51f 2623err_percpu:
868f2f0b 2624 free_percpu(q->queue_ctx);
c7de5726
ML
2625err_exit:
2626 q->mq_ops = NULL;
320ae51f
JA
2627 return ERR_PTR(-ENOMEM);
2628}
b62c21b7 2629EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2630
2631void blk_mq_free_queue(struct request_queue *q)
2632{
624dbe47 2633 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2634
0d2602ca 2635 blk_mq_del_queue_tag_set(q);
624dbe47 2636 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2637}
320ae51f
JA
2638
2639/* Basically redo blk_mq_init_queue with queue frozen */
4b855ad3 2640static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f 2641{
4ecd4fef 2642 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2643
9c1051aa 2644 blk_mq_debugfs_unregister_hctxs(q);
67aec14c
JA
2645 blk_mq_sysfs_unregister(q);
2646
320ae51f
JA
2647 /*
2648 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
ff821d27
JA
2649 * we should change hctx numa_node according to the new topology (this
2650 * involves freeing and re-allocating memory, worth doing?)
320ae51f 2651 */
4b855ad3 2652 blk_mq_map_swqueue(q);
320ae51f 2653
67aec14c 2654 blk_mq_sysfs_register(q);
9c1051aa 2655 blk_mq_debugfs_register_hctxs(q);
320ae51f
JA
2656}
2657
a5164405
JA
2658static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2659{
2660 int i;
2661
cc71a6f4
JA
2662 for (i = 0; i < set->nr_hw_queues; i++)
2663 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2664 goto out_unwind;
a5164405
JA
2665
2666 return 0;
2667
2668out_unwind:
2669 while (--i >= 0)
cc71a6f4 2670 blk_mq_free_rq_map(set->tags[i]);
a5164405 2671
a5164405
JA
2672 return -ENOMEM;
2673}
2674
2675/*
2676 * Allocate the request maps associated with this tag_set. Note that this
2677 * may reduce the depth asked for, if memory is tight. set->queue_depth
2678 * will be updated to reflect the allocated depth.
2679 */
2680static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2681{
2682 unsigned int depth;
2683 int err;
2684
2685 depth = set->queue_depth;
2686 do {
2687 err = __blk_mq_alloc_rq_maps(set);
2688 if (!err)
2689 break;
2690
2691 set->queue_depth >>= 1;
2692 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2693 err = -ENOMEM;
2694 break;
2695 }
2696 } while (set->queue_depth);
2697
2698 if (!set->queue_depth || err) {
2699 pr_err("blk-mq: failed to allocate request map\n");
2700 return -ENOMEM;
2701 }
2702
2703 if (depth != set->queue_depth)
2704 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2705 depth, set->queue_depth);
2706
2707 return 0;
2708}
2709
ebe8bddb
OS
2710static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2711{
7d4901a9
ML
2712 if (set->ops->map_queues) {
2713 int cpu;
2714 /*
2715 * transport .map_queues is usually done in the following
2716 * way:
2717 *
2718 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2719 * mask = get_cpu_mask(queue)
2720 * for_each_cpu(cpu, mask)
2721 * set->mq_map[cpu] = queue;
2722 * }
2723 *
2724 * When we need to remap, the table has to be cleared for
2725 * killing stale mapping since one CPU may not be mapped
2726 * to any hw queue.
2727 */
2728 for_each_possible_cpu(cpu)
2729 set->mq_map[cpu] = 0;
2730
ebe8bddb 2731 return set->ops->map_queues(set);
7d4901a9 2732 } else
ebe8bddb
OS
2733 return blk_mq_map_queues(set);
2734}
2735
a4391c64
JA
2736/*
2737 * Alloc a tag set to be associated with one or more request queues.
2738 * May fail with EINVAL for various error conditions. May adjust the
2739 * requested depth down, if if it too large. In that case, the set
2740 * value will be stored in set->queue_depth.
2741 */
24d2f903
CH
2742int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2743{
da695ba2
CH
2744 int ret;
2745
205fb5f5
BVA
2746 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2747
24d2f903
CH
2748 if (!set->nr_hw_queues)
2749 return -EINVAL;
a4391c64 2750 if (!set->queue_depth)
24d2f903
CH
2751 return -EINVAL;
2752 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2753 return -EINVAL;
2754
7d7e0f90 2755 if (!set->ops->queue_rq)
24d2f903
CH
2756 return -EINVAL;
2757
de148297
ML
2758 if (!set->ops->get_budget ^ !set->ops->put_budget)
2759 return -EINVAL;
2760
a4391c64
JA
2761 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2762 pr_info("blk-mq: reduced tag depth to %u\n",
2763 BLK_MQ_MAX_DEPTH);
2764 set->queue_depth = BLK_MQ_MAX_DEPTH;
2765 }
24d2f903 2766
6637fadf
SL
2767 /*
2768 * If a crashdump is active, then we are potentially in a very
2769 * memory constrained environment. Limit us to 1 queue and
2770 * 64 tags to prevent using too much memory.
2771 */
2772 if (is_kdump_kernel()) {
2773 set->nr_hw_queues = 1;
2774 set->queue_depth = min(64U, set->queue_depth);
2775 }
868f2f0b
KB
2776 /*
2777 * There is no use for more h/w queues than cpus.
2778 */
2779 if (set->nr_hw_queues > nr_cpu_ids)
2780 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2781
868f2f0b 2782 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2783 GFP_KERNEL, set->numa_node);
2784 if (!set->tags)
a5164405 2785 return -ENOMEM;
24d2f903 2786
da695ba2
CH
2787 ret = -ENOMEM;
2788 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2789 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2790 if (!set->mq_map)
2791 goto out_free_tags;
2792
ebe8bddb 2793 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2794 if (ret)
2795 goto out_free_mq_map;
2796
2797 ret = blk_mq_alloc_rq_maps(set);
2798 if (ret)
bdd17e75 2799 goto out_free_mq_map;
24d2f903 2800
0d2602ca
JA
2801 mutex_init(&set->tag_list_lock);
2802 INIT_LIST_HEAD(&set->tag_list);
2803
24d2f903 2804 return 0;
bdd17e75
CH
2805
2806out_free_mq_map:
2807 kfree(set->mq_map);
2808 set->mq_map = NULL;
2809out_free_tags:
5676e7b6
RE
2810 kfree(set->tags);
2811 set->tags = NULL;
da695ba2 2812 return ret;
24d2f903
CH
2813}
2814EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2815
2816void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2817{
2818 int i;
2819
cc71a6f4
JA
2820 for (i = 0; i < nr_cpu_ids; i++)
2821 blk_mq_free_map_and_requests(set, i);
484b4061 2822
bdd17e75
CH
2823 kfree(set->mq_map);
2824 set->mq_map = NULL;
2825
981bd189 2826 kfree(set->tags);
5676e7b6 2827 set->tags = NULL;
24d2f903
CH
2828}
2829EXPORT_SYMBOL(blk_mq_free_tag_set);
2830
e3a2b3f9
JA
2831int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2832{
2833 struct blk_mq_tag_set *set = q->tag_set;
2834 struct blk_mq_hw_ctx *hctx;
2835 int i, ret;
2836
bd166ef1 2837 if (!set)
e3a2b3f9
JA
2838 return -EINVAL;
2839
70f36b60 2840 blk_mq_freeze_queue(q);
24f5a90f 2841 blk_mq_quiesce_queue(q);
70f36b60 2842
e3a2b3f9
JA
2843 ret = 0;
2844 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2845 if (!hctx->tags)
2846 continue;
bd166ef1
JA
2847 /*
2848 * If we're using an MQ scheduler, just update the scheduler
2849 * queue depth. This is similar to what the old code would do.
2850 */
70f36b60 2851 if (!hctx->sched_tags) {
c2e82a23 2852 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
2853 false);
2854 } else {
2855 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2856 nr, true);
2857 }
e3a2b3f9
JA
2858 if (ret)
2859 break;
2860 }
2861
2862 if (!ret)
2863 q->nr_requests = nr;
2864
24f5a90f 2865 blk_mq_unquiesce_queue(q);
70f36b60 2866 blk_mq_unfreeze_queue(q);
70f36b60 2867
e3a2b3f9
JA
2868 return ret;
2869}
2870
e4dc2b32
KB
2871static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2872 int nr_hw_queues)
868f2f0b
KB
2873{
2874 struct request_queue *q;
2875
705cda97
BVA
2876 lockdep_assert_held(&set->tag_list_lock);
2877
868f2f0b
KB
2878 if (nr_hw_queues > nr_cpu_ids)
2879 nr_hw_queues = nr_cpu_ids;
2880 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2881 return;
2882
2883 list_for_each_entry(q, &set->tag_list, tag_set_list)
2884 blk_mq_freeze_queue(q);
2885
2886 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2887 blk_mq_update_queue_map(set);
868f2f0b
KB
2888 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2889 blk_mq_realloc_hw_ctxs(set, q);
4b855ad3 2890 blk_mq_queue_reinit(q);
868f2f0b
KB
2891 }
2892
2893 list_for_each_entry(q, &set->tag_list, tag_set_list)
2894 blk_mq_unfreeze_queue(q);
2895}
e4dc2b32
KB
2896
2897void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2898{
2899 mutex_lock(&set->tag_list_lock);
2900 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2901 mutex_unlock(&set->tag_list_lock);
2902}
868f2f0b
KB
2903EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2904
34dbad5d
OS
2905/* Enable polling stats and return whether they were already enabled. */
2906static bool blk_poll_stats_enable(struct request_queue *q)
2907{
2908 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2909 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2910 return true;
2911 blk_stat_add_callback(q, q->poll_cb);
2912 return false;
2913}
2914
2915static void blk_mq_poll_stats_start(struct request_queue *q)
2916{
2917 /*
2918 * We don't arm the callback if polling stats are not enabled or the
2919 * callback is already active.
2920 */
2921 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2922 blk_stat_is_active(q->poll_cb))
2923 return;
2924
2925 blk_stat_activate_msecs(q->poll_cb, 100);
2926}
2927
2928static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2929{
2930 struct request_queue *q = cb->data;
720b8ccc 2931 int bucket;
34dbad5d 2932
720b8ccc
SB
2933 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2934 if (cb->stat[bucket].nr_samples)
2935 q->poll_stat[bucket] = cb->stat[bucket];
2936 }
34dbad5d
OS
2937}
2938
64f1c21e
JA
2939static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2940 struct blk_mq_hw_ctx *hctx,
2941 struct request *rq)
2942{
64f1c21e 2943 unsigned long ret = 0;
720b8ccc 2944 int bucket;
64f1c21e
JA
2945
2946 /*
2947 * If stats collection isn't on, don't sleep but turn it on for
2948 * future users
2949 */
34dbad5d 2950 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2951 return 0;
2952
64f1c21e
JA
2953 /*
2954 * As an optimistic guess, use half of the mean service time
2955 * for this type of request. We can (and should) make this smarter.
2956 * For instance, if the completion latencies are tight, we can
2957 * get closer than just half the mean. This is especially
2958 * important on devices where the completion latencies are longer
720b8ccc
SB
2959 * than ~10 usec. We do use the stats for the relevant IO size
2960 * if available which does lead to better estimates.
64f1c21e 2961 */
720b8ccc
SB
2962 bucket = blk_mq_poll_stats_bkt(rq);
2963 if (bucket < 0)
2964 return ret;
2965
2966 if (q->poll_stat[bucket].nr_samples)
2967 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
2968
2969 return ret;
2970}
2971
06426adf 2972static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2973 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2974 struct request *rq)
2975{
2976 struct hrtimer_sleeper hs;
2977 enum hrtimer_mode mode;
64f1c21e 2978 unsigned int nsecs;
06426adf
JA
2979 ktime_t kt;
2980
76a86f9d 2981 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
64f1c21e
JA
2982 return false;
2983
2984 /*
2985 * poll_nsec can be:
2986 *
2987 * -1: don't ever hybrid sleep
2988 * 0: use half of prev avg
2989 * >0: use this specific value
2990 */
2991 if (q->poll_nsec == -1)
2992 return false;
2993 else if (q->poll_nsec > 0)
2994 nsecs = q->poll_nsec;
2995 else
2996 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2997
2998 if (!nsecs)
06426adf
JA
2999 return false;
3000
76a86f9d 3001 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
06426adf
JA
3002
3003 /*
3004 * This will be replaced with the stats tracking code, using
3005 * 'avg_completion_time / 2' as the pre-sleep target.
3006 */
8b0e1953 3007 kt = nsecs;
06426adf
JA
3008
3009 mode = HRTIMER_MODE_REL;
3010 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3011 hrtimer_set_expires(&hs.timer, kt);
3012
3013 hrtimer_init_sleeper(&hs, current);
3014 do {
5a61c363 3015 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
06426adf
JA
3016 break;
3017 set_current_state(TASK_UNINTERRUPTIBLE);
3018 hrtimer_start_expires(&hs.timer, mode);
3019 if (hs.task)
3020 io_schedule();
3021 hrtimer_cancel(&hs.timer);
3022 mode = HRTIMER_MODE_ABS;
3023 } while (hs.task && !signal_pending(current));
3024
3025 __set_current_state(TASK_RUNNING);
3026 destroy_hrtimer_on_stack(&hs.timer);
3027 return true;
3028}
3029
bbd7bb70
JA
3030static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3031{
3032 struct request_queue *q = hctx->queue;
3033 long state;
3034
06426adf
JA
3035 /*
3036 * If we sleep, have the caller restart the poll loop to reset
3037 * the state. Like for the other success return cases, the
3038 * caller is responsible for checking if the IO completed. If
3039 * the IO isn't complete, we'll get called again and will go
3040 * straight to the busy poll loop.
3041 */
64f1c21e 3042 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
3043 return true;
3044
bbd7bb70
JA
3045 hctx->poll_considered++;
3046
3047 state = current->state;
3048 while (!need_resched()) {
3049 int ret;
3050
3051 hctx->poll_invoked++;
3052
3053 ret = q->mq_ops->poll(hctx, rq->tag);
3054 if (ret > 0) {
3055 hctx->poll_success++;
3056 set_current_state(TASK_RUNNING);
3057 return true;
3058 }
3059
3060 if (signal_pending_state(state, current))
3061 set_current_state(TASK_RUNNING);
3062
3063 if (current->state == TASK_RUNNING)
3064 return true;
3065 if (ret < 0)
3066 break;
3067 cpu_relax();
3068 }
3069
3070 return false;
3071}
3072
ea435e1b 3073static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
bbd7bb70
JA
3074{
3075 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
3076 struct request *rq;
3077
ea435e1b 3078 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
bbd7bb70
JA
3079 return false;
3080
bbd7bb70 3081 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
3082 if (!blk_qc_t_is_internal(cookie))
3083 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 3084 else {
bd166ef1 3085 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
3086 /*
3087 * With scheduling, if the request has completed, we'll
3088 * get a NULL return here, as we clear the sched tag when
3089 * that happens. The request still remains valid, like always,
3090 * so we should be safe with just the NULL check.
3091 */
3092 if (!rq)
3093 return false;
3094 }
bbd7bb70
JA
3095
3096 return __blk_mq_poll(hctx, rq);
3097}
bbd7bb70 3098
320ae51f
JA
3099static int __init blk_mq_init(void)
3100{
9467f859
TG
3101 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3102 blk_mq_hctx_notify_dead);
320ae51f
JA
3103 return 0;
3104}
3105subsys_initcall(blk_mq_init);