blk-mq: don't touch ->tagset in blk_mq_get_sq_hctx
[linux-block.git] / block / blk-mq.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
75bb4625
JA
2/*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
320ae51f
JA
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/backing-dev.h>
11#include <linux/bio.h>
12#include <linux/blkdev.h>
fe45e630 13#include <linux/blk-integrity.h>
f75782e4 14#include <linux/kmemleak.h>
320ae51f
JA
15#include <linux/mm.h>
16#include <linux/init.h>
17#include <linux/slab.h>
18#include <linux/workqueue.h>
19#include <linux/smp.h>
e41d12f5 20#include <linux/interrupt.h>
320ae51f 21#include <linux/llist.h>
320ae51f
JA
22#include <linux/cpu.h>
23#include <linux/cache.h>
24#include <linux/sched/sysctl.h>
105ab3d8 25#include <linux/sched/topology.h>
174cd4b1 26#include <linux/sched/signal.h>
320ae51f 27#include <linux/delay.h>
aedcd72f 28#include <linux/crash_dump.h>
88c7b2b7 29#include <linux/prefetch.h>
a892c8d5 30#include <linux/blk-crypto.h>
82d981d4 31#include <linux/part_stat.h>
320ae51f
JA
32
33#include <trace/events/block.h>
34
35#include <linux/blk-mq.h>
54d4e6ab 36#include <linux/t10-pi.h>
320ae51f
JA
37#include "blk.h"
38#include "blk-mq.h"
9c1051aa 39#include "blk-mq-debugfs.h"
320ae51f 40#include "blk-mq-tag.h"
986d413b 41#include "blk-pm.h"
cf43e6be 42#include "blk-stat.h"
bd166ef1 43#include "blk-mq-sched.h"
c1c80384 44#include "blk-rq-qos.h"
320ae51f 45
f9ab4918 46static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
c3077b5d 47
34dbad5d
OS
48static void blk_mq_poll_stats_start(struct request_queue *q);
49static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50
720b8ccc
SB
51static int blk_mq_poll_stats_bkt(const struct request *rq)
52{
3d244306 53 int ddir, sectors, bucket;
720b8ccc 54
99c749a4 55 ddir = rq_data_dir(rq);
3d244306 56 sectors = blk_rq_stats_sectors(rq);
720b8ccc 57
3d244306 58 bucket = ddir + 2 * ilog2(sectors);
720b8ccc
SB
59
60 if (bucket < 0)
61 return -1;
62 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64
65 return bucket;
66}
67
3e08773c
CH
68#define BLK_QC_T_SHIFT 16
69#define BLK_QC_T_INTERNAL (1U << 31)
70
f70299f0
CH
71static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72 blk_qc_t qc)
73{
4e5cc99e
ML
74 return xa_load(&q->hctx_table,
75 (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
f70299f0
CH
76}
77
c6699d6f
CH
78static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
79 blk_qc_t qc)
80{
efbabbe1
CH
81 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
82
83 if (qc & BLK_QC_T_INTERNAL)
84 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
85 return blk_mq_tag_to_rq(hctx->tags, tag);
c6699d6f
CH
86}
87
3e08773c
CH
88static inline blk_qc_t blk_rq_to_qc(struct request *rq)
89{
90 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
91 (rq->tag != -1 ?
92 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
93}
94
320ae51f 95/*
85fae294
YY
96 * Check if any of the ctx, dispatch list or elevator
97 * have pending work in this hardware queue.
320ae51f 98 */
79f720a7 99static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 100{
79f720a7
JA
101 return !list_empty_careful(&hctx->dispatch) ||
102 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 103 blk_mq_sched_has_work(hctx);
1429d7c9
JA
104}
105
320ae51f
JA
106/*
107 * Mark this ctx as having pending work in this hardware queue
108 */
109static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
110 struct blk_mq_ctx *ctx)
111{
f31967f0
JA
112 const int bit = ctx->index_hw[hctx->type];
113
114 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
115 sbitmap_set_bit(&hctx->ctx_map, bit);
1429d7c9
JA
116}
117
118static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
119 struct blk_mq_ctx *ctx)
120{
f31967f0
JA
121 const int bit = ctx->index_hw[hctx->type];
122
123 sbitmap_clear_bit(&hctx->ctx_map, bit);
320ae51f
JA
124}
125
f299b7c7 126struct mq_inflight {
8446fe92 127 struct block_device *part;
a2e80f6f 128 unsigned int inflight[2];
f299b7c7
JA
129};
130
8ab30a33 131static bool blk_mq_check_inflight(struct request *rq, void *priv,
f299b7c7
JA
132 bool reserved)
133{
134 struct mq_inflight *mi = priv;
135
b0d97557
JX
136 if ((!mi->part->bd_partno || rq->part == mi->part) &&
137 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
bb4e6b14 138 mi->inflight[rq_data_dir(rq)]++;
7baa8572
JA
139
140 return true;
f299b7c7
JA
141}
142
8446fe92
CH
143unsigned int blk_mq_in_flight(struct request_queue *q,
144 struct block_device *part)
f299b7c7 145{
a2e80f6f 146 struct mq_inflight mi = { .part = part };
f299b7c7 147
f299b7c7 148 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
e016b782 149
a2e80f6f 150 return mi.inflight[0] + mi.inflight[1];
bf0ddaba
OS
151}
152
8446fe92
CH
153void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
154 unsigned int inflight[2])
bf0ddaba 155{
a2e80f6f 156 struct mq_inflight mi = { .part = part };
bf0ddaba 157
bb4e6b14 158 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
a2e80f6f
PB
159 inflight[0] = mi.inflight[0];
160 inflight[1] = mi.inflight[1];
bf0ddaba
OS
161}
162
1671d522 163void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 164{
7996a8b5
BL
165 mutex_lock(&q->mq_freeze_lock);
166 if (++q->mq_freeze_depth == 1) {
3ef28e83 167 percpu_ref_kill(&q->q_usage_counter);
7996a8b5 168 mutex_unlock(&q->mq_freeze_lock);
344e9ffc 169 if (queue_is_mq(q))
055f6e18 170 blk_mq_run_hw_queues(q, false);
7996a8b5
BL
171 } else {
172 mutex_unlock(&q->mq_freeze_lock);
cddd5d17 173 }
f3af020b 174}
1671d522 175EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 176
6bae363e 177void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 178{
3ef28e83 179 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 180}
6bae363e 181EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 182
f91328c4
KB
183int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
184 unsigned long timeout)
185{
186 return wait_event_timeout(q->mq_freeze_wq,
187 percpu_ref_is_zero(&q->q_usage_counter),
188 timeout);
189}
190EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 191
f3af020b
TH
192/*
193 * Guarantee no request is in use, so we can change any data structure of
194 * the queue afterward.
195 */
3ef28e83 196void blk_freeze_queue(struct request_queue *q)
f3af020b 197{
3ef28e83
DW
198 /*
199 * In the !blk_mq case we are only calling this to kill the
200 * q_usage_counter, otherwise this increases the freeze depth
201 * and waits for it to return to zero. For this reason there is
202 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
203 * exported to drivers as the only user for unfreeze is blk_mq.
204 */
1671d522 205 blk_freeze_queue_start(q);
f3af020b
TH
206 blk_mq_freeze_queue_wait(q);
207}
3ef28e83
DW
208
209void blk_mq_freeze_queue(struct request_queue *q)
210{
211 /*
212 * ...just an alias to keep freeze and unfreeze actions balanced
213 * in the blk_mq_* namespace
214 */
215 blk_freeze_queue(q);
216}
c761d96b 217EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 218
aec89dc5 219void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
320ae51f 220{
7996a8b5 221 mutex_lock(&q->mq_freeze_lock);
aec89dc5
CH
222 if (force_atomic)
223 q->q_usage_counter.data->force_atomic = true;
7996a8b5
BL
224 q->mq_freeze_depth--;
225 WARN_ON_ONCE(q->mq_freeze_depth < 0);
226 if (!q->mq_freeze_depth) {
bdd63160 227 percpu_ref_resurrect(&q->q_usage_counter);
320ae51f 228 wake_up_all(&q->mq_freeze_wq);
add703fd 229 }
7996a8b5 230 mutex_unlock(&q->mq_freeze_lock);
320ae51f 231}
aec89dc5
CH
232
233void blk_mq_unfreeze_queue(struct request_queue *q)
234{
235 __blk_mq_unfreeze_queue(q, false);
236}
b4c6a028 237EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 238
852ec809
BVA
239/*
240 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
241 * mpt3sas driver such that this function can be removed.
242 */
243void blk_mq_quiesce_queue_nowait(struct request_queue *q)
244{
e70feb8b
ML
245 unsigned long flags;
246
247 spin_lock_irqsave(&q->queue_lock, flags);
248 if (!q->quiesce_depth++)
249 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
250 spin_unlock_irqrestore(&q->queue_lock, flags);
852ec809
BVA
251}
252EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
253
6a83e74d 254/**
9ef4d020 255 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
6a83e74d
BVA
256 * @q: request queue.
257 *
9ef4d020
ML
258 * Note: it is driver's responsibility for making sure that quiesce has
259 * been started.
6a83e74d 260 */
9ef4d020 261void blk_mq_wait_quiesce_done(struct request_queue *q)
6a83e74d 262{
704b914f
ML
263 if (blk_queue_has_srcu(q))
264 synchronize_srcu(q->srcu);
265 else
6a83e74d
BVA
266 synchronize_rcu();
267}
9ef4d020
ML
268EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
269
270/**
271 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
272 * @q: request queue.
273 *
274 * Note: this function does not prevent that the struct request end_io()
275 * callback function is invoked. Once this function is returned, we make
276 * sure no dispatch can happen until the queue is unquiesced via
277 * blk_mq_unquiesce_queue().
278 */
279void blk_mq_quiesce_queue(struct request_queue *q)
280{
281 blk_mq_quiesce_queue_nowait(q);
282 blk_mq_wait_quiesce_done(q);
283}
6a83e74d
BVA
284EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
285
e4e73913
ML
286/*
287 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
288 * @q: request queue.
289 *
290 * This function recovers queue into the state before quiescing
291 * which is done by blk_mq_quiesce_queue.
292 */
293void blk_mq_unquiesce_queue(struct request_queue *q)
294{
e70feb8b
ML
295 unsigned long flags;
296 bool run_queue = false;
297
298 spin_lock_irqsave(&q->queue_lock, flags);
299 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
300 ;
301 } else if (!--q->quiesce_depth) {
302 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
303 run_queue = true;
304 }
305 spin_unlock_irqrestore(&q->queue_lock, flags);
f4560ffe 306
1d9e9bc6 307 /* dispatch requests which are inserted during quiescing */
e70feb8b
ML
308 if (run_queue)
309 blk_mq_run_hw_queues(q, true);
e4e73913
ML
310}
311EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
312
aed3ea94
JA
313void blk_mq_wake_waiters(struct request_queue *q)
314{
315 struct blk_mq_hw_ctx *hctx;
4f481208 316 unsigned long i;
aed3ea94
JA
317
318 queue_for_each_hw_ctx(q, hctx, i)
319 if (blk_mq_hw_queue_mapped(hctx))
320 blk_mq_tag_wakeup_all(hctx->tags, true);
321}
322
52fdbbcc
CH
323void blk_rq_init(struct request_queue *q, struct request *rq)
324{
325 memset(rq, 0, sizeof(*rq));
326
327 INIT_LIST_HEAD(&rq->queuelist);
328 rq->q = q;
329 rq->__sector = (sector_t) -1;
330 INIT_HLIST_NODE(&rq->hash);
331 RB_CLEAR_NODE(&rq->rb_node);
332 rq->tag = BLK_MQ_NO_TAG;
333 rq->internal_tag = BLK_MQ_NO_TAG;
334 rq->start_time_ns = ktime_get_ns();
335 rq->part = NULL;
336 blk_crypto_rq_set_defaults(rq);
337}
338EXPORT_SYMBOL(blk_rq_init);
339
e4cdf1a1 340static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
fe6134f6 341 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
320ae51f 342{
605f784e
PB
343 struct blk_mq_ctx *ctx = data->ctx;
344 struct blk_mq_hw_ctx *hctx = data->hctx;
345 struct request_queue *q = data->q;
e4cdf1a1 346 struct request *rq = tags->static_rqs[tag];
c3a148d2 347
c7b84d42
JA
348 rq->q = q;
349 rq->mq_ctx = ctx;
350 rq->mq_hctx = hctx;
351 rq->cmd_flags = data->cmd_flags;
352
353 if (data->flags & BLK_MQ_REQ_PM)
354 data->rq_flags |= RQF_PM;
355 if (blk_queue_io_stat(q))
356 data->rq_flags |= RQF_IO_STAT;
357 rq->rq_flags = data->rq_flags;
358
56f8da64 359 if (!(data->rq_flags & RQF_ELV)) {
e4cdf1a1 360 rq->tag = tag;
76647368 361 rq->internal_tag = BLK_MQ_NO_TAG;
56f8da64
JA
362 } else {
363 rq->tag = BLK_MQ_NO_TAG;
364 rq->internal_tag = tag;
e4cdf1a1 365 }
c7b84d42 366 rq->timeout = 0;
e4cdf1a1 367
4f266f2b
PB
368 if (blk_mq_need_time_stamp(rq))
369 rq->start_time_ns = ktime_get_ns();
370 else
371 rq->start_time_ns = 0;
af76e555 372 rq->part = NULL;
6f816b4b
TH
373#ifdef CONFIG_BLK_RQ_ALLOC_TIME
374 rq->alloc_time_ns = alloc_time_ns;
375#endif
544ccc8d 376 rq->io_start_time_ns = 0;
3d244306 377 rq->stats_sectors = 0;
af76e555
CH
378 rq->nr_phys_segments = 0;
379#if defined(CONFIG_BLK_DEV_INTEGRITY)
380 rq->nr_integrity_segments = 0;
381#endif
af76e555
CH
382 rq->end_io = NULL;
383 rq->end_io_data = NULL;
af76e555 384
4f266f2b
PB
385 blk_crypto_rq_set_defaults(rq);
386 INIT_LIST_HEAD(&rq->queuelist);
387 /* tag was already set */
388 WRITE_ONCE(rq->deadline, 0);
0a467d0f 389 req_ref_set(rq, 1);
7ea4d8a4 390
4f266f2b 391 if (rq->rq_flags & RQF_ELV) {
7ea4d8a4
CH
392 struct elevator_queue *e = data->q->elevator;
393
4f266f2b
PB
394 INIT_HLIST_NODE(&rq->hash);
395 RB_CLEAR_NODE(&rq->rb_node);
396
397 if (!op_is_flush(data->cmd_flags) &&
398 e->type->ops.prepare_request) {
7ea4d8a4
CH
399 e->type->ops.prepare_request(rq);
400 rq->rq_flags |= RQF_ELVPRIV;
401 }
402 }
403
e4cdf1a1 404 return rq;
5dee8577
CH
405}
406
349302da
JA
407static inline struct request *
408__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
409 u64 alloc_time_ns)
410{
411 unsigned int tag, tag_offset;
fe6134f6 412 struct blk_mq_tags *tags;
349302da 413 struct request *rq;
fe6134f6 414 unsigned long tag_mask;
349302da
JA
415 int i, nr = 0;
416
fe6134f6
JA
417 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
418 if (unlikely(!tag_mask))
349302da
JA
419 return NULL;
420
fe6134f6
JA
421 tags = blk_mq_tags_from_data(data);
422 for (i = 0; tag_mask; i++) {
423 if (!(tag_mask & (1UL << i)))
349302da
JA
424 continue;
425 tag = tag_offset + i;
a22c00be 426 prefetch(tags->static_rqs[tag]);
fe6134f6
JA
427 tag_mask &= ~(1UL << i);
428 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
013a7f95 429 rq_list_add(data->cached_rq, rq);
c5fc7b93 430 nr++;
349302da 431 }
c5fc7b93
JA
432 /* caller already holds a reference, add for remainder */
433 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
349302da
JA
434 data->nr_tags -= nr;
435
013a7f95 436 return rq_list_pop(data->cached_rq);
349302da
JA
437}
438
b90cfaed 439static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
d2c0d383 440{
e6e7abff 441 struct request_queue *q = data->q;
6f816b4b 442 u64 alloc_time_ns = 0;
47c122e3 443 struct request *rq;
600c3b0c 444 unsigned int tag;
d2c0d383 445
6f816b4b
TH
446 /* alloc_time includes depth and tag waits */
447 if (blk_queue_rq_alloc_time(q))
448 alloc_time_ns = ktime_get_ns();
449
f9afca4d 450 if (data->cmd_flags & REQ_NOWAIT)
03a07c92 451 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383 452
781dd830
JA
453 if (q->elevator) {
454 struct elevator_queue *e = q->elevator;
455
456 data->rq_flags |= RQF_ELV;
457
d2c0d383 458 /*
8d663f34 459 * Flush/passthrough requests are special and go directly to the
17a51199
JA
460 * dispatch list. Don't include reserved tags in the
461 * limiting, as it isn't useful.
d2c0d383 462 */
f9afca4d 463 if (!op_is_flush(data->cmd_flags) &&
8d663f34 464 !blk_op_is_passthrough(data->cmd_flags) &&
f9afca4d 465 e->type->ops.limit_depth &&
17a51199 466 !(data->flags & BLK_MQ_REQ_RESERVED))
f9afca4d 467 e->type->ops.limit_depth(data->cmd_flags, data);
d2c0d383
CH
468 }
469
bf0beec0 470retry:
600c3b0c
CH
471 data->ctx = blk_mq_get_ctx(q);
472 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
781dd830 473 if (!(data->rq_flags & RQF_ELV))
600c3b0c
CH
474 blk_mq_tag_busy(data->hctx);
475
349302da
JA
476 /*
477 * Try batched alloc if we want more than 1 tag.
478 */
479 if (data->nr_tags > 1) {
480 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
481 if (rq)
482 return rq;
483 data->nr_tags = 1;
484 }
485
bf0beec0
ML
486 /*
487 * Waiting allocations only fail because of an inactive hctx. In that
488 * case just retry the hctx assignment and tag allocation as CPU hotplug
489 * should have migrated us to an online CPU by now.
490 */
e4cdf1a1 491 tag = blk_mq_get_tag(data);
bf0beec0
ML
492 if (tag == BLK_MQ_NO_TAG) {
493 if (data->flags & BLK_MQ_REQ_NOWAIT)
494 return NULL;
bf0beec0 495 /*
349302da
JA
496 * Give up the CPU and sleep for a random short time to
497 * ensure that thread using a realtime scheduling class
498 * are migrated off the CPU, and thus off the hctx that
499 * is going away.
bf0beec0
ML
500 */
501 msleep(3);
502 goto retry;
503 }
47c122e3 504
fe6134f6
JA
505 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
506 alloc_time_ns);
d2c0d383
CH
507}
508
cd6ce148 509struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 510 blk_mq_req_flags_t flags)
320ae51f 511{
e6e7abff
CH
512 struct blk_mq_alloc_data data = {
513 .q = q,
514 .flags = flags,
515 .cmd_flags = op,
47c122e3 516 .nr_tags = 1,
e6e7abff 517 };
bd166ef1 518 struct request *rq;
a492f075 519 int ret;
320ae51f 520
3a0a5299 521 ret = blk_queue_enter(q, flags);
a492f075
JL
522 if (ret)
523 return ERR_PTR(ret);
320ae51f 524
b90cfaed 525 rq = __blk_mq_alloc_requests(&data);
bd166ef1 526 if (!rq)
a5ea5811 527 goto out_queue_exit;
0c4de0f3
CH
528 rq->__data_len = 0;
529 rq->__sector = (sector_t) -1;
530 rq->bio = rq->biotail = NULL;
320ae51f 531 return rq;
a5ea5811
CH
532out_queue_exit:
533 blk_queue_exit(q);
534 return ERR_PTR(-EWOULDBLOCK);
320ae51f 535}
4bb659b1 536EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 537
cd6ce148 538struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 539 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 540{
e6e7abff
CH
541 struct blk_mq_alloc_data data = {
542 .q = q,
543 .flags = flags,
544 .cmd_flags = op,
47c122e3 545 .nr_tags = 1,
e6e7abff 546 };
600c3b0c 547 u64 alloc_time_ns = 0;
6d2809d5 548 unsigned int cpu;
600c3b0c 549 unsigned int tag;
1f5bd336
ML
550 int ret;
551
600c3b0c
CH
552 /* alloc_time includes depth and tag waits */
553 if (blk_queue_rq_alloc_time(q))
554 alloc_time_ns = ktime_get_ns();
555
1f5bd336
ML
556 /*
557 * If the tag allocator sleeps we could get an allocation for a
558 * different hardware context. No need to complicate the low level
559 * allocator for this for the rare use case of a command tied to
560 * a specific queue.
561 */
600c3b0c 562 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
1f5bd336
ML
563 return ERR_PTR(-EINVAL);
564
565 if (hctx_idx >= q->nr_hw_queues)
566 return ERR_PTR(-EIO);
567
3a0a5299 568 ret = blk_queue_enter(q, flags);
1f5bd336
ML
569 if (ret)
570 return ERR_PTR(ret);
571
c8712c6a
CH
572 /*
573 * Check if the hardware context is actually mapped to anything.
574 * If not tell the caller that it should skip this queue.
575 */
a5ea5811 576 ret = -EXDEV;
4e5cc99e 577 data.hctx = xa_load(&q->hctx_table, hctx_idx);
e6e7abff 578 if (!blk_mq_hw_queue_mapped(data.hctx))
a5ea5811 579 goto out_queue_exit;
e6e7abff
CH
580 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
581 data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 582
42fdc5e4 583 if (!q->elevator)
600c3b0c 584 blk_mq_tag_busy(data.hctx);
781dd830
JA
585 else
586 data.rq_flags |= RQF_ELV;
600c3b0c 587
a5ea5811 588 ret = -EWOULDBLOCK;
600c3b0c
CH
589 tag = blk_mq_get_tag(&data);
590 if (tag == BLK_MQ_NO_TAG)
a5ea5811 591 goto out_queue_exit;
fe6134f6
JA
592 return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
593 alloc_time_ns);
600c3b0c 594
a5ea5811
CH
595out_queue_exit:
596 blk_queue_exit(q);
597 return ERR_PTR(ret);
1f5bd336
ML
598}
599EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
600
12f5b931
KB
601static void __blk_mq_free_request(struct request *rq)
602{
603 struct request_queue *q = rq->q;
604 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 605 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
12f5b931
KB
606 const int sched_tag = rq->internal_tag;
607
a892c8d5 608 blk_crypto_free_request(rq);
986d413b 609 blk_pm_mark_last_busy(rq);
ea4f995e 610 rq->mq_hctx = NULL;
76647368 611 if (rq->tag != BLK_MQ_NO_TAG)
cae740a0 612 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
76647368 613 if (sched_tag != BLK_MQ_NO_TAG)
cae740a0 614 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
12f5b931
KB
615 blk_mq_sched_restart(hctx);
616 blk_queue_exit(q);
617}
618
6af54051 619void blk_mq_free_request(struct request *rq)
320ae51f 620{
320ae51f 621 struct request_queue *q = rq->q;
ea4f995e 622 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
6af54051 623
222ee581
CH
624 if ((rq->rq_flags & RQF_ELVPRIV) &&
625 q->elevator->type->ops.finish_request)
626 q->elevator->type->ops.finish_request(rq);
320ae51f 627
e8064021 628 if (rq->rq_flags & RQF_MQ_INFLIGHT)
bccf5e26 629 __blk_mq_dec_active_requests(hctx);
87760e5e 630
7beb2f84 631 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
d152c682 632 laptop_io_completion(q->disk->bdi);
7beb2f84 633
a7905043 634 rq_qos_done(q, rq);
0d2602ca 635
12f5b931 636 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
0a467d0f 637 if (req_ref_put_and_test(rq))
12f5b931 638 __blk_mq_free_request(rq);
320ae51f 639}
1a3b595a 640EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 641
47c122e3 642void blk_mq_free_plug_rqs(struct blk_plug *plug)
320ae51f 643{
013a7f95 644 struct request *rq;
fe1f4526 645
c5fc7b93 646 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
47c122e3 647 blk_mq_free_request(rq);
47c122e3 648}
522a7775 649
22350ad7
CH
650void blk_dump_rq_flags(struct request *rq, char *msg)
651{
652 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
f3fa33ac 653 rq->q->disk ? rq->q->disk->disk_name : "?",
22350ad7
CH
654 (unsigned long long) rq->cmd_flags);
655
656 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
657 (unsigned long long)blk_rq_pos(rq),
658 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
659 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
660 rq->bio, rq->biotail, blk_rq_bytes(rq));
661}
662EXPORT_SYMBOL(blk_dump_rq_flags);
663
9be3e06f
JA
664static void req_bio_endio(struct request *rq, struct bio *bio,
665 unsigned int nbytes, blk_status_t error)
666{
478eb72b 667 if (unlikely(error)) {
9be3e06f 668 bio->bi_status = error;
478eb72b 669 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
9be3e06f
JA
670 /*
671 * Partial zone append completions cannot be supported as the
672 * BIO fragments may end up not being written sequentially.
673 */
297db731 674 if (bio->bi_iter.bi_size != nbytes)
9be3e06f
JA
675 bio->bi_status = BLK_STS_IOERR;
676 else
677 bio->bi_iter.bi_sector = rq->__sector;
678 }
679
478eb72b
PB
680 bio_advance(bio, nbytes);
681
682 if (unlikely(rq->rq_flags & RQF_QUIET))
683 bio_set_flag(bio, BIO_QUIET);
9be3e06f
JA
684 /* don't actually finish bio if it's part of flush sequence */
685 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
686 bio_endio(bio);
687}
688
689static void blk_account_io_completion(struct request *req, unsigned int bytes)
690{
691 if (req->part && blk_do_io_stat(req)) {
692 const int sgrp = op_stat_group(req_op(req));
693
694 part_stat_lock();
695 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
696 part_stat_unlock();
697 }
698}
699
0d7a29a2
CH
700static void blk_print_req_error(struct request *req, blk_status_t status)
701{
702 printk_ratelimited(KERN_ERR
703 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
704 "phys_seg %u prio class %u\n",
705 blk_status_to_str(status),
f3fa33ac 706 req->q->disk ? req->q->disk->disk_name : "?",
0d7a29a2
CH
707 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
708 req->cmd_flags & ~REQ_OP_MASK,
709 req->nr_phys_segments,
710 IOPRIO_PRIO_CLASS(req->ioprio));
711}
712
5581a5dd
JA
713/*
714 * Fully end IO on a request. Does not support partial completions, or
715 * errors.
716 */
717static void blk_complete_request(struct request *req)
718{
719 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
720 int total_bytes = blk_rq_bytes(req);
721 struct bio *bio = req->bio;
722
723 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
724
725 if (!bio)
726 return;
727
728#ifdef CONFIG_BLK_DEV_INTEGRITY
729 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
730 req->q->integrity.profile->complete_fn(req, total_bytes);
731#endif
732
733 blk_account_io_completion(req, total_bytes);
734
735 do {
736 struct bio *next = bio->bi_next;
737
738 /* Completion has already been traced */
739 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
a12821d5
PR
740
741 if (req_op(req) == REQ_OP_ZONE_APPEND)
742 bio->bi_iter.bi_sector = req->__sector;
743
5581a5dd
JA
744 if (!is_flush)
745 bio_endio(bio);
746 bio = next;
747 } while (bio);
748
749 /*
750 * Reset counters so that the request stacking driver
751 * can find how many bytes remain in the request
752 * later.
753 */
754 req->bio = NULL;
755 req->__data_len = 0;
756}
757
9be3e06f
JA
758/**
759 * blk_update_request - Complete multiple bytes without completing the request
760 * @req: the request being processed
761 * @error: block status code
762 * @nr_bytes: number of bytes to complete for @req
763 *
764 * Description:
765 * Ends I/O on a number of bytes attached to @req, but doesn't complete
766 * the request structure even if @req doesn't have leftover.
767 * If @req has leftover, sets it up for the next range of segments.
768 *
769 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
770 * %false return from this function.
771 *
772 * Note:
773 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
774 * except in the consistency check at the end of this function.
775 *
776 * Return:
777 * %false - this request doesn't have any more data
778 * %true - this request has more data
779 **/
780bool blk_update_request(struct request *req, blk_status_t error,
781 unsigned int nr_bytes)
782{
783 int total_bytes;
784
8a7d267b 785 trace_block_rq_complete(req, error, nr_bytes);
9be3e06f
JA
786
787 if (!req->bio)
788 return false;
789
790#ifdef CONFIG_BLK_DEV_INTEGRITY
791 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
792 error == BLK_STS_OK)
793 req->q->integrity.profile->complete_fn(req, nr_bytes);
794#endif
795
796 if (unlikely(error && !blk_rq_is_passthrough(req) &&
3d973a76
CH
797 !(req->rq_flags & RQF_QUIET)) &&
798 !test_bit(GD_DEAD, &req->q->disk->state)) {
9be3e06f 799 blk_print_req_error(req, error);
d5869fdc
YS
800 trace_block_rq_error(req, error, nr_bytes);
801 }
9be3e06f
JA
802
803 blk_account_io_completion(req, nr_bytes);
804
805 total_bytes = 0;
806 while (req->bio) {
807 struct bio *bio = req->bio;
808 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
809
810 if (bio_bytes == bio->bi_iter.bi_size)
811 req->bio = bio->bi_next;
812
813 /* Completion has already been traced */
814 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
815 req_bio_endio(req, bio, bio_bytes, error);
816
817 total_bytes += bio_bytes;
818 nr_bytes -= bio_bytes;
819
820 if (!nr_bytes)
821 break;
822 }
823
824 /*
825 * completely done
826 */
827 if (!req->bio) {
828 /*
829 * Reset counters so that the request stacking driver
830 * can find how many bytes remain in the request
831 * later.
832 */
833 req->__data_len = 0;
834 return false;
835 }
836
837 req->__data_len -= total_bytes;
838
839 /* update sector only for requests with clear definition of sector */
840 if (!blk_rq_is_passthrough(req))
841 req->__sector += total_bytes >> 9;
842
843 /* mixed attributes always follow the first bio */
844 if (req->rq_flags & RQF_MIXED_MERGE) {
845 req->cmd_flags &= ~REQ_FAILFAST_MASK;
846 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
847 }
848
849 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
850 /*
851 * If total number of sectors is less than the first segment
852 * size, something has gone terribly wrong.
853 */
854 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
855 blk_dump_rq_flags(req, "request botched");
856 req->__data_len = blk_rq_cur_bytes(req);
857 }
858
859 /* recalculate the number of segments */
860 req->nr_phys_segments = blk_recalc_rq_segments(req);
861 }
862
863 return true;
864}
865EXPORT_SYMBOL_GPL(blk_update_request);
866
450b7879
CH
867static void __blk_account_io_done(struct request *req, u64 now)
868{
869 const int sgrp = op_stat_group(req_op(req));
870
871 part_stat_lock();
872 update_io_ticks(req->part, jiffies, true);
873 part_stat_inc(req->part, ios[sgrp]);
874 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
875 part_stat_unlock();
876}
877
878static inline void blk_account_io_done(struct request *req, u64 now)
879{
880 /*
881 * Account IO completion. flush_rq isn't accounted as a
882 * normal IO on queueing nor completion. Accounting the
883 * containing request is enough.
884 */
885 if (blk_do_io_stat(req) && req->part &&
886 !(req->rq_flags & RQF_FLUSH_SEQ))
887 __blk_account_io_done(req, now);
888}
889
890static void __blk_account_io_start(struct request *rq)
891{
41fa7222
CH
892 /*
893 * All non-passthrough requests are created from a bio with one
894 * exception: when a flush command that is part of a flush sequence
895 * generated by the state machine in blk-flush.c is cloned onto the
896 * lower device by dm-multipath we can get here without a bio.
897 */
898 if (rq->bio)
450b7879 899 rq->part = rq->bio->bi_bdev;
41fa7222 900 else
f3fa33ac 901 rq->part = rq->q->disk->part0;
450b7879
CH
902
903 part_stat_lock();
904 update_io_ticks(rq->part, jiffies, false);
905 part_stat_unlock();
906}
907
908static inline void blk_account_io_start(struct request *req)
909{
910 if (blk_do_io_stat(req))
911 __blk_account_io_start(req);
912}
913
f794f335 914static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
320ae51f 915{
4bc6339a
OS
916 if (rq->rq_flags & RQF_STATS) {
917 blk_mq_poll_stats_start(rq->q);
522a7775 918 blk_stat_add(rq, now);
4bc6339a
OS
919 }
920
87890092 921 blk_mq_sched_completed_request(rq, now);
522a7775 922 blk_account_io_done(rq, now);
f794f335 923}
522a7775 924
f794f335
JA
925inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
926{
927 if (blk_mq_need_time_stamp(rq))
928 __blk_mq_end_request_acct(rq, ktime_get_ns());
0d11e6ac 929
91b63639 930 if (rq->end_io) {
a7905043 931 rq_qos_done(rq->q, rq);
320ae51f 932 rq->end_io(rq, error);
91b63639 933 } else {
320ae51f 934 blk_mq_free_request(rq);
91b63639 935 }
320ae51f 936}
c8a446ad 937EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 938
2a842aca 939void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
940{
941 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
942 BUG();
c8a446ad 943 __blk_mq_end_request(rq, error);
63151a44 944}
c8a446ad 945EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 946
f794f335
JA
947#define TAG_COMP_BATCH 32
948
949static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
950 int *tag_array, int nr_tags)
951{
952 struct request_queue *q = hctx->queue;
953
3b87c6ea
ML
954 /*
955 * All requests should have been marked as RQF_MQ_INFLIGHT, so
956 * update hctx->nr_active in batch
957 */
958 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
959 __blk_mq_sub_active_requests(hctx, nr_tags);
960
f794f335
JA
961 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
962 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
963}
964
965void blk_mq_end_request_batch(struct io_comp_batch *iob)
966{
967 int tags[TAG_COMP_BATCH], nr_tags = 0;
02f7eab0 968 struct blk_mq_hw_ctx *cur_hctx = NULL;
f794f335
JA
969 struct request *rq;
970 u64 now = 0;
971
972 if (iob->need_ts)
973 now = ktime_get_ns();
974
975 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
976 prefetch(rq->bio);
977 prefetch(rq->rq_next);
978
5581a5dd 979 blk_complete_request(rq);
f794f335
JA
980 if (iob->need_ts)
981 __blk_mq_end_request_acct(rq, now);
982
98b26a0e
JA
983 rq_qos_done(rq->q, rq);
984
f794f335 985 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
0a467d0f 986 if (!req_ref_put_and_test(rq))
f794f335
JA
987 continue;
988
989 blk_crypto_free_request(rq);
990 blk_pm_mark_last_busy(rq);
f794f335 991
02f7eab0
JA
992 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
993 if (cur_hctx)
994 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
f794f335 995 nr_tags = 0;
02f7eab0 996 cur_hctx = rq->mq_hctx;
f794f335
JA
997 }
998 tags[nr_tags++] = rq->tag;
f794f335
JA
999 }
1000
1001 if (nr_tags)
02f7eab0 1002 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
f794f335
JA
1003}
1004EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1005
f9ab4918 1006static void blk_complete_reqs(struct llist_head *list)
320ae51f 1007{
f9ab4918
SAS
1008 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1009 struct request *rq, *next;
c3077b5d 1010
f9ab4918 1011 llist_for_each_entry_safe(rq, next, entry, ipi_list)
c3077b5d 1012 rq->q->mq_ops->complete(rq);
320ae51f 1013}
320ae51f 1014
f9ab4918 1015static __latent_entropy void blk_done_softirq(struct softirq_action *h)
320ae51f 1016{
f9ab4918 1017 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
115243f5
CH
1018}
1019
c3077b5d
CH
1020static int blk_softirq_cpu_dead(unsigned int cpu)
1021{
f9ab4918 1022 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
c3077b5d
CH
1023 return 0;
1024}
1025
40d09b53 1026static void __blk_mq_complete_request_remote(void *data)
c3077b5d 1027{
f9ab4918 1028 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
c3077b5d
CH
1029}
1030
96339526
CH
1031static inline bool blk_mq_complete_need_ipi(struct request *rq)
1032{
1033 int cpu = raw_smp_processor_id();
1034
1035 if (!IS_ENABLED(CONFIG_SMP) ||
1036 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1037 return false;
71425189
SAS
1038 /*
1039 * With force threaded interrupts enabled, raising softirq from an SMP
1040 * function call will always result in waking the ksoftirqd thread.
1041 * This is probably worse than completing the request on a different
1042 * cache domain.
1043 */
91cc470e 1044 if (force_irqthreads())
71425189 1045 return false;
96339526
CH
1046
1047 /* same CPU or cache domain? Complete locally */
1048 if (cpu == rq->mq_ctx->cpu ||
1049 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1050 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1051 return false;
1052
1053 /* don't try to IPI to an offline CPU */
1054 return cpu_online(rq->mq_ctx->cpu);
1055}
1056
f9ab4918
SAS
1057static void blk_mq_complete_send_ipi(struct request *rq)
1058{
1059 struct llist_head *list;
1060 unsigned int cpu;
1061
1062 cpu = rq->mq_ctx->cpu;
1063 list = &per_cpu(blk_cpu_done, cpu);
1064 if (llist_add(&rq->ipi_list, list)) {
1065 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1066 smp_call_function_single_async(cpu, &rq->csd);
1067 }
1068}
1069
1070static void blk_mq_raise_softirq(struct request *rq)
1071{
1072 struct llist_head *list;
1073
1074 preempt_disable();
1075 list = this_cpu_ptr(&blk_cpu_done);
1076 if (llist_add(&rq->ipi_list, list))
1077 raise_softirq(BLOCK_SOFTIRQ);
1078 preempt_enable();
1079}
1080
40d09b53 1081bool blk_mq_complete_request_remote(struct request *rq)
320ae51f 1082{
af78ff7c 1083 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
36e76539 1084
4ab32bf3 1085 /*
2aaf5160 1086 * For a polled request, always complete locally, it's pointless
4ab32bf3
JA
1087 * to redirect the completion.
1088 */
6ce913fe 1089 if (rq->cmd_flags & REQ_POLLED)
40d09b53 1090 return false;
38535201 1091
96339526 1092 if (blk_mq_complete_need_ipi(rq)) {
f9ab4918
SAS
1093 blk_mq_complete_send_ipi(rq);
1094 return true;
3d6efbf6 1095 }
40d09b53 1096
f9ab4918
SAS
1097 if (rq->q->nr_hw_queues == 1) {
1098 blk_mq_raise_softirq(rq);
1099 return true;
1100 }
1101 return false;
40d09b53
CH
1102}
1103EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1104
1105/**
1106 * blk_mq_complete_request - end I/O on a request
1107 * @rq: the request being processed
1108 *
1109 * Description:
1110 * Complete a request by scheduling the ->complete_rq operation.
1111 **/
1112void blk_mq_complete_request(struct request *rq)
1113{
1114 if (!blk_mq_complete_request_remote(rq))
1115 rq->q->mq_ops->complete(rq);
320ae51f 1116}
15f73f5b 1117EXPORT_SYMBOL(blk_mq_complete_request);
30a91cb4 1118
105663f7
AA
1119/**
1120 * blk_mq_start_request - Start processing a request
1121 * @rq: Pointer to request to be started
1122 *
1123 * Function used by device drivers to notify the block layer that a request
1124 * is going to be processed now, so blk layer can do proper initializations
1125 * such as starting the timeout timer.
1126 */
e2490073 1127void blk_mq_start_request(struct request *rq)
320ae51f
JA
1128{
1129 struct request_queue *q = rq->q;
1130
a54895fa 1131 trace_block_rq_issue(rq);
320ae51f 1132
cf43e6be 1133 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
00067077
JA
1134 u64 start_time;
1135#ifdef CONFIG_BLK_CGROUP
1136 if (rq->bio)
1137 start_time = bio_issue_time(&rq->bio->bi_issue);
1138 else
1139#endif
1140 start_time = ktime_get_ns();
1141 rq->io_start_time_ns = start_time;
3d244306 1142 rq->stats_sectors = blk_rq_sectors(rq);
cf43e6be 1143 rq->rq_flags |= RQF_STATS;
a7905043 1144 rq_qos_issue(q, rq);
cf43e6be
JA
1145 }
1146
1d9bd516 1147 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 1148
1d9bd516 1149 blk_add_timer(rq);
12f5b931 1150 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
49f5baa5 1151
54d4e6ab
MG
1152#ifdef CONFIG_BLK_DEV_INTEGRITY
1153 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1154 q->integrity.profile->prepare_fn(rq);
1155#endif
3e08773c
CH
1156 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1157 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
320ae51f 1158}
e2490073 1159EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 1160
4054cff9
CH
1161/**
1162 * blk_end_sync_rq - executes a completion event on a request
1163 * @rq: request to complete
1164 * @error: end I/O status of the request
1165 */
1166static void blk_end_sync_rq(struct request *rq, blk_status_t error)
1167{
1168 struct completion *waiting = rq->end_io_data;
1169
1170 rq->end_io_data = (void *)(uintptr_t)error;
1171
1172 /*
1173 * complete last, if this is a stack request the process (and thus
1174 * the rq pointer) could be invalid right after this complete()
1175 */
1176 complete(waiting);
1177}
1178
1179/**
1180 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
4054cff9
CH
1181 * @rq: request to insert
1182 * @at_head: insert request at head or tail of queue
1183 * @done: I/O completion handler
1184 *
1185 * Description:
1186 * Insert a fully prepared request at the back of the I/O scheduler queue
1187 * for execution. Don't wait for completion.
1188 *
1189 * Note:
1190 * This function will invoke @done directly if the queue is dead.
1191 */
b84ba30b 1192void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
4054cff9
CH
1193{
1194 WARN_ON(irqs_disabled());
1195 WARN_ON(!blk_rq_is_passthrough(rq));
1196
4054cff9
CH
1197 rq->end_io = done;
1198
1199 blk_account_io_start(rq);
1200
1201 /*
1202 * don't check dying flag for MQ because the request won't
1203 * be reused after dying flag is set
1204 */
1205 blk_mq_sched_insert_request(rq, at_head, true, false);
1206}
1207EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1208
1209static bool blk_rq_is_poll(struct request *rq)
1210{
1211 if (!rq->mq_hctx)
1212 return false;
1213 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1214 return false;
1215 if (WARN_ON_ONCE(!rq->bio))
1216 return false;
1217 return true;
1218}
1219
1220static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1221{
1222 do {
1223 bio_poll(rq->bio, NULL, 0);
1224 cond_resched();
1225 } while (!completion_done(wait));
1226}
1227
1228/**
1229 * blk_execute_rq - insert a request into queue for execution
4054cff9
CH
1230 * @rq: request to insert
1231 * @at_head: insert request at head or tail of queue
1232 *
1233 * Description:
1234 * Insert a fully prepared request at the back of the I/O scheduler queue
1235 * for execution and wait for completion.
1236 * Return: The blk_status_t result provided to blk_mq_end_request().
1237 */
b84ba30b 1238blk_status_t blk_execute_rq(struct request *rq, bool at_head)
4054cff9
CH
1239{
1240 DECLARE_COMPLETION_ONSTACK(wait);
1241 unsigned long hang_check;
1242
1243 rq->end_io_data = &wait;
b84ba30b 1244 blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq);
4054cff9
CH
1245
1246 /* Prevent hang_check timer from firing at us during very long I/O */
1247 hang_check = sysctl_hung_task_timeout_secs;
1248
1249 if (blk_rq_is_poll(rq))
1250 blk_rq_poll_completion(rq, &wait);
1251 else if (hang_check)
1252 while (!wait_for_completion_io_timeout(&wait,
1253 hang_check * (HZ/2)))
1254 ;
1255 else
1256 wait_for_completion_io(&wait);
1257
1258 return (blk_status_t)(uintptr_t)rq->end_io_data;
1259}
1260EXPORT_SYMBOL(blk_execute_rq);
1261
ed0791b2 1262static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
1263{
1264 struct request_queue *q = rq->q;
1265
923218f6
ML
1266 blk_mq_put_driver_tag(rq);
1267
a54895fa 1268 trace_block_rq_requeue(rq);
a7905043 1269 rq_qos_requeue(q, rq);
49f5baa5 1270
12f5b931
KB
1271 if (blk_mq_request_started(rq)) {
1272 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
da661267 1273 rq->rq_flags &= ~RQF_TIMED_OUT;
e2490073 1274 }
320ae51f
JA
1275}
1276
2b053aca 1277void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 1278{
ed0791b2 1279 __blk_mq_requeue_request(rq);
ed0791b2 1280
105976f5
ML
1281 /* this request will be re-inserted to io scheduler queue */
1282 blk_mq_sched_requeue_request(rq);
1283
2b053aca 1284 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
1285}
1286EXPORT_SYMBOL(blk_mq_requeue_request);
1287
6fca6a61
CH
1288static void blk_mq_requeue_work(struct work_struct *work)
1289{
1290 struct request_queue *q =
2849450a 1291 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
1292 LIST_HEAD(rq_list);
1293 struct request *rq, *next;
6fca6a61 1294
18e9781d 1295 spin_lock_irq(&q->requeue_lock);
6fca6a61 1296 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 1297 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
1298
1299 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
aef1897c 1300 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
6fca6a61
CH
1301 continue;
1302
e8064021 1303 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 1304 list_del_init(&rq->queuelist);
aef1897c
JW
1305 /*
1306 * If RQF_DONTPREP, rq has contained some driver specific
1307 * data, so insert it to hctx dispatch list to avoid any
1308 * merge.
1309 */
1310 if (rq->rq_flags & RQF_DONTPREP)
01e99aec 1311 blk_mq_request_bypass_insert(rq, false, false);
aef1897c
JW
1312 else
1313 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
1314 }
1315
1316 while (!list_empty(&rq_list)) {
1317 rq = list_entry(rq_list.next, struct request, queuelist);
1318 list_del_init(&rq->queuelist);
9e97d295 1319 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
1320 }
1321
52d7f1b5 1322 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
1323}
1324
2b053aca
BVA
1325void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1326 bool kick_requeue_list)
6fca6a61
CH
1327{
1328 struct request_queue *q = rq->q;
1329 unsigned long flags;
1330
1331 /*
1332 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 1333 * request head insertion from the workqueue.
6fca6a61 1334 */
e8064021 1335 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
1336
1337 spin_lock_irqsave(&q->requeue_lock, flags);
1338 if (at_head) {
e8064021 1339 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
1340 list_add(&rq->queuelist, &q->requeue_list);
1341 } else {
1342 list_add_tail(&rq->queuelist, &q->requeue_list);
1343 }
1344 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
1345
1346 if (kick_requeue_list)
1347 blk_mq_kick_requeue_list(q);
6fca6a61 1348}
6fca6a61
CH
1349
1350void blk_mq_kick_requeue_list(struct request_queue *q)
1351{
ae943d20 1352 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
6fca6a61
CH
1353}
1354EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1355
2849450a
MS
1356void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1357 unsigned long msecs)
1358{
d4acf365
BVA
1359 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1360 msecs_to_jiffies(msecs));
2849450a
MS
1361}
1362EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1363
8ab30a33
JG
1364static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1365 bool reserved)
ae879912
JA
1366{
1367 /*
8ab30a33
JG
1368 * If we find a request that isn't idle we know the queue is busy
1369 * as it's checked in the iter.
1370 * Return false to stop the iteration.
ae879912 1371 */
8ab30a33 1372 if (blk_mq_request_started(rq)) {
ae879912
JA
1373 bool *busy = priv;
1374
1375 *busy = true;
1376 return false;
1377 }
1378
1379 return true;
1380}
1381
3c94d83c 1382bool blk_mq_queue_inflight(struct request_queue *q)
ae879912
JA
1383{
1384 bool busy = false;
1385
3c94d83c 1386 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
ae879912
JA
1387 return busy;
1388}
3c94d83c 1389EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
ae879912 1390
358f70da 1391static void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 1392{
da661267 1393 req->rq_flags |= RQF_TIMED_OUT;
d1210d5a
CH
1394 if (req->q->mq_ops->timeout) {
1395 enum blk_eh_timer_return ret;
1396
1397 ret = req->q->mq_ops->timeout(req, reserved);
1398 if (ret == BLK_EH_DONE)
1399 return;
1400 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
46f92d42 1401 }
d1210d5a
CH
1402
1403 blk_add_timer(req);
87ee7b11 1404}
5b3f25fc 1405
12f5b931 1406static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
81481eb4 1407{
12f5b931 1408 unsigned long deadline;
87ee7b11 1409
12f5b931
KB
1410 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1411 return false;
da661267
CH
1412 if (rq->rq_flags & RQF_TIMED_OUT)
1413 return false;
a7af0af3 1414
079076b3 1415 deadline = READ_ONCE(rq->deadline);
12f5b931
KB
1416 if (time_after_eq(jiffies, deadline))
1417 return true;
a7af0af3 1418
12f5b931
KB
1419 if (*next == 0)
1420 *next = deadline;
1421 else if (time_after(*next, deadline))
1422 *next = deadline;
1423 return false;
87ee7b11
JA
1424}
1425
2e315dc0
ML
1426void blk_mq_put_rq_ref(struct request *rq)
1427{
a9ed27a7 1428 if (is_flush_rq(rq))
2e315dc0 1429 rq->end_io(rq, 0);
0a467d0f 1430 else if (req_ref_put_and_test(rq))
2e315dc0
ML
1431 __blk_mq_free_request(rq);
1432}
1433
8ab30a33 1434static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1d9bd516 1435{
12f5b931
KB
1436 unsigned long *next = priv;
1437
1438 /*
c797b40c
ML
1439 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1440 * be reallocated underneath the timeout handler's processing, then
1441 * the expire check is reliable. If the request is not expired, then
1442 * it was completed and reallocated as a new request after returning
1443 * from blk_mq_check_expired().
1d9bd516 1444 */
12f5b931 1445 if (blk_mq_req_expired(rq, next))
1d9bd516 1446 blk_mq_rq_timed_out(rq, reserved);
7baa8572 1447 return true;
1d9bd516
TH
1448}
1449
287922eb 1450static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 1451{
287922eb
CH
1452 struct request_queue *q =
1453 container_of(work, struct request_queue, timeout_work);
12f5b931 1454 unsigned long next = 0;
1d9bd516 1455 struct blk_mq_hw_ctx *hctx;
4f481208 1456 unsigned long i;
320ae51f 1457
71f79fb3
GKB
1458 /* A deadlock might occur if a request is stuck requiring a
1459 * timeout at the same time a queue freeze is waiting
1460 * completion, since the timeout code would not be able to
1461 * acquire the queue reference here.
1462 *
1463 * That's why we don't use blk_queue_enter here; instead, we use
1464 * percpu_ref_tryget directly, because we need to be able to
1465 * obtain a reference even in the short window between the queue
1466 * starting to freeze, by dropping the first reference in
1671d522 1467 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
1468 * consumed, marked by the instant q_usage_counter reaches
1469 * zero.
1470 */
1471 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
1472 return;
1473
12f5b931 1474 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
320ae51f 1475
12f5b931
KB
1476 if (next != 0) {
1477 mod_timer(&q->timeout, next);
0d2602ca 1478 } else {
fcd36c36
BVA
1479 /*
1480 * Request timeouts are handled as a forward rolling timer. If
1481 * we end up here it means that no requests are pending and
1482 * also that no request has been pending for a while. Mark
1483 * each hctx as idle.
1484 */
f054b56c
ML
1485 queue_for_each_hw_ctx(q, hctx, i) {
1486 /* the hctx may be unmapped, so check it here */
1487 if (blk_mq_hw_queue_mapped(hctx))
1488 blk_mq_tag_idle(hctx);
1489 }
0d2602ca 1490 }
287922eb 1491 blk_queue_exit(q);
320ae51f
JA
1492}
1493
88459642
OS
1494struct flush_busy_ctx_data {
1495 struct blk_mq_hw_ctx *hctx;
1496 struct list_head *list;
1497};
1498
1499static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1500{
1501 struct flush_busy_ctx_data *flush_data = data;
1502 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1503 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 1504 enum hctx_type type = hctx->type;
88459642 1505
88459642 1506 spin_lock(&ctx->lock);
c16d6b5a 1507 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
e9a99a63 1508 sbitmap_clear_bit(sb, bitnr);
88459642
OS
1509 spin_unlock(&ctx->lock);
1510 return true;
1511}
1512
1429d7c9
JA
1513/*
1514 * Process software queues that have been marked busy, splicing them
1515 * to the for-dispatch
1516 */
2c3ad667 1517void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 1518{
88459642
OS
1519 struct flush_busy_ctx_data data = {
1520 .hctx = hctx,
1521 .list = list,
1522 };
1429d7c9 1523
88459642 1524 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 1525}
2c3ad667 1526EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 1527
b347689f
ML
1528struct dispatch_rq_data {
1529 struct blk_mq_hw_ctx *hctx;
1530 struct request *rq;
1531};
1532
1533static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1534 void *data)
1535{
1536 struct dispatch_rq_data *dispatch_data = data;
1537 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1538 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 1539 enum hctx_type type = hctx->type;
b347689f
ML
1540
1541 spin_lock(&ctx->lock);
c16d6b5a
ML
1542 if (!list_empty(&ctx->rq_lists[type])) {
1543 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
b347689f 1544 list_del_init(&dispatch_data->rq->queuelist);
c16d6b5a 1545 if (list_empty(&ctx->rq_lists[type]))
b347689f
ML
1546 sbitmap_clear_bit(sb, bitnr);
1547 }
1548 spin_unlock(&ctx->lock);
1549
1550 return !dispatch_data->rq;
1551}
1552
1553struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1554 struct blk_mq_ctx *start)
1555{
f31967f0 1556 unsigned off = start ? start->index_hw[hctx->type] : 0;
b347689f
ML
1557 struct dispatch_rq_data data = {
1558 .hctx = hctx,
1559 .rq = NULL,
1560 };
1561
1562 __sbitmap_for_each_set(&hctx->ctx_map, off,
1563 dispatch_rq_from_ctx, &data);
1564
1565 return data.rq;
1566}
1567
a808a9d5 1568static bool __blk_mq_alloc_driver_tag(struct request *rq)
570e9b73 1569{
ae0f1a73 1570 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
570e9b73 1571 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
570e9b73
ML
1572 int tag;
1573
568f2700
ML
1574 blk_mq_tag_busy(rq->mq_hctx);
1575
570e9b73 1576 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
ae0f1a73 1577 bt = &rq->mq_hctx->tags->breserved_tags;
570e9b73 1578 tag_offset = 0;
28500850
ML
1579 } else {
1580 if (!hctx_may_queue(rq->mq_hctx, bt))
1581 return false;
570e9b73
ML
1582 }
1583
570e9b73
ML
1584 tag = __sbitmap_queue_get(bt);
1585 if (tag == BLK_MQ_NO_TAG)
1586 return false;
1587
1588 rq->tag = tag + tag_offset;
570e9b73
ML
1589 return true;
1590}
1591
a808a9d5 1592bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
570e9b73 1593{
a808a9d5 1594 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
568f2700
ML
1595 return false;
1596
51db1c37 1597 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
568f2700
ML
1598 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1599 rq->rq_flags |= RQF_MQ_INFLIGHT;
bccf5e26 1600 __blk_mq_inc_active_requests(hctx);
568f2700
ML
1601 }
1602 hctx->tags->rqs[rq->tag] = rq;
1603 return true;
570e9b73
ML
1604}
1605
eb619fdb
JA
1606static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1607 int flags, void *key)
da55f2cc
OS
1608{
1609 struct blk_mq_hw_ctx *hctx;
1610
1611 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1612
5815839b 1613 spin_lock(&hctx->dispatch_wait_lock);
e8618575
JA
1614 if (!list_empty(&wait->entry)) {
1615 struct sbitmap_queue *sbq;
1616
1617 list_del_init(&wait->entry);
ae0f1a73 1618 sbq = &hctx->tags->bitmap_tags;
e8618575
JA
1619 atomic_dec(&sbq->ws_active);
1620 }
5815839b
ML
1621 spin_unlock(&hctx->dispatch_wait_lock);
1622
da55f2cc
OS
1623 blk_mq_run_hw_queue(hctx, true);
1624 return 1;
1625}
1626
f906a6a0
JA
1627/*
1628 * Mark us waiting for a tag. For shared tags, this involves hooking us into
ee3e4de5
BVA
1629 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1630 * restart. For both cases, take care to check the condition again after
f906a6a0
JA
1631 * marking us as waiting.
1632 */
2278d69f 1633static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
f906a6a0 1634 struct request *rq)
da55f2cc 1635{
ae0f1a73 1636 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
5815839b 1637 struct wait_queue_head *wq;
f906a6a0
JA
1638 wait_queue_entry_t *wait;
1639 bool ret;
da55f2cc 1640
51db1c37 1641 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
684b7324 1642 blk_mq_sched_mark_restart_hctx(hctx);
f906a6a0 1643
c27d53fb
BVA
1644 /*
1645 * It's possible that a tag was freed in the window between the
1646 * allocation failure and adding the hardware queue to the wait
1647 * queue.
1648 *
1649 * Don't clear RESTART here, someone else could have set it.
1650 * At most this will cost an extra queue run.
1651 */
8ab6bb9e 1652 return blk_mq_get_driver_tag(rq);
eb619fdb 1653 }
eb619fdb 1654
2278d69f 1655 wait = &hctx->dispatch_wait;
c27d53fb
BVA
1656 if (!list_empty_careful(&wait->entry))
1657 return false;
1658
e8618575 1659 wq = &bt_wait_ptr(sbq, hctx)->wait;
5815839b
ML
1660
1661 spin_lock_irq(&wq->lock);
1662 spin_lock(&hctx->dispatch_wait_lock);
c27d53fb 1663 if (!list_empty(&wait->entry)) {
5815839b
ML
1664 spin_unlock(&hctx->dispatch_wait_lock);
1665 spin_unlock_irq(&wq->lock);
c27d53fb 1666 return false;
eb619fdb
JA
1667 }
1668
e8618575 1669 atomic_inc(&sbq->ws_active);
5815839b
ML
1670 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1671 __add_wait_queue(wq, wait);
c27d53fb 1672
da55f2cc 1673 /*
eb619fdb
JA
1674 * It's possible that a tag was freed in the window between the
1675 * allocation failure and adding the hardware queue to the wait
1676 * queue.
da55f2cc 1677 */
8ab6bb9e 1678 ret = blk_mq_get_driver_tag(rq);
c27d53fb 1679 if (!ret) {
5815839b
ML
1680 spin_unlock(&hctx->dispatch_wait_lock);
1681 spin_unlock_irq(&wq->lock);
c27d53fb 1682 return false;
eb619fdb 1683 }
c27d53fb
BVA
1684
1685 /*
1686 * We got a tag, remove ourselves from the wait queue to ensure
1687 * someone else gets the wakeup.
1688 */
c27d53fb 1689 list_del_init(&wait->entry);
e8618575 1690 atomic_dec(&sbq->ws_active);
5815839b
ML
1691 spin_unlock(&hctx->dispatch_wait_lock);
1692 spin_unlock_irq(&wq->lock);
c27d53fb
BVA
1693
1694 return true;
da55f2cc
OS
1695}
1696
6e768717
ML
1697#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1698#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1699/*
1700 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1701 * - EWMA is one simple way to compute running average value
1702 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1703 * - take 4 as factor for avoiding to get too small(0) result, and this
1704 * factor doesn't matter because EWMA decreases exponentially
1705 */
1706static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1707{
1708 unsigned int ewma;
1709
6e768717
ML
1710 ewma = hctx->dispatch_busy;
1711
1712 if (!ewma && !busy)
1713 return;
1714
1715 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1716 if (busy)
1717 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1718 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1719
1720 hctx->dispatch_busy = ewma;
1721}
1722
86ff7c2a
ML
1723#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1724
c92a4103
JT
1725static void blk_mq_handle_dev_resource(struct request *rq,
1726 struct list_head *list)
1727{
1728 struct request *next =
1729 list_first_entry_or_null(list, struct request, queuelist);
1730
1731 /*
1732 * If an I/O scheduler has been configured and we got a driver tag for
1733 * the next request already, free it.
1734 */
1735 if (next)
1736 blk_mq_put_driver_tag(next);
1737
1738 list_add(&rq->queuelist, list);
1739 __blk_mq_requeue_request(rq);
1740}
1741
0512a75b
KB
1742static void blk_mq_handle_zone_resource(struct request *rq,
1743 struct list_head *zone_list)
1744{
1745 /*
1746 * If we end up here it is because we cannot dispatch a request to a
1747 * specific zone due to LLD level zone-write locking or other zone
1748 * related resource not being available. In this case, set the request
1749 * aside in zone_list for retrying it later.
1750 */
1751 list_add(&rq->queuelist, zone_list);
1752 __blk_mq_requeue_request(rq);
1753}
1754
75383524
ML
1755enum prep_dispatch {
1756 PREP_DISPATCH_OK,
1757 PREP_DISPATCH_NO_TAG,
1758 PREP_DISPATCH_NO_BUDGET,
1759};
1760
1761static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1762 bool need_budget)
1763{
1764 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2a5a24aa 1765 int budget_token = -1;
75383524 1766
2a5a24aa
ML
1767 if (need_budget) {
1768 budget_token = blk_mq_get_dispatch_budget(rq->q);
1769 if (budget_token < 0) {
1770 blk_mq_put_driver_tag(rq);
1771 return PREP_DISPATCH_NO_BUDGET;
1772 }
1773 blk_mq_set_rq_budget_token(rq, budget_token);
75383524
ML
1774 }
1775
1776 if (!blk_mq_get_driver_tag(rq)) {
1777 /*
1778 * The initial allocation attempt failed, so we need to
1779 * rerun the hardware queue when a tag is freed. The
1780 * waitqueue takes care of that. If the queue is run
1781 * before we add this entry back on the dispatch list,
1782 * we'll re-run it below.
1783 */
1784 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1fd40b5e
ML
1785 /*
1786 * All budgets not got from this function will be put
1787 * together during handling partial dispatch
1788 */
1789 if (need_budget)
2a5a24aa 1790 blk_mq_put_dispatch_budget(rq->q, budget_token);
75383524
ML
1791 return PREP_DISPATCH_NO_TAG;
1792 }
1793 }
1794
1795 return PREP_DISPATCH_OK;
1796}
1797
1fd40b5e
ML
1798/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1799static void blk_mq_release_budgets(struct request_queue *q,
2a5a24aa 1800 struct list_head *list)
1fd40b5e 1801{
2a5a24aa 1802 struct request *rq;
1fd40b5e 1803
2a5a24aa
ML
1804 list_for_each_entry(rq, list, queuelist) {
1805 int budget_token = blk_mq_get_rq_budget_token(rq);
1fd40b5e 1806
2a5a24aa
ML
1807 if (budget_token >= 0)
1808 blk_mq_put_dispatch_budget(q, budget_token);
1809 }
1fd40b5e
ML
1810}
1811
1f57f8d4
JA
1812/*
1813 * Returns true if we did some work AND can potentially do more.
1814 */
445874e8 1815bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1fd40b5e 1816 unsigned int nr_budgets)
320ae51f 1817{
75383524 1818 enum prep_dispatch prep;
445874e8 1819 struct request_queue *q = hctx->queue;
6d6f167c 1820 struct request *rq, *nxt;
fc17b653 1821 int errors, queued;
86ff7c2a 1822 blk_status_t ret = BLK_STS_OK;
0512a75b 1823 LIST_HEAD(zone_list);
9586e67b 1824 bool needs_resource = false;
320ae51f 1825
81380ca1
OS
1826 if (list_empty(list))
1827 return false;
1828
320ae51f
JA
1829 /*
1830 * Now process all the entries, sending them to the driver.
1831 */
93efe981 1832 errors = queued = 0;
81380ca1 1833 do {
74c45052 1834 struct blk_mq_queue_data bd;
320ae51f 1835
f04c3df3 1836 rq = list_first_entry(list, struct request, queuelist);
0bca799b 1837
445874e8 1838 WARN_ON_ONCE(hctx != rq->mq_hctx);
1fd40b5e 1839 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
75383524 1840 if (prep != PREP_DISPATCH_OK)
0bca799b 1841 break;
de148297 1842
320ae51f 1843 list_del_init(&rq->queuelist);
320ae51f 1844
74c45052 1845 bd.rq = rq;
113285b4
JA
1846
1847 /*
1848 * Flag last if we have no more requests, or if we have more
1849 * but can't assign a driver tag to it.
1850 */
1851 if (list_empty(list))
1852 bd.last = true;
1853 else {
113285b4 1854 nxt = list_first_entry(list, struct request, queuelist);
8ab6bb9e 1855 bd.last = !blk_mq_get_driver_tag(nxt);
113285b4 1856 }
74c45052 1857
1fd40b5e
ML
1858 /*
1859 * once the request is queued to lld, no need to cover the
1860 * budget any more
1861 */
1862 if (nr_budgets)
1863 nr_budgets--;
74c45052 1864 ret = q->mq_ops->queue_rq(hctx, &bd);
7bf13729
ML
1865 switch (ret) {
1866 case BLK_STS_OK:
1867 queued++;
320ae51f 1868 break;
7bf13729 1869 case BLK_STS_RESOURCE:
9586e67b
NA
1870 needs_resource = true;
1871 fallthrough;
7bf13729
ML
1872 case BLK_STS_DEV_RESOURCE:
1873 blk_mq_handle_dev_resource(rq, list);
1874 goto out;
1875 case BLK_STS_ZONE_RESOURCE:
0512a75b
KB
1876 /*
1877 * Move the request to zone_list and keep going through
1878 * the dispatch list to find more requests the drive can
1879 * accept.
1880 */
1881 blk_mq_handle_zone_resource(rq, &zone_list);
9586e67b 1882 needs_resource = true;
7bf13729
ML
1883 break;
1884 default:
93efe981 1885 errors++;
e21ee5a6 1886 blk_mq_end_request(rq, ret);
320ae51f 1887 }
81380ca1 1888 } while (!list_empty(list));
7bf13729 1889out:
0512a75b
KB
1890 if (!list_empty(&zone_list))
1891 list_splice_tail_init(&zone_list, list);
1892
632bfb63 1893 /* If we didn't flush the entire list, we could have told the driver
1894 * there was more coming, but that turned out to be a lie.
1895 */
1896 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1897 q->mq_ops->commit_rqs(hctx);
320ae51f
JA
1898 /*
1899 * Any items that need requeuing? Stuff them into hctx->dispatch,
1900 * that is where we will continue on next queue run.
1901 */
f04c3df3 1902 if (!list_empty(list)) {
86ff7c2a 1903 bool needs_restart;
75383524
ML
1904 /* For non-shared tags, the RESTART check will suffice */
1905 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
51db1c37 1906 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
86ff7c2a 1907
2a5a24aa
ML
1908 if (nr_budgets)
1909 blk_mq_release_budgets(q, list);
86ff7c2a 1910
320ae51f 1911 spin_lock(&hctx->lock);
01e99aec 1912 list_splice_tail_init(list, &hctx->dispatch);
320ae51f 1913 spin_unlock(&hctx->lock);
f04c3df3 1914
d7d8535f
ML
1915 /*
1916 * Order adding requests to hctx->dispatch and checking
1917 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1918 * in blk_mq_sched_restart(). Avoid restart code path to
1919 * miss the new added requests to hctx->dispatch, meantime
1920 * SCHED_RESTART is observed here.
1921 */
1922 smp_mb();
1923
9ba52e58 1924 /*
710c785f
BVA
1925 * If SCHED_RESTART was set by the caller of this function and
1926 * it is no longer set that means that it was cleared by another
1927 * thread and hence that a queue rerun is needed.
9ba52e58 1928 *
eb619fdb
JA
1929 * If 'no_tag' is set, that means that we failed getting
1930 * a driver tag with an I/O scheduler attached. If our dispatch
1931 * waitqueue is no longer active, ensure that we run the queue
1932 * AFTER adding our entries back to the list.
bd166ef1 1933 *
710c785f
BVA
1934 * If no I/O scheduler has been configured it is possible that
1935 * the hardware queue got stopped and restarted before requests
1936 * were pushed back onto the dispatch list. Rerun the queue to
1937 * avoid starvation. Notes:
1938 * - blk_mq_run_hw_queue() checks whether or not a queue has
1939 * been stopped before rerunning a queue.
1940 * - Some but not all block drivers stop a queue before
fc17b653 1941 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1942 * and dm-rq.
86ff7c2a
ML
1943 *
1944 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1945 * bit is set, run queue after a delay to avoid IO stalls
ab3cee37 1946 * that could otherwise occur if the queue is idle. We'll do
9586e67b
NA
1947 * similar if we couldn't get budget or couldn't lock a zone
1948 * and SCHED_RESTART is set.
bd166ef1 1949 */
86ff7c2a 1950 needs_restart = blk_mq_sched_needs_restart(hctx);
9586e67b
NA
1951 if (prep == PREP_DISPATCH_NO_BUDGET)
1952 needs_resource = true;
86ff7c2a 1953 if (!needs_restart ||
eb619fdb 1954 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1955 blk_mq_run_hw_queue(hctx, true);
9586e67b 1956 else if (needs_restart && needs_resource)
86ff7c2a 1957 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1f57f8d4 1958
6e768717 1959 blk_mq_update_dispatch_busy(hctx, true);
1f57f8d4 1960 return false;
6e768717
ML
1961 } else
1962 blk_mq_update_dispatch_busy(hctx, false);
f04c3df3 1963
93efe981 1964 return (queued + errors) != 0;
f04c3df3
JA
1965}
1966
105663f7
AA
1967/**
1968 * __blk_mq_run_hw_queue - Run a hardware queue.
1969 * @hctx: Pointer to the hardware queue to run.
1970 *
1971 * Send pending requests to the hardware.
1972 */
6a83e74d
BVA
1973static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1974{
b7a71e66
JA
1975 /*
1976 * We can't run the queue inline with ints disabled. Ensure that
1977 * we catch bad users of this early.
1978 */
1979 WARN_ON_ONCE(in_interrupt());
1980
bcc330f4
ML
1981 blk_mq_run_dispatch_ops(hctx->queue,
1982 blk_mq_sched_dispatch_requests(hctx));
6a83e74d
BVA
1983}
1984
f82ddf19
ML
1985static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1986{
1987 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1988
1989 if (cpu >= nr_cpu_ids)
1990 cpu = cpumask_first(hctx->cpumask);
1991 return cpu;
1992}
1993
506e931f
JA
1994/*
1995 * It'd be great if the workqueue API had a way to pass
1996 * in a mask and had some smarts for more clever placement.
1997 * For now we just round-robin here, switching for every
1998 * BLK_MQ_CPU_WORK_BATCH queued items.
1999 */
2000static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2001{
7bed4595 2002 bool tried = false;
476f8c98 2003 int next_cpu = hctx->next_cpu;
7bed4595 2004
b657d7e6
CH
2005 if (hctx->queue->nr_hw_queues == 1)
2006 return WORK_CPU_UNBOUND;
506e931f
JA
2007
2008 if (--hctx->next_cpu_batch <= 0) {
7bed4595 2009select_cpu:
476f8c98 2010 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
20e4d813 2011 cpu_online_mask);
506e931f 2012 if (next_cpu >= nr_cpu_ids)
f82ddf19 2013 next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
2014 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2015 }
2016
7bed4595
ML
2017 /*
2018 * Do unbound schedule if we can't find a online CPU for this hctx,
2019 * and it should only happen in the path of handling CPU DEAD.
2020 */
476f8c98 2021 if (!cpu_online(next_cpu)) {
7bed4595
ML
2022 if (!tried) {
2023 tried = true;
2024 goto select_cpu;
2025 }
2026
2027 /*
2028 * Make sure to re-select CPU next time once after CPUs
2029 * in hctx->cpumask become online again.
2030 */
476f8c98 2031 hctx->next_cpu = next_cpu;
7bed4595
ML
2032 hctx->next_cpu_batch = 1;
2033 return WORK_CPU_UNBOUND;
2034 }
476f8c98
ML
2035
2036 hctx->next_cpu = next_cpu;
2037 return next_cpu;
506e931f
JA
2038}
2039
105663f7
AA
2040/**
2041 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2042 * @hctx: Pointer to the hardware queue to run.
2043 * @async: If we want to run the queue asynchronously.
fa94ba8a 2044 * @msecs: Milliseconds of delay to wait before running the queue.
105663f7
AA
2045 *
2046 * If !@async, try to run the queue now. Else, run the queue asynchronously and
2047 * with a delay of @msecs.
2048 */
7587a5ae
BVA
2049static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2050 unsigned long msecs)
320ae51f 2051{
5435c023 2052 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
2053 return;
2054
1b792f2f 2055 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
2056 int cpu = get_cpu();
2057 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 2058 __blk_mq_run_hw_queue(hctx);
2a90d4aa 2059 put_cpu();
398205b8
PB
2060 return;
2061 }
e4043dcf 2062
2a90d4aa 2063 put_cpu();
e4043dcf 2064 }
398205b8 2065
ae943d20
BVA
2066 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2067 msecs_to_jiffies(msecs));
7587a5ae
BVA
2068}
2069
105663f7
AA
2070/**
2071 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2072 * @hctx: Pointer to the hardware queue to run.
fa94ba8a 2073 * @msecs: Milliseconds of delay to wait before running the queue.
105663f7
AA
2074 *
2075 * Run a hardware queue asynchronously with a delay of @msecs.
2076 */
7587a5ae
BVA
2077void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2078{
2079 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2080}
2081EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2082
105663f7
AA
2083/**
2084 * blk_mq_run_hw_queue - Start to run a hardware queue.
2085 * @hctx: Pointer to the hardware queue to run.
2086 * @async: If we want to run the queue asynchronously.
2087 *
2088 * Check if the request queue is not in a quiesced state and if there are
2089 * pending requests to be sent. If this is true, run the queue to send requests
2090 * to hardware.
2091 */
626fb735 2092void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 2093{
24f5a90f
ML
2094 bool need_run;
2095
2096 /*
2097 * When queue is quiesced, we may be switching io scheduler, or
2098 * updating nr_hw_queues, or other things, and we can't run queue
2099 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2100 *
2101 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2102 * quiesced.
2103 */
41adf531 2104 __blk_mq_run_dispatch_ops(hctx->queue, false,
2a904d00
ML
2105 need_run = !blk_queue_quiesced(hctx->queue) &&
2106 blk_mq_hctx_has_pending(hctx));
24f5a90f 2107
626fb735 2108 if (need_run)
79f720a7 2109 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f 2110}
5b727272 2111EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 2112
b6e68ee8
JK
2113/*
2114 * Is the request queue handled by an IO scheduler that does not respect
2115 * hardware queues when dispatching?
2116 */
2117static bool blk_mq_has_sqsched(struct request_queue *q)
2118{
2119 struct elevator_queue *e = q->elevator;
2120
2121 if (e && e->type->ops.dispatch_request &&
2122 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2123 return true;
2124 return false;
2125}
2126
2127/*
2128 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2129 * scheduler.
2130 */
2131static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2132{
5d05426e 2133 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
b6e68ee8
JK
2134 /*
2135 * If the IO scheduler does not respect hardware queues when
2136 * dispatching, we just don't bother with multiple HW queues and
2137 * dispatch from hctx for the current CPU since running multiple queues
2138 * just causes lock contention inside the scheduler and pointless cache
2139 * bouncing.
2140 */
5d05426e
ML
2141 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, 0, ctx);
2142
b6e68ee8
JK
2143 if (!blk_mq_hctx_stopped(hctx))
2144 return hctx;
2145 return NULL;
2146}
2147
105663f7 2148/**
24f7bb88 2149 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
105663f7
AA
2150 * @q: Pointer to the request queue to run.
2151 * @async: If we want to run the queue asynchronously.
2152 */
b94ec296 2153void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f 2154{
b6e68ee8 2155 struct blk_mq_hw_ctx *hctx, *sq_hctx;
4f481208 2156 unsigned long i;
320ae51f 2157
b6e68ee8
JK
2158 sq_hctx = NULL;
2159 if (blk_mq_has_sqsched(q))
2160 sq_hctx = blk_mq_get_sq_hctx(q);
320ae51f 2161 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 2162 if (blk_mq_hctx_stopped(hctx))
320ae51f 2163 continue;
b6e68ee8
JK
2164 /*
2165 * Dispatch from this hctx either if there's no hctx preferred
2166 * by IO scheduler or if it has requests that bypass the
2167 * scheduler.
2168 */
2169 if (!sq_hctx || sq_hctx == hctx ||
2170 !list_empty_careful(&hctx->dispatch))
2171 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
2172 }
2173}
b94ec296 2174EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 2175
b9151e7b
DA
2176/**
2177 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2178 * @q: Pointer to the request queue to run.
fa94ba8a 2179 * @msecs: Milliseconds of delay to wait before running the queues.
b9151e7b
DA
2180 */
2181void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2182{
b6e68ee8 2183 struct blk_mq_hw_ctx *hctx, *sq_hctx;
4f481208 2184 unsigned long i;
b9151e7b 2185
b6e68ee8
JK
2186 sq_hctx = NULL;
2187 if (blk_mq_has_sqsched(q))
2188 sq_hctx = blk_mq_get_sq_hctx(q);
b9151e7b
DA
2189 queue_for_each_hw_ctx(q, hctx, i) {
2190 if (blk_mq_hctx_stopped(hctx))
2191 continue;
8f5fea65
DJ
2192 /*
2193 * If there is already a run_work pending, leave the
2194 * pending delay untouched. Otherwise, a hctx can stall
2195 * if another hctx is re-delaying the other's work
2196 * before the work executes.
2197 */
2198 if (delayed_work_pending(&hctx->run_work))
2199 continue;
b6e68ee8
JK
2200 /*
2201 * Dispatch from this hctx either if there's no hctx preferred
2202 * by IO scheduler or if it has requests that bypass the
2203 * scheduler.
2204 */
2205 if (!sq_hctx || sq_hctx == hctx ||
2206 !list_empty_careful(&hctx->dispatch))
2207 blk_mq_delay_run_hw_queue(hctx, msecs);
b9151e7b
DA
2208 }
2209}
2210EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2211
fd001443
BVA
2212/**
2213 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2214 * @q: request queue.
2215 *
2216 * The caller is responsible for serializing this function against
2217 * blk_mq_{start,stop}_hw_queue().
2218 */
2219bool blk_mq_queue_stopped(struct request_queue *q)
2220{
2221 struct blk_mq_hw_ctx *hctx;
4f481208 2222 unsigned long i;
fd001443
BVA
2223
2224 queue_for_each_hw_ctx(q, hctx, i)
2225 if (blk_mq_hctx_stopped(hctx))
2226 return true;
2227
2228 return false;
2229}
2230EXPORT_SYMBOL(blk_mq_queue_stopped);
2231
39a70c76
ML
2232/*
2233 * This function is often used for pausing .queue_rq() by driver when
2234 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 2235 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
2236 *
2237 * We do not guarantee that dispatch can be drained or blocked
2238 * after blk_mq_stop_hw_queue() returns. Please use
2239 * blk_mq_quiesce_queue() for that requirement.
2240 */
2719aa21
JA
2241void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2242{
641a9ed6 2243 cancel_delayed_work(&hctx->run_work);
280d45f6 2244
641a9ed6 2245 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 2246}
641a9ed6 2247EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 2248
39a70c76
ML
2249/*
2250 * This function is often used for pausing .queue_rq() by driver when
2251 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 2252 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
2253 *
2254 * We do not guarantee that dispatch can be drained or blocked
2255 * after blk_mq_stop_hw_queues() returns. Please use
2256 * blk_mq_quiesce_queue() for that requirement.
2257 */
2719aa21
JA
2258void blk_mq_stop_hw_queues(struct request_queue *q)
2259{
641a9ed6 2260 struct blk_mq_hw_ctx *hctx;
4f481208 2261 unsigned long i;
641a9ed6
ML
2262
2263 queue_for_each_hw_ctx(q, hctx, i)
2264 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
2265}
2266EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2267
320ae51f
JA
2268void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2269{
2270 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 2271
0ffbce80 2272 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
2273}
2274EXPORT_SYMBOL(blk_mq_start_hw_queue);
2275
2f268556
CH
2276void blk_mq_start_hw_queues(struct request_queue *q)
2277{
2278 struct blk_mq_hw_ctx *hctx;
4f481208 2279 unsigned long i;
2f268556
CH
2280
2281 queue_for_each_hw_ctx(q, hctx, i)
2282 blk_mq_start_hw_queue(hctx);
2283}
2284EXPORT_SYMBOL(blk_mq_start_hw_queues);
2285
ae911c5e
JA
2286void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2287{
2288 if (!blk_mq_hctx_stopped(hctx))
2289 return;
2290
2291 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2292 blk_mq_run_hw_queue(hctx, async);
2293}
2294EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2295
1b4a3258 2296void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
2297{
2298 struct blk_mq_hw_ctx *hctx;
4f481208 2299 unsigned long i;
320ae51f 2300
ae911c5e
JA
2301 queue_for_each_hw_ctx(q, hctx, i)
2302 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
2303}
2304EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2305
70f4db63 2306static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
2307{
2308 struct blk_mq_hw_ctx *hctx;
2309
9f993737 2310 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 2311
21c6e939 2312 /*
15fe8a90 2313 * If we are stopped, don't run the queue.
21c6e939 2314 */
0841031a 2315 if (blk_mq_hctx_stopped(hctx))
0196d6b4 2316 return;
7587a5ae
BVA
2317
2318 __blk_mq_run_hw_queue(hctx);
2319}
2320
cfd0c552 2321static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
2322 struct request *rq,
2323 bool at_head)
320ae51f 2324{
e57690fe 2325 struct blk_mq_ctx *ctx = rq->mq_ctx;
c16d6b5a 2326 enum hctx_type type = hctx->type;
e57690fe 2327
7b607814
BVA
2328 lockdep_assert_held(&ctx->lock);
2329
a54895fa 2330 trace_block_rq_insert(rq);
01b983c9 2331
72a0a36e 2332 if (at_head)
c16d6b5a 2333 list_add(&rq->queuelist, &ctx->rq_lists[type]);
72a0a36e 2334 else
c16d6b5a 2335 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
cfd0c552 2336}
4bb659b1 2337
2c3ad667
JA
2338void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2339 bool at_head)
cfd0c552
ML
2340{
2341 struct blk_mq_ctx *ctx = rq->mq_ctx;
2342
7b607814
BVA
2343 lockdep_assert_held(&ctx->lock);
2344
e57690fe 2345 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 2346 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
2347}
2348
105663f7
AA
2349/**
2350 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2351 * @rq: Pointer to request to be inserted.
26bfeb26 2352 * @at_head: true if the request should be inserted at the head of the list.
105663f7
AA
2353 * @run_queue: If we should run the hardware queue after inserting the request.
2354 *
157f377b
JA
2355 * Should only be used carefully, when the caller knows we want to
2356 * bypass a potential IO scheduler on the target device.
2357 */
01e99aec
ML
2358void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2359 bool run_queue)
157f377b 2360{
ea4f995e 2361 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
157f377b
JA
2362
2363 spin_lock(&hctx->lock);
01e99aec
ML
2364 if (at_head)
2365 list_add(&rq->queuelist, &hctx->dispatch);
2366 else
2367 list_add_tail(&rq->queuelist, &hctx->dispatch);
157f377b
JA
2368 spin_unlock(&hctx->lock);
2369
b0850297
ML
2370 if (run_queue)
2371 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
2372}
2373
bd166ef1
JA
2374void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2375 struct list_head *list)
320ae51f
JA
2376
2377{
3f0cedc7 2378 struct request *rq;
c16d6b5a 2379 enum hctx_type type = hctx->type;
3f0cedc7 2380
320ae51f
JA
2381 /*
2382 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2383 * offline now
2384 */
3f0cedc7 2385 list_for_each_entry(rq, list, queuelist) {
e57690fe 2386 BUG_ON(rq->mq_ctx != ctx);
a54895fa 2387 trace_block_rq_insert(rq);
320ae51f 2388 }
3f0cedc7
ML
2389
2390 spin_lock(&ctx->lock);
c16d6b5a 2391 list_splice_tail_init(list, &ctx->rq_lists[type]);
cfd0c552 2392 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 2393 spin_unlock(&ctx->lock);
320ae51f
JA
2394}
2395
dc5fc361
JA
2396static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2397 bool from_schedule)
320ae51f 2398{
dc5fc361
JA
2399 if (hctx->queue->mq_ops->commit_rqs) {
2400 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2401 hctx->queue->mq_ops->commit_rqs(hctx);
2402 }
2403 *queued = 0;
2404}
320ae51f 2405
14ccb66b
CH
2406static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2407 unsigned int nr_segs)
320ae51f 2408{
93f221ae
EB
2409 int err;
2410
f924cdde
CH
2411 if (bio->bi_opf & REQ_RAHEAD)
2412 rq->cmd_flags |= REQ_FAILFAST_MASK;
2413
2414 rq->__sector = bio->bi_iter.bi_sector;
14ccb66b 2415 blk_rq_bio_prep(rq, bio, nr_segs);
93f221ae
EB
2416
2417 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2418 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2419 WARN_ON_ONCE(err);
4b570521 2420
b5af37ab 2421 blk_account_io_start(rq);
320ae51f
JA
2422}
2423
0f95549c 2424static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
3e08773c 2425 struct request *rq, bool last)
f984df1f 2426{
f984df1f 2427 struct request_queue *q = rq->q;
f984df1f
SL
2428 struct blk_mq_queue_data bd = {
2429 .rq = rq,
be94f058 2430 .last = last,
f984df1f 2431 };
f06345ad 2432 blk_status_t ret;
0f95549c 2433
0f95549c
MS
2434 /*
2435 * For OK queue, we are done. For error, caller may kill it.
2436 * Any other error (busy), just add it to our list as we
2437 * previously would have done.
2438 */
2439 ret = q->mq_ops->queue_rq(hctx, &bd);
2440 switch (ret) {
2441 case BLK_STS_OK:
6ce3dd6e 2442 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
2443 break;
2444 case BLK_STS_RESOURCE:
86ff7c2a 2445 case BLK_STS_DEV_RESOURCE:
6ce3dd6e 2446 blk_mq_update_dispatch_busy(hctx, true);
0f95549c
MS
2447 __blk_mq_requeue_request(rq);
2448 break;
2449 default:
6ce3dd6e 2450 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
2451 break;
2452 }
2453
2454 return ret;
2455}
2456
fd9c40f6 2457static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
0f95549c 2458 struct request *rq,
fd9c40f6 2459 bool bypass_insert, bool last)
0f95549c
MS
2460{
2461 struct request_queue *q = rq->q;
d964f04a 2462 bool run_queue = true;
2a5a24aa 2463 int budget_token;
d964f04a 2464
23d4ee19 2465 /*
fd9c40f6 2466 * RCU or SRCU read lock is needed before checking quiesced flag.
23d4ee19 2467 *
fd9c40f6
BVA
2468 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2469 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2470 * and avoid driver to try to dispatch again.
23d4ee19 2471 */
fd9c40f6 2472 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a 2473 run_queue = false;
fd9c40f6
BVA
2474 bypass_insert = false;
2475 goto insert;
d964f04a 2476 }
f984df1f 2477
2ff0682d 2478 if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
fd9c40f6 2479 goto insert;
2253efc8 2480
2a5a24aa
ML
2481 budget_token = blk_mq_get_dispatch_budget(q);
2482 if (budget_token < 0)
fd9c40f6 2483 goto insert;
bd166ef1 2484
2a5a24aa
ML
2485 blk_mq_set_rq_budget_token(rq, budget_token);
2486
8ab6bb9e 2487 if (!blk_mq_get_driver_tag(rq)) {
2a5a24aa 2488 blk_mq_put_dispatch_budget(q, budget_token);
fd9c40f6 2489 goto insert;
88022d72 2490 }
de148297 2491
3e08773c 2492 return __blk_mq_issue_directly(hctx, rq, last);
fd9c40f6
BVA
2493insert:
2494 if (bypass_insert)
2495 return BLK_STS_RESOURCE;
2496
db03f88f
ML
2497 blk_mq_sched_insert_request(rq, false, run_queue, false);
2498
fd9c40f6
BVA
2499 return BLK_STS_OK;
2500}
2501
105663f7
AA
2502/**
2503 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2504 * @hctx: Pointer of the associated hardware queue.
2505 * @rq: Pointer to request to be sent.
105663f7
AA
2506 *
2507 * If the device has enough resources to accept a new request now, send the
2508 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2509 * we can try send it another time in the future. Requests inserted at this
2510 * queue have higher priority.
2511 */
fd9c40f6 2512static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
3e08773c 2513 struct request *rq)
fd9c40f6 2514{
2a904d00
ML
2515 blk_status_t ret =
2516 __blk_mq_try_issue_directly(hctx, rq, false, true);
fd9c40f6 2517
fd9c40f6 2518 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
01e99aec 2519 blk_mq_request_bypass_insert(rq, false, true);
fd9c40f6
BVA
2520 else if (ret != BLK_STS_OK)
2521 blk_mq_end_request(rq, ret);
fd9c40f6
BVA
2522}
2523
06c8c691 2524static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
fd9c40f6 2525{
4cafe86c 2526 return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
5eb6126e
CH
2527}
2528
b84c5b50
CH
2529static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2530{
2531 struct blk_mq_hw_ctx *hctx = NULL;
2532 struct request *rq;
2533 int queued = 0;
2534 int errors = 0;
2535
2536 while ((rq = rq_list_pop(&plug->mq_list))) {
2537 bool last = rq_list_empty(plug->mq_list);
2538 blk_status_t ret;
2539
2540 if (hctx != rq->mq_hctx) {
2541 if (hctx)
2542 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2543 hctx = rq->mq_hctx;
2544 }
2545
2546 ret = blk_mq_request_issue_directly(rq, last);
2547 switch (ret) {
2548 case BLK_STS_OK:
2549 queued++;
2550 break;
2551 case BLK_STS_RESOURCE:
2552 case BLK_STS_DEV_RESOURCE:
2553 blk_mq_request_bypass_insert(rq, false, last);
2554 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2555 return;
2556 default:
2557 blk_mq_end_request(rq, ret);
2558 errors++;
2559 break;
2560 }
2561 }
2562
2563 /*
2564 * If we didn't flush the entire list, we could have told the driver
2565 * there was more coming, but that turned out to be a lie.
2566 */
2567 if (errors)
2568 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2569}
2570
518579a9
KB
2571static void __blk_mq_flush_plug_list(struct request_queue *q,
2572 struct blk_plug *plug)
2573{
2574 if (blk_queue_quiesced(q))
2575 return;
2576 q->mq_ops->queue_rqs(&plug->mq_list);
2577}
2578
26fed4ac
JA
2579static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2580{
2581 struct blk_mq_hw_ctx *this_hctx = NULL;
2582 struct blk_mq_ctx *this_ctx = NULL;
2583 struct request *requeue_list = NULL;
2584 unsigned int depth = 0;
2585 LIST_HEAD(list);
2586
2587 do {
2588 struct request *rq = rq_list_pop(&plug->mq_list);
2589
2590 if (!this_hctx) {
2591 this_hctx = rq->mq_hctx;
2592 this_ctx = rq->mq_ctx;
2593 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2594 rq_list_add(&requeue_list, rq);
2595 continue;
2596 }
2597 list_add_tail(&rq->queuelist, &list);
2598 depth++;
2599 } while (!rq_list_empty(plug->mq_list));
2600
2601 plug->mq_list = requeue_list;
2602 trace_block_unplug(this_hctx->queue, depth, !from_sched);
2603 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2604}
2605
b84c5b50
CH
2606void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2607{
3c67d44d 2608 struct request *rq;
b84c5b50
CH
2609
2610 if (rq_list_empty(plug->mq_list))
2611 return;
2612 plug->rq_count = 0;
2613
2614 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
3c67d44d
JA
2615 struct request_queue *q;
2616
2617 rq = rq_list_peek(&plug->mq_list);
2618 q = rq->q;
2619
2620 /*
2621 * Peek first request and see if we have a ->queue_rqs() hook.
2622 * If we do, we can dispatch the whole plug list in one go. We
2623 * already know at this point that all requests belong to the
2624 * same queue, caller must ensure that's the case.
2625 *
2626 * Since we pass off the full list to the driver at this point,
2627 * we do not increment the active request count for the queue.
2628 * Bypass shared tags for now because of that.
2629 */
2630 if (q->mq_ops->queue_rqs &&
2631 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2632 blk_mq_run_dispatch_ops(q,
518579a9 2633 __blk_mq_flush_plug_list(q, plug));
3c67d44d
JA
2634 if (rq_list_empty(plug->mq_list))
2635 return;
2636 }
73f3760e
ML
2637
2638 blk_mq_run_dispatch_ops(q,
4cafe86c 2639 blk_mq_plug_issue_direct(plug, false));
b84c5b50
CH
2640 if (rq_list_empty(plug->mq_list))
2641 return;
2642 }
2643
b84c5b50 2644 do {
26fed4ac 2645 blk_mq_dispatch_plug_list(plug, from_schedule);
b84c5b50 2646 } while (!rq_list_empty(plug->mq_list));
b84c5b50
CH
2647}
2648
6ce3dd6e
ML
2649void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2650 struct list_head *list)
2651{
536167d4 2652 int queued = 0;
632bfb63 2653 int errors = 0;
536167d4 2654
6ce3dd6e 2655 while (!list_empty(list)) {
fd9c40f6 2656 blk_status_t ret;
6ce3dd6e
ML
2657 struct request *rq = list_first_entry(list, struct request,
2658 queuelist);
2659
2660 list_del_init(&rq->queuelist);
fd9c40f6
BVA
2661 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2662 if (ret != BLK_STS_OK) {
2663 if (ret == BLK_STS_RESOURCE ||
2664 ret == BLK_STS_DEV_RESOURCE) {
01e99aec 2665 blk_mq_request_bypass_insert(rq, false,
c616cbee 2666 list_empty(list));
fd9c40f6
BVA
2667 break;
2668 }
2669 blk_mq_end_request(rq, ret);
632bfb63 2670 errors++;
536167d4
KB
2671 } else
2672 queued++;
6ce3dd6e 2673 }
d666ba98
JA
2674
2675 /*
2676 * If we didn't flush the entire list, we could have told
2677 * the driver there was more coming, but that turned out to
2678 * be a lie.
2679 */
632bfb63 2680 if ((!list_empty(list) || errors) &&
2681 hctx->queue->mq_ops->commit_rqs && queued)
d666ba98 2682 hctx->queue->mq_ops->commit_rqs(hctx);
6ce3dd6e
ML
2683}
2684
7f2a6a69 2685/*
ba0ffdd8 2686 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
7f2a6a69
SL
2687 * queues. This is important for md arrays to benefit from merging
2688 * requests.
2689 */
2690static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2691{
2692 if (plug->multiple_queues)
ba0ffdd8 2693 return BLK_MAX_REQUEST_COUNT * 2;
7f2a6a69
SL
2694 return BLK_MAX_REQUEST_COUNT;
2695}
2696
1e9c2303
CH
2697static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2698{
2699 struct request *last = rq_list_peek(&plug->mq_list);
2700
2701 if (!plug->rq_count) {
2702 trace_block_plug(rq->q);
2703 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
2704 (!blk_queue_nomerges(rq->q) &&
2705 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2706 blk_mq_flush_plug_list(plug, false);
2707 trace_block_plug(rq->q);
2708 }
2709
2710 if (!plug->multiple_queues && last && last->q != rq->q)
2711 plug->multiple_queues = true;
2712 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2713 plug->has_elevator = true;
2714 rq->rq_next = NULL;
2715 rq_list_add(&plug->mq_list, rq);
2716 plug->rq_count++;
2717}
2718
b131f201 2719static bool blk_mq_attempt_bio_merge(struct request_queue *q,
0c5bcc92 2720 struct bio *bio, unsigned int nr_segs)
900e0807
JA
2721{
2722 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
0c5bcc92 2723 if (blk_attempt_plug_merge(q, bio, nr_segs))
900e0807
JA
2724 return true;
2725 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2726 return true;
2727 }
2728 return false;
2729}
2730
71539717
JA
2731static struct request *blk_mq_get_new_requests(struct request_queue *q,
2732 struct blk_plug *plug,
0a5aa8d1
SK
2733 struct bio *bio,
2734 unsigned int nsegs)
71539717
JA
2735{
2736 struct blk_mq_alloc_data data = {
2737 .q = q,
2738 .nr_tags = 1,
9d497e29 2739 .cmd_flags = bio->bi_opf,
71539717
JA
2740 };
2741 struct request *rq;
2742
5b13bc8a 2743 if (unlikely(bio_queue_enter(bio)))
b637108a 2744 return NULL;
900e0807 2745
0a5aa8d1
SK
2746 if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2747 goto queue_exit;
2748
2749 rq_qos_throttle(q, bio);
2750
71539717
JA
2751 if (plug) {
2752 data.nr_tags = plug->nr_ios;
2753 plug->nr_ios = 1;
2754 data.cached_rq = &plug->cached_rq;
2755 }
2756
2757 rq = __blk_mq_alloc_requests(&data);
373b5416
JA
2758 if (rq)
2759 return rq;
71539717
JA
2760 rq_qos_cleanup(q, bio);
2761 if (bio->bi_opf & REQ_NOWAIT)
2762 bio_wouldblock_error(bio);
0a5aa8d1 2763queue_exit:
5b13bc8a 2764 blk_queue_exit(q);
71539717
JA
2765 return NULL;
2766}
2767
5b13bc8a 2768static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
0a5aa8d1 2769 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
71539717 2770{
b637108a 2771 struct request *rq;
b637108a 2772
5b13bc8a
CH
2773 if (!plug)
2774 return NULL;
2775 rq = rq_list_peek(&plug->cached_rq);
2776 if (!rq || rq->q != q)
2777 return NULL;
71539717 2778
0a5aa8d1
SK
2779 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2780 *bio = NULL;
2781 return NULL;
2782 }
2783
2784 rq_qos_throttle(q, *bio);
2785
2786 if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
5b13bc8a 2787 return NULL;
0a5aa8d1 2788 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
5b13bc8a
CH
2789 return NULL;
2790
0a5aa8d1 2791 rq->cmd_flags = (*bio)->bi_opf;
5b13bc8a
CH
2792 plug->cached_rq = rq_list_next(rq);
2793 INIT_LIST_HEAD(&rq->queuelist);
5b13bc8a 2794 return rq;
71539717
JA
2795}
2796
105663f7 2797/**
c62b37d9 2798 * blk_mq_submit_bio - Create and send a request to block device.
105663f7
AA
2799 * @bio: Bio pointer.
2800 *
2801 * Builds up a request structure from @q and @bio and send to the device. The
2802 * request may not be queued directly to hardware if:
2803 * * This request can be merged with another one
2804 * * We want to place request at plug queue for possible future merging
2805 * * There is an IO scheduler active at this queue
2806 *
2807 * It will not queue the request if there is an error with the bio, or at the
2808 * request creation.
105663f7 2809 */
3e08773c 2810void blk_mq_submit_bio(struct bio *bio)
07068d5b 2811{
ed6cddef 2812 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
5b13bc8a 2813 struct blk_plug *plug = blk_mq_plug(q, bio);
ef295ecf 2814 const int is_sync = op_is_sync(bio->bi_opf);
07068d5b 2815 struct request *rq;
abd45c15 2816 unsigned int nr_segs = 1;
a892c8d5 2817 blk_status_t ret;
07068d5b
JA
2818
2819 blk_queue_bounce(q, &bio);
abd45c15
JA
2820 if (blk_may_split(q, bio))
2821 __blk_queue_split(q, &bio, &nr_segs);
f36ea50c 2822
e23947bd 2823 if (!bio_integrity_prep(bio))
900e0807 2824 return;
87760e5e 2825
0a5aa8d1 2826 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
5b13bc8a 2827 if (!rq) {
0a5aa8d1
SK
2828 if (!bio)
2829 return;
2830 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
5b13bc8a
CH
2831 if (unlikely(!rq))
2832 return;
2833 }
87760e5e 2834
e8a676d6 2835 trace_block_getrq(bio);
d6f1dda2 2836
c1c80384 2837 rq_qos_track(q, rq, bio);
07068d5b 2838
970d168d
BVA
2839 blk_mq_bio_to_request(rq, bio, nr_segs);
2840
a892c8d5
ST
2841 ret = blk_crypto_init_request(rq);
2842 if (ret != BLK_STS_OK) {
2843 bio->bi_status = ret;
2844 bio_endio(bio);
2845 blk_mq_free_request(rq);
3e08773c 2846 return;
a892c8d5
ST
2847 }
2848
2b504bd4
ML
2849 if (op_is_flush(bio->bi_opf)) {
2850 blk_insert_flush(rq);
d92ca9d8 2851 return;
2b504bd4 2852 }
d92ca9d8 2853
1e9c2303 2854 if (plug)
ce5b009c 2855 blk_add_rq_to_plug(plug, rq);
1e9c2303
CH
2856 else if ((rq->rq_flags & RQF_ELV) ||
2857 (rq->mq_hctx->dispatch_busy &&
2858 (q->nr_hw_queues == 1 || !is_sync)))
a12de1d4 2859 blk_mq_sched_insert_request(rq, false, true, true);
1e9c2303 2860 else
bcc330f4 2861 blk_mq_run_dispatch_ops(rq->q,
2a904d00 2862 blk_mq_try_issue_directly(rq->mq_hctx, rq));
320ae51f
JA
2863}
2864
248c7933 2865#ifdef CONFIG_BLK_MQ_STACKING
06c8c691 2866/**
a5efda3c 2867 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
a5efda3c 2868 * @rq: the request being queued
06c8c691 2869 */
28db4711 2870blk_status_t blk_insert_cloned_request(struct request *rq)
06c8c691 2871{
28db4711 2872 struct request_queue *q = rq->q;
06c8c691 2873 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
a5efda3c 2874 blk_status_t ret;
06c8c691
CH
2875
2876 if (blk_rq_sectors(rq) > max_sectors) {
2877 /*
2878 * SCSI device does not have a good way to return if
2879 * Write Same/Zero is actually supported. If a device rejects
2880 * a non-read/write command (discard, write same,etc.) the
2881 * low-level device driver will set the relevant queue limit to
2882 * 0 to prevent blk-lib from issuing more of the offending
2883 * operations. Commands queued prior to the queue limit being
2884 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2885 * errors being propagated to upper layers.
2886 */
2887 if (max_sectors == 0)
2888 return BLK_STS_NOTSUPP;
2889
2890 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2891 __func__, blk_rq_sectors(rq), max_sectors);
2892 return BLK_STS_IOERR;
2893 }
2894
2895 /*
2896 * The queue settings related to segment counting may differ from the
2897 * original queue.
2898 */
2899 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2900 if (rq->nr_phys_segments > queue_max_segments(q)) {
2901 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2902 __func__, rq->nr_phys_segments, queue_max_segments(q));
2903 return BLK_STS_IOERR;
2904 }
2905
28db4711 2906 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
06c8c691
CH
2907 return BLK_STS_IOERR;
2908
2909 if (blk_crypto_insert_cloned_request(rq))
2910 return BLK_STS_IOERR;
2911
2912 blk_account_io_start(rq);
2913
2914 /*
2915 * Since we have a scheduler attached on the top device,
2916 * bypass a potential scheduler on the bottom device for
2917 * insert.
2918 */
28db4711 2919 blk_mq_run_dispatch_ops(q,
4cafe86c 2920 ret = blk_mq_request_issue_directly(rq, true));
592ee119
YK
2921 if (ret)
2922 blk_account_io_done(rq, ktime_get_ns());
4cafe86c 2923 return ret;
06c8c691
CH
2924}
2925EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2926
2927/**
2928 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2929 * @rq: the clone request to be cleaned up
2930 *
2931 * Description:
2932 * Free all bios in @rq for a cloned request.
2933 */
2934void blk_rq_unprep_clone(struct request *rq)
2935{
2936 struct bio *bio;
2937
2938 while ((bio = rq->bio) != NULL) {
2939 rq->bio = bio->bi_next;
2940
2941 bio_put(bio);
2942 }
2943}
2944EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2945
2946/**
2947 * blk_rq_prep_clone - Helper function to setup clone request
2948 * @rq: the request to be setup
2949 * @rq_src: original request to be cloned
2950 * @bs: bio_set that bios for clone are allocated from
2951 * @gfp_mask: memory allocation mask for bio
2952 * @bio_ctr: setup function to be called for each clone bio.
2953 * Returns %0 for success, non %0 for failure.
2954 * @data: private data to be passed to @bio_ctr
2955 *
2956 * Description:
2957 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2958 * Also, pages which the original bios are pointing to are not copied
2959 * and the cloned bios just point same pages.
2960 * So cloned bios must be completed before original bios, which means
2961 * the caller must complete @rq before @rq_src.
2962 */
2963int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2964 struct bio_set *bs, gfp_t gfp_mask,
2965 int (*bio_ctr)(struct bio *, struct bio *, void *),
2966 void *data)
2967{
2968 struct bio *bio, *bio_src;
2969
2970 if (!bs)
2971 bs = &fs_bio_set;
2972
2973 __rq_for_each_bio(bio_src, rq_src) {
abfc426d
CH
2974 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2975 bs);
06c8c691
CH
2976 if (!bio)
2977 goto free_and_out;
2978
2979 if (bio_ctr && bio_ctr(bio, bio_src, data))
2980 goto free_and_out;
2981
2982 if (rq->bio) {
2983 rq->biotail->bi_next = bio;
2984 rq->biotail = bio;
2985 } else {
2986 rq->bio = rq->biotail = bio;
2987 }
2988 bio = NULL;
2989 }
2990
2991 /* Copy attributes of the original request to the clone request. */
2992 rq->__sector = blk_rq_pos(rq_src);
2993 rq->__data_len = blk_rq_bytes(rq_src);
2994 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2995 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2996 rq->special_vec = rq_src->special_vec;
2997 }
2998 rq->nr_phys_segments = rq_src->nr_phys_segments;
2999 rq->ioprio = rq_src->ioprio;
3000
3001 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3002 goto free_and_out;
3003
3004 return 0;
3005
3006free_and_out:
3007 if (bio)
3008 bio_put(bio);
3009 blk_rq_unprep_clone(rq);
3010
3011 return -ENOMEM;
3012}
3013EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
248c7933 3014#endif /* CONFIG_BLK_MQ_STACKING */
06c8c691 3015
f2b8f3ce
CH
3016/*
3017 * Steal bios from a request and add them to a bio list.
3018 * The request must not have been partially completed before.
3019 */
3020void blk_steal_bios(struct bio_list *list, struct request *rq)
3021{
3022 if (rq->bio) {
3023 if (list->tail)
3024 list->tail->bi_next = rq->bio;
3025 else
3026 list->head = rq->bio;
3027 list->tail = rq->biotail;
3028
3029 rq->bio = NULL;
3030 rq->biotail = NULL;
3031 }
3032
3033 rq->__data_len = 0;
3034}
3035EXPORT_SYMBOL_GPL(blk_steal_bios);
3036
bd63141d
ML
3037static size_t order_to_size(unsigned int order)
3038{
3039 return (size_t)PAGE_SIZE << order;
3040}
3041
3042/* called before freeing request pool in @tags */
f32e4eaf
JG
3043static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3044 struct blk_mq_tags *tags)
bd63141d 3045{
bd63141d
ML
3046 struct page *page;
3047 unsigned long flags;
3048
4f245d5b
JG
3049 /* There is no need to clear a driver tags own mapping */
3050 if (drv_tags == tags)
3051 return;
3052
bd63141d
ML
3053 list_for_each_entry(page, &tags->page_list, lru) {
3054 unsigned long start = (unsigned long)page_address(page);
3055 unsigned long end = start + order_to_size(page->private);
3056 int i;
3057
f32e4eaf 3058 for (i = 0; i < drv_tags->nr_tags; i++) {
bd63141d
ML
3059 struct request *rq = drv_tags->rqs[i];
3060 unsigned long rq_addr = (unsigned long)rq;
3061
3062 if (rq_addr >= start && rq_addr < end) {
0a467d0f 3063 WARN_ON_ONCE(req_ref_read(rq) != 0);
bd63141d
ML
3064 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3065 }
3066 }
3067 }
3068
3069 /*
3070 * Wait until all pending iteration is done.
3071 *
3072 * Request reference is cleared and it is guaranteed to be observed
3073 * after the ->lock is released.
3074 */
3075 spin_lock_irqsave(&drv_tags->lock, flags);
3076 spin_unlock_irqrestore(&drv_tags->lock, flags);
3077}
3078
cc71a6f4
JA
3079void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3080 unsigned int hctx_idx)
95363efd 3081{
f32e4eaf 3082 struct blk_mq_tags *drv_tags;
e9b267d9 3083 struct page *page;
320ae51f 3084
e02657ea
ML
3085 if (list_empty(&tags->page_list))
3086 return;
3087
079a2e3e
JG
3088 if (blk_mq_is_shared_tags(set->flags))
3089 drv_tags = set->shared_tags;
e155b0c2
JG
3090 else
3091 drv_tags = set->tags[hctx_idx];
f32e4eaf 3092
65de57bb 3093 if (tags->static_rqs && set->ops->exit_request) {
e9b267d9 3094 int i;
320ae51f 3095
24d2f903 3096 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
3097 struct request *rq = tags->static_rqs[i];
3098
3099 if (!rq)
e9b267d9 3100 continue;
d6296d39 3101 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 3102 tags->static_rqs[i] = NULL;
e9b267d9 3103 }
320ae51f 3104 }
320ae51f 3105
f32e4eaf 3106 blk_mq_clear_rq_mapping(drv_tags, tags);
bd63141d 3107
24d2f903
CH
3108 while (!list_empty(&tags->page_list)) {
3109 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 3110 list_del_init(&page->lru);
f75782e4
CM
3111 /*
3112 * Remove kmemleak object previously allocated in
273938bf 3113 * blk_mq_alloc_rqs().
f75782e4
CM
3114 */
3115 kmemleak_free(page_address(page));
320ae51f
JA
3116 __free_pages(page, page->private);
3117 }
cc71a6f4 3118}
320ae51f 3119
e155b0c2 3120void blk_mq_free_rq_map(struct blk_mq_tags *tags)
cc71a6f4 3121{
24d2f903 3122 kfree(tags->rqs);
cc71a6f4 3123 tags->rqs = NULL;
2af8cbe3
JA
3124 kfree(tags->static_rqs);
3125 tags->static_rqs = NULL;
320ae51f 3126
e155b0c2 3127 blk_mq_free_tags(tags);
320ae51f
JA
3128}
3129
4d805131
ML
3130static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3131 unsigned int hctx_idx)
3132{
3133 int i;
3134
3135 for (i = 0; i < set->nr_maps; i++) {
3136 unsigned int start = set->map[i].queue_offset;
3137 unsigned int end = start + set->map[i].nr_queues;
3138
3139 if (hctx_idx >= start && hctx_idx < end)
3140 break;
3141 }
3142
3143 if (i >= set->nr_maps)
3144 i = HCTX_TYPE_DEFAULT;
3145
3146 return i;
3147}
3148
3149static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3150 unsigned int hctx_idx)
3151{
3152 enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3153
3154 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3155}
3156
63064be1
JG
3157static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3158 unsigned int hctx_idx,
3159 unsigned int nr_tags,
e155b0c2 3160 unsigned int reserved_tags)
320ae51f 3161{
4d805131 3162 int node = blk_mq_get_hctx_node(set, hctx_idx);
24d2f903 3163 struct blk_mq_tags *tags;
320ae51f 3164
59f082e4
SL
3165 if (node == NUMA_NO_NODE)
3166 node = set->numa_node;
3167
e155b0c2
JG
3168 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3169 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
3170 if (!tags)
3171 return NULL;
320ae51f 3172
590b5b7d 3173 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
36e1f3d1 3174 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 3175 node);
24d2f903 3176 if (!tags->rqs) {
e155b0c2 3177 blk_mq_free_tags(tags);
24d2f903
CH
3178 return NULL;
3179 }
320ae51f 3180
590b5b7d
KC
3181 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3182 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3183 node);
2af8cbe3
JA
3184 if (!tags->static_rqs) {
3185 kfree(tags->rqs);
e155b0c2 3186 blk_mq_free_tags(tags);
2af8cbe3
JA
3187 return NULL;
3188 }
3189
cc71a6f4
JA
3190 return tags;
3191}
3192
1d9bd516
TH
3193static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3194 unsigned int hctx_idx, int node)
3195{
3196 int ret;
3197
3198 if (set->ops->init_request) {
3199 ret = set->ops->init_request(set, rq, hctx_idx, node);
3200 if (ret)
3201 return ret;
3202 }
3203
12f5b931 3204 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1d9bd516
TH
3205 return 0;
3206}
3207
63064be1
JG
3208static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3209 struct blk_mq_tags *tags,
3210 unsigned int hctx_idx, unsigned int depth)
cc71a6f4
JA
3211{
3212 unsigned int i, j, entries_per_page, max_order = 4;
4d805131 3213 int node = blk_mq_get_hctx_node(set, hctx_idx);
cc71a6f4 3214 size_t rq_size, left;
59f082e4 3215
59f082e4
SL
3216 if (node == NUMA_NO_NODE)
3217 node = set->numa_node;
cc71a6f4
JA
3218
3219 INIT_LIST_HEAD(&tags->page_list);
3220
320ae51f
JA
3221 /*
3222 * rq_size is the size of the request plus driver payload, rounded
3223 * to the cacheline size
3224 */
24d2f903 3225 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 3226 cache_line_size());
cc71a6f4 3227 left = rq_size * depth;
320ae51f 3228
cc71a6f4 3229 for (i = 0; i < depth; ) {
320ae51f
JA
3230 int this_order = max_order;
3231 struct page *page;
3232 int to_do;
3233 void *p;
3234
b3a834b1 3235 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
3236 this_order--;
3237
3238 do {
59f082e4 3239 page = alloc_pages_node(node,
36e1f3d1 3240 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 3241 this_order);
320ae51f
JA
3242 if (page)
3243 break;
3244 if (!this_order--)
3245 break;
3246 if (order_to_size(this_order) < rq_size)
3247 break;
3248 } while (1);
3249
3250 if (!page)
24d2f903 3251 goto fail;
320ae51f
JA
3252
3253 page->private = this_order;
24d2f903 3254 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
3255
3256 p = page_address(page);
f75782e4
CM
3257 /*
3258 * Allow kmemleak to scan these pages as they contain pointers
3259 * to additional allocations like via ops->init_request().
3260 */
36e1f3d1 3261 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 3262 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 3263 to_do = min(entries_per_page, depth - i);
320ae51f
JA
3264 left -= to_do * rq_size;
3265 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
3266 struct request *rq = p;
3267
3268 tags->static_rqs[i] = rq;
1d9bd516
TH
3269 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3270 tags->static_rqs[i] = NULL;
3271 goto fail;
e9b267d9
CH
3272 }
3273
320ae51f
JA
3274 p += rq_size;
3275 i++;
3276 }
3277 }
cc71a6f4 3278 return 0;
320ae51f 3279
24d2f903 3280fail:
cc71a6f4
JA
3281 blk_mq_free_rqs(set, tags, hctx_idx);
3282 return -ENOMEM;
320ae51f
JA
3283}
3284
bf0beec0
ML
3285struct rq_iter_data {
3286 struct blk_mq_hw_ctx *hctx;
3287 bool has_rq;
3288};
3289
3290static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3291{
3292 struct rq_iter_data *iter_data = data;
3293
3294 if (rq->mq_hctx != iter_data->hctx)
3295 return true;
3296 iter_data->has_rq = true;
3297 return false;
3298}
3299
3300static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3301{
3302 struct blk_mq_tags *tags = hctx->sched_tags ?
3303 hctx->sched_tags : hctx->tags;
3304 struct rq_iter_data data = {
3305 .hctx = hctx,
3306 };
3307
3308 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3309 return data.has_rq;
3310}
3311
3312static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3313 struct blk_mq_hw_ctx *hctx)
3314{
9b51d9d8 3315 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
bf0beec0
ML
3316 return false;
3317 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3318 return false;
3319 return true;
3320}
3321
3322static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3323{
3324 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3325 struct blk_mq_hw_ctx, cpuhp_online);
3326
3327 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3328 !blk_mq_last_cpu_in_hctx(cpu, hctx))
3329 return 0;
3330
3331 /*
3332 * Prevent new request from being allocated on the current hctx.
3333 *
3334 * The smp_mb__after_atomic() Pairs with the implied barrier in
3335 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3336 * seen once we return from the tag allocator.
3337 */
3338 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3339 smp_mb__after_atomic();
3340
3341 /*
3342 * Try to grab a reference to the queue and wait for any outstanding
3343 * requests. If we could not grab a reference the queue has been
3344 * frozen and there are no requests.
3345 */
3346 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3347 while (blk_mq_hctx_has_requests(hctx))
3348 msleep(5);
3349 percpu_ref_put(&hctx->queue->q_usage_counter);
3350 }
3351
3352 return 0;
3353}
3354
3355static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3356{
3357 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3358 struct blk_mq_hw_ctx, cpuhp_online);
3359
3360 if (cpumask_test_cpu(cpu, hctx->cpumask))
3361 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3362 return 0;
3363}
3364
e57690fe
JA
3365/*
3366 * 'cpu' is going away. splice any existing rq_list entries from this
3367 * software queue to the hw queue dispatch list, and ensure that it
3368 * gets run.
3369 */
9467f859 3370static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 3371{
9467f859 3372 struct blk_mq_hw_ctx *hctx;
484b4061
JA
3373 struct blk_mq_ctx *ctx;
3374 LIST_HEAD(tmp);
c16d6b5a 3375 enum hctx_type type;
484b4061 3376
9467f859 3377 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
bf0beec0
ML
3378 if (!cpumask_test_cpu(cpu, hctx->cpumask))
3379 return 0;
3380
e57690fe 3381 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
c16d6b5a 3382 type = hctx->type;
484b4061
JA
3383
3384 spin_lock(&ctx->lock);
c16d6b5a
ML
3385 if (!list_empty(&ctx->rq_lists[type])) {
3386 list_splice_init(&ctx->rq_lists[type], &tmp);
484b4061
JA
3387 blk_mq_hctx_clear_pending(hctx, ctx);
3388 }
3389 spin_unlock(&ctx->lock);
3390
3391 if (list_empty(&tmp))
9467f859 3392 return 0;
484b4061 3393
e57690fe
JA
3394 spin_lock(&hctx->lock);
3395 list_splice_tail_init(&tmp, &hctx->dispatch);
3396 spin_unlock(&hctx->lock);
484b4061
JA
3397
3398 blk_mq_run_hw_queue(hctx, true);
9467f859 3399 return 0;
484b4061
JA
3400}
3401
9467f859 3402static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 3403{
bf0beec0
ML
3404 if (!(hctx->flags & BLK_MQ_F_STACKING))
3405 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3406 &hctx->cpuhp_online);
9467f859
TG
3407 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3408 &hctx->cpuhp_dead);
484b4061
JA
3409}
3410
364b6181
ML
3411/*
3412 * Before freeing hw queue, clearing the flush request reference in
3413 * tags->rqs[] for avoiding potential UAF.
3414 */
3415static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3416 unsigned int queue_depth, struct request *flush_rq)
3417{
3418 int i;
3419 unsigned long flags;
3420
3421 /* The hw queue may not be mapped yet */
3422 if (!tags)
3423 return;
3424
0a467d0f 3425 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
364b6181
ML
3426
3427 for (i = 0; i < queue_depth; i++)
3428 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3429
3430 /*
3431 * Wait until all pending iteration is done.
3432 *
3433 * Request reference is cleared and it is guaranteed to be observed
3434 * after the ->lock is released.
3435 */
3436 spin_lock_irqsave(&tags->lock, flags);
3437 spin_unlock_irqrestore(&tags->lock, flags);
3438}
3439
c3b4afca 3440/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
3441static void blk_mq_exit_hctx(struct request_queue *q,
3442 struct blk_mq_tag_set *set,
3443 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3444{
364b6181
ML
3445 struct request *flush_rq = hctx->fq->flush_rq;
3446
8ab0b7dc
ML
3447 if (blk_mq_hw_queue_mapped(hctx))
3448 blk_mq_tag_idle(hctx);
08e98fc6 3449
364b6181
ML
3450 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3451 set->queue_depth, flush_rq);
f70ced09 3452 if (set->ops->exit_request)
364b6181 3453 set->ops->exit_request(set, flush_rq, hctx_idx);
f70ced09 3454
08e98fc6
ML
3455 if (set->ops->exit_hctx)
3456 set->ops->exit_hctx(hctx, hctx_idx);
3457
9467f859 3458 blk_mq_remove_cpuhp(hctx);
2f8f1336 3459
4e5cc99e
ML
3460 xa_erase(&q->hctx_table, hctx_idx);
3461
2f8f1336
ML
3462 spin_lock(&q->unused_hctx_lock);
3463 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3464 spin_unlock(&q->unused_hctx_lock);
08e98fc6
ML
3465}
3466
624dbe47
ML
3467static void blk_mq_exit_hw_queues(struct request_queue *q,
3468 struct blk_mq_tag_set *set, int nr_queue)
3469{
3470 struct blk_mq_hw_ctx *hctx;
4f481208 3471 unsigned long i;
624dbe47
ML
3472
3473 queue_for_each_hw_ctx(q, hctx, i) {
3474 if (i == nr_queue)
3475 break;
08e98fc6 3476 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 3477 }
624dbe47
ML
3478}
3479
08e98fc6
ML
3480static int blk_mq_init_hctx(struct request_queue *q,
3481 struct blk_mq_tag_set *set,
3482 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 3483{
7c6c5b7c
ML
3484 hctx->queue_num = hctx_idx;
3485
bf0beec0
ML
3486 if (!(hctx->flags & BLK_MQ_F_STACKING))
3487 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3488 &hctx->cpuhp_online);
7c6c5b7c
ML
3489 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3490
3491 hctx->tags = set->tags[hctx_idx];
3492
3493 if (set->ops->init_hctx &&
3494 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3495 goto unregister_cpu_notifier;
08e98fc6 3496
7c6c5b7c
ML
3497 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3498 hctx->numa_node))
3499 goto exit_hctx;
4e5cc99e
ML
3500
3501 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3502 goto exit_flush_rq;
3503
7c6c5b7c
ML
3504 return 0;
3505
4e5cc99e
ML
3506 exit_flush_rq:
3507 if (set->ops->exit_request)
3508 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
7c6c5b7c
ML
3509 exit_hctx:
3510 if (set->ops->exit_hctx)
3511 set->ops->exit_hctx(hctx, hctx_idx);
3512 unregister_cpu_notifier:
3513 blk_mq_remove_cpuhp(hctx);
3514 return -1;
3515}
3516
3517static struct blk_mq_hw_ctx *
3518blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3519 int node)
3520{
3521 struct blk_mq_hw_ctx *hctx;
3522 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3523
704b914f 3524 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
7c6c5b7c
ML
3525 if (!hctx)
3526 goto fail_alloc_hctx;
3527
3528 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3529 goto free_hctx;
3530
3531 atomic_set(&hctx->nr_active, 0);
08e98fc6 3532 if (node == NUMA_NO_NODE)
7c6c5b7c
ML
3533 node = set->numa_node;
3534 hctx->numa_node = node;
08e98fc6 3535
9f993737 3536 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
3537 spin_lock_init(&hctx->lock);
3538 INIT_LIST_HEAD(&hctx->dispatch);
3539 hctx->queue = q;
51db1c37 3540 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
08e98fc6 3541
2f8f1336
ML
3542 INIT_LIST_HEAD(&hctx->hctx_list);
3543
320ae51f 3544 /*
08e98fc6
ML
3545 * Allocate space for all possible cpus to avoid allocation at
3546 * runtime
320ae51f 3547 */
d904bfa7 3548 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
7c6c5b7c 3549 gfp, node);
08e98fc6 3550 if (!hctx->ctxs)
7c6c5b7c 3551 goto free_cpumask;
320ae51f 3552
5b202853 3553 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
c548e62b 3554 gfp, node, false, false))
08e98fc6 3555 goto free_ctxs;
08e98fc6 3556 hctx->nr_ctx = 0;
320ae51f 3557
5815839b 3558 spin_lock_init(&hctx->dispatch_wait_lock);
eb619fdb
JA
3559 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3560 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3561
754a1572 3562 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
f70ced09 3563 if (!hctx->fq)
7c6c5b7c 3564 goto free_bitmap;
320ae51f 3565
7c6c5b7c 3566 blk_mq_hctx_kobj_init(hctx);
6a83e74d 3567
7c6c5b7c 3568 return hctx;
320ae51f 3569
08e98fc6 3570 free_bitmap:
88459642 3571 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
3572 free_ctxs:
3573 kfree(hctx->ctxs);
7c6c5b7c
ML
3574 free_cpumask:
3575 free_cpumask_var(hctx->cpumask);
3576 free_hctx:
3577 kfree(hctx);
3578 fail_alloc_hctx:
3579 return NULL;
08e98fc6 3580}
320ae51f 3581
320ae51f
JA
3582static void blk_mq_init_cpu_queues(struct request_queue *q,
3583 unsigned int nr_hw_queues)
3584{
b3c661b1
JA
3585 struct blk_mq_tag_set *set = q->tag_set;
3586 unsigned int i, j;
320ae51f
JA
3587
3588 for_each_possible_cpu(i) {
3589 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3590 struct blk_mq_hw_ctx *hctx;
c16d6b5a 3591 int k;
320ae51f 3592
320ae51f
JA
3593 __ctx->cpu = i;
3594 spin_lock_init(&__ctx->lock);
c16d6b5a
ML
3595 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3596 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3597
320ae51f
JA
3598 __ctx->queue = q;
3599
320ae51f
JA
3600 /*
3601 * Set local node, IFF we have more than one hw queue. If
3602 * not, we remain on the home node of the device
3603 */
b3c661b1
JA
3604 for (j = 0; j < set->nr_maps; j++) {
3605 hctx = blk_mq_map_queue_type(q, j, i);
3606 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
576e85c5 3607 hctx->numa_node = cpu_to_node(i);
b3c661b1 3608 }
320ae51f
JA
3609 }
3610}
3611
63064be1
JG
3612struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3613 unsigned int hctx_idx,
3614 unsigned int depth)
cc71a6f4 3615{
63064be1
JG
3616 struct blk_mq_tags *tags;
3617 int ret;
cc71a6f4 3618
e155b0c2 3619 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
63064be1
JG
3620 if (!tags)
3621 return NULL;
cc71a6f4 3622
63064be1
JG
3623 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3624 if (ret) {
e155b0c2 3625 blk_mq_free_rq_map(tags);
63064be1
JG
3626 return NULL;
3627 }
cc71a6f4 3628
63064be1 3629 return tags;
cc71a6f4
JA
3630}
3631
63064be1
JG
3632static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3633 int hctx_idx)
cc71a6f4 3634{
079a2e3e
JG
3635 if (blk_mq_is_shared_tags(set->flags)) {
3636 set->tags[hctx_idx] = set->shared_tags;
1c0706a7 3637
e155b0c2 3638 return true;
bd166ef1 3639 }
e155b0c2 3640
63064be1
JG
3641 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3642 set->queue_depth);
3643
3644 return set->tags[hctx_idx];
cc71a6f4
JA
3645}
3646
645db34e
JG
3647void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3648 struct blk_mq_tags *tags,
3649 unsigned int hctx_idx)
cc71a6f4 3650{
645db34e
JG
3651 if (tags) {
3652 blk_mq_free_rqs(set, tags, hctx_idx);
e155b0c2 3653 blk_mq_free_rq_map(tags);
bd166ef1 3654 }
cc71a6f4
JA
3655}
3656
e155b0c2
JG
3657static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3658 unsigned int hctx_idx)
3659{
079a2e3e 3660 if (!blk_mq_is_shared_tags(set->flags))
e155b0c2
JG
3661 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3662
3663 set->tags[hctx_idx] = NULL;
cc71a6f4
JA
3664}
3665
4b855ad3 3666static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 3667{
4f481208
ML
3668 unsigned int j, hctx_idx;
3669 unsigned long i;
320ae51f
JA
3670 struct blk_mq_hw_ctx *hctx;
3671 struct blk_mq_ctx *ctx;
2a34c087 3672 struct blk_mq_tag_set *set = q->tag_set;
320ae51f
JA
3673
3674 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 3675 cpumask_clear(hctx->cpumask);
320ae51f 3676 hctx->nr_ctx = 0;
d416c92c 3677 hctx->dispatch_from = NULL;
320ae51f
JA
3678 }
3679
3680 /*
4b855ad3 3681 * Map software to hardware queues.
4412efec
ML
3682 *
3683 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 3684 */
20e4d813 3685 for_each_possible_cpu(i) {
4412efec 3686
897bb0c7 3687 ctx = per_cpu_ptr(q->queue_ctx, i);
b3c661b1 3688 for (j = 0; j < set->nr_maps; j++) {
bb94aea1
JW
3689 if (!set->map[j].nr_queues) {
3690 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3691 HCTX_TYPE_DEFAULT, i);
e5edd5f2 3692 continue;
bb94aea1 3693 }
fd689871
ML
3694 hctx_idx = set->map[j].mq_map[i];
3695 /* unmapped hw queue can be remapped after CPU topo changed */
3696 if (!set->tags[hctx_idx] &&
63064be1 3697 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
fd689871
ML
3698 /*
3699 * If tags initialization fail for some hctx,
3700 * that hctx won't be brought online. In this
3701 * case, remap the current ctx to hctx[0] which
3702 * is guaranteed to always have tags allocated
3703 */
3704 set->map[j].mq_map[i] = 0;
3705 }
e5edd5f2 3706
b3c661b1 3707 hctx = blk_mq_map_queue_type(q, j, i);
8ccdf4a3 3708 ctx->hctxs[j] = hctx;
b3c661b1
JA
3709 /*
3710 * If the CPU is already set in the mask, then we've
3711 * mapped this one already. This can happen if
3712 * devices share queues across queue maps.
3713 */
3714 if (cpumask_test_cpu(i, hctx->cpumask))
3715 continue;
3716
3717 cpumask_set_cpu(i, hctx->cpumask);
3718 hctx->type = j;
3719 ctx->index_hw[hctx->type] = hctx->nr_ctx;
3720 hctx->ctxs[hctx->nr_ctx++] = ctx;
3721
3722 /*
3723 * If the nr_ctx type overflows, we have exceeded the
3724 * amount of sw queues we can support.
3725 */
3726 BUG_ON(!hctx->nr_ctx);
3727 }
bb94aea1
JW
3728
3729 for (; j < HCTX_MAX_TYPES; j++)
3730 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3731 HCTX_TYPE_DEFAULT, i);
320ae51f 3732 }
506e931f
JA
3733
3734 queue_for_each_hw_ctx(q, hctx, i) {
4412efec
ML
3735 /*
3736 * If no software queues are mapped to this hardware queue,
3737 * disable it and free the request entries.
3738 */
3739 if (!hctx->nr_ctx) {
3740 /* Never unmap queue 0. We need it as a
3741 * fallback in case of a new remap fails
3742 * allocation
3743 */
e155b0c2
JG
3744 if (i)
3745 __blk_mq_free_map_and_rqs(set, i);
4412efec
ML
3746
3747 hctx->tags = NULL;
3748 continue;
3749 }
484b4061 3750
2a34c087
ML
3751 hctx->tags = set->tags[i];
3752 WARN_ON(!hctx->tags);
3753
889fa31f
CY
3754 /*
3755 * Set the map size to the number of mapped software queues.
3756 * This is more accurate and more efficient than looping
3757 * over all possibly mapped software queues.
3758 */
88459642 3759 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 3760
484b4061
JA
3761 /*
3762 * Initialize batch roundrobin counts
3763 */
f82ddf19 3764 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
3765 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3766 }
320ae51f
JA
3767}
3768
8e8320c9
JA
3769/*
3770 * Caller needs to ensure that we're either frozen/quiesced, or that
3771 * the queue isn't live yet.
3772 */
2404e607 3773static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
3774{
3775 struct blk_mq_hw_ctx *hctx;
4f481208 3776 unsigned long i;
0d2602ca 3777
2404e607 3778 queue_for_each_hw_ctx(q, hctx, i) {
454bb677 3779 if (shared) {
51db1c37 3780 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
454bb677
YK
3781 } else {
3782 blk_mq_tag_idle(hctx);
51db1c37 3783 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
454bb677 3784 }
2404e607
JM
3785 }
3786}
3787
655ac300
HR
3788static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3789 bool shared)
2404e607
JM
3790{
3791 struct request_queue *q;
0d2602ca 3792
705cda97
BVA
3793 lockdep_assert_held(&set->tag_list_lock);
3794
0d2602ca
JA
3795 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3796 blk_mq_freeze_queue(q);
2404e607 3797 queue_set_hctx_shared(q, shared);
0d2602ca
JA
3798 blk_mq_unfreeze_queue(q);
3799 }
3800}
3801
3802static void blk_mq_del_queue_tag_set(struct request_queue *q)
3803{
3804 struct blk_mq_tag_set *set = q->tag_set;
3805
0d2602ca 3806 mutex_lock(&set->tag_list_lock);
08c875cb 3807 list_del(&q->tag_set_list);
2404e607
JM
3808 if (list_is_singular(&set->tag_list)) {
3809 /* just transitioned to unshared */
51db1c37 3810 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2404e607 3811 /* update existing queue */
655ac300 3812 blk_mq_update_tag_set_shared(set, false);
2404e607 3813 }
0d2602ca 3814 mutex_unlock(&set->tag_list_lock);
a347c7ad 3815 INIT_LIST_HEAD(&q->tag_set_list);
0d2602ca
JA
3816}
3817
3818static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3819 struct request_queue *q)
3820{
0d2602ca 3821 mutex_lock(&set->tag_list_lock);
2404e607 3822
ff821d27
JA
3823 /*
3824 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3825 */
3826 if (!list_empty(&set->tag_list) &&
51db1c37
ML
3827 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3828 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2404e607 3829 /* update existing queue */
655ac300 3830 blk_mq_update_tag_set_shared(set, true);
2404e607 3831 }
51db1c37 3832 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2404e607 3833 queue_set_hctx_shared(q, true);
08c875cb 3834 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 3835
0d2602ca
JA
3836 mutex_unlock(&set->tag_list_lock);
3837}
3838
1db4909e
ML
3839/* All allocations will be freed in release handler of q->mq_kobj */
3840static int blk_mq_alloc_ctxs(struct request_queue *q)
3841{
3842 struct blk_mq_ctxs *ctxs;
3843 int cpu;
3844
3845 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3846 if (!ctxs)
3847 return -ENOMEM;
3848
3849 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3850 if (!ctxs->queue_ctx)
3851 goto fail;
3852
3853 for_each_possible_cpu(cpu) {
3854 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3855 ctx->ctxs = ctxs;
3856 }
3857
3858 q->mq_kobj = &ctxs->kobj;
3859 q->queue_ctx = ctxs->queue_ctx;
3860
3861 return 0;
3862 fail:
3863 kfree(ctxs);
3864 return -ENOMEM;
3865}
3866
e09aae7e
ML
3867/*
3868 * It is the actual release handler for mq, but we do it from
3869 * request queue's release handler for avoiding use-after-free
3870 * and headache because q->mq_kobj shouldn't have been introduced,
3871 * but we can't group ctx/kctx kobj without it.
3872 */
3873void blk_mq_release(struct request_queue *q)
3874{
2f8f1336 3875 struct blk_mq_hw_ctx *hctx, *next;
4f481208 3876 unsigned long i;
e09aae7e 3877
2f8f1336
ML
3878 queue_for_each_hw_ctx(q, hctx, i)
3879 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3880
3881 /* all hctx are in .unused_hctx_list now */
3882 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3883 list_del_init(&hctx->hctx_list);
6c8b232e 3884 kobject_put(&hctx->kobj);
c3b4afca 3885 }
e09aae7e 3886
4e5cc99e 3887 xa_destroy(&q->hctx_table);
e09aae7e 3888
7ea5fe31
ML
3889 /*
3890 * release .mq_kobj and sw queue's kobject now because
3891 * both share lifetime with request queue.
3892 */
3893 blk_mq_sysfs_deinit(q);
e09aae7e
ML
3894}
3895
5ec780a6 3896static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
2f227bb9 3897 void *queuedata)
b62c21b7 3898{
26a9750a
CH
3899 struct request_queue *q;
3900 int ret;
b62c21b7 3901
704b914f 3902 q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
26a9750a 3903 if (!q)
b62c21b7 3904 return ERR_PTR(-ENOMEM);
26a9750a
CH
3905 q->queuedata = queuedata;
3906 ret = blk_mq_init_allocated_queue(set, q);
3907 if (ret) {
3908 blk_cleanup_queue(q);
3909 return ERR_PTR(ret);
3910 }
b62c21b7
MS
3911 return q;
3912}
2f227bb9
CH
3913
3914struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3915{
3916 return blk_mq_init_queue_data(set, NULL);
3917}
b62c21b7
MS
3918EXPORT_SYMBOL(blk_mq_init_queue);
3919
4dcc4874
CH
3920struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3921 struct lock_class_key *lkclass)
9316a9ed
JA
3922{
3923 struct request_queue *q;
b461dfc4 3924 struct gendisk *disk;
9316a9ed 3925
b461dfc4
CH
3926 q = blk_mq_init_queue_data(set, queuedata);
3927 if (IS_ERR(q))
3928 return ERR_CAST(q);
9316a9ed 3929
4a1fa41d 3930 disk = __alloc_disk_node(q, set->numa_node, lkclass);
b461dfc4
CH
3931 if (!disk) {
3932 blk_cleanup_queue(q);
3933 return ERR_PTR(-ENOMEM);
9316a9ed 3934 }
b461dfc4 3935 return disk;
9316a9ed 3936}
b461dfc4 3937EXPORT_SYMBOL(__blk_mq_alloc_disk);
9316a9ed 3938
34d11ffa
JW
3939static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3940 struct blk_mq_tag_set *set, struct request_queue *q,
3941 int hctx_idx, int node)
3942{
2f8f1336 3943 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
34d11ffa 3944
2f8f1336
ML
3945 /* reuse dead hctx first */
3946 spin_lock(&q->unused_hctx_lock);
3947 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3948 if (tmp->numa_node == node) {
3949 hctx = tmp;
3950 break;
3951 }
3952 }
3953 if (hctx)
3954 list_del_init(&hctx->hctx_list);
3955 spin_unlock(&q->unused_hctx_lock);
3956
3957 if (!hctx)
3958 hctx = blk_mq_alloc_hctx(q, set, node);
34d11ffa 3959 if (!hctx)
7c6c5b7c 3960 goto fail;
34d11ffa 3961
7c6c5b7c
ML
3962 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3963 goto free_hctx;
34d11ffa
JW
3964
3965 return hctx;
7c6c5b7c
ML
3966
3967 free_hctx:
3968 kobject_put(&hctx->kobj);
3969 fail:
3970 return NULL;
34d11ffa
JW
3971}
3972
868f2f0b
KB
3973static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3974 struct request_queue *q)
320ae51f 3975{
4e5cc99e
ML
3976 struct blk_mq_hw_ctx *hctx;
3977 unsigned long i, j;
ac0d6b92 3978
fb350e0a
ML
3979 /* protect against switching io scheduler */
3980 mutex_lock(&q->sysfs_lock);
24d2f903 3981 for (i = 0; i < set->nr_hw_queues; i++) {
306f13ee 3982 int old_node;
4d805131 3983 int node = blk_mq_get_hctx_node(set, i);
4e5cc99e 3984 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
868f2f0b 3985
306f13ee
ML
3986 if (old_hctx) {
3987 old_node = old_hctx->numa_node;
3988 blk_mq_exit_hctx(q, set, old_hctx, i);
3989 }
868f2f0b 3990
4e5cc99e 3991 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
306f13ee 3992 if (!old_hctx)
34d11ffa 3993 break;
306f13ee
ML
3994 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
3995 node, old_node);
4e5cc99e
ML
3996 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
3997 WARN_ON_ONCE(!hctx);
868f2f0b 3998 }
320ae51f 3999 }
e01ad46d
JW
4000 /*
4001 * Increasing nr_hw_queues fails. Free the newly allocated
4002 * hctxs and keep the previous q->nr_hw_queues.
4003 */
4004 if (i != set->nr_hw_queues) {
4005 j = q->nr_hw_queues;
e01ad46d
JW
4006 } else {
4007 j = i;
e01ad46d
JW
4008 q->nr_hw_queues = set->nr_hw_queues;
4009 }
34d11ffa 4010
4e5cc99e
ML
4011 xa_for_each_start(&q->hctx_table, j, hctx, j)
4012 blk_mq_exit_hctx(q, set, hctx, j);
fb350e0a 4013 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
4014}
4015
42ee3061
ML
4016static void blk_mq_update_poll_flag(struct request_queue *q)
4017{
4018 struct blk_mq_tag_set *set = q->tag_set;
4019
4020 if (set->nr_maps > HCTX_TYPE_POLL &&
4021 set->map[HCTX_TYPE_POLL].nr_queues)
4022 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4023 else
4024 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4025}
4026
26a9750a
CH
4027int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4028 struct request_queue *q)
868f2f0b 4029{
704b914f
ML
4030 WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4031 !!(set->flags & BLK_MQ_F_BLOCKING));
4032
66841672
ML
4033 /* mark the queue as mq asap */
4034 q->mq_ops = set->ops;
4035
34dbad5d 4036 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
4037 blk_mq_poll_stats_bkt,
4038 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
4039 if (!q->poll_cb)
4040 goto err_exit;
4041
1db4909e 4042 if (blk_mq_alloc_ctxs(q))
41de54c6 4043 goto err_poll;
868f2f0b 4044
737f98cf
ML
4045 /* init q->mq_kobj and sw queues' kobjects */
4046 blk_mq_sysfs_init(q);
4047
2f8f1336
ML
4048 INIT_LIST_HEAD(&q->unused_hctx_list);
4049 spin_lock_init(&q->unused_hctx_lock);
4050
4e5cc99e
ML
4051 xa_init(&q->hctx_table);
4052
868f2f0b
KB
4053 blk_mq_realloc_hw_ctxs(set, q);
4054 if (!q->nr_hw_queues)
4055 goto err_hctxs;
320ae51f 4056
287922eb 4057 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 4058 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f 4059
a8908939 4060 q->tag_set = set;
320ae51f 4061
94eddfbe 4062 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
42ee3061 4063 blk_mq_update_poll_flag(q);
320ae51f 4064
2849450a 4065 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
4066 INIT_LIST_HEAD(&q->requeue_list);
4067 spin_lock_init(&q->requeue_lock);
4068
eba71768
JA
4069 q->nr_requests = set->queue_depth;
4070
64f1c21e
JA
4071 /*
4072 * Default to classic polling
4073 */
29ece8b4 4074 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
64f1c21e 4075
24d2f903 4076 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 4077 blk_mq_add_queue_tag_set(set, q);
4b855ad3 4078 blk_mq_map_swqueue(q);
26a9750a 4079 return 0;
18741986 4080
320ae51f 4081err_hctxs:
4e5cc99e 4082 xa_destroy(&q->hctx_table);
73d9c8d4 4083 q->nr_hw_queues = 0;
1db4909e 4084 blk_mq_sysfs_deinit(q);
41de54c6
JS
4085err_poll:
4086 blk_stat_free_callback(q->poll_cb);
4087 q->poll_cb = NULL;
c7de5726
ML
4088err_exit:
4089 q->mq_ops = NULL;
26a9750a 4090 return -ENOMEM;
320ae51f 4091}
b62c21b7 4092EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f 4093
c7e2d94b
ML
4094/* tags can _not_ be used after returning from blk_mq_exit_queue */
4095void blk_mq_exit_queue(struct request_queue *q)
320ae51f 4096{
630ef623 4097 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 4098
630ef623 4099 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
624dbe47 4100 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
630ef623
BVA
4101 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4102 blk_mq_del_queue_tag_set(q);
320ae51f 4103}
320ae51f 4104
a5164405
JA
4105static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4106{
4107 int i;
4108
079a2e3e
JG
4109 if (blk_mq_is_shared_tags(set->flags)) {
4110 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
e155b0c2
JG
4111 BLK_MQ_NO_HCTX_IDX,
4112 set->queue_depth);
079a2e3e 4113 if (!set->shared_tags)
e155b0c2
JG
4114 return -ENOMEM;
4115 }
4116
8229cca8 4117 for (i = 0; i < set->nr_hw_queues; i++) {
63064be1 4118 if (!__blk_mq_alloc_map_and_rqs(set, i))
a5164405 4119 goto out_unwind;
8229cca8
XT
4120 cond_resched();
4121 }
a5164405
JA
4122
4123 return 0;
4124
4125out_unwind:
4126 while (--i >= 0)
e155b0c2
JG
4127 __blk_mq_free_map_and_rqs(set, i);
4128
079a2e3e
JG
4129 if (blk_mq_is_shared_tags(set->flags)) {
4130 blk_mq_free_map_and_rqs(set, set->shared_tags,
e155b0c2 4131 BLK_MQ_NO_HCTX_IDX);
645db34e 4132 }
a5164405 4133
a5164405
JA
4134 return -ENOMEM;
4135}
4136
4137/*
4138 * Allocate the request maps associated with this tag_set. Note that this
4139 * may reduce the depth asked for, if memory is tight. set->queue_depth
4140 * will be updated to reflect the allocated depth.
4141 */
63064be1 4142static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
a5164405
JA
4143{
4144 unsigned int depth;
4145 int err;
4146
4147 depth = set->queue_depth;
4148 do {
4149 err = __blk_mq_alloc_rq_maps(set);
4150 if (!err)
4151 break;
4152
4153 set->queue_depth >>= 1;
4154 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4155 err = -ENOMEM;
4156 break;
4157 }
4158 } while (set->queue_depth);
4159
4160 if (!set->queue_depth || err) {
4161 pr_err("blk-mq: failed to allocate request map\n");
4162 return -ENOMEM;
4163 }
4164
4165 if (depth != set->queue_depth)
4166 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4167 depth, set->queue_depth);
4168
4169 return 0;
4170}
4171
ebe8bddb
OS
4172static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4173{
6e66b493
BVA
4174 /*
4175 * blk_mq_map_queues() and multiple .map_queues() implementations
4176 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4177 * number of hardware queues.
4178 */
4179 if (set->nr_maps == 1)
4180 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4181
59388702 4182 if (set->ops->map_queues && !is_kdump_kernel()) {
b3c661b1
JA
4183 int i;
4184
7d4901a9
ML
4185 /*
4186 * transport .map_queues is usually done in the following
4187 * way:
4188 *
4189 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4190 * mask = get_cpu_mask(queue)
4191 * for_each_cpu(cpu, mask)
b3c661b1 4192 * set->map[x].mq_map[cpu] = queue;
7d4901a9
ML
4193 * }
4194 *
4195 * When we need to remap, the table has to be cleared for
4196 * killing stale mapping since one CPU may not be mapped
4197 * to any hw queue.
4198 */
b3c661b1
JA
4199 for (i = 0; i < set->nr_maps; i++)
4200 blk_mq_clear_mq_map(&set->map[i]);
7d4901a9 4201
ebe8bddb 4202 return set->ops->map_queues(set);
b3c661b1
JA
4203 } else {
4204 BUG_ON(set->nr_maps > 1);
7d76f856 4205 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
b3c661b1 4206 }
ebe8bddb
OS
4207}
4208
f7e76dbc
BVA
4209static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4210 int cur_nr_hw_queues, int new_nr_hw_queues)
4211{
4212 struct blk_mq_tags **new_tags;
4213
4214 if (cur_nr_hw_queues >= new_nr_hw_queues)
4215 return 0;
4216
4217 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4218 GFP_KERNEL, set->numa_node);
4219 if (!new_tags)
4220 return -ENOMEM;
4221
4222 if (set->tags)
4223 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4224 sizeof(*set->tags));
4225 kfree(set->tags);
4226 set->tags = new_tags;
4227 set->nr_hw_queues = new_nr_hw_queues;
4228
4229 return 0;
4230}
4231
91cdf265
MI
4232static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4233 int new_nr_hw_queues)
4234{
4235 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4236}
4237
a4391c64
JA
4238/*
4239 * Alloc a tag set to be associated with one or more request queues.
4240 * May fail with EINVAL for various error conditions. May adjust the
c018c84f 4241 * requested depth down, if it's too large. In that case, the set
a4391c64
JA
4242 * value will be stored in set->queue_depth.
4243 */
24d2f903
CH
4244int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4245{
b3c661b1 4246 int i, ret;
da695ba2 4247
205fb5f5
BVA
4248 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4249
24d2f903
CH
4250 if (!set->nr_hw_queues)
4251 return -EINVAL;
a4391c64 4252 if (!set->queue_depth)
24d2f903
CH
4253 return -EINVAL;
4254 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4255 return -EINVAL;
4256
7d7e0f90 4257 if (!set->ops->queue_rq)
24d2f903
CH
4258 return -EINVAL;
4259
de148297
ML
4260 if (!set->ops->get_budget ^ !set->ops->put_budget)
4261 return -EINVAL;
4262
a4391c64
JA
4263 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4264 pr_info("blk-mq: reduced tag depth to %u\n",
4265 BLK_MQ_MAX_DEPTH);
4266 set->queue_depth = BLK_MQ_MAX_DEPTH;
4267 }
24d2f903 4268
b3c661b1
JA
4269 if (!set->nr_maps)
4270 set->nr_maps = 1;
4271 else if (set->nr_maps > HCTX_MAX_TYPES)
4272 return -EINVAL;
4273
6637fadf
SL
4274 /*
4275 * If a crashdump is active, then we are potentially in a very
4276 * memory constrained environment. Limit us to 1 queue and
4277 * 64 tags to prevent using too much memory.
4278 */
4279 if (is_kdump_kernel()) {
4280 set->nr_hw_queues = 1;
59388702 4281 set->nr_maps = 1;
6637fadf
SL
4282 set->queue_depth = min(64U, set->queue_depth);
4283 }
868f2f0b 4284 /*
392546ae
JA
4285 * There is no use for more h/w queues than cpus if we just have
4286 * a single map
868f2f0b 4287 */
392546ae 4288 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
868f2f0b 4289 set->nr_hw_queues = nr_cpu_ids;
6637fadf 4290
91cdf265 4291 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
a5164405 4292 return -ENOMEM;
24d2f903 4293
da695ba2 4294 ret = -ENOMEM;
b3c661b1
JA
4295 for (i = 0; i < set->nr_maps; i++) {
4296 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
07b35eb5 4297 sizeof(set->map[i].mq_map[0]),
b3c661b1
JA
4298 GFP_KERNEL, set->numa_node);
4299 if (!set->map[i].mq_map)
4300 goto out_free_mq_map;
59388702 4301 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
b3c661b1 4302 }
bdd17e75 4303
ebe8bddb 4304 ret = blk_mq_update_queue_map(set);
da695ba2
CH
4305 if (ret)
4306 goto out_free_mq_map;
4307
63064be1 4308 ret = blk_mq_alloc_set_map_and_rqs(set);
da695ba2 4309 if (ret)
bdd17e75 4310 goto out_free_mq_map;
24d2f903 4311
0d2602ca
JA
4312 mutex_init(&set->tag_list_lock);
4313 INIT_LIST_HEAD(&set->tag_list);
4314
24d2f903 4315 return 0;
bdd17e75
CH
4316
4317out_free_mq_map:
b3c661b1
JA
4318 for (i = 0; i < set->nr_maps; i++) {
4319 kfree(set->map[i].mq_map);
4320 set->map[i].mq_map = NULL;
4321 }
5676e7b6
RE
4322 kfree(set->tags);
4323 set->tags = NULL;
da695ba2 4324 return ret;
24d2f903
CH
4325}
4326EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4327
cdb14e0f
CH
4328/* allocate and initialize a tagset for a simple single-queue device */
4329int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4330 const struct blk_mq_ops *ops, unsigned int queue_depth,
4331 unsigned int set_flags)
4332{
4333 memset(set, 0, sizeof(*set));
4334 set->ops = ops;
4335 set->nr_hw_queues = 1;
4336 set->nr_maps = 1;
4337 set->queue_depth = queue_depth;
4338 set->numa_node = NUMA_NO_NODE;
4339 set->flags = set_flags;
4340 return blk_mq_alloc_tag_set(set);
4341}
4342EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4343
24d2f903
CH
4344void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4345{
b3c661b1 4346 int i, j;
24d2f903 4347
f7e76dbc 4348 for (i = 0; i < set->nr_hw_queues; i++)
e155b0c2 4349 __blk_mq_free_map_and_rqs(set, i);
484b4061 4350
079a2e3e
JG
4351 if (blk_mq_is_shared_tags(set->flags)) {
4352 blk_mq_free_map_and_rqs(set, set->shared_tags,
e155b0c2
JG
4353 BLK_MQ_NO_HCTX_IDX);
4354 }
32bc15af 4355
b3c661b1
JA
4356 for (j = 0; j < set->nr_maps; j++) {
4357 kfree(set->map[j].mq_map);
4358 set->map[j].mq_map = NULL;
4359 }
bdd17e75 4360
981bd189 4361 kfree(set->tags);
5676e7b6 4362 set->tags = NULL;
24d2f903
CH
4363}
4364EXPORT_SYMBOL(blk_mq_free_tag_set);
4365
e3a2b3f9
JA
4366int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4367{
4368 struct blk_mq_tag_set *set = q->tag_set;
4369 struct blk_mq_hw_ctx *hctx;
4f481208
ML
4370 int ret;
4371 unsigned long i;
e3a2b3f9 4372
bd166ef1 4373 if (!set)
e3a2b3f9
JA
4374 return -EINVAL;
4375
e5fa8140
AZ
4376 if (q->nr_requests == nr)
4377 return 0;
4378
70f36b60 4379 blk_mq_freeze_queue(q);
24f5a90f 4380 blk_mq_quiesce_queue(q);
70f36b60 4381
e3a2b3f9
JA
4382 ret = 0;
4383 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
4384 if (!hctx->tags)
4385 continue;
bd166ef1
JA
4386 /*
4387 * If we're using an MQ scheduler, just update the scheduler
4388 * queue depth. This is similar to what the old code would do.
4389 */
f6adcef5 4390 if (hctx->sched_tags) {
70f36b60 4391 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
f6adcef5 4392 nr, true);
f6adcef5
JG
4393 } else {
4394 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4395 false);
70f36b60 4396 }
e3a2b3f9
JA
4397 if (ret)
4398 break;
77f1e0a5
JA
4399 if (q->elevator && q->elevator->type->ops.depth_updated)
4400 q->elevator->type->ops.depth_updated(hctx);
e3a2b3f9 4401 }
d97e594c 4402 if (!ret) {
e3a2b3f9 4403 q->nr_requests = nr;
079a2e3e 4404 if (blk_mq_is_shared_tags(set->flags)) {
8fa04464 4405 if (q->elevator)
079a2e3e 4406 blk_mq_tag_update_sched_shared_tags(q);
8fa04464 4407 else
079a2e3e 4408 blk_mq_tag_resize_shared_tags(set, nr);
8fa04464 4409 }
d97e594c 4410 }
e3a2b3f9 4411
24f5a90f 4412 blk_mq_unquiesce_queue(q);
70f36b60 4413 blk_mq_unfreeze_queue(q);
70f36b60 4414
e3a2b3f9
JA
4415 return ret;
4416}
4417
d48ece20
JW
4418/*
4419 * request_queue and elevator_type pair.
4420 * It is just used by __blk_mq_update_nr_hw_queues to cache
4421 * the elevator_type associated with a request_queue.
4422 */
4423struct blk_mq_qe_pair {
4424 struct list_head node;
4425 struct request_queue *q;
4426 struct elevator_type *type;
4427};
4428
4429/*
4430 * Cache the elevator_type in qe pair list and switch the
4431 * io scheduler to 'none'
4432 */
4433static bool blk_mq_elv_switch_none(struct list_head *head,
4434 struct request_queue *q)
4435{
4436 struct blk_mq_qe_pair *qe;
4437
4438 if (!q->elevator)
4439 return true;
4440
4441 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4442 if (!qe)
4443 return false;
4444
4445 INIT_LIST_HEAD(&qe->node);
4446 qe->q = q;
4447 qe->type = q->elevator->type;
4448 list_add(&qe->node, head);
4449
4450 mutex_lock(&q->sysfs_lock);
4451 /*
4452 * After elevator_switch_mq, the previous elevator_queue will be
4453 * released by elevator_release. The reference of the io scheduler
4454 * module get by elevator_get will also be put. So we need to get
4455 * a reference of the io scheduler module here to prevent it to be
4456 * removed.
4457 */
4458 __module_get(qe->type->elevator_owner);
4459 elevator_switch_mq(q, NULL);
4460 mutex_unlock(&q->sysfs_lock);
4461
4462 return true;
4463}
4464
4a3b666e
JK
4465static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4466 struct request_queue *q)
d48ece20
JW
4467{
4468 struct blk_mq_qe_pair *qe;
d48ece20
JW
4469
4470 list_for_each_entry(qe, head, node)
4a3b666e
JK
4471 if (qe->q == q)
4472 return qe;
d48ece20 4473
4a3b666e
JK
4474 return NULL;
4475}
d48ece20 4476
4a3b666e
JK
4477static void blk_mq_elv_switch_back(struct list_head *head,
4478 struct request_queue *q)
4479{
4480 struct blk_mq_qe_pair *qe;
4481 struct elevator_type *t;
4482
4483 qe = blk_lookup_qe_pair(head, q);
4484 if (!qe)
4485 return;
4486 t = qe->type;
d48ece20
JW
4487 list_del(&qe->node);
4488 kfree(qe);
4489
4490 mutex_lock(&q->sysfs_lock);
4491 elevator_switch_mq(q, t);
4492 mutex_unlock(&q->sysfs_lock);
4493}
4494
e4dc2b32
KB
4495static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4496 int nr_hw_queues)
868f2f0b
KB
4497{
4498 struct request_queue *q;
d48ece20 4499 LIST_HEAD(head);
e01ad46d 4500 int prev_nr_hw_queues;
868f2f0b 4501
705cda97
BVA
4502 lockdep_assert_held(&set->tag_list_lock);
4503
392546ae 4504 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
868f2f0b 4505 nr_hw_queues = nr_cpu_ids;
fe35ec58
WZ
4506 if (nr_hw_queues < 1)
4507 return;
4508 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
868f2f0b
KB
4509 return;
4510
4511 list_for_each_entry(q, &set->tag_list, tag_set_list)
4512 blk_mq_freeze_queue(q);
d48ece20
JW
4513 /*
4514 * Switch IO scheduler to 'none', cleaning up the data associated
4515 * with the previous scheduler. We will switch back once we are done
4516 * updating the new sw to hw queue mappings.
4517 */
4518 list_for_each_entry(q, &set->tag_list, tag_set_list)
4519 if (!blk_mq_elv_switch_none(&head, q))
4520 goto switch_back;
868f2f0b 4521
477e19de
JW
4522 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4523 blk_mq_debugfs_unregister_hctxs(q);
4524 blk_mq_sysfs_unregister(q);
4525 }
4526
a2584e43 4527 prev_nr_hw_queues = set->nr_hw_queues;
f7e76dbc
BVA
4528 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4529 0)
4530 goto reregister;
4531
868f2f0b 4532 set->nr_hw_queues = nr_hw_queues;
e01ad46d 4533fallback:
aa880ad6 4534 blk_mq_update_queue_map(set);
868f2f0b
KB
4535 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4536 blk_mq_realloc_hw_ctxs(set, q);
42ee3061 4537 blk_mq_update_poll_flag(q);
e01ad46d 4538 if (q->nr_hw_queues != set->nr_hw_queues) {
a846a8e6
YB
4539 int i = prev_nr_hw_queues;
4540
e01ad46d
JW
4541 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4542 nr_hw_queues, prev_nr_hw_queues);
a846a8e6
YB
4543 for (; i < set->nr_hw_queues; i++)
4544 __blk_mq_free_map_and_rqs(set, i);
4545
e01ad46d 4546 set->nr_hw_queues = prev_nr_hw_queues;
7d76f856 4547 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
e01ad46d
JW
4548 goto fallback;
4549 }
477e19de
JW
4550 blk_mq_map_swqueue(q);
4551 }
4552
f7e76dbc 4553reregister:
477e19de
JW
4554 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4555 blk_mq_sysfs_register(q);
4556 blk_mq_debugfs_register_hctxs(q);
868f2f0b
KB
4557 }
4558
d48ece20
JW
4559switch_back:
4560 list_for_each_entry(q, &set->tag_list, tag_set_list)
4561 blk_mq_elv_switch_back(&head, q);
4562
868f2f0b
KB
4563 list_for_each_entry(q, &set->tag_list, tag_set_list)
4564 blk_mq_unfreeze_queue(q);
4565}
e4dc2b32
KB
4566
4567void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4568{
4569 mutex_lock(&set->tag_list_lock);
4570 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4571 mutex_unlock(&set->tag_list_lock);
4572}
868f2f0b
KB
4573EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4574
34dbad5d
OS
4575/* Enable polling stats and return whether they were already enabled. */
4576static bool blk_poll_stats_enable(struct request_queue *q)
4577{
48b5c1fb 4578 if (q->poll_stat)
34dbad5d 4579 return true;
48b5c1fb
JA
4580
4581 return blk_stats_alloc_enable(q);
34dbad5d
OS
4582}
4583
4584static void blk_mq_poll_stats_start(struct request_queue *q)
4585{
4586 /*
4587 * We don't arm the callback if polling stats are not enabled or the
4588 * callback is already active.
4589 */
48b5c1fb 4590 if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
34dbad5d
OS
4591 return;
4592
4593 blk_stat_activate_msecs(q->poll_cb, 100);
4594}
4595
4596static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4597{
4598 struct request_queue *q = cb->data;
720b8ccc 4599 int bucket;
34dbad5d 4600
720b8ccc
SB
4601 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4602 if (cb->stat[bucket].nr_samples)
4603 q->poll_stat[bucket] = cb->stat[bucket];
4604 }
34dbad5d
OS
4605}
4606
64f1c21e 4607static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
64f1c21e
JA
4608 struct request *rq)
4609{
64f1c21e 4610 unsigned long ret = 0;
720b8ccc 4611 int bucket;
64f1c21e
JA
4612
4613 /*
4614 * If stats collection isn't on, don't sleep but turn it on for
4615 * future users
4616 */
34dbad5d 4617 if (!blk_poll_stats_enable(q))
64f1c21e
JA
4618 return 0;
4619
64f1c21e
JA
4620 /*
4621 * As an optimistic guess, use half of the mean service time
4622 * for this type of request. We can (and should) make this smarter.
4623 * For instance, if the completion latencies are tight, we can
4624 * get closer than just half the mean. This is especially
4625 * important on devices where the completion latencies are longer
720b8ccc
SB
4626 * than ~10 usec. We do use the stats for the relevant IO size
4627 * if available which does lead to better estimates.
64f1c21e 4628 */
720b8ccc
SB
4629 bucket = blk_mq_poll_stats_bkt(rq);
4630 if (bucket < 0)
4631 return ret;
4632
4633 if (q->poll_stat[bucket].nr_samples)
4634 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
4635
4636 return ret;
4637}
4638
c6699d6f 4639static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
06426adf 4640{
c6699d6f
CH
4641 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4642 struct request *rq = blk_qc_to_rq(hctx, qc);
06426adf
JA
4643 struct hrtimer_sleeper hs;
4644 enum hrtimer_mode mode;
64f1c21e 4645 unsigned int nsecs;
06426adf
JA
4646 ktime_t kt;
4647
c6699d6f
CH
4648 /*
4649 * If a request has completed on queue that uses an I/O scheduler, we
4650 * won't get back a request from blk_qc_to_rq.
4651 */
4652 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
64f1c21e
JA
4653 return false;
4654
4655 /*
1052b8ac 4656 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
64f1c21e 4657 *
64f1c21e
JA
4658 * 0: use half of prev avg
4659 * >0: use this specific value
4660 */
1052b8ac 4661 if (q->poll_nsec > 0)
64f1c21e
JA
4662 nsecs = q->poll_nsec;
4663 else
cae740a0 4664 nsecs = blk_mq_poll_nsecs(q, rq);
64f1c21e
JA
4665
4666 if (!nsecs)
06426adf
JA
4667 return false;
4668
76a86f9d 4669 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
06426adf
JA
4670
4671 /*
4672 * This will be replaced with the stats tracking code, using
4673 * 'avg_completion_time / 2' as the pre-sleep target.
4674 */
8b0e1953 4675 kt = nsecs;
06426adf
JA
4676
4677 mode = HRTIMER_MODE_REL;
dbc1625f 4678 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
06426adf
JA
4679 hrtimer_set_expires(&hs.timer, kt);
4680
06426adf 4681 do {
5a61c363 4682 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
06426adf
JA
4683 break;
4684 set_current_state(TASK_UNINTERRUPTIBLE);
9dd8813e 4685 hrtimer_sleeper_start_expires(&hs, mode);
06426adf
JA
4686 if (hs.task)
4687 io_schedule();
4688 hrtimer_cancel(&hs.timer);
4689 mode = HRTIMER_MODE_ABS;
4690 } while (hs.task && !signal_pending(current));
4691
4692 __set_current_state(TASK_RUNNING);
4693 destroy_hrtimer_on_stack(&hs.timer);
1052b8ac 4694
06426adf 4695 /*
c6699d6f
CH
4696 * If we sleep, have the caller restart the poll loop to reset the
4697 * state. Like for the other success return cases, the caller is
4698 * responsible for checking if the IO completed. If the IO isn't
4699 * complete, we'll get called again and will go straight to the busy
4700 * poll loop.
06426adf 4701 */
06426adf
JA
4702 return true;
4703}
06426adf 4704
c6699d6f 4705static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
5a72e899 4706 struct io_comp_batch *iob, unsigned int flags)
bbd7bb70 4707{
c6699d6f
CH
4708 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4709 long state = get_current_state();
4710 int ret;
bbd7bb70 4711
aa61bec3 4712 do {
5a72e899 4713 ret = q->mq_ops->poll(hctx, iob);
bbd7bb70 4714 if (ret > 0) {
849a3700 4715 __set_current_state(TASK_RUNNING);
85f4d4b6 4716 return ret;
bbd7bb70
JA
4717 }
4718
4719 if (signal_pending_state(state, current))
849a3700 4720 __set_current_state(TASK_RUNNING);
b03fbd4f 4721 if (task_is_running(current))
85f4d4b6 4722 return 1;
c6699d6f 4723
ef99b2d3 4724 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
bbd7bb70
JA
4725 break;
4726 cpu_relax();
aa61bec3 4727 } while (!need_resched());
bbd7bb70 4728
67b4110f 4729 __set_current_state(TASK_RUNNING);
85f4d4b6 4730 return 0;
bbd7bb70 4731}
1052b8ac 4732
5a72e899
JA
4733int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4734 unsigned int flags)
1052b8ac 4735{
d729cf9a
CH
4736 if (!(flags & BLK_POLL_NOSLEEP) &&
4737 q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
c6699d6f 4738 if (blk_mq_poll_hybrid(q, cookie))
85f4d4b6 4739 return 1;
c6699d6f 4740 }
5a72e899 4741 return blk_mq_poll_classic(q, cookie, iob, flags);
bbd7bb70
JA
4742}
4743
9cf2bab6
JA
4744unsigned int blk_mq_rq_cpu(struct request *rq)
4745{
4746 return rq->mq_ctx->cpu;
4747}
4748EXPORT_SYMBOL(blk_mq_rq_cpu);
4749
2a19b28f
ML
4750void blk_mq_cancel_work_sync(struct request_queue *q)
4751{
4752 if (queue_is_mq(q)) {
4753 struct blk_mq_hw_ctx *hctx;
4f481208 4754 unsigned long i;
2a19b28f
ML
4755
4756 cancel_delayed_work_sync(&q->requeue_work);
4757
4758 queue_for_each_hw_ctx(q, hctx, i)
4759 cancel_delayed_work_sync(&hctx->run_work);
4760 }
4761}
4762
320ae51f
JA
4763static int __init blk_mq_init(void)
4764{
c3077b5d
CH
4765 int i;
4766
4767 for_each_possible_cpu(i)
f9ab4918 4768 init_llist_head(&per_cpu(blk_cpu_done, i));
c3077b5d
CH
4769 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4770
4771 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4772 "block/softirq:dead", NULL,
4773 blk_softirq_cpu_dead);
9467f859
TG
4774 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4775 blk_mq_hctx_notify_dead);
bf0beec0
ML
4776 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4777 blk_mq_hctx_notify_online,
4778 blk_mq_hctx_notify_offline);
320ae51f
JA
4779 return 0;
4780}
4781subsys_initcall(blk_mq_init);