blk-mq: remove non-blocking pass in blk_mq_map_request
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
23#include <linux/delay.h>
aedcd72f 24#include <linux/crash_dump.h>
88c7b2b7 25#include <linux/prefetch.h>
320ae51f
JA
26
27#include <trace/events/block.h>
28
29#include <linux/blk-mq.h>
30#include "blk.h"
31#include "blk-mq.h"
32#include "blk-mq-tag.h"
33
34static DEFINE_MUTEX(all_q_mutex);
35static LIST_HEAD(all_q_list);
36
320ae51f
JA
37/*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41{
88459642 42 return sbitmap_any_bit_set(&hctx->ctx_map);
1429d7c9
JA
43}
44
320ae51f
JA
45/*
46 * Mark this ctx as having pending work in this hardware queue
47 */
48static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
49 struct blk_mq_ctx *ctx)
50{
88459642
OS
51 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
52 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
53}
54
55static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
56 struct blk_mq_ctx *ctx)
57{
88459642 58 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
59}
60
b4c6a028 61void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 62{
4ecd4fef 63 int freeze_depth;
cddd5d17 64
4ecd4fef
CH
65 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
66 if (freeze_depth == 1) {
3ef28e83 67 percpu_ref_kill(&q->q_usage_counter);
b94ec296 68 blk_mq_run_hw_queues(q, false);
cddd5d17 69 }
f3af020b 70}
b4c6a028 71EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b
TH
72
73static void blk_mq_freeze_queue_wait(struct request_queue *q)
74{
3ef28e83 75 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2
ML
76}
77
f3af020b
TH
78/*
79 * Guarantee no request is in use, so we can change any data structure of
80 * the queue afterward.
81 */
3ef28e83 82void blk_freeze_queue(struct request_queue *q)
f3af020b 83{
3ef28e83
DW
84 /*
85 * In the !blk_mq case we are only calling this to kill the
86 * q_usage_counter, otherwise this increases the freeze depth
87 * and waits for it to return to zero. For this reason there is
88 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
89 * exported to drivers as the only user for unfreeze is blk_mq.
90 */
f3af020b
TH
91 blk_mq_freeze_queue_start(q);
92 blk_mq_freeze_queue_wait(q);
93}
3ef28e83
DW
94
95void blk_mq_freeze_queue(struct request_queue *q)
96{
97 /*
98 * ...just an alias to keep freeze and unfreeze actions balanced
99 * in the blk_mq_* namespace
100 */
101 blk_freeze_queue(q);
102}
c761d96b 103EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 104
b4c6a028 105void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 106{
4ecd4fef 107 int freeze_depth;
320ae51f 108
4ecd4fef
CH
109 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
110 WARN_ON_ONCE(freeze_depth < 0);
111 if (!freeze_depth) {
3ef28e83 112 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 113 wake_up_all(&q->mq_freeze_wq);
add703fd 114 }
320ae51f 115}
b4c6a028 116EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 117
aed3ea94
JA
118void blk_mq_wake_waiters(struct request_queue *q)
119{
120 struct blk_mq_hw_ctx *hctx;
121 unsigned int i;
122
123 queue_for_each_hw_ctx(q, hctx, i)
124 if (blk_mq_hw_queue_mapped(hctx))
125 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
126
127 /*
128 * If we are called because the queue has now been marked as
129 * dying, we need to ensure that processes currently waiting on
130 * the queue are notified as well.
131 */
132 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
133}
134
320ae51f
JA
135bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
136{
137 return blk_mq_has_free_tags(hctx->tags);
138}
139EXPORT_SYMBOL(blk_mq_can_queue);
140
94eddfbe 141static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
cc6e3b10
MC
142 struct request *rq, int op,
143 unsigned int op_flags)
320ae51f 144{
94eddfbe 145 if (blk_queue_io_stat(q))
cc6e3b10 146 op_flags |= REQ_IO_STAT;
94eddfbe 147
af76e555
CH
148 INIT_LIST_HEAD(&rq->queuelist);
149 /* csd/requeue_work/fifo_time is initialized before use */
150 rq->q = q;
320ae51f 151 rq->mq_ctx = ctx;
cc6e3b10 152 req_set_op_attrs(rq, op, op_flags);
af76e555
CH
153 /* do not touch atomic flags, it needs atomic ops against the timer */
154 rq->cpu = -1;
af76e555
CH
155 INIT_HLIST_NODE(&rq->hash);
156 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
157 rq->rq_disk = NULL;
158 rq->part = NULL;
3ee32372 159 rq->start_time = jiffies;
af76e555
CH
160#ifdef CONFIG_BLK_CGROUP
161 rq->rl = NULL;
0fec08b4 162 set_start_time_ns(rq);
af76e555
CH
163 rq->io_start_time_ns = 0;
164#endif
165 rq->nr_phys_segments = 0;
166#if defined(CONFIG_BLK_DEV_INTEGRITY)
167 rq->nr_integrity_segments = 0;
168#endif
af76e555
CH
169 rq->special = NULL;
170 /* tag was already set */
171 rq->errors = 0;
af76e555 172
6f4a1626
TB
173 rq->cmd = rq->__cmd;
174
af76e555
CH
175 rq->extra_len = 0;
176 rq->sense_len = 0;
177 rq->resid_len = 0;
178 rq->sense = NULL;
179
af76e555 180 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
181 rq->timeout = 0;
182
af76e555
CH
183 rq->end_io = NULL;
184 rq->end_io_data = NULL;
185 rq->next_rq = NULL;
186
d9d8c5c4 187 ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
320ae51f
JA
188}
189
5dee8577 190static struct request *
cc6e3b10 191__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
5dee8577
CH
192{
193 struct request *rq;
194 unsigned int tag;
195
cb96a42c 196 tag = blk_mq_get_tag(data);
5dee8577 197 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 198 rq = data->hctx->tags->rqs[tag];
5dee8577 199
cb96a42c 200 if (blk_mq_tag_busy(data->hctx)) {
5dee8577 201 rq->cmd_flags = REQ_MQ_INFLIGHT;
cb96a42c 202 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
203 }
204
205 rq->tag = tag;
cc6e3b10 206 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
5dee8577
CH
207 return rq;
208 }
209
210 return NULL;
211}
212
6f3b0e8b
CH
213struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
214 unsigned int flags)
320ae51f 215{
d852564f
CH
216 struct blk_mq_ctx *ctx;
217 struct blk_mq_hw_ctx *hctx;
320ae51f 218 struct request *rq;
cb96a42c 219 struct blk_mq_alloc_data alloc_data;
a492f075 220 int ret;
320ae51f 221
6f3b0e8b 222 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
223 if (ret)
224 return ERR_PTR(ret);
320ae51f 225
d852564f
CH
226 ctx = blk_mq_get_ctx(q);
227 hctx = q->mq_ops->map_queue(q, ctx->cpu);
6f3b0e8b 228 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
cc6e3b10 229 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
d852564f 230 blk_mq_put_ctx(ctx);
841bac2c 231
c76541a9 232 if (!rq) {
3ef28e83 233 blk_queue_exit(q);
a492f075 234 return ERR_PTR(-EWOULDBLOCK);
c76541a9 235 }
0c4de0f3
CH
236
237 rq->__data_len = 0;
238 rq->__sector = (sector_t) -1;
239 rq->bio = rq->biotail = NULL;
320ae51f
JA
240 return rq;
241}
4bb659b1 242EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 243
1f5bd336
ML
244struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
245 unsigned int flags, unsigned int hctx_idx)
246{
247 struct blk_mq_hw_ctx *hctx;
248 struct blk_mq_ctx *ctx;
249 struct request *rq;
250 struct blk_mq_alloc_data alloc_data;
251 int ret;
252
253 /*
254 * If the tag allocator sleeps we could get an allocation for a
255 * different hardware context. No need to complicate the low level
256 * allocator for this for the rare use case of a command tied to
257 * a specific queue.
258 */
259 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
260 return ERR_PTR(-EINVAL);
261
262 if (hctx_idx >= q->nr_hw_queues)
263 return ERR_PTR(-EIO);
264
265 ret = blk_queue_enter(q, true);
266 if (ret)
267 return ERR_PTR(ret);
268
269 hctx = q->queue_hw_ctx[hctx_idx];
270 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
271
272 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
273 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
274 if (!rq) {
275 blk_queue_exit(q);
276 return ERR_PTR(-EWOULDBLOCK);
277 }
278
279 return rq;
280}
281EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
282
320ae51f
JA
283static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
284 struct blk_mq_ctx *ctx, struct request *rq)
285{
286 const int tag = rq->tag;
287 struct request_queue *q = rq->q;
288
0d2602ca
JA
289 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
290 atomic_dec(&hctx->nr_active);
683d0e12 291 rq->cmd_flags = 0;
0d2602ca 292
af76e555 293 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
40aabb67 294 blk_mq_put_tag(hctx, ctx, tag);
3ef28e83 295 blk_queue_exit(q);
320ae51f
JA
296}
297
7c7f2f2b 298void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
320ae51f
JA
299{
300 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
301
302 ctx->rq_completed[rq_is_sync(rq)]++;
320ae51f 303 __blk_mq_free_request(hctx, ctx, rq);
7c7f2f2b
JA
304
305}
306EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
307
308void blk_mq_free_request(struct request *rq)
309{
310 struct blk_mq_hw_ctx *hctx;
311 struct request_queue *q = rq->q;
312
313 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
314 blk_mq_free_hctx_request(hctx, rq);
320ae51f 315}
1a3b595a 316EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 317
c8a446ad 318inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 319{
0d11e6ac
ML
320 blk_account_io_done(rq);
321
91b63639 322 if (rq->end_io) {
320ae51f 323 rq->end_io(rq, error);
91b63639
CH
324 } else {
325 if (unlikely(blk_bidi_rq(rq)))
326 blk_mq_free_request(rq->next_rq);
320ae51f 327 blk_mq_free_request(rq);
91b63639 328 }
320ae51f 329}
c8a446ad 330EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 331
c8a446ad 332void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
333{
334 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
335 BUG();
c8a446ad 336 __blk_mq_end_request(rq, error);
63151a44 337}
c8a446ad 338EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 339
30a91cb4 340static void __blk_mq_complete_request_remote(void *data)
320ae51f 341{
3d6efbf6 342 struct request *rq = data;
320ae51f 343
30a91cb4 344 rq->q->softirq_done_fn(rq);
320ae51f 345}
320ae51f 346
ed851860 347static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
348{
349 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 350 bool shared = false;
320ae51f
JA
351 int cpu;
352
38535201 353 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
354 rq->q->softirq_done_fn(rq);
355 return;
356 }
320ae51f
JA
357
358 cpu = get_cpu();
38535201
CH
359 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
360 shared = cpus_share_cache(cpu, ctx->cpu);
361
362 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 363 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
364 rq->csd.info = rq;
365 rq->csd.flags = 0;
c46fff2a 366 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 367 } else {
30a91cb4 368 rq->q->softirq_done_fn(rq);
3d6efbf6 369 }
320ae51f
JA
370 put_cpu();
371}
30a91cb4 372
1fa8cc52 373static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
374{
375 struct request_queue *q = rq->q;
376
377 if (!q->softirq_done_fn)
c8a446ad 378 blk_mq_end_request(rq, rq->errors);
ed851860
JA
379 else
380 blk_mq_ipi_complete_request(rq);
381}
382
30a91cb4
CH
383/**
384 * blk_mq_complete_request - end I/O on a request
385 * @rq: the request being processed
386 *
387 * Description:
388 * Ends all I/O on a request. It does not handle partial completions.
389 * The actual completion happens out-of-order, through a IPI handler.
390 **/
f4829a9b 391void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 392{
95f09684
JA
393 struct request_queue *q = rq->q;
394
395 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 396 return;
f4829a9b
CH
397 if (!blk_mark_rq_complete(rq)) {
398 rq->errors = error;
ed851860 399 __blk_mq_complete_request(rq);
f4829a9b 400 }
30a91cb4
CH
401}
402EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 403
973c0191
KB
404int blk_mq_request_started(struct request *rq)
405{
406 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
407}
408EXPORT_SYMBOL_GPL(blk_mq_request_started);
409
e2490073 410void blk_mq_start_request(struct request *rq)
320ae51f
JA
411{
412 struct request_queue *q = rq->q;
413
414 trace_block_rq_issue(q, rq);
415
742ee69b 416 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
417 if (unlikely(blk_bidi_rq(rq)))
418 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 419
2b8393b4 420 blk_add_timer(rq);
87ee7b11 421
538b7534
JA
422 /*
423 * Ensure that ->deadline is visible before set the started
424 * flag and clear the completed flag.
425 */
426 smp_mb__before_atomic();
427
87ee7b11
JA
428 /*
429 * Mark us as started and clear complete. Complete might have been
430 * set if requeue raced with timeout, which then marked it as
431 * complete. So be sure to clear complete again when we start
432 * the request, otherwise we'll ignore the completion event.
433 */
4b570521
JA
434 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
435 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
436 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
437 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
438
439 if (q->dma_drain_size && blk_rq_bytes(rq)) {
440 /*
441 * Make sure space for the drain appears. We know we can do
442 * this because max_hw_segments has been adjusted to be one
443 * fewer than the device can handle.
444 */
445 rq->nr_phys_segments++;
446 }
320ae51f 447}
e2490073 448EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 449
ed0791b2 450static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
451{
452 struct request_queue *q = rq->q;
453
454 trace_block_rq_requeue(q, rq);
49f5baa5 455
e2490073
CH
456 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
457 if (q->dma_drain_size && blk_rq_bytes(rq))
458 rq->nr_phys_segments--;
459 }
320ae51f
JA
460}
461
ed0791b2
CH
462void blk_mq_requeue_request(struct request *rq)
463{
ed0791b2 464 __blk_mq_requeue_request(rq);
ed0791b2 465
ed0791b2 466 BUG_ON(blk_queued_rq(rq));
6fca6a61 467 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
468}
469EXPORT_SYMBOL(blk_mq_requeue_request);
470
6fca6a61
CH
471static void blk_mq_requeue_work(struct work_struct *work)
472{
473 struct request_queue *q =
2849450a 474 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
475 LIST_HEAD(rq_list);
476 struct request *rq, *next;
477 unsigned long flags;
478
479 spin_lock_irqsave(&q->requeue_lock, flags);
480 list_splice_init(&q->requeue_list, &rq_list);
481 spin_unlock_irqrestore(&q->requeue_lock, flags);
482
483 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
484 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
485 continue;
486
487 rq->cmd_flags &= ~REQ_SOFTBARRIER;
488 list_del_init(&rq->queuelist);
489 blk_mq_insert_request(rq, true, false, false);
490 }
491
492 while (!list_empty(&rq_list)) {
493 rq = list_entry(rq_list.next, struct request, queuelist);
494 list_del_init(&rq->queuelist);
495 blk_mq_insert_request(rq, false, false, false);
496 }
497
8b957415
JA
498 /*
499 * Use the start variant of queue running here, so that running
500 * the requeue work will kick stopped queues.
501 */
502 blk_mq_start_hw_queues(q);
6fca6a61
CH
503}
504
505void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
506{
507 struct request_queue *q = rq->q;
508 unsigned long flags;
509
510 /*
511 * We abuse this flag that is otherwise used by the I/O scheduler to
512 * request head insertation from the workqueue.
513 */
514 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
515
516 spin_lock_irqsave(&q->requeue_lock, flags);
517 if (at_head) {
518 rq->cmd_flags |= REQ_SOFTBARRIER;
519 list_add(&rq->queuelist, &q->requeue_list);
520 } else {
521 list_add_tail(&rq->queuelist, &q->requeue_list);
522 }
523 spin_unlock_irqrestore(&q->requeue_lock, flags);
524}
525EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
526
c68ed59f
KB
527void blk_mq_cancel_requeue_work(struct request_queue *q)
528{
2849450a 529 cancel_delayed_work_sync(&q->requeue_work);
c68ed59f
KB
530}
531EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
532
6fca6a61
CH
533void blk_mq_kick_requeue_list(struct request_queue *q)
534{
2849450a 535 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
536}
537EXPORT_SYMBOL(blk_mq_kick_requeue_list);
538
2849450a
MS
539void blk_mq_delay_kick_requeue_list(struct request_queue *q,
540 unsigned long msecs)
541{
542 kblockd_schedule_delayed_work(&q->requeue_work,
543 msecs_to_jiffies(msecs));
544}
545EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
546
1885b24d
JA
547void blk_mq_abort_requeue_list(struct request_queue *q)
548{
549 unsigned long flags;
550 LIST_HEAD(rq_list);
551
552 spin_lock_irqsave(&q->requeue_lock, flags);
553 list_splice_init(&q->requeue_list, &rq_list);
554 spin_unlock_irqrestore(&q->requeue_lock, flags);
555
556 while (!list_empty(&rq_list)) {
557 struct request *rq;
558
559 rq = list_first_entry(&rq_list, struct request, queuelist);
560 list_del_init(&rq->queuelist);
561 rq->errors = -EIO;
562 blk_mq_end_request(rq, rq->errors);
563 }
564}
565EXPORT_SYMBOL(blk_mq_abort_requeue_list);
566
0e62f51f
JA
567struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
568{
88c7b2b7
JA
569 if (tag < tags->nr_tags) {
570 prefetch(tags->rqs[tag]);
4ee86bab 571 return tags->rqs[tag];
88c7b2b7 572 }
4ee86bab
HR
573
574 return NULL;
24d2f903
CH
575}
576EXPORT_SYMBOL(blk_mq_tag_to_rq);
577
320ae51f 578struct blk_mq_timeout_data {
46f92d42
CH
579 unsigned long next;
580 unsigned int next_set;
320ae51f
JA
581};
582
90415837 583void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 584{
46f92d42
CH
585 struct blk_mq_ops *ops = req->q->mq_ops;
586 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
587
588 /*
589 * We know that complete is set at this point. If STARTED isn't set
590 * anymore, then the request isn't active and the "timeout" should
591 * just be ignored. This can happen due to the bitflag ordering.
592 * Timeout first checks if STARTED is set, and if it is, assumes
593 * the request is active. But if we race with completion, then
594 * we both flags will get cleared. So check here again, and ignore
595 * a timeout event with a request that isn't active.
596 */
46f92d42
CH
597 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
598 return;
87ee7b11 599
46f92d42 600 if (ops->timeout)
0152fb6b 601 ret = ops->timeout(req, reserved);
46f92d42
CH
602
603 switch (ret) {
604 case BLK_EH_HANDLED:
605 __blk_mq_complete_request(req);
606 break;
607 case BLK_EH_RESET_TIMER:
608 blk_add_timer(req);
609 blk_clear_rq_complete(req);
610 break;
611 case BLK_EH_NOT_HANDLED:
612 break;
613 default:
614 printk(KERN_ERR "block: bad eh return: %d\n", ret);
615 break;
616 }
87ee7b11 617}
5b3f25fc 618
81481eb4
CH
619static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
620 struct request *rq, void *priv, bool reserved)
621{
622 struct blk_mq_timeout_data *data = priv;
87ee7b11 623
eb130dbf
KB
624 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
625 /*
626 * If a request wasn't started before the queue was
627 * marked dying, kill it here or it'll go unnoticed.
628 */
a59e0f57
KB
629 if (unlikely(blk_queue_dying(rq->q))) {
630 rq->errors = -EIO;
631 blk_mq_end_request(rq, rq->errors);
632 }
46f92d42 633 return;
eb130dbf 634 }
87ee7b11 635
46f92d42
CH
636 if (time_after_eq(jiffies, rq->deadline)) {
637 if (!blk_mark_rq_complete(rq))
0152fb6b 638 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
639 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
640 data->next = rq->deadline;
641 data->next_set = 1;
642 }
87ee7b11
JA
643}
644
287922eb 645static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 646{
287922eb
CH
647 struct request_queue *q =
648 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
649 struct blk_mq_timeout_data data = {
650 .next = 0,
651 .next_set = 0,
652 };
81481eb4 653 int i;
320ae51f 654
71f79fb3
GKB
655 /* A deadlock might occur if a request is stuck requiring a
656 * timeout at the same time a queue freeze is waiting
657 * completion, since the timeout code would not be able to
658 * acquire the queue reference here.
659 *
660 * That's why we don't use blk_queue_enter here; instead, we use
661 * percpu_ref_tryget directly, because we need to be able to
662 * obtain a reference even in the short window between the queue
663 * starting to freeze, by dropping the first reference in
664 * blk_mq_freeze_queue_start, and the moment the last request is
665 * consumed, marked by the instant q_usage_counter reaches
666 * zero.
667 */
668 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
669 return;
670
0bf6cd5b 671 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 672
81481eb4
CH
673 if (data.next_set) {
674 data.next = blk_rq_timeout(round_jiffies_up(data.next));
675 mod_timer(&q->timeout, data.next);
0d2602ca 676 } else {
0bf6cd5b
CH
677 struct blk_mq_hw_ctx *hctx;
678
f054b56c
ML
679 queue_for_each_hw_ctx(q, hctx, i) {
680 /* the hctx may be unmapped, so check it here */
681 if (blk_mq_hw_queue_mapped(hctx))
682 blk_mq_tag_idle(hctx);
683 }
0d2602ca 684 }
287922eb 685 blk_queue_exit(q);
320ae51f
JA
686}
687
688/*
689 * Reverse check our software queue for entries that we could potentially
690 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
691 * too much time checking for merges.
692 */
693static bool blk_mq_attempt_merge(struct request_queue *q,
694 struct blk_mq_ctx *ctx, struct bio *bio)
695{
696 struct request *rq;
697 int checked = 8;
698
699 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
700 int el_ret;
701
702 if (!checked--)
703 break;
704
705 if (!blk_rq_merge_ok(rq, bio))
706 continue;
707
708 el_ret = blk_try_merge(rq, bio);
709 if (el_ret == ELEVATOR_BACK_MERGE) {
710 if (bio_attempt_back_merge(q, rq, bio)) {
711 ctx->rq_merged++;
712 return true;
713 }
714 break;
715 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
716 if (bio_attempt_front_merge(q, rq, bio)) {
717 ctx->rq_merged++;
718 return true;
719 }
720 break;
721 }
722 }
723
724 return false;
725}
726
88459642
OS
727struct flush_busy_ctx_data {
728 struct blk_mq_hw_ctx *hctx;
729 struct list_head *list;
730};
731
732static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
733{
734 struct flush_busy_ctx_data *flush_data = data;
735 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
736 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
737
738 sbitmap_clear_bit(sb, bitnr);
739 spin_lock(&ctx->lock);
740 list_splice_tail_init(&ctx->rq_list, flush_data->list);
741 spin_unlock(&ctx->lock);
742 return true;
743}
744
1429d7c9
JA
745/*
746 * Process software queues that have been marked busy, splicing them
747 * to the for-dispatch
748 */
749static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
750{
88459642
OS
751 struct flush_busy_ctx_data data = {
752 .hctx = hctx,
753 .list = list,
754 };
1429d7c9 755
88459642 756 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9
JA
757}
758
703fd1c0
JA
759static inline unsigned int queued_to_index(unsigned int queued)
760{
761 if (!queued)
762 return 0;
763
764 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
765}
766
320ae51f
JA
767/*
768 * Run this hardware queue, pulling any software queues mapped to it in.
769 * Note that this function currently has various problems around ordering
770 * of IO. In particular, we'd like FIFO behaviour on handling existing
771 * items on the hctx->dispatch list. Ignore that for now.
772 */
773static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
774{
775 struct request_queue *q = hctx->queue;
320ae51f
JA
776 struct request *rq;
777 LIST_HEAD(rq_list);
74c45052
JA
778 LIST_HEAD(driver_list);
779 struct list_head *dptr;
1429d7c9 780 int queued;
320ae51f 781
5d12f905 782 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
783 return;
784
0e87e58b
JA
785 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
786 cpu_online(hctx->next_cpu));
787
320ae51f
JA
788 hctx->run++;
789
790 /*
791 * Touch any software queue that has pending entries.
792 */
1429d7c9 793 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
794
795 /*
796 * If we have previous entries on our dispatch list, grab them
797 * and stuff them at the front for more fair dispatch.
798 */
799 if (!list_empty_careful(&hctx->dispatch)) {
800 spin_lock(&hctx->lock);
801 if (!list_empty(&hctx->dispatch))
802 list_splice_init(&hctx->dispatch, &rq_list);
803 spin_unlock(&hctx->lock);
804 }
805
74c45052
JA
806 /*
807 * Start off with dptr being NULL, so we start the first request
808 * immediately, even if we have more pending.
809 */
810 dptr = NULL;
811
320ae51f
JA
812 /*
813 * Now process all the entries, sending them to the driver.
814 */
1429d7c9 815 queued = 0;
320ae51f 816 while (!list_empty(&rq_list)) {
74c45052 817 struct blk_mq_queue_data bd;
320ae51f
JA
818 int ret;
819
820 rq = list_first_entry(&rq_list, struct request, queuelist);
821 list_del_init(&rq->queuelist);
320ae51f 822
74c45052
JA
823 bd.rq = rq;
824 bd.list = dptr;
825 bd.last = list_empty(&rq_list);
826
827 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
828 switch (ret) {
829 case BLK_MQ_RQ_QUEUE_OK:
830 queued++;
52b9c330 831 break;
320ae51f 832 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 833 list_add(&rq->queuelist, &rq_list);
ed0791b2 834 __blk_mq_requeue_request(rq);
320ae51f
JA
835 break;
836 default:
837 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 838 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 839 rq->errors = -EIO;
c8a446ad 840 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
841 break;
842 }
843
844 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
845 break;
74c45052
JA
846
847 /*
848 * We've done the first request. If we have more than 1
849 * left in the list, set dptr to defer issue.
850 */
851 if (!dptr && rq_list.next != rq_list.prev)
852 dptr = &driver_list;
320ae51f
JA
853 }
854
703fd1c0 855 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
856
857 /*
858 * Any items that need requeuing? Stuff them into hctx->dispatch,
859 * that is where we will continue on next queue run.
860 */
861 if (!list_empty(&rq_list)) {
862 spin_lock(&hctx->lock);
863 list_splice(&rq_list, &hctx->dispatch);
864 spin_unlock(&hctx->lock);
9ba52e58
SL
865 /*
866 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
867 * it's possible the queue is stopped and restarted again
868 * before this. Queue restart will dispatch requests. And since
869 * requests in rq_list aren't added into hctx->dispatch yet,
870 * the requests in rq_list might get lost.
871 *
872 * blk_mq_run_hw_queue() already checks the STOPPED bit
873 **/
874 blk_mq_run_hw_queue(hctx, true);
320ae51f
JA
875 }
876}
877
506e931f
JA
878/*
879 * It'd be great if the workqueue API had a way to pass
880 * in a mask and had some smarts for more clever placement.
881 * For now we just round-robin here, switching for every
882 * BLK_MQ_CPU_WORK_BATCH queued items.
883 */
884static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
885{
b657d7e6
CH
886 if (hctx->queue->nr_hw_queues == 1)
887 return WORK_CPU_UNBOUND;
506e931f
JA
888
889 if (--hctx->next_cpu_batch <= 0) {
b657d7e6 890 int cpu = hctx->next_cpu, next_cpu;
506e931f
JA
891
892 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
893 if (next_cpu >= nr_cpu_ids)
894 next_cpu = cpumask_first(hctx->cpumask);
895
896 hctx->next_cpu = next_cpu;
897 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
b657d7e6
CH
898
899 return cpu;
506e931f
JA
900 }
901
b657d7e6 902 return hctx->next_cpu;
506e931f
JA
903}
904
320ae51f
JA
905void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
906{
19c66e59
ML
907 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
908 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
909 return;
910
398205b8 911 if (!async) {
2a90d4aa
PB
912 int cpu = get_cpu();
913 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 914 __blk_mq_run_hw_queue(hctx);
2a90d4aa 915 put_cpu();
398205b8
PB
916 return;
917 }
e4043dcf 918
2a90d4aa 919 put_cpu();
e4043dcf 920 }
398205b8 921
27489a3c 922 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
320ae51f
JA
923}
924
b94ec296 925void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
926{
927 struct blk_mq_hw_ctx *hctx;
928 int i;
929
930 queue_for_each_hw_ctx(q, hctx, i) {
931 if ((!blk_mq_hctx_has_pending(hctx) &&
932 list_empty_careful(&hctx->dispatch)) ||
5d12f905 933 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
934 continue;
935
b94ec296 936 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
937 }
938}
b94ec296 939EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f
JA
940
941void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
942{
27489a3c 943 cancel_work(&hctx->run_work);
70f4db63 944 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
945 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
946}
947EXPORT_SYMBOL(blk_mq_stop_hw_queue);
948
280d45f6
CH
949void blk_mq_stop_hw_queues(struct request_queue *q)
950{
951 struct blk_mq_hw_ctx *hctx;
952 int i;
953
954 queue_for_each_hw_ctx(q, hctx, i)
955 blk_mq_stop_hw_queue(hctx);
956}
957EXPORT_SYMBOL(blk_mq_stop_hw_queues);
958
320ae51f
JA
959void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
960{
961 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 962
0ffbce80 963 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
964}
965EXPORT_SYMBOL(blk_mq_start_hw_queue);
966
2f268556
CH
967void blk_mq_start_hw_queues(struct request_queue *q)
968{
969 struct blk_mq_hw_ctx *hctx;
970 int i;
971
972 queue_for_each_hw_ctx(q, hctx, i)
973 blk_mq_start_hw_queue(hctx);
974}
975EXPORT_SYMBOL(blk_mq_start_hw_queues);
976
1b4a3258 977void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
978{
979 struct blk_mq_hw_ctx *hctx;
980 int i;
981
982 queue_for_each_hw_ctx(q, hctx, i) {
983 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
984 continue;
985
986 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1b4a3258 987 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
988 }
989}
990EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
991
70f4db63 992static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
993{
994 struct blk_mq_hw_ctx *hctx;
995
27489a3c 996 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
e4043dcf 997
320ae51f
JA
998 __blk_mq_run_hw_queue(hctx);
999}
1000
70f4db63
CH
1001static void blk_mq_delay_work_fn(struct work_struct *work)
1002{
1003 struct blk_mq_hw_ctx *hctx;
1004
1005 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1006
1007 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1008 __blk_mq_run_hw_queue(hctx);
1009}
1010
1011void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1012{
19c66e59
ML
1013 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1014 return;
70f4db63 1015
b657d7e6
CH
1016 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1017 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1018}
1019EXPORT_SYMBOL(blk_mq_delay_queue);
1020
cfd0c552 1021static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1022 struct request *rq,
1023 bool at_head)
320ae51f 1024{
e57690fe
JA
1025 struct blk_mq_ctx *ctx = rq->mq_ctx;
1026
01b983c9
JA
1027 trace_block_rq_insert(hctx->queue, rq);
1028
72a0a36e
CH
1029 if (at_head)
1030 list_add(&rq->queuelist, &ctx->rq_list);
1031 else
1032 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1033}
4bb659b1 1034
cfd0c552
ML
1035static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1036 struct request *rq, bool at_head)
1037{
1038 struct blk_mq_ctx *ctx = rq->mq_ctx;
1039
e57690fe 1040 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1041 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1042}
1043
eeabc850 1044void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
e57690fe 1045 bool async)
320ae51f 1046{
e57690fe 1047 struct blk_mq_ctx *ctx = rq->mq_ctx;
eeabc850 1048 struct request_queue *q = rq->q;
320ae51f 1049 struct blk_mq_hw_ctx *hctx;
320ae51f 1050
320ae51f
JA
1051 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1052
a57a178a
CH
1053 spin_lock(&ctx->lock);
1054 __blk_mq_insert_request(hctx, rq, at_head);
1055 spin_unlock(&ctx->lock);
320ae51f 1056
320ae51f
JA
1057 if (run_queue)
1058 blk_mq_run_hw_queue(hctx, async);
1059}
1060
1061static void blk_mq_insert_requests(struct request_queue *q,
1062 struct blk_mq_ctx *ctx,
1063 struct list_head *list,
1064 int depth,
1065 bool from_schedule)
1066
1067{
1068 struct blk_mq_hw_ctx *hctx;
320ae51f
JA
1069
1070 trace_block_unplug(q, depth, !from_schedule);
1071
320ae51f
JA
1072 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1073
1074 /*
1075 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1076 * offline now
1077 */
1078 spin_lock(&ctx->lock);
1079 while (!list_empty(list)) {
1080 struct request *rq;
1081
1082 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1083 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1084 list_del_init(&rq->queuelist);
e57690fe 1085 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1086 }
cfd0c552 1087 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1088 spin_unlock(&ctx->lock);
1089
320ae51f
JA
1090 blk_mq_run_hw_queue(hctx, from_schedule);
1091}
1092
1093static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1094{
1095 struct request *rqa = container_of(a, struct request, queuelist);
1096 struct request *rqb = container_of(b, struct request, queuelist);
1097
1098 return !(rqa->mq_ctx < rqb->mq_ctx ||
1099 (rqa->mq_ctx == rqb->mq_ctx &&
1100 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1101}
1102
1103void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1104{
1105 struct blk_mq_ctx *this_ctx;
1106 struct request_queue *this_q;
1107 struct request *rq;
1108 LIST_HEAD(list);
1109 LIST_HEAD(ctx_list);
1110 unsigned int depth;
1111
1112 list_splice_init(&plug->mq_list, &list);
1113
1114 list_sort(NULL, &list, plug_ctx_cmp);
1115
1116 this_q = NULL;
1117 this_ctx = NULL;
1118 depth = 0;
1119
1120 while (!list_empty(&list)) {
1121 rq = list_entry_rq(list.next);
1122 list_del_init(&rq->queuelist);
1123 BUG_ON(!rq->q);
1124 if (rq->mq_ctx != this_ctx) {
1125 if (this_ctx) {
1126 blk_mq_insert_requests(this_q, this_ctx,
1127 &ctx_list, depth,
1128 from_schedule);
1129 }
1130
1131 this_ctx = rq->mq_ctx;
1132 this_q = rq->q;
1133 depth = 0;
1134 }
1135
1136 depth++;
1137 list_add_tail(&rq->queuelist, &ctx_list);
1138 }
1139
1140 /*
1141 * If 'this_ctx' is set, we know we have entries to complete
1142 * on 'ctx_list'. Do those.
1143 */
1144 if (this_ctx) {
1145 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1146 from_schedule);
1147 }
1148}
1149
1150static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1151{
1152 init_request_from_bio(rq, bio);
4b570521 1153
a21f2a3e 1154 blk_account_io_start(rq, 1);
320ae51f
JA
1155}
1156
274a5843
JA
1157static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1158{
1159 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1160 !blk_queue_nomerges(hctx->queue);
1161}
1162
07068d5b
JA
1163static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1164 struct blk_mq_ctx *ctx,
1165 struct request *rq, struct bio *bio)
320ae51f 1166{
e18378a6 1167 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1168 blk_mq_bio_to_request(rq, bio);
1169 spin_lock(&ctx->lock);
1170insert_rq:
1171 __blk_mq_insert_request(hctx, rq, false);
1172 spin_unlock(&ctx->lock);
1173 return false;
1174 } else {
274a5843
JA
1175 struct request_queue *q = hctx->queue;
1176
07068d5b
JA
1177 spin_lock(&ctx->lock);
1178 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1179 blk_mq_bio_to_request(rq, bio);
1180 goto insert_rq;
1181 }
320ae51f 1182
07068d5b
JA
1183 spin_unlock(&ctx->lock);
1184 __blk_mq_free_request(hctx, ctx, rq);
1185 return true;
14ec77f3 1186 }
07068d5b 1187}
14ec77f3 1188
07068d5b
JA
1189struct blk_map_ctx {
1190 struct blk_mq_hw_ctx *hctx;
1191 struct blk_mq_ctx *ctx;
1192};
1193
1194static struct request *blk_mq_map_request(struct request_queue *q,
1195 struct bio *bio,
1196 struct blk_map_ctx *data)
1197{
1198 struct blk_mq_hw_ctx *hctx;
1199 struct blk_mq_ctx *ctx;
1200 struct request *rq;
cc6e3b10
MC
1201 int op = bio_data_dir(bio);
1202 int op_flags = 0;
cb96a42c 1203 struct blk_mq_alloc_data alloc_data;
320ae51f 1204
3ef28e83 1205 blk_queue_enter_live(q);
320ae51f
JA
1206 ctx = blk_mq_get_ctx(q);
1207 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1208
1eff9d32 1209 if (rw_is_sync(bio_op(bio), bio->bi_opf))
cc6e3b10 1210 op_flags |= REQ_SYNC;
07068d5b 1211
cc6e3b10 1212 trace_block_getrq(q, bio, op);
63581af3 1213 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
cc6e3b10 1214 rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
320ae51f
JA
1215
1216 hctx->queued++;
07068d5b
JA
1217 data->hctx = hctx;
1218 data->ctx = ctx;
1219 return rq;
1220}
1221
7b371636 1222static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
f984df1f
SL
1223{
1224 int ret;
1225 struct request_queue *q = rq->q;
1226 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1227 rq->mq_ctx->cpu);
1228 struct blk_mq_queue_data bd = {
1229 .rq = rq,
1230 .list = NULL,
1231 .last = 1
1232 };
7b371636 1233 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
f984df1f
SL
1234
1235 /*
1236 * For OK queue, we are done. For error, kill it. Any other
1237 * error (busy), just add it to our list as we previously
1238 * would have done
1239 */
1240 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1241 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1242 *cookie = new_cookie;
f984df1f 1243 return 0;
7b371636 1244 }
f984df1f 1245
7b371636
JA
1246 __blk_mq_requeue_request(rq);
1247
1248 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1249 *cookie = BLK_QC_T_NONE;
1250 rq->errors = -EIO;
1251 blk_mq_end_request(rq, rq->errors);
1252 return 0;
f984df1f 1253 }
7b371636
JA
1254
1255 return -1;
f984df1f
SL
1256}
1257
07068d5b
JA
1258/*
1259 * Multiple hardware queue variant. This will not use per-process plugs,
1260 * but will attempt to bypass the hctx queueing if we can go straight to
1261 * hardware for SYNC IO.
1262 */
dece1635 1263static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1264{
1eff9d32
JA
1265 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1266 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
07068d5b
JA
1267 struct blk_map_ctx data;
1268 struct request *rq;
f984df1f
SL
1269 unsigned int request_count = 0;
1270 struct blk_plug *plug;
5b3f341f 1271 struct request *same_queue_rq = NULL;
7b371636 1272 blk_qc_t cookie;
07068d5b
JA
1273
1274 blk_queue_bounce(q, &bio);
1275
1276 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1277 bio_io_error(bio);
dece1635 1278 return BLK_QC_T_NONE;
07068d5b
JA
1279 }
1280
54efd50b
KO
1281 blk_queue_split(q, &bio, q->bio_split);
1282
87c279e6
OS
1283 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1284 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1285 return BLK_QC_T_NONE;
f984df1f 1286
07068d5b
JA
1287 rq = blk_mq_map_request(q, bio, &data);
1288 if (unlikely(!rq))
dece1635 1289 return BLK_QC_T_NONE;
07068d5b 1290
7b371636 1291 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
07068d5b
JA
1292
1293 if (unlikely(is_flush_fua)) {
1294 blk_mq_bio_to_request(rq, bio);
1295 blk_insert_flush(rq);
1296 goto run_queue;
1297 }
1298
f984df1f 1299 plug = current->plug;
e167dfb5
JA
1300 /*
1301 * If the driver supports defer issued based on 'last', then
1302 * queue it up like normal since we can potentially save some
1303 * CPU this way.
1304 */
f984df1f
SL
1305 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1306 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1307 struct request *old_rq = NULL;
07068d5b
JA
1308
1309 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1310
1311 /*
b094f89c 1312 * We do limited pluging. If the bio can be merged, do that.
f984df1f
SL
1313 * Otherwise the existing request in the plug list will be
1314 * issued. So the plug list will have one request at most
07068d5b 1315 */
f984df1f 1316 if (plug) {
5b3f341f
SL
1317 /*
1318 * The plug list might get flushed before this. If that
b094f89c
JA
1319 * happens, same_queue_rq is invalid and plug list is
1320 * empty
1321 */
5b3f341f
SL
1322 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1323 old_rq = same_queue_rq;
f984df1f 1324 list_del_init(&old_rq->queuelist);
07068d5b 1325 }
f984df1f
SL
1326 list_add_tail(&rq->queuelist, &plug->mq_list);
1327 } else /* is_sync */
1328 old_rq = rq;
1329 blk_mq_put_ctx(data.ctx);
1330 if (!old_rq)
7b371636
JA
1331 goto done;
1332 if (!blk_mq_direct_issue_request(old_rq, &cookie))
1333 goto done;
f984df1f 1334 blk_mq_insert_request(old_rq, false, true, true);
7b371636 1335 goto done;
07068d5b
JA
1336 }
1337
1338 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1339 /*
1340 * For a SYNC request, send it to the hardware immediately. For
1341 * an ASYNC request, just ensure that we run it later on. The
1342 * latter allows for merging opportunities and more efficient
1343 * dispatching.
1344 */
1345run_queue:
1346 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1347 }
07068d5b 1348 blk_mq_put_ctx(data.ctx);
7b371636
JA
1349done:
1350 return cookie;
07068d5b
JA
1351}
1352
1353/*
1354 * Single hardware queue variant. This will attempt to use any per-process
1355 * plug for merging and IO deferral.
1356 */
dece1635 1357static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1358{
1eff9d32
JA
1359 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1360 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
e6c4438b
JM
1361 struct blk_plug *plug;
1362 unsigned int request_count = 0;
07068d5b
JA
1363 struct blk_map_ctx data;
1364 struct request *rq;
7b371636 1365 blk_qc_t cookie;
07068d5b 1366
07068d5b
JA
1367 blk_queue_bounce(q, &bio);
1368
1369 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1370 bio_io_error(bio);
dece1635 1371 return BLK_QC_T_NONE;
07068d5b
JA
1372 }
1373
54efd50b
KO
1374 blk_queue_split(q, &bio, q->bio_split);
1375
87c279e6
OS
1376 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1377 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1378 return BLK_QC_T_NONE;
1379 } else
1380 request_count = blk_plug_queued_count(q);
07068d5b
JA
1381
1382 rq = blk_mq_map_request(q, bio, &data);
ff87bcec 1383 if (unlikely(!rq))
dece1635 1384 return BLK_QC_T_NONE;
320ae51f 1385
7b371636 1386 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
320ae51f
JA
1387
1388 if (unlikely(is_flush_fua)) {
1389 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1390 blk_insert_flush(rq);
1391 goto run_queue;
1392 }
1393
1394 /*
1395 * A task plug currently exists. Since this is completely lockless,
1396 * utilize that to temporarily store requests until the task is
1397 * either done or scheduled away.
1398 */
e6c4438b
JM
1399 plug = current->plug;
1400 if (plug) {
1401 blk_mq_bio_to_request(rq, bio);
676d0607 1402 if (!request_count)
e6c4438b 1403 trace_block_plug(q);
b094f89c
JA
1404
1405 blk_mq_put_ctx(data.ctx);
1406
1407 if (request_count >= BLK_MAX_REQUEST_COUNT) {
e6c4438b
JM
1408 blk_flush_plug_list(plug, false);
1409 trace_block_plug(q);
320ae51f 1410 }
b094f89c 1411
e6c4438b 1412 list_add_tail(&rq->queuelist, &plug->mq_list);
7b371636 1413 return cookie;
320ae51f
JA
1414 }
1415
07068d5b
JA
1416 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1417 /*
1418 * For a SYNC request, send it to the hardware immediately. For
1419 * an ASYNC request, just ensure that we run it later on. The
1420 * latter allows for merging opportunities and more efficient
1421 * dispatching.
1422 */
1423run_queue:
1424 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1425 }
1426
07068d5b 1427 blk_mq_put_ctx(data.ctx);
7b371636 1428 return cookie;
320ae51f
JA
1429}
1430
1431/*
1432 * Default mapping to a software queue, since we use one per CPU.
1433 */
1434struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1435{
1436 return q->queue_hw_ctx[q->mq_map[cpu]];
1437}
1438EXPORT_SYMBOL(blk_mq_map_queue);
1439
24d2f903
CH
1440static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1441 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1442{
e9b267d9 1443 struct page *page;
320ae51f 1444
24d2f903 1445 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1446 int i;
320ae51f 1447
24d2f903
CH
1448 for (i = 0; i < tags->nr_tags; i++) {
1449 if (!tags->rqs[i])
e9b267d9 1450 continue;
24d2f903
CH
1451 set->ops->exit_request(set->driver_data, tags->rqs[i],
1452 hctx_idx, i);
a5164405 1453 tags->rqs[i] = NULL;
e9b267d9 1454 }
320ae51f 1455 }
320ae51f 1456
24d2f903
CH
1457 while (!list_empty(&tags->page_list)) {
1458 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1459 list_del_init(&page->lru);
f75782e4
CM
1460 /*
1461 * Remove kmemleak object previously allocated in
1462 * blk_mq_init_rq_map().
1463 */
1464 kmemleak_free(page_address(page));
320ae51f
JA
1465 __free_pages(page, page->private);
1466 }
1467
24d2f903 1468 kfree(tags->rqs);
320ae51f 1469
24d2f903 1470 blk_mq_free_tags(tags);
320ae51f
JA
1471}
1472
1473static size_t order_to_size(unsigned int order)
1474{
4ca08500 1475 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1476}
1477
24d2f903
CH
1478static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1479 unsigned int hctx_idx)
320ae51f 1480{
24d2f903 1481 struct blk_mq_tags *tags;
320ae51f
JA
1482 unsigned int i, j, entries_per_page, max_order = 4;
1483 size_t rq_size, left;
1484
24d2f903 1485 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
24391c0d
SL
1486 set->numa_node,
1487 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1488 if (!tags)
1489 return NULL;
320ae51f 1490
24d2f903
CH
1491 INIT_LIST_HEAD(&tags->page_list);
1492
a5164405
JA
1493 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1494 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1495 set->numa_node);
24d2f903
CH
1496 if (!tags->rqs) {
1497 blk_mq_free_tags(tags);
1498 return NULL;
1499 }
320ae51f
JA
1500
1501 /*
1502 * rq_size is the size of the request plus driver payload, rounded
1503 * to the cacheline size
1504 */
24d2f903 1505 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1506 cache_line_size());
24d2f903 1507 left = rq_size * set->queue_depth;
320ae51f 1508
24d2f903 1509 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1510 int this_order = max_order;
1511 struct page *page;
1512 int to_do;
1513 void *p;
1514
b3a834b1 1515 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1516 this_order--;
1517
1518 do {
a5164405 1519 page = alloc_pages_node(set->numa_node,
ac211175 1520 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1521 this_order);
320ae51f
JA
1522 if (page)
1523 break;
1524 if (!this_order--)
1525 break;
1526 if (order_to_size(this_order) < rq_size)
1527 break;
1528 } while (1);
1529
1530 if (!page)
24d2f903 1531 goto fail;
320ae51f
JA
1532
1533 page->private = this_order;
24d2f903 1534 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1535
1536 p = page_address(page);
f75782e4
CM
1537 /*
1538 * Allow kmemleak to scan these pages as they contain pointers
1539 * to additional allocations like via ops->init_request().
1540 */
1541 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
320ae51f 1542 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1543 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1544 left -= to_do * rq_size;
1545 for (j = 0; j < to_do; j++) {
24d2f903
CH
1546 tags->rqs[i] = p;
1547 if (set->ops->init_request) {
1548 if (set->ops->init_request(set->driver_data,
1549 tags->rqs[i], hctx_idx, i,
a5164405
JA
1550 set->numa_node)) {
1551 tags->rqs[i] = NULL;
24d2f903 1552 goto fail;
a5164405 1553 }
e9b267d9
CH
1554 }
1555
320ae51f
JA
1556 p += rq_size;
1557 i++;
1558 }
1559 }
24d2f903 1560 return tags;
320ae51f 1561
24d2f903 1562fail:
24d2f903
CH
1563 blk_mq_free_rq_map(set, tags, hctx_idx);
1564 return NULL;
320ae51f
JA
1565}
1566
e57690fe
JA
1567/*
1568 * 'cpu' is going away. splice any existing rq_list entries from this
1569 * software queue to the hw queue dispatch list, and ensure that it
1570 * gets run.
1571 */
484b4061
JA
1572static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1573{
484b4061
JA
1574 struct blk_mq_ctx *ctx;
1575 LIST_HEAD(tmp);
1576
e57690fe 1577 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1578
1579 spin_lock(&ctx->lock);
1580 if (!list_empty(&ctx->rq_list)) {
1581 list_splice_init(&ctx->rq_list, &tmp);
1582 blk_mq_hctx_clear_pending(hctx, ctx);
1583 }
1584 spin_unlock(&ctx->lock);
1585
1586 if (list_empty(&tmp))
1587 return NOTIFY_OK;
1588
e57690fe
JA
1589 spin_lock(&hctx->lock);
1590 list_splice_tail_init(&tmp, &hctx->dispatch);
1591 spin_unlock(&hctx->lock);
484b4061
JA
1592
1593 blk_mq_run_hw_queue(hctx, true);
484b4061
JA
1594 return NOTIFY_OK;
1595}
1596
484b4061
JA
1597static int blk_mq_hctx_notify(void *data, unsigned long action,
1598 unsigned int cpu)
1599{
1600 struct blk_mq_hw_ctx *hctx = data;
1601
1602 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1603 return blk_mq_hctx_cpu_offline(hctx, cpu);
2a34c087
ML
1604
1605 /*
1606 * In case of CPU online, tags may be reallocated
1607 * in blk_mq_map_swqueue() after mapping is updated.
1608 */
484b4061
JA
1609
1610 return NOTIFY_OK;
1611}
1612
c3b4afca 1613/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1614static void blk_mq_exit_hctx(struct request_queue *q,
1615 struct blk_mq_tag_set *set,
1616 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1617{
f70ced09
ML
1618 unsigned flush_start_tag = set->queue_depth;
1619
08e98fc6
ML
1620 blk_mq_tag_idle(hctx);
1621
f70ced09
ML
1622 if (set->ops->exit_request)
1623 set->ops->exit_request(set->driver_data,
1624 hctx->fq->flush_rq, hctx_idx,
1625 flush_start_tag + hctx_idx);
1626
08e98fc6
ML
1627 if (set->ops->exit_hctx)
1628 set->ops->exit_hctx(hctx, hctx_idx);
1629
1630 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
f70ced09 1631 blk_free_flush_queue(hctx->fq);
88459642 1632 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1633}
1634
624dbe47
ML
1635static void blk_mq_exit_hw_queues(struct request_queue *q,
1636 struct blk_mq_tag_set *set, int nr_queue)
1637{
1638 struct blk_mq_hw_ctx *hctx;
1639 unsigned int i;
1640
1641 queue_for_each_hw_ctx(q, hctx, i) {
1642 if (i == nr_queue)
1643 break;
08e98fc6 1644 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1645 }
624dbe47
ML
1646}
1647
1648static void blk_mq_free_hw_queues(struct request_queue *q,
1649 struct blk_mq_tag_set *set)
1650{
1651 struct blk_mq_hw_ctx *hctx;
1652 unsigned int i;
1653
e09aae7e 1654 queue_for_each_hw_ctx(q, hctx, i)
624dbe47 1655 free_cpumask_var(hctx->cpumask);
624dbe47
ML
1656}
1657
08e98fc6
ML
1658static int blk_mq_init_hctx(struct request_queue *q,
1659 struct blk_mq_tag_set *set,
1660 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1661{
08e98fc6 1662 int node;
f70ced09 1663 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1664
1665 node = hctx->numa_node;
1666 if (node == NUMA_NO_NODE)
1667 node = hctx->numa_node = set->numa_node;
1668
27489a3c 1669 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1670 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1671 spin_lock_init(&hctx->lock);
1672 INIT_LIST_HEAD(&hctx->dispatch);
1673 hctx->queue = q;
1674 hctx->queue_num = hctx_idx;
2404e607 1675 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6
ML
1676
1677 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1678 blk_mq_hctx_notify, hctx);
1679 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1680
1681 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1682
1683 /*
08e98fc6
ML
1684 * Allocate space for all possible cpus to avoid allocation at
1685 * runtime
320ae51f 1686 */
08e98fc6
ML
1687 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1688 GFP_KERNEL, node);
1689 if (!hctx->ctxs)
1690 goto unregister_cpu_notifier;
320ae51f 1691
88459642
OS
1692 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1693 node))
08e98fc6 1694 goto free_ctxs;
320ae51f 1695
08e98fc6 1696 hctx->nr_ctx = 0;
320ae51f 1697
08e98fc6
ML
1698 if (set->ops->init_hctx &&
1699 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1700 goto free_bitmap;
320ae51f 1701
f70ced09
ML
1702 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1703 if (!hctx->fq)
1704 goto exit_hctx;
320ae51f 1705
f70ced09
ML
1706 if (set->ops->init_request &&
1707 set->ops->init_request(set->driver_data,
1708 hctx->fq->flush_rq, hctx_idx,
1709 flush_start_tag + hctx_idx, node))
1710 goto free_fq;
320ae51f 1711
08e98fc6 1712 return 0;
320ae51f 1713
f70ced09
ML
1714 free_fq:
1715 kfree(hctx->fq);
1716 exit_hctx:
1717 if (set->ops->exit_hctx)
1718 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1719 free_bitmap:
88459642 1720 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1721 free_ctxs:
1722 kfree(hctx->ctxs);
1723 unregister_cpu_notifier:
1724 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
320ae51f 1725
08e98fc6
ML
1726 return -1;
1727}
320ae51f 1728
320ae51f
JA
1729static void blk_mq_init_cpu_queues(struct request_queue *q,
1730 unsigned int nr_hw_queues)
1731{
1732 unsigned int i;
1733
1734 for_each_possible_cpu(i) {
1735 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1736 struct blk_mq_hw_ctx *hctx;
1737
1738 memset(__ctx, 0, sizeof(*__ctx));
1739 __ctx->cpu = i;
1740 spin_lock_init(&__ctx->lock);
1741 INIT_LIST_HEAD(&__ctx->rq_list);
1742 __ctx->queue = q;
1743
1744 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1745 if (!cpu_online(i))
1746 continue;
1747
e4043dcf 1748 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1749
320ae51f
JA
1750 /*
1751 * Set local node, IFF we have more than one hw queue. If
1752 * not, we remain on the home node of the device
1753 */
1754 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1755 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1756 }
1757}
1758
5778322e
AM
1759static void blk_mq_map_swqueue(struct request_queue *q,
1760 const struct cpumask *online_mask)
320ae51f
JA
1761{
1762 unsigned int i;
1763 struct blk_mq_hw_ctx *hctx;
1764 struct blk_mq_ctx *ctx;
2a34c087 1765 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1766
60de074b
AM
1767 /*
1768 * Avoid others reading imcomplete hctx->cpumask through sysfs
1769 */
1770 mutex_lock(&q->sysfs_lock);
1771
320ae51f 1772 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1773 cpumask_clear(hctx->cpumask);
320ae51f
JA
1774 hctx->nr_ctx = 0;
1775 }
1776
1777 /*
1778 * Map software to hardware queues
1779 */
897bb0c7 1780 for_each_possible_cpu(i) {
320ae51f 1781 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 1782 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
1783 continue;
1784
897bb0c7 1785 ctx = per_cpu_ptr(q->queue_ctx, i);
320ae51f 1786 hctx = q->mq_ops->map_queue(q, i);
868f2f0b 1787
e4043dcf 1788 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1789 ctx->index_hw = hctx->nr_ctx;
1790 hctx->ctxs[hctx->nr_ctx++] = ctx;
1791 }
506e931f 1792
60de074b
AM
1793 mutex_unlock(&q->sysfs_lock);
1794
506e931f 1795 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 1796 /*
a68aafa5
JA
1797 * If no software queues are mapped to this hardware queue,
1798 * disable it and free the request entries.
484b4061
JA
1799 */
1800 if (!hctx->nr_ctx) {
484b4061
JA
1801 if (set->tags[i]) {
1802 blk_mq_free_rq_map(set, set->tags[i], i);
1803 set->tags[i] = NULL;
484b4061 1804 }
2a34c087 1805 hctx->tags = NULL;
484b4061
JA
1806 continue;
1807 }
1808
2a34c087
ML
1809 /* unmapped hw queue can be remapped after CPU topo changed */
1810 if (!set->tags[i])
1811 set->tags[i] = blk_mq_init_rq_map(set, i);
1812 hctx->tags = set->tags[i];
1813 WARN_ON(!hctx->tags);
1814
e0e827b9 1815 cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
889fa31f
CY
1816 /*
1817 * Set the map size to the number of mapped software queues.
1818 * This is more accurate and more efficient than looping
1819 * over all possibly mapped software queues.
1820 */
88459642 1821 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 1822
484b4061
JA
1823 /*
1824 * Initialize batch roundrobin counts
1825 */
506e931f
JA
1826 hctx->next_cpu = cpumask_first(hctx->cpumask);
1827 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1828 }
320ae51f
JA
1829}
1830
2404e607 1831static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
1832{
1833 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
1834 int i;
1835
2404e607
JM
1836 queue_for_each_hw_ctx(q, hctx, i) {
1837 if (shared)
1838 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1839 else
1840 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1841 }
1842}
1843
1844static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1845{
1846 struct request_queue *q;
0d2602ca
JA
1847
1848 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1849 blk_mq_freeze_queue(q);
2404e607 1850 queue_set_hctx_shared(q, shared);
0d2602ca
JA
1851 blk_mq_unfreeze_queue(q);
1852 }
1853}
1854
1855static void blk_mq_del_queue_tag_set(struct request_queue *q)
1856{
1857 struct blk_mq_tag_set *set = q->tag_set;
1858
0d2602ca
JA
1859 mutex_lock(&set->tag_list_lock);
1860 list_del_init(&q->tag_set_list);
2404e607
JM
1861 if (list_is_singular(&set->tag_list)) {
1862 /* just transitioned to unshared */
1863 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1864 /* update existing queue */
1865 blk_mq_update_tag_set_depth(set, false);
1866 }
0d2602ca 1867 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
1868}
1869
1870static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1871 struct request_queue *q)
1872{
1873 q->tag_set = set;
1874
1875 mutex_lock(&set->tag_list_lock);
2404e607
JM
1876
1877 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1878 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1879 set->flags |= BLK_MQ_F_TAG_SHARED;
1880 /* update existing queue */
1881 blk_mq_update_tag_set_depth(set, true);
1882 }
1883 if (set->flags & BLK_MQ_F_TAG_SHARED)
1884 queue_set_hctx_shared(q, true);
0d2602ca 1885 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 1886
0d2602ca
JA
1887 mutex_unlock(&set->tag_list_lock);
1888}
1889
e09aae7e
ML
1890/*
1891 * It is the actual release handler for mq, but we do it from
1892 * request queue's release handler for avoiding use-after-free
1893 * and headache because q->mq_kobj shouldn't have been introduced,
1894 * but we can't group ctx/kctx kobj without it.
1895 */
1896void blk_mq_release(struct request_queue *q)
1897{
1898 struct blk_mq_hw_ctx *hctx;
1899 unsigned int i;
1900
1901 /* hctx kobj stays in hctx */
c3b4afca
ML
1902 queue_for_each_hw_ctx(q, hctx, i) {
1903 if (!hctx)
1904 continue;
1905 kfree(hctx->ctxs);
e09aae7e 1906 kfree(hctx);
c3b4afca 1907 }
e09aae7e 1908
a723bab3
AM
1909 kfree(q->mq_map);
1910 q->mq_map = NULL;
1911
e09aae7e
ML
1912 kfree(q->queue_hw_ctx);
1913
1914 /* ctx kobj stays in queue_ctx */
1915 free_percpu(q->queue_ctx);
1916}
1917
24d2f903 1918struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
1919{
1920 struct request_queue *uninit_q, *q;
1921
1922 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1923 if (!uninit_q)
1924 return ERR_PTR(-ENOMEM);
1925
1926 q = blk_mq_init_allocated_queue(set, uninit_q);
1927 if (IS_ERR(q))
1928 blk_cleanup_queue(uninit_q);
1929
1930 return q;
1931}
1932EXPORT_SYMBOL(blk_mq_init_queue);
1933
868f2f0b
KB
1934static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
1935 struct request_queue *q)
320ae51f 1936{
868f2f0b
KB
1937 int i, j;
1938 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 1939
868f2f0b 1940 blk_mq_sysfs_unregister(q);
24d2f903 1941 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 1942 int node;
f14bbe77 1943
868f2f0b
KB
1944 if (hctxs[i])
1945 continue;
1946
1947 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
1948 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1949 GFP_KERNEL, node);
320ae51f 1950 if (!hctxs[i])
868f2f0b 1951 break;
320ae51f 1952
a86073e4 1953 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
1954 node)) {
1955 kfree(hctxs[i]);
1956 hctxs[i] = NULL;
1957 break;
1958 }
e4043dcf 1959
0d2602ca 1960 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 1961 hctxs[i]->numa_node = node;
320ae51f 1962 hctxs[i]->queue_num = i;
868f2f0b
KB
1963
1964 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
1965 free_cpumask_var(hctxs[i]->cpumask);
1966 kfree(hctxs[i]);
1967 hctxs[i] = NULL;
1968 break;
1969 }
1970 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 1971 }
868f2f0b
KB
1972 for (j = i; j < q->nr_hw_queues; j++) {
1973 struct blk_mq_hw_ctx *hctx = hctxs[j];
1974
1975 if (hctx) {
1976 if (hctx->tags) {
1977 blk_mq_free_rq_map(set, hctx->tags, j);
1978 set->tags[j] = NULL;
1979 }
1980 blk_mq_exit_hctx(q, set, hctx, j);
1981 free_cpumask_var(hctx->cpumask);
1982 kobject_put(&hctx->kobj);
1983 kfree(hctx->ctxs);
1984 kfree(hctx);
1985 hctxs[j] = NULL;
1986
1987 }
1988 }
1989 q->nr_hw_queues = i;
1990 blk_mq_sysfs_register(q);
1991}
1992
1993struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1994 struct request_queue *q)
1995{
66841672
ML
1996 /* mark the queue as mq asap */
1997 q->mq_ops = set->ops;
1998
868f2f0b
KB
1999 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2000 if (!q->queue_ctx)
c7de5726 2001 goto err_exit;
868f2f0b
KB
2002
2003 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2004 GFP_KERNEL, set->numa_node);
2005 if (!q->queue_hw_ctx)
2006 goto err_percpu;
2007
2008 q->mq_map = blk_mq_make_queue_map(set);
2009 if (!q->mq_map)
2010 goto err_map;
2011
2012 blk_mq_realloc_hw_ctxs(set, q);
2013 if (!q->nr_hw_queues)
2014 goto err_hctxs;
320ae51f 2015
287922eb 2016 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2017 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2018
2019 q->nr_queues = nr_cpu_ids;
320ae51f 2020
94eddfbe 2021 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2022
05f1dd53
JA
2023 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2024 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2025
1be036e9
CH
2026 q->sg_reserved_size = INT_MAX;
2027
2849450a 2028 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2029 INIT_LIST_HEAD(&q->requeue_list);
2030 spin_lock_init(&q->requeue_lock);
2031
07068d5b
JA
2032 if (q->nr_hw_queues > 1)
2033 blk_queue_make_request(q, blk_mq_make_request);
2034 else
2035 blk_queue_make_request(q, blk_sq_make_request);
2036
eba71768
JA
2037 /*
2038 * Do this after blk_queue_make_request() overrides it...
2039 */
2040 q->nr_requests = set->queue_depth;
2041
24d2f903
CH
2042 if (set->ops->complete)
2043 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2044
24d2f903 2045 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2046
5778322e 2047 get_online_cpus();
320ae51f 2048 mutex_lock(&all_q_mutex);
320ae51f 2049
4593fdbe 2050 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2051 blk_mq_add_queue_tag_set(set, q);
5778322e 2052 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2053
4593fdbe 2054 mutex_unlock(&all_q_mutex);
5778322e 2055 put_online_cpus();
4593fdbe 2056
320ae51f 2057 return q;
18741986 2058
320ae51f 2059err_hctxs:
868f2f0b 2060 kfree(q->mq_map);
f14bbe77 2061err_map:
868f2f0b 2062 kfree(q->queue_hw_ctx);
320ae51f 2063err_percpu:
868f2f0b 2064 free_percpu(q->queue_ctx);
c7de5726
ML
2065err_exit:
2066 q->mq_ops = NULL;
320ae51f
JA
2067 return ERR_PTR(-ENOMEM);
2068}
b62c21b7 2069EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2070
2071void blk_mq_free_queue(struct request_queue *q)
2072{
624dbe47 2073 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2074
0e626368
AM
2075 mutex_lock(&all_q_mutex);
2076 list_del_init(&q->all_q_node);
2077 mutex_unlock(&all_q_mutex);
2078
0d2602ca
JA
2079 blk_mq_del_queue_tag_set(q);
2080
624dbe47
ML
2081 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2082 blk_mq_free_hw_queues(q, set);
320ae51f 2083}
320ae51f
JA
2084
2085/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2086static void blk_mq_queue_reinit(struct request_queue *q,
2087 const struct cpumask *online_mask)
320ae51f 2088{
4ecd4fef 2089 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2090
67aec14c
JA
2091 blk_mq_sysfs_unregister(q);
2092
5778322e 2093 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
320ae51f
JA
2094
2095 /*
2096 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2097 * we should change hctx numa_node according to new topology (this
2098 * involves free and re-allocate memory, worthy doing?)
2099 */
2100
5778322e 2101 blk_mq_map_swqueue(q, online_mask);
320ae51f 2102
67aec14c 2103 blk_mq_sysfs_register(q);
320ae51f
JA
2104}
2105
f618ef7c
PG
2106static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2107 unsigned long action, void *hcpu)
320ae51f
JA
2108{
2109 struct request_queue *q;
5778322e
AM
2110 int cpu = (unsigned long)hcpu;
2111 /*
2112 * New online cpumask which is going to be set in this hotplug event.
2113 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2114 * one-by-one and dynamically allocating this could result in a failure.
2115 */
2116 static struct cpumask online_new;
320ae51f
JA
2117
2118 /*
5778322e
AM
2119 * Before hotadded cpu starts handling requests, new mappings must
2120 * be established. Otherwise, these requests in hw queue might
2121 * never be dispatched.
2122 *
2123 * For example, there is a single hw queue (hctx) and two CPU queues
2124 * (ctx0 for CPU0, and ctx1 for CPU1).
2125 *
2126 * Now CPU1 is just onlined and a request is inserted into
2127 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2128 * still zero.
2129 *
2130 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2131 * set in pending bitmap and tries to retrieve requests in
2132 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2133 * so the request in ctx1->rq_list is ignored.
320ae51f 2134 */
5778322e
AM
2135 switch (action & ~CPU_TASKS_FROZEN) {
2136 case CPU_DEAD:
2137 case CPU_UP_CANCELED:
2138 cpumask_copy(&online_new, cpu_online_mask);
2139 break;
2140 case CPU_UP_PREPARE:
2141 cpumask_copy(&online_new, cpu_online_mask);
2142 cpumask_set_cpu(cpu, &online_new);
2143 break;
2144 default:
320ae51f 2145 return NOTIFY_OK;
5778322e 2146 }
320ae51f
JA
2147
2148 mutex_lock(&all_q_mutex);
f3af020b
TH
2149
2150 /*
2151 * We need to freeze and reinit all existing queues. Freezing
2152 * involves synchronous wait for an RCU grace period and doing it
2153 * one by one may take a long time. Start freezing all queues in
2154 * one swoop and then wait for the completions so that freezing can
2155 * take place in parallel.
2156 */
2157 list_for_each_entry(q, &all_q_list, all_q_node)
2158 blk_mq_freeze_queue_start(q);
f054b56c 2159 list_for_each_entry(q, &all_q_list, all_q_node) {
f3af020b
TH
2160 blk_mq_freeze_queue_wait(q);
2161
f054b56c
ML
2162 /*
2163 * timeout handler can't touch hw queue during the
2164 * reinitialization
2165 */
2166 del_timer_sync(&q->timeout);
2167 }
2168
320ae51f 2169 list_for_each_entry(q, &all_q_list, all_q_node)
5778322e 2170 blk_mq_queue_reinit(q, &online_new);
f3af020b
TH
2171
2172 list_for_each_entry(q, &all_q_list, all_q_node)
2173 blk_mq_unfreeze_queue(q);
2174
320ae51f
JA
2175 mutex_unlock(&all_q_mutex);
2176 return NOTIFY_OK;
2177}
2178
a5164405
JA
2179static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2180{
2181 int i;
2182
2183 for (i = 0; i < set->nr_hw_queues; i++) {
2184 set->tags[i] = blk_mq_init_rq_map(set, i);
2185 if (!set->tags[i])
2186 goto out_unwind;
2187 }
2188
2189 return 0;
2190
2191out_unwind:
2192 while (--i >= 0)
2193 blk_mq_free_rq_map(set, set->tags[i], i);
2194
a5164405
JA
2195 return -ENOMEM;
2196}
2197
2198/*
2199 * Allocate the request maps associated with this tag_set. Note that this
2200 * may reduce the depth asked for, if memory is tight. set->queue_depth
2201 * will be updated to reflect the allocated depth.
2202 */
2203static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2204{
2205 unsigned int depth;
2206 int err;
2207
2208 depth = set->queue_depth;
2209 do {
2210 err = __blk_mq_alloc_rq_maps(set);
2211 if (!err)
2212 break;
2213
2214 set->queue_depth >>= 1;
2215 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2216 err = -ENOMEM;
2217 break;
2218 }
2219 } while (set->queue_depth);
2220
2221 if (!set->queue_depth || err) {
2222 pr_err("blk-mq: failed to allocate request map\n");
2223 return -ENOMEM;
2224 }
2225
2226 if (depth != set->queue_depth)
2227 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2228 depth, set->queue_depth);
2229
2230 return 0;
2231}
2232
f26cdc85
KB
2233struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2234{
2235 return tags->cpumask;
2236}
2237EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2238
a4391c64
JA
2239/*
2240 * Alloc a tag set to be associated with one or more request queues.
2241 * May fail with EINVAL for various error conditions. May adjust the
2242 * requested depth down, if if it too large. In that case, the set
2243 * value will be stored in set->queue_depth.
2244 */
24d2f903
CH
2245int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2246{
205fb5f5
BVA
2247 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2248
24d2f903
CH
2249 if (!set->nr_hw_queues)
2250 return -EINVAL;
a4391c64 2251 if (!set->queue_depth)
24d2f903
CH
2252 return -EINVAL;
2253 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2254 return -EINVAL;
2255
f9018ac9 2256 if (!set->ops->queue_rq || !set->ops->map_queue)
24d2f903
CH
2257 return -EINVAL;
2258
a4391c64
JA
2259 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2260 pr_info("blk-mq: reduced tag depth to %u\n",
2261 BLK_MQ_MAX_DEPTH);
2262 set->queue_depth = BLK_MQ_MAX_DEPTH;
2263 }
24d2f903 2264
6637fadf
SL
2265 /*
2266 * If a crashdump is active, then we are potentially in a very
2267 * memory constrained environment. Limit us to 1 queue and
2268 * 64 tags to prevent using too much memory.
2269 */
2270 if (is_kdump_kernel()) {
2271 set->nr_hw_queues = 1;
2272 set->queue_depth = min(64U, set->queue_depth);
2273 }
868f2f0b
KB
2274 /*
2275 * There is no use for more h/w queues than cpus.
2276 */
2277 if (set->nr_hw_queues > nr_cpu_ids)
2278 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2279
868f2f0b 2280 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2281 GFP_KERNEL, set->numa_node);
2282 if (!set->tags)
a5164405 2283 return -ENOMEM;
24d2f903 2284
a5164405
JA
2285 if (blk_mq_alloc_rq_maps(set))
2286 goto enomem;
24d2f903 2287
0d2602ca
JA
2288 mutex_init(&set->tag_list_lock);
2289 INIT_LIST_HEAD(&set->tag_list);
2290
24d2f903 2291 return 0;
a5164405 2292enomem:
5676e7b6
RE
2293 kfree(set->tags);
2294 set->tags = NULL;
24d2f903
CH
2295 return -ENOMEM;
2296}
2297EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2298
2299void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2300{
2301 int i;
2302
868f2f0b 2303 for (i = 0; i < nr_cpu_ids; i++) {
f42d79ab 2304 if (set->tags[i])
484b4061
JA
2305 blk_mq_free_rq_map(set, set->tags[i], i);
2306 }
2307
981bd189 2308 kfree(set->tags);
5676e7b6 2309 set->tags = NULL;
24d2f903
CH
2310}
2311EXPORT_SYMBOL(blk_mq_free_tag_set);
2312
e3a2b3f9
JA
2313int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2314{
2315 struct blk_mq_tag_set *set = q->tag_set;
2316 struct blk_mq_hw_ctx *hctx;
2317 int i, ret;
2318
2319 if (!set || nr > set->queue_depth)
2320 return -EINVAL;
2321
2322 ret = 0;
2323 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2324 if (!hctx->tags)
2325 continue;
e3a2b3f9
JA
2326 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2327 if (ret)
2328 break;
2329 }
2330
2331 if (!ret)
2332 q->nr_requests = nr;
2333
2334 return ret;
2335}
2336
868f2f0b
KB
2337void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2338{
2339 struct request_queue *q;
2340
2341 if (nr_hw_queues > nr_cpu_ids)
2342 nr_hw_queues = nr_cpu_ids;
2343 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2344 return;
2345
2346 list_for_each_entry(q, &set->tag_list, tag_set_list)
2347 blk_mq_freeze_queue(q);
2348
2349 set->nr_hw_queues = nr_hw_queues;
2350 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2351 blk_mq_realloc_hw_ctxs(set, q);
2352
2353 if (q->nr_hw_queues > 1)
2354 blk_queue_make_request(q, blk_mq_make_request);
2355 else
2356 blk_queue_make_request(q, blk_sq_make_request);
2357
2358 blk_mq_queue_reinit(q, cpu_online_mask);
2359 }
2360
2361 list_for_each_entry(q, &set->tag_list, tag_set_list)
2362 blk_mq_unfreeze_queue(q);
2363}
2364EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2365
676141e4
JA
2366void blk_mq_disable_hotplug(void)
2367{
2368 mutex_lock(&all_q_mutex);
2369}
2370
2371void blk_mq_enable_hotplug(void)
2372{
2373 mutex_unlock(&all_q_mutex);
2374}
2375
320ae51f
JA
2376static int __init blk_mq_init(void)
2377{
320ae51f
JA
2378 blk_mq_cpu_init();
2379
add703fd 2380 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
320ae51f
JA
2381
2382 return 0;
2383}
2384subsys_initcall(blk_mq_init);