blk-mq: figure out correct numa node for hw queue
[linux-block.git] / block / blk-mq.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
75bb4625
JA
2/*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
320ae51f
JA
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/backing-dev.h>
11#include <linux/bio.h>
12#include <linux/blkdev.h>
fe45e630 13#include <linux/blk-integrity.h>
f75782e4 14#include <linux/kmemleak.h>
320ae51f
JA
15#include <linux/mm.h>
16#include <linux/init.h>
17#include <linux/slab.h>
18#include <linux/workqueue.h>
19#include <linux/smp.h>
e41d12f5 20#include <linux/interrupt.h>
320ae51f 21#include <linux/llist.h>
320ae51f
JA
22#include <linux/cpu.h>
23#include <linux/cache.h>
24#include <linux/sched/sysctl.h>
105ab3d8 25#include <linux/sched/topology.h>
174cd4b1 26#include <linux/sched/signal.h>
320ae51f 27#include <linux/delay.h>
aedcd72f 28#include <linux/crash_dump.h>
88c7b2b7 29#include <linux/prefetch.h>
a892c8d5 30#include <linux/blk-crypto.h>
82d981d4 31#include <linux/part_stat.h>
320ae51f
JA
32
33#include <trace/events/block.h>
34
35#include <linux/blk-mq.h>
54d4e6ab 36#include <linux/t10-pi.h>
320ae51f
JA
37#include "blk.h"
38#include "blk-mq.h"
9c1051aa 39#include "blk-mq-debugfs.h"
320ae51f 40#include "blk-mq-tag.h"
986d413b 41#include "blk-pm.h"
cf43e6be 42#include "blk-stat.h"
bd166ef1 43#include "blk-mq-sched.h"
c1c80384 44#include "blk-rq-qos.h"
320ae51f 45
f9ab4918 46static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
c3077b5d 47
34dbad5d
OS
48static void blk_mq_poll_stats_start(struct request_queue *q);
49static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50
720b8ccc
SB
51static int blk_mq_poll_stats_bkt(const struct request *rq)
52{
3d244306 53 int ddir, sectors, bucket;
720b8ccc 54
99c749a4 55 ddir = rq_data_dir(rq);
3d244306 56 sectors = blk_rq_stats_sectors(rq);
720b8ccc 57
3d244306 58 bucket = ddir + 2 * ilog2(sectors);
720b8ccc
SB
59
60 if (bucket < 0)
61 return -1;
62 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64
65 return bucket;
66}
67
3e08773c
CH
68#define BLK_QC_T_SHIFT 16
69#define BLK_QC_T_INTERNAL (1U << 31)
70
f70299f0
CH
71static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72 blk_qc_t qc)
73{
74 return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
75}
76
c6699d6f
CH
77static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
78 blk_qc_t qc)
79{
efbabbe1
CH
80 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
81
82 if (qc & BLK_QC_T_INTERNAL)
83 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
84 return blk_mq_tag_to_rq(hctx->tags, tag);
c6699d6f
CH
85}
86
3e08773c
CH
87static inline blk_qc_t blk_rq_to_qc(struct request *rq)
88{
89 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
90 (rq->tag != -1 ?
91 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
92}
93
320ae51f 94/*
85fae294
YY
95 * Check if any of the ctx, dispatch list or elevator
96 * have pending work in this hardware queue.
320ae51f 97 */
79f720a7 98static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 99{
79f720a7
JA
100 return !list_empty_careful(&hctx->dispatch) ||
101 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 102 blk_mq_sched_has_work(hctx);
1429d7c9
JA
103}
104
320ae51f
JA
105/*
106 * Mark this ctx as having pending work in this hardware queue
107 */
108static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
109 struct blk_mq_ctx *ctx)
110{
f31967f0
JA
111 const int bit = ctx->index_hw[hctx->type];
112
113 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
114 sbitmap_set_bit(&hctx->ctx_map, bit);
1429d7c9
JA
115}
116
117static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
118 struct blk_mq_ctx *ctx)
119{
f31967f0
JA
120 const int bit = ctx->index_hw[hctx->type];
121
122 sbitmap_clear_bit(&hctx->ctx_map, bit);
320ae51f
JA
123}
124
f299b7c7 125struct mq_inflight {
8446fe92 126 struct block_device *part;
a2e80f6f 127 unsigned int inflight[2];
f299b7c7
JA
128};
129
8ab30a33 130static bool blk_mq_check_inflight(struct request *rq, void *priv,
f299b7c7
JA
131 bool reserved)
132{
133 struct mq_inflight *mi = priv;
134
b0d97557
JX
135 if ((!mi->part->bd_partno || rq->part == mi->part) &&
136 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
bb4e6b14 137 mi->inflight[rq_data_dir(rq)]++;
7baa8572
JA
138
139 return true;
f299b7c7
JA
140}
141
8446fe92
CH
142unsigned int blk_mq_in_flight(struct request_queue *q,
143 struct block_device *part)
f299b7c7 144{
a2e80f6f 145 struct mq_inflight mi = { .part = part };
f299b7c7 146
f299b7c7 147 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
e016b782 148
a2e80f6f 149 return mi.inflight[0] + mi.inflight[1];
bf0ddaba
OS
150}
151
8446fe92
CH
152void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
153 unsigned int inflight[2])
bf0ddaba 154{
a2e80f6f 155 struct mq_inflight mi = { .part = part };
bf0ddaba 156
bb4e6b14 157 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
a2e80f6f
PB
158 inflight[0] = mi.inflight[0];
159 inflight[1] = mi.inflight[1];
bf0ddaba
OS
160}
161
1671d522 162void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 163{
7996a8b5
BL
164 mutex_lock(&q->mq_freeze_lock);
165 if (++q->mq_freeze_depth == 1) {
3ef28e83 166 percpu_ref_kill(&q->q_usage_counter);
7996a8b5 167 mutex_unlock(&q->mq_freeze_lock);
344e9ffc 168 if (queue_is_mq(q))
055f6e18 169 blk_mq_run_hw_queues(q, false);
7996a8b5
BL
170 } else {
171 mutex_unlock(&q->mq_freeze_lock);
cddd5d17 172 }
f3af020b 173}
1671d522 174EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 175
6bae363e 176void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 177{
3ef28e83 178 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 179}
6bae363e 180EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 181
f91328c4
KB
182int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
183 unsigned long timeout)
184{
185 return wait_event_timeout(q->mq_freeze_wq,
186 percpu_ref_is_zero(&q->q_usage_counter),
187 timeout);
188}
189EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 190
f3af020b
TH
191/*
192 * Guarantee no request is in use, so we can change any data structure of
193 * the queue afterward.
194 */
3ef28e83 195void blk_freeze_queue(struct request_queue *q)
f3af020b 196{
3ef28e83
DW
197 /*
198 * In the !blk_mq case we are only calling this to kill the
199 * q_usage_counter, otherwise this increases the freeze depth
200 * and waits for it to return to zero. For this reason there is
201 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
202 * exported to drivers as the only user for unfreeze is blk_mq.
203 */
1671d522 204 blk_freeze_queue_start(q);
f3af020b
TH
205 blk_mq_freeze_queue_wait(q);
206}
3ef28e83
DW
207
208void blk_mq_freeze_queue(struct request_queue *q)
209{
210 /*
211 * ...just an alias to keep freeze and unfreeze actions balanced
212 * in the blk_mq_* namespace
213 */
214 blk_freeze_queue(q);
215}
c761d96b 216EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 217
aec89dc5 218void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
320ae51f 219{
7996a8b5 220 mutex_lock(&q->mq_freeze_lock);
aec89dc5
CH
221 if (force_atomic)
222 q->q_usage_counter.data->force_atomic = true;
7996a8b5
BL
223 q->mq_freeze_depth--;
224 WARN_ON_ONCE(q->mq_freeze_depth < 0);
225 if (!q->mq_freeze_depth) {
bdd63160 226 percpu_ref_resurrect(&q->q_usage_counter);
320ae51f 227 wake_up_all(&q->mq_freeze_wq);
add703fd 228 }
7996a8b5 229 mutex_unlock(&q->mq_freeze_lock);
320ae51f 230}
aec89dc5
CH
231
232void blk_mq_unfreeze_queue(struct request_queue *q)
233{
234 __blk_mq_unfreeze_queue(q, false);
235}
b4c6a028 236EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 237
852ec809
BVA
238/*
239 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
240 * mpt3sas driver such that this function can be removed.
241 */
242void blk_mq_quiesce_queue_nowait(struct request_queue *q)
243{
e70feb8b
ML
244 unsigned long flags;
245
246 spin_lock_irqsave(&q->queue_lock, flags);
247 if (!q->quiesce_depth++)
248 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
249 spin_unlock_irqrestore(&q->queue_lock, flags);
852ec809
BVA
250}
251EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
252
6a83e74d 253/**
9ef4d020 254 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
6a83e74d
BVA
255 * @q: request queue.
256 *
9ef4d020
ML
257 * Note: it is driver's responsibility for making sure that quiesce has
258 * been started.
6a83e74d 259 */
9ef4d020 260void blk_mq_wait_quiesce_done(struct request_queue *q)
6a83e74d 261{
704b914f
ML
262 if (blk_queue_has_srcu(q))
263 synchronize_srcu(q->srcu);
264 else
6a83e74d
BVA
265 synchronize_rcu();
266}
9ef4d020
ML
267EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
268
269/**
270 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
271 * @q: request queue.
272 *
273 * Note: this function does not prevent that the struct request end_io()
274 * callback function is invoked. Once this function is returned, we make
275 * sure no dispatch can happen until the queue is unquiesced via
276 * blk_mq_unquiesce_queue().
277 */
278void blk_mq_quiesce_queue(struct request_queue *q)
279{
280 blk_mq_quiesce_queue_nowait(q);
281 blk_mq_wait_quiesce_done(q);
282}
6a83e74d
BVA
283EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
284
e4e73913
ML
285/*
286 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
287 * @q: request queue.
288 *
289 * This function recovers queue into the state before quiescing
290 * which is done by blk_mq_quiesce_queue.
291 */
292void blk_mq_unquiesce_queue(struct request_queue *q)
293{
e70feb8b
ML
294 unsigned long flags;
295 bool run_queue = false;
296
297 spin_lock_irqsave(&q->queue_lock, flags);
298 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
299 ;
300 } else if (!--q->quiesce_depth) {
301 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
302 run_queue = true;
303 }
304 spin_unlock_irqrestore(&q->queue_lock, flags);
f4560ffe 305
1d9e9bc6 306 /* dispatch requests which are inserted during quiescing */
e70feb8b
ML
307 if (run_queue)
308 blk_mq_run_hw_queues(q, true);
e4e73913
ML
309}
310EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
311
aed3ea94
JA
312void blk_mq_wake_waiters(struct request_queue *q)
313{
314 struct blk_mq_hw_ctx *hctx;
315 unsigned int i;
316
317 queue_for_each_hw_ctx(q, hctx, i)
318 if (blk_mq_hw_queue_mapped(hctx))
319 blk_mq_tag_wakeup_all(hctx->tags, true);
320}
321
52fdbbcc
CH
322void blk_rq_init(struct request_queue *q, struct request *rq)
323{
324 memset(rq, 0, sizeof(*rq));
325
326 INIT_LIST_HEAD(&rq->queuelist);
327 rq->q = q;
328 rq->__sector = (sector_t) -1;
329 INIT_HLIST_NODE(&rq->hash);
330 RB_CLEAR_NODE(&rq->rb_node);
331 rq->tag = BLK_MQ_NO_TAG;
332 rq->internal_tag = BLK_MQ_NO_TAG;
333 rq->start_time_ns = ktime_get_ns();
334 rq->part = NULL;
335 blk_crypto_rq_set_defaults(rq);
336}
337EXPORT_SYMBOL(blk_rq_init);
338
e4cdf1a1 339static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
fe6134f6 340 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
320ae51f 341{
605f784e
PB
342 struct blk_mq_ctx *ctx = data->ctx;
343 struct blk_mq_hw_ctx *hctx = data->hctx;
344 struct request_queue *q = data->q;
e4cdf1a1 345 struct request *rq = tags->static_rqs[tag];
c3a148d2 346
c7b84d42
JA
347 rq->q = q;
348 rq->mq_ctx = ctx;
349 rq->mq_hctx = hctx;
350 rq->cmd_flags = data->cmd_flags;
351
352 if (data->flags & BLK_MQ_REQ_PM)
353 data->rq_flags |= RQF_PM;
354 if (blk_queue_io_stat(q))
355 data->rq_flags |= RQF_IO_STAT;
356 rq->rq_flags = data->rq_flags;
357
56f8da64 358 if (!(data->rq_flags & RQF_ELV)) {
e4cdf1a1 359 rq->tag = tag;
76647368 360 rq->internal_tag = BLK_MQ_NO_TAG;
56f8da64
JA
361 } else {
362 rq->tag = BLK_MQ_NO_TAG;
363 rq->internal_tag = tag;
e4cdf1a1 364 }
c7b84d42 365 rq->timeout = 0;
e4cdf1a1 366
4f266f2b
PB
367 if (blk_mq_need_time_stamp(rq))
368 rq->start_time_ns = ktime_get_ns();
369 else
370 rq->start_time_ns = 0;
af76e555 371 rq->part = NULL;
6f816b4b
TH
372#ifdef CONFIG_BLK_RQ_ALLOC_TIME
373 rq->alloc_time_ns = alloc_time_ns;
374#endif
544ccc8d 375 rq->io_start_time_ns = 0;
3d244306 376 rq->stats_sectors = 0;
af76e555
CH
377 rq->nr_phys_segments = 0;
378#if defined(CONFIG_BLK_DEV_INTEGRITY)
379 rq->nr_integrity_segments = 0;
380#endif
af76e555
CH
381 rq->end_io = NULL;
382 rq->end_io_data = NULL;
af76e555 383
4f266f2b
PB
384 blk_crypto_rq_set_defaults(rq);
385 INIT_LIST_HEAD(&rq->queuelist);
386 /* tag was already set */
387 WRITE_ONCE(rq->deadline, 0);
0a467d0f 388 req_ref_set(rq, 1);
7ea4d8a4 389
4f266f2b 390 if (rq->rq_flags & RQF_ELV) {
7ea4d8a4
CH
391 struct elevator_queue *e = data->q->elevator;
392
4f266f2b
PB
393 INIT_HLIST_NODE(&rq->hash);
394 RB_CLEAR_NODE(&rq->rb_node);
395
396 if (!op_is_flush(data->cmd_flags) &&
397 e->type->ops.prepare_request) {
7ea4d8a4
CH
398 e->type->ops.prepare_request(rq);
399 rq->rq_flags |= RQF_ELVPRIV;
400 }
401 }
402
e4cdf1a1 403 return rq;
5dee8577
CH
404}
405
349302da
JA
406static inline struct request *
407__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
408 u64 alloc_time_ns)
409{
410 unsigned int tag, tag_offset;
fe6134f6 411 struct blk_mq_tags *tags;
349302da 412 struct request *rq;
fe6134f6 413 unsigned long tag_mask;
349302da
JA
414 int i, nr = 0;
415
fe6134f6
JA
416 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
417 if (unlikely(!tag_mask))
349302da
JA
418 return NULL;
419
fe6134f6
JA
420 tags = blk_mq_tags_from_data(data);
421 for (i = 0; tag_mask; i++) {
422 if (!(tag_mask & (1UL << i)))
349302da
JA
423 continue;
424 tag = tag_offset + i;
a22c00be 425 prefetch(tags->static_rqs[tag]);
fe6134f6
JA
426 tag_mask &= ~(1UL << i);
427 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
013a7f95 428 rq_list_add(data->cached_rq, rq);
c5fc7b93 429 nr++;
349302da 430 }
c5fc7b93
JA
431 /* caller already holds a reference, add for remainder */
432 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
349302da
JA
433 data->nr_tags -= nr;
434
013a7f95 435 return rq_list_pop(data->cached_rq);
349302da
JA
436}
437
b90cfaed 438static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
d2c0d383 439{
e6e7abff 440 struct request_queue *q = data->q;
6f816b4b 441 u64 alloc_time_ns = 0;
47c122e3 442 struct request *rq;
600c3b0c 443 unsigned int tag;
d2c0d383 444
6f816b4b
TH
445 /* alloc_time includes depth and tag waits */
446 if (blk_queue_rq_alloc_time(q))
447 alloc_time_ns = ktime_get_ns();
448
f9afca4d 449 if (data->cmd_flags & REQ_NOWAIT)
03a07c92 450 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383 451
781dd830
JA
452 if (q->elevator) {
453 struct elevator_queue *e = q->elevator;
454
455 data->rq_flags |= RQF_ELV;
456
d2c0d383 457 /*
8d663f34 458 * Flush/passthrough requests are special and go directly to the
17a51199
JA
459 * dispatch list. Don't include reserved tags in the
460 * limiting, as it isn't useful.
d2c0d383 461 */
f9afca4d 462 if (!op_is_flush(data->cmd_flags) &&
8d663f34 463 !blk_op_is_passthrough(data->cmd_flags) &&
f9afca4d 464 e->type->ops.limit_depth &&
17a51199 465 !(data->flags & BLK_MQ_REQ_RESERVED))
f9afca4d 466 e->type->ops.limit_depth(data->cmd_flags, data);
d2c0d383
CH
467 }
468
bf0beec0 469retry:
600c3b0c
CH
470 data->ctx = blk_mq_get_ctx(q);
471 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
781dd830 472 if (!(data->rq_flags & RQF_ELV))
600c3b0c
CH
473 blk_mq_tag_busy(data->hctx);
474
349302da
JA
475 /*
476 * Try batched alloc if we want more than 1 tag.
477 */
478 if (data->nr_tags > 1) {
479 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
480 if (rq)
481 return rq;
482 data->nr_tags = 1;
483 }
484
bf0beec0
ML
485 /*
486 * Waiting allocations only fail because of an inactive hctx. In that
487 * case just retry the hctx assignment and tag allocation as CPU hotplug
488 * should have migrated us to an online CPU by now.
489 */
e4cdf1a1 490 tag = blk_mq_get_tag(data);
bf0beec0
ML
491 if (tag == BLK_MQ_NO_TAG) {
492 if (data->flags & BLK_MQ_REQ_NOWAIT)
493 return NULL;
bf0beec0 494 /*
349302da
JA
495 * Give up the CPU and sleep for a random short time to
496 * ensure that thread using a realtime scheduling class
497 * are migrated off the CPU, and thus off the hctx that
498 * is going away.
bf0beec0
ML
499 */
500 msleep(3);
501 goto retry;
502 }
47c122e3 503
fe6134f6
JA
504 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
505 alloc_time_ns);
d2c0d383
CH
506}
507
cd6ce148 508struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 509 blk_mq_req_flags_t flags)
320ae51f 510{
e6e7abff
CH
511 struct blk_mq_alloc_data data = {
512 .q = q,
513 .flags = flags,
514 .cmd_flags = op,
47c122e3 515 .nr_tags = 1,
e6e7abff 516 };
bd166ef1 517 struct request *rq;
a492f075 518 int ret;
320ae51f 519
3a0a5299 520 ret = blk_queue_enter(q, flags);
a492f075
JL
521 if (ret)
522 return ERR_PTR(ret);
320ae51f 523
b90cfaed 524 rq = __blk_mq_alloc_requests(&data);
bd166ef1 525 if (!rq)
a5ea5811 526 goto out_queue_exit;
0c4de0f3
CH
527 rq->__data_len = 0;
528 rq->__sector = (sector_t) -1;
529 rq->bio = rq->biotail = NULL;
320ae51f 530 return rq;
a5ea5811
CH
531out_queue_exit:
532 blk_queue_exit(q);
533 return ERR_PTR(-EWOULDBLOCK);
320ae51f 534}
4bb659b1 535EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 536
cd6ce148 537struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 538 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 539{
e6e7abff
CH
540 struct blk_mq_alloc_data data = {
541 .q = q,
542 .flags = flags,
543 .cmd_flags = op,
47c122e3 544 .nr_tags = 1,
e6e7abff 545 };
600c3b0c 546 u64 alloc_time_ns = 0;
6d2809d5 547 unsigned int cpu;
600c3b0c 548 unsigned int tag;
1f5bd336
ML
549 int ret;
550
600c3b0c
CH
551 /* alloc_time includes depth and tag waits */
552 if (blk_queue_rq_alloc_time(q))
553 alloc_time_ns = ktime_get_ns();
554
1f5bd336
ML
555 /*
556 * If the tag allocator sleeps we could get an allocation for a
557 * different hardware context. No need to complicate the low level
558 * allocator for this for the rare use case of a command tied to
559 * a specific queue.
560 */
600c3b0c 561 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
1f5bd336
ML
562 return ERR_PTR(-EINVAL);
563
564 if (hctx_idx >= q->nr_hw_queues)
565 return ERR_PTR(-EIO);
566
3a0a5299 567 ret = blk_queue_enter(q, flags);
1f5bd336
ML
568 if (ret)
569 return ERR_PTR(ret);
570
c8712c6a
CH
571 /*
572 * Check if the hardware context is actually mapped to anything.
573 * If not tell the caller that it should skip this queue.
574 */
a5ea5811 575 ret = -EXDEV;
e6e7abff
CH
576 data.hctx = q->queue_hw_ctx[hctx_idx];
577 if (!blk_mq_hw_queue_mapped(data.hctx))
a5ea5811 578 goto out_queue_exit;
e6e7abff
CH
579 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
580 data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 581
42fdc5e4 582 if (!q->elevator)
600c3b0c 583 blk_mq_tag_busy(data.hctx);
781dd830
JA
584 else
585 data.rq_flags |= RQF_ELV;
600c3b0c 586
a5ea5811 587 ret = -EWOULDBLOCK;
600c3b0c
CH
588 tag = blk_mq_get_tag(&data);
589 if (tag == BLK_MQ_NO_TAG)
a5ea5811 590 goto out_queue_exit;
fe6134f6
JA
591 return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
592 alloc_time_ns);
600c3b0c 593
a5ea5811
CH
594out_queue_exit:
595 blk_queue_exit(q);
596 return ERR_PTR(ret);
1f5bd336
ML
597}
598EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
599
12f5b931
KB
600static void __blk_mq_free_request(struct request *rq)
601{
602 struct request_queue *q = rq->q;
603 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 604 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
12f5b931
KB
605 const int sched_tag = rq->internal_tag;
606
a892c8d5 607 blk_crypto_free_request(rq);
986d413b 608 blk_pm_mark_last_busy(rq);
ea4f995e 609 rq->mq_hctx = NULL;
76647368 610 if (rq->tag != BLK_MQ_NO_TAG)
cae740a0 611 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
76647368 612 if (sched_tag != BLK_MQ_NO_TAG)
cae740a0 613 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
12f5b931
KB
614 blk_mq_sched_restart(hctx);
615 blk_queue_exit(q);
616}
617
6af54051 618void blk_mq_free_request(struct request *rq)
320ae51f 619{
320ae51f 620 struct request_queue *q = rq->q;
ea4f995e 621 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
6af54051 622
222ee581
CH
623 if ((rq->rq_flags & RQF_ELVPRIV) &&
624 q->elevator->type->ops.finish_request)
625 q->elevator->type->ops.finish_request(rq);
320ae51f 626
e8064021 627 if (rq->rq_flags & RQF_MQ_INFLIGHT)
bccf5e26 628 __blk_mq_dec_active_requests(hctx);
87760e5e 629
7beb2f84 630 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
d152c682 631 laptop_io_completion(q->disk->bdi);
7beb2f84 632
a7905043 633 rq_qos_done(q, rq);
0d2602ca 634
12f5b931 635 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
0a467d0f 636 if (req_ref_put_and_test(rq))
12f5b931 637 __blk_mq_free_request(rq);
320ae51f 638}
1a3b595a 639EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 640
47c122e3 641void blk_mq_free_plug_rqs(struct blk_plug *plug)
320ae51f 642{
013a7f95 643 struct request *rq;
fe1f4526 644
c5fc7b93 645 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
47c122e3 646 blk_mq_free_request(rq);
47c122e3 647}
522a7775 648
22350ad7
CH
649void blk_dump_rq_flags(struct request *rq, char *msg)
650{
651 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
f3fa33ac 652 rq->q->disk ? rq->q->disk->disk_name : "?",
22350ad7
CH
653 (unsigned long long) rq->cmd_flags);
654
655 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
656 (unsigned long long)blk_rq_pos(rq),
657 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
658 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
659 rq->bio, rq->biotail, blk_rq_bytes(rq));
660}
661EXPORT_SYMBOL(blk_dump_rq_flags);
662
9be3e06f
JA
663static void req_bio_endio(struct request *rq, struct bio *bio,
664 unsigned int nbytes, blk_status_t error)
665{
478eb72b 666 if (unlikely(error)) {
9be3e06f 667 bio->bi_status = error;
478eb72b 668 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
9be3e06f
JA
669 /*
670 * Partial zone append completions cannot be supported as the
671 * BIO fragments may end up not being written sequentially.
672 */
297db731 673 if (bio->bi_iter.bi_size != nbytes)
9be3e06f
JA
674 bio->bi_status = BLK_STS_IOERR;
675 else
676 bio->bi_iter.bi_sector = rq->__sector;
677 }
678
478eb72b
PB
679 bio_advance(bio, nbytes);
680
681 if (unlikely(rq->rq_flags & RQF_QUIET))
682 bio_set_flag(bio, BIO_QUIET);
9be3e06f
JA
683 /* don't actually finish bio if it's part of flush sequence */
684 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
685 bio_endio(bio);
686}
687
688static void blk_account_io_completion(struct request *req, unsigned int bytes)
689{
690 if (req->part && blk_do_io_stat(req)) {
691 const int sgrp = op_stat_group(req_op(req));
692
693 part_stat_lock();
694 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
695 part_stat_unlock();
696 }
697}
698
0d7a29a2
CH
699static void blk_print_req_error(struct request *req, blk_status_t status)
700{
701 printk_ratelimited(KERN_ERR
702 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
703 "phys_seg %u prio class %u\n",
704 blk_status_to_str(status),
f3fa33ac 705 req->q->disk ? req->q->disk->disk_name : "?",
0d7a29a2
CH
706 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
707 req->cmd_flags & ~REQ_OP_MASK,
708 req->nr_phys_segments,
709 IOPRIO_PRIO_CLASS(req->ioprio));
710}
711
5581a5dd
JA
712/*
713 * Fully end IO on a request. Does not support partial completions, or
714 * errors.
715 */
716static void blk_complete_request(struct request *req)
717{
718 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
719 int total_bytes = blk_rq_bytes(req);
720 struct bio *bio = req->bio;
721
722 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
723
724 if (!bio)
725 return;
726
727#ifdef CONFIG_BLK_DEV_INTEGRITY
728 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
729 req->q->integrity.profile->complete_fn(req, total_bytes);
730#endif
731
732 blk_account_io_completion(req, total_bytes);
733
734 do {
735 struct bio *next = bio->bi_next;
736
737 /* Completion has already been traced */
738 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
739 if (!is_flush)
740 bio_endio(bio);
741 bio = next;
742 } while (bio);
743
744 /*
745 * Reset counters so that the request stacking driver
746 * can find how many bytes remain in the request
747 * later.
748 */
749 req->bio = NULL;
750 req->__data_len = 0;
751}
752
9be3e06f
JA
753/**
754 * blk_update_request - Complete multiple bytes without completing the request
755 * @req: the request being processed
756 * @error: block status code
757 * @nr_bytes: number of bytes to complete for @req
758 *
759 * Description:
760 * Ends I/O on a number of bytes attached to @req, but doesn't complete
761 * the request structure even if @req doesn't have leftover.
762 * If @req has leftover, sets it up for the next range of segments.
763 *
764 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
765 * %false return from this function.
766 *
767 * Note:
768 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
769 * except in the consistency check at the end of this function.
770 *
771 * Return:
772 * %false - this request doesn't have any more data
773 * %true - this request has more data
774 **/
775bool blk_update_request(struct request *req, blk_status_t error,
776 unsigned int nr_bytes)
777{
778 int total_bytes;
779
8a7d267b 780 trace_block_rq_complete(req, error, nr_bytes);
9be3e06f
JA
781
782 if (!req->bio)
783 return false;
784
785#ifdef CONFIG_BLK_DEV_INTEGRITY
786 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
787 error == BLK_STS_OK)
788 req->q->integrity.profile->complete_fn(req, nr_bytes);
789#endif
790
791 if (unlikely(error && !blk_rq_is_passthrough(req) &&
d5869fdc 792 !(req->rq_flags & RQF_QUIET))) {
9be3e06f 793 blk_print_req_error(req, error);
d5869fdc
YS
794 trace_block_rq_error(req, error, nr_bytes);
795 }
9be3e06f
JA
796
797 blk_account_io_completion(req, nr_bytes);
798
799 total_bytes = 0;
800 while (req->bio) {
801 struct bio *bio = req->bio;
802 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
803
804 if (bio_bytes == bio->bi_iter.bi_size)
805 req->bio = bio->bi_next;
806
807 /* Completion has already been traced */
808 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
809 req_bio_endio(req, bio, bio_bytes, error);
810
811 total_bytes += bio_bytes;
812 nr_bytes -= bio_bytes;
813
814 if (!nr_bytes)
815 break;
816 }
817
818 /*
819 * completely done
820 */
821 if (!req->bio) {
822 /*
823 * Reset counters so that the request stacking driver
824 * can find how many bytes remain in the request
825 * later.
826 */
827 req->__data_len = 0;
828 return false;
829 }
830
831 req->__data_len -= total_bytes;
832
833 /* update sector only for requests with clear definition of sector */
834 if (!blk_rq_is_passthrough(req))
835 req->__sector += total_bytes >> 9;
836
837 /* mixed attributes always follow the first bio */
838 if (req->rq_flags & RQF_MIXED_MERGE) {
839 req->cmd_flags &= ~REQ_FAILFAST_MASK;
840 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
841 }
842
843 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
844 /*
845 * If total number of sectors is less than the first segment
846 * size, something has gone terribly wrong.
847 */
848 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
849 blk_dump_rq_flags(req, "request botched");
850 req->__data_len = blk_rq_cur_bytes(req);
851 }
852
853 /* recalculate the number of segments */
854 req->nr_phys_segments = blk_recalc_rq_segments(req);
855 }
856
857 return true;
858}
859EXPORT_SYMBOL_GPL(blk_update_request);
860
450b7879
CH
861static void __blk_account_io_done(struct request *req, u64 now)
862{
863 const int sgrp = op_stat_group(req_op(req));
864
865 part_stat_lock();
866 update_io_ticks(req->part, jiffies, true);
867 part_stat_inc(req->part, ios[sgrp]);
868 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
869 part_stat_unlock();
870}
871
872static inline void blk_account_io_done(struct request *req, u64 now)
873{
874 /*
875 * Account IO completion. flush_rq isn't accounted as a
876 * normal IO on queueing nor completion. Accounting the
877 * containing request is enough.
878 */
879 if (blk_do_io_stat(req) && req->part &&
880 !(req->rq_flags & RQF_FLUSH_SEQ))
881 __blk_account_io_done(req, now);
882}
883
884static void __blk_account_io_start(struct request *rq)
885{
886 /* passthrough requests can hold bios that do not have ->bi_bdev set */
887 if (rq->bio && rq->bio->bi_bdev)
888 rq->part = rq->bio->bi_bdev;
f3fa33ac
CH
889 else if (rq->q->disk)
890 rq->part = rq->q->disk->part0;
450b7879
CH
891
892 part_stat_lock();
893 update_io_ticks(rq->part, jiffies, false);
894 part_stat_unlock();
895}
896
897static inline void blk_account_io_start(struct request *req)
898{
899 if (blk_do_io_stat(req))
900 __blk_account_io_start(req);
901}
902
f794f335 903static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
320ae51f 904{
4bc6339a
OS
905 if (rq->rq_flags & RQF_STATS) {
906 blk_mq_poll_stats_start(rq->q);
522a7775 907 blk_stat_add(rq, now);
4bc6339a
OS
908 }
909
87890092 910 blk_mq_sched_completed_request(rq, now);
522a7775 911 blk_account_io_done(rq, now);
f794f335 912}
522a7775 913
f794f335
JA
914inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
915{
916 if (blk_mq_need_time_stamp(rq))
917 __blk_mq_end_request_acct(rq, ktime_get_ns());
0d11e6ac 918
91b63639 919 if (rq->end_io) {
a7905043 920 rq_qos_done(rq->q, rq);
320ae51f 921 rq->end_io(rq, error);
91b63639 922 } else {
320ae51f 923 blk_mq_free_request(rq);
91b63639 924 }
320ae51f 925}
c8a446ad 926EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 927
2a842aca 928void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
929{
930 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
931 BUG();
c8a446ad 932 __blk_mq_end_request(rq, error);
63151a44 933}
c8a446ad 934EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 935
f794f335
JA
936#define TAG_COMP_BATCH 32
937
938static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
939 int *tag_array, int nr_tags)
940{
941 struct request_queue *q = hctx->queue;
942
3b87c6ea
ML
943 /*
944 * All requests should have been marked as RQF_MQ_INFLIGHT, so
945 * update hctx->nr_active in batch
946 */
947 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
948 __blk_mq_sub_active_requests(hctx, nr_tags);
949
f794f335
JA
950 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
951 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
952}
953
954void blk_mq_end_request_batch(struct io_comp_batch *iob)
955{
956 int tags[TAG_COMP_BATCH], nr_tags = 0;
02f7eab0 957 struct blk_mq_hw_ctx *cur_hctx = NULL;
f794f335
JA
958 struct request *rq;
959 u64 now = 0;
960
961 if (iob->need_ts)
962 now = ktime_get_ns();
963
964 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
965 prefetch(rq->bio);
966 prefetch(rq->rq_next);
967
5581a5dd 968 blk_complete_request(rq);
f794f335
JA
969 if (iob->need_ts)
970 __blk_mq_end_request_acct(rq, now);
971
98b26a0e
JA
972 rq_qos_done(rq->q, rq);
973
f794f335 974 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
0a467d0f 975 if (!req_ref_put_and_test(rq))
f794f335
JA
976 continue;
977
978 blk_crypto_free_request(rq);
979 blk_pm_mark_last_busy(rq);
f794f335 980
02f7eab0
JA
981 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
982 if (cur_hctx)
983 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
f794f335 984 nr_tags = 0;
02f7eab0 985 cur_hctx = rq->mq_hctx;
f794f335
JA
986 }
987 tags[nr_tags++] = rq->tag;
f794f335
JA
988 }
989
990 if (nr_tags)
02f7eab0 991 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
f794f335
JA
992}
993EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
994
f9ab4918 995static void blk_complete_reqs(struct llist_head *list)
320ae51f 996{
f9ab4918
SAS
997 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
998 struct request *rq, *next;
c3077b5d 999
f9ab4918 1000 llist_for_each_entry_safe(rq, next, entry, ipi_list)
c3077b5d 1001 rq->q->mq_ops->complete(rq);
320ae51f 1002}
320ae51f 1003
f9ab4918 1004static __latent_entropy void blk_done_softirq(struct softirq_action *h)
320ae51f 1005{
f9ab4918 1006 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
115243f5
CH
1007}
1008
c3077b5d
CH
1009static int blk_softirq_cpu_dead(unsigned int cpu)
1010{
f9ab4918 1011 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
c3077b5d
CH
1012 return 0;
1013}
1014
40d09b53 1015static void __blk_mq_complete_request_remote(void *data)
c3077b5d 1016{
f9ab4918 1017 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
c3077b5d
CH
1018}
1019
96339526
CH
1020static inline bool blk_mq_complete_need_ipi(struct request *rq)
1021{
1022 int cpu = raw_smp_processor_id();
1023
1024 if (!IS_ENABLED(CONFIG_SMP) ||
1025 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1026 return false;
71425189
SAS
1027 /*
1028 * With force threaded interrupts enabled, raising softirq from an SMP
1029 * function call will always result in waking the ksoftirqd thread.
1030 * This is probably worse than completing the request on a different
1031 * cache domain.
1032 */
91cc470e 1033 if (force_irqthreads())
71425189 1034 return false;
96339526
CH
1035
1036 /* same CPU or cache domain? Complete locally */
1037 if (cpu == rq->mq_ctx->cpu ||
1038 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1039 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1040 return false;
1041
1042 /* don't try to IPI to an offline CPU */
1043 return cpu_online(rq->mq_ctx->cpu);
1044}
1045
f9ab4918
SAS
1046static void blk_mq_complete_send_ipi(struct request *rq)
1047{
1048 struct llist_head *list;
1049 unsigned int cpu;
1050
1051 cpu = rq->mq_ctx->cpu;
1052 list = &per_cpu(blk_cpu_done, cpu);
1053 if (llist_add(&rq->ipi_list, list)) {
1054 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1055 smp_call_function_single_async(cpu, &rq->csd);
1056 }
1057}
1058
1059static void blk_mq_raise_softirq(struct request *rq)
1060{
1061 struct llist_head *list;
1062
1063 preempt_disable();
1064 list = this_cpu_ptr(&blk_cpu_done);
1065 if (llist_add(&rq->ipi_list, list))
1066 raise_softirq(BLOCK_SOFTIRQ);
1067 preempt_enable();
1068}
1069
40d09b53 1070bool blk_mq_complete_request_remote(struct request *rq)
320ae51f 1071{
af78ff7c 1072 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
36e76539 1073
4ab32bf3
JA
1074 /*
1075 * For a polled request, always complete locallly, it's pointless
1076 * to redirect the completion.
1077 */
6ce913fe 1078 if (rq->cmd_flags & REQ_POLLED)
40d09b53 1079 return false;
38535201 1080
96339526 1081 if (blk_mq_complete_need_ipi(rq)) {
f9ab4918
SAS
1082 blk_mq_complete_send_ipi(rq);
1083 return true;
3d6efbf6 1084 }
40d09b53 1085
f9ab4918
SAS
1086 if (rq->q->nr_hw_queues == 1) {
1087 blk_mq_raise_softirq(rq);
1088 return true;
1089 }
1090 return false;
40d09b53
CH
1091}
1092EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1093
1094/**
1095 * blk_mq_complete_request - end I/O on a request
1096 * @rq: the request being processed
1097 *
1098 * Description:
1099 * Complete a request by scheduling the ->complete_rq operation.
1100 **/
1101void blk_mq_complete_request(struct request *rq)
1102{
1103 if (!blk_mq_complete_request_remote(rq))
1104 rq->q->mq_ops->complete(rq);
320ae51f 1105}
15f73f5b 1106EXPORT_SYMBOL(blk_mq_complete_request);
30a91cb4 1107
105663f7
AA
1108/**
1109 * blk_mq_start_request - Start processing a request
1110 * @rq: Pointer to request to be started
1111 *
1112 * Function used by device drivers to notify the block layer that a request
1113 * is going to be processed now, so blk layer can do proper initializations
1114 * such as starting the timeout timer.
1115 */
e2490073 1116void blk_mq_start_request(struct request *rq)
320ae51f
JA
1117{
1118 struct request_queue *q = rq->q;
1119
a54895fa 1120 trace_block_rq_issue(rq);
320ae51f 1121
cf43e6be 1122 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
00067077
JA
1123 u64 start_time;
1124#ifdef CONFIG_BLK_CGROUP
1125 if (rq->bio)
1126 start_time = bio_issue_time(&rq->bio->bi_issue);
1127 else
1128#endif
1129 start_time = ktime_get_ns();
1130 rq->io_start_time_ns = start_time;
3d244306 1131 rq->stats_sectors = blk_rq_sectors(rq);
cf43e6be 1132 rq->rq_flags |= RQF_STATS;
a7905043 1133 rq_qos_issue(q, rq);
cf43e6be
JA
1134 }
1135
1d9bd516 1136 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 1137
1d9bd516 1138 blk_add_timer(rq);
12f5b931 1139 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
49f5baa5 1140
54d4e6ab
MG
1141#ifdef CONFIG_BLK_DEV_INTEGRITY
1142 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1143 q->integrity.profile->prepare_fn(rq);
1144#endif
3e08773c
CH
1145 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1146 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
320ae51f 1147}
e2490073 1148EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 1149
4054cff9
CH
1150/**
1151 * blk_end_sync_rq - executes a completion event on a request
1152 * @rq: request to complete
1153 * @error: end I/O status of the request
1154 */
1155static void blk_end_sync_rq(struct request *rq, blk_status_t error)
1156{
1157 struct completion *waiting = rq->end_io_data;
1158
1159 rq->end_io_data = (void *)(uintptr_t)error;
1160
1161 /*
1162 * complete last, if this is a stack request the process (and thus
1163 * the rq pointer) could be invalid right after this complete()
1164 */
1165 complete(waiting);
1166}
1167
1168/**
1169 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
4054cff9
CH
1170 * @rq: request to insert
1171 * @at_head: insert request at head or tail of queue
1172 * @done: I/O completion handler
1173 *
1174 * Description:
1175 * Insert a fully prepared request at the back of the I/O scheduler queue
1176 * for execution. Don't wait for completion.
1177 *
1178 * Note:
1179 * This function will invoke @done directly if the queue is dead.
1180 */
b84ba30b 1181void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
4054cff9
CH
1182{
1183 WARN_ON(irqs_disabled());
1184 WARN_ON(!blk_rq_is_passthrough(rq));
1185
4054cff9
CH
1186 rq->end_io = done;
1187
1188 blk_account_io_start(rq);
1189
1190 /*
1191 * don't check dying flag for MQ because the request won't
1192 * be reused after dying flag is set
1193 */
1194 blk_mq_sched_insert_request(rq, at_head, true, false);
1195}
1196EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1197
1198static bool blk_rq_is_poll(struct request *rq)
1199{
1200 if (!rq->mq_hctx)
1201 return false;
1202 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1203 return false;
1204 if (WARN_ON_ONCE(!rq->bio))
1205 return false;
1206 return true;
1207}
1208
1209static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1210{
1211 do {
1212 bio_poll(rq->bio, NULL, 0);
1213 cond_resched();
1214 } while (!completion_done(wait));
1215}
1216
1217/**
1218 * blk_execute_rq - insert a request into queue for execution
4054cff9
CH
1219 * @rq: request to insert
1220 * @at_head: insert request at head or tail of queue
1221 *
1222 * Description:
1223 * Insert a fully prepared request at the back of the I/O scheduler queue
1224 * for execution and wait for completion.
1225 * Return: The blk_status_t result provided to blk_mq_end_request().
1226 */
b84ba30b 1227blk_status_t blk_execute_rq(struct request *rq, bool at_head)
4054cff9
CH
1228{
1229 DECLARE_COMPLETION_ONSTACK(wait);
1230 unsigned long hang_check;
1231
1232 rq->end_io_data = &wait;
b84ba30b 1233 blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq);
4054cff9
CH
1234
1235 /* Prevent hang_check timer from firing at us during very long I/O */
1236 hang_check = sysctl_hung_task_timeout_secs;
1237
1238 if (blk_rq_is_poll(rq))
1239 blk_rq_poll_completion(rq, &wait);
1240 else if (hang_check)
1241 while (!wait_for_completion_io_timeout(&wait,
1242 hang_check * (HZ/2)))
1243 ;
1244 else
1245 wait_for_completion_io(&wait);
1246
1247 return (blk_status_t)(uintptr_t)rq->end_io_data;
1248}
1249EXPORT_SYMBOL(blk_execute_rq);
1250
ed0791b2 1251static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
1252{
1253 struct request_queue *q = rq->q;
1254
923218f6
ML
1255 blk_mq_put_driver_tag(rq);
1256
a54895fa 1257 trace_block_rq_requeue(rq);
a7905043 1258 rq_qos_requeue(q, rq);
49f5baa5 1259
12f5b931
KB
1260 if (blk_mq_request_started(rq)) {
1261 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
da661267 1262 rq->rq_flags &= ~RQF_TIMED_OUT;
e2490073 1263 }
320ae51f
JA
1264}
1265
2b053aca 1266void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 1267{
ed0791b2 1268 __blk_mq_requeue_request(rq);
ed0791b2 1269
105976f5
ML
1270 /* this request will be re-inserted to io scheduler queue */
1271 blk_mq_sched_requeue_request(rq);
1272
2b053aca 1273 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
1274}
1275EXPORT_SYMBOL(blk_mq_requeue_request);
1276
6fca6a61
CH
1277static void blk_mq_requeue_work(struct work_struct *work)
1278{
1279 struct request_queue *q =
2849450a 1280 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
1281 LIST_HEAD(rq_list);
1282 struct request *rq, *next;
6fca6a61 1283
18e9781d 1284 spin_lock_irq(&q->requeue_lock);
6fca6a61 1285 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 1286 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
1287
1288 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
aef1897c 1289 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
6fca6a61
CH
1290 continue;
1291
e8064021 1292 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 1293 list_del_init(&rq->queuelist);
aef1897c
JW
1294 /*
1295 * If RQF_DONTPREP, rq has contained some driver specific
1296 * data, so insert it to hctx dispatch list to avoid any
1297 * merge.
1298 */
1299 if (rq->rq_flags & RQF_DONTPREP)
01e99aec 1300 blk_mq_request_bypass_insert(rq, false, false);
aef1897c
JW
1301 else
1302 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
1303 }
1304
1305 while (!list_empty(&rq_list)) {
1306 rq = list_entry(rq_list.next, struct request, queuelist);
1307 list_del_init(&rq->queuelist);
9e97d295 1308 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
1309 }
1310
52d7f1b5 1311 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
1312}
1313
2b053aca
BVA
1314void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1315 bool kick_requeue_list)
6fca6a61
CH
1316{
1317 struct request_queue *q = rq->q;
1318 unsigned long flags;
1319
1320 /*
1321 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 1322 * request head insertion from the workqueue.
6fca6a61 1323 */
e8064021 1324 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
1325
1326 spin_lock_irqsave(&q->requeue_lock, flags);
1327 if (at_head) {
e8064021 1328 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
1329 list_add(&rq->queuelist, &q->requeue_list);
1330 } else {
1331 list_add_tail(&rq->queuelist, &q->requeue_list);
1332 }
1333 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
1334
1335 if (kick_requeue_list)
1336 blk_mq_kick_requeue_list(q);
6fca6a61 1337}
6fca6a61
CH
1338
1339void blk_mq_kick_requeue_list(struct request_queue *q)
1340{
ae943d20 1341 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
6fca6a61
CH
1342}
1343EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1344
2849450a
MS
1345void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1346 unsigned long msecs)
1347{
d4acf365
BVA
1348 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1349 msecs_to_jiffies(msecs));
2849450a
MS
1350}
1351EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1352
8ab30a33
JG
1353static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1354 bool reserved)
ae879912
JA
1355{
1356 /*
8ab30a33
JG
1357 * If we find a request that isn't idle we know the queue is busy
1358 * as it's checked in the iter.
1359 * Return false to stop the iteration.
ae879912 1360 */
8ab30a33 1361 if (blk_mq_request_started(rq)) {
ae879912
JA
1362 bool *busy = priv;
1363
1364 *busy = true;
1365 return false;
1366 }
1367
1368 return true;
1369}
1370
3c94d83c 1371bool blk_mq_queue_inflight(struct request_queue *q)
ae879912
JA
1372{
1373 bool busy = false;
1374
3c94d83c 1375 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
ae879912
JA
1376 return busy;
1377}
3c94d83c 1378EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
ae879912 1379
358f70da 1380static void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 1381{
da661267 1382 req->rq_flags |= RQF_TIMED_OUT;
d1210d5a
CH
1383 if (req->q->mq_ops->timeout) {
1384 enum blk_eh_timer_return ret;
1385
1386 ret = req->q->mq_ops->timeout(req, reserved);
1387 if (ret == BLK_EH_DONE)
1388 return;
1389 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
46f92d42 1390 }
d1210d5a
CH
1391
1392 blk_add_timer(req);
87ee7b11 1393}
5b3f25fc 1394
12f5b931 1395static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
81481eb4 1396{
12f5b931 1397 unsigned long deadline;
87ee7b11 1398
12f5b931
KB
1399 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1400 return false;
da661267
CH
1401 if (rq->rq_flags & RQF_TIMED_OUT)
1402 return false;
a7af0af3 1403
079076b3 1404 deadline = READ_ONCE(rq->deadline);
12f5b931
KB
1405 if (time_after_eq(jiffies, deadline))
1406 return true;
a7af0af3 1407
12f5b931
KB
1408 if (*next == 0)
1409 *next = deadline;
1410 else if (time_after(*next, deadline))
1411 *next = deadline;
1412 return false;
87ee7b11
JA
1413}
1414
2e315dc0
ML
1415void blk_mq_put_rq_ref(struct request *rq)
1416{
a9ed27a7 1417 if (is_flush_rq(rq))
2e315dc0 1418 rq->end_io(rq, 0);
0a467d0f 1419 else if (req_ref_put_and_test(rq))
2e315dc0
ML
1420 __blk_mq_free_request(rq);
1421}
1422
8ab30a33 1423static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1d9bd516 1424{
12f5b931
KB
1425 unsigned long *next = priv;
1426
1427 /*
c797b40c
ML
1428 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1429 * be reallocated underneath the timeout handler's processing, then
1430 * the expire check is reliable. If the request is not expired, then
1431 * it was completed and reallocated as a new request after returning
1432 * from blk_mq_check_expired().
1d9bd516 1433 */
12f5b931 1434 if (blk_mq_req_expired(rq, next))
1d9bd516 1435 blk_mq_rq_timed_out(rq, reserved);
7baa8572 1436 return true;
1d9bd516
TH
1437}
1438
287922eb 1439static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 1440{
287922eb
CH
1441 struct request_queue *q =
1442 container_of(work, struct request_queue, timeout_work);
12f5b931 1443 unsigned long next = 0;
1d9bd516 1444 struct blk_mq_hw_ctx *hctx;
81481eb4 1445 int i;
320ae51f 1446
71f79fb3
GKB
1447 /* A deadlock might occur if a request is stuck requiring a
1448 * timeout at the same time a queue freeze is waiting
1449 * completion, since the timeout code would not be able to
1450 * acquire the queue reference here.
1451 *
1452 * That's why we don't use blk_queue_enter here; instead, we use
1453 * percpu_ref_tryget directly, because we need to be able to
1454 * obtain a reference even in the short window between the queue
1455 * starting to freeze, by dropping the first reference in
1671d522 1456 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
1457 * consumed, marked by the instant q_usage_counter reaches
1458 * zero.
1459 */
1460 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
1461 return;
1462
12f5b931 1463 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
320ae51f 1464
12f5b931
KB
1465 if (next != 0) {
1466 mod_timer(&q->timeout, next);
0d2602ca 1467 } else {
fcd36c36
BVA
1468 /*
1469 * Request timeouts are handled as a forward rolling timer. If
1470 * we end up here it means that no requests are pending and
1471 * also that no request has been pending for a while. Mark
1472 * each hctx as idle.
1473 */
f054b56c
ML
1474 queue_for_each_hw_ctx(q, hctx, i) {
1475 /* the hctx may be unmapped, so check it here */
1476 if (blk_mq_hw_queue_mapped(hctx))
1477 blk_mq_tag_idle(hctx);
1478 }
0d2602ca 1479 }
287922eb 1480 blk_queue_exit(q);
320ae51f
JA
1481}
1482
88459642
OS
1483struct flush_busy_ctx_data {
1484 struct blk_mq_hw_ctx *hctx;
1485 struct list_head *list;
1486};
1487
1488static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1489{
1490 struct flush_busy_ctx_data *flush_data = data;
1491 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1492 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 1493 enum hctx_type type = hctx->type;
88459642 1494
88459642 1495 spin_lock(&ctx->lock);
c16d6b5a 1496 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
e9a99a63 1497 sbitmap_clear_bit(sb, bitnr);
88459642
OS
1498 spin_unlock(&ctx->lock);
1499 return true;
1500}
1501
1429d7c9
JA
1502/*
1503 * Process software queues that have been marked busy, splicing them
1504 * to the for-dispatch
1505 */
2c3ad667 1506void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 1507{
88459642
OS
1508 struct flush_busy_ctx_data data = {
1509 .hctx = hctx,
1510 .list = list,
1511 };
1429d7c9 1512
88459642 1513 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 1514}
2c3ad667 1515EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 1516
b347689f
ML
1517struct dispatch_rq_data {
1518 struct blk_mq_hw_ctx *hctx;
1519 struct request *rq;
1520};
1521
1522static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1523 void *data)
1524{
1525 struct dispatch_rq_data *dispatch_data = data;
1526 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1527 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 1528 enum hctx_type type = hctx->type;
b347689f
ML
1529
1530 spin_lock(&ctx->lock);
c16d6b5a
ML
1531 if (!list_empty(&ctx->rq_lists[type])) {
1532 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
b347689f 1533 list_del_init(&dispatch_data->rq->queuelist);
c16d6b5a 1534 if (list_empty(&ctx->rq_lists[type]))
b347689f
ML
1535 sbitmap_clear_bit(sb, bitnr);
1536 }
1537 spin_unlock(&ctx->lock);
1538
1539 return !dispatch_data->rq;
1540}
1541
1542struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1543 struct blk_mq_ctx *start)
1544{
f31967f0 1545 unsigned off = start ? start->index_hw[hctx->type] : 0;
b347689f
ML
1546 struct dispatch_rq_data data = {
1547 .hctx = hctx,
1548 .rq = NULL,
1549 };
1550
1551 __sbitmap_for_each_set(&hctx->ctx_map, off,
1552 dispatch_rq_from_ctx, &data);
1553
1554 return data.rq;
1555}
1556
a808a9d5 1557static bool __blk_mq_alloc_driver_tag(struct request *rq)
570e9b73 1558{
ae0f1a73 1559 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
570e9b73 1560 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
570e9b73
ML
1561 int tag;
1562
568f2700
ML
1563 blk_mq_tag_busy(rq->mq_hctx);
1564
570e9b73 1565 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
ae0f1a73 1566 bt = &rq->mq_hctx->tags->breserved_tags;
570e9b73 1567 tag_offset = 0;
28500850
ML
1568 } else {
1569 if (!hctx_may_queue(rq->mq_hctx, bt))
1570 return false;
570e9b73
ML
1571 }
1572
570e9b73
ML
1573 tag = __sbitmap_queue_get(bt);
1574 if (tag == BLK_MQ_NO_TAG)
1575 return false;
1576
1577 rq->tag = tag + tag_offset;
570e9b73
ML
1578 return true;
1579}
1580
a808a9d5 1581bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
570e9b73 1582{
a808a9d5 1583 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
568f2700
ML
1584 return false;
1585
51db1c37 1586 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
568f2700
ML
1587 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1588 rq->rq_flags |= RQF_MQ_INFLIGHT;
bccf5e26 1589 __blk_mq_inc_active_requests(hctx);
568f2700
ML
1590 }
1591 hctx->tags->rqs[rq->tag] = rq;
1592 return true;
570e9b73
ML
1593}
1594
eb619fdb
JA
1595static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1596 int flags, void *key)
da55f2cc
OS
1597{
1598 struct blk_mq_hw_ctx *hctx;
1599
1600 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1601
5815839b 1602 spin_lock(&hctx->dispatch_wait_lock);
e8618575
JA
1603 if (!list_empty(&wait->entry)) {
1604 struct sbitmap_queue *sbq;
1605
1606 list_del_init(&wait->entry);
ae0f1a73 1607 sbq = &hctx->tags->bitmap_tags;
e8618575
JA
1608 atomic_dec(&sbq->ws_active);
1609 }
5815839b
ML
1610 spin_unlock(&hctx->dispatch_wait_lock);
1611
da55f2cc
OS
1612 blk_mq_run_hw_queue(hctx, true);
1613 return 1;
1614}
1615
f906a6a0
JA
1616/*
1617 * Mark us waiting for a tag. For shared tags, this involves hooking us into
ee3e4de5
BVA
1618 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1619 * restart. For both cases, take care to check the condition again after
f906a6a0
JA
1620 * marking us as waiting.
1621 */
2278d69f 1622static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
f906a6a0 1623 struct request *rq)
da55f2cc 1624{
ae0f1a73 1625 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
5815839b 1626 struct wait_queue_head *wq;
f906a6a0
JA
1627 wait_queue_entry_t *wait;
1628 bool ret;
da55f2cc 1629
51db1c37 1630 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
684b7324 1631 blk_mq_sched_mark_restart_hctx(hctx);
f906a6a0 1632
c27d53fb
BVA
1633 /*
1634 * It's possible that a tag was freed in the window between the
1635 * allocation failure and adding the hardware queue to the wait
1636 * queue.
1637 *
1638 * Don't clear RESTART here, someone else could have set it.
1639 * At most this will cost an extra queue run.
1640 */
8ab6bb9e 1641 return blk_mq_get_driver_tag(rq);
eb619fdb 1642 }
eb619fdb 1643
2278d69f 1644 wait = &hctx->dispatch_wait;
c27d53fb
BVA
1645 if (!list_empty_careful(&wait->entry))
1646 return false;
1647
e8618575 1648 wq = &bt_wait_ptr(sbq, hctx)->wait;
5815839b
ML
1649
1650 spin_lock_irq(&wq->lock);
1651 spin_lock(&hctx->dispatch_wait_lock);
c27d53fb 1652 if (!list_empty(&wait->entry)) {
5815839b
ML
1653 spin_unlock(&hctx->dispatch_wait_lock);
1654 spin_unlock_irq(&wq->lock);
c27d53fb 1655 return false;
eb619fdb
JA
1656 }
1657
e8618575 1658 atomic_inc(&sbq->ws_active);
5815839b
ML
1659 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1660 __add_wait_queue(wq, wait);
c27d53fb 1661
da55f2cc 1662 /*
eb619fdb
JA
1663 * It's possible that a tag was freed in the window between the
1664 * allocation failure and adding the hardware queue to the wait
1665 * queue.
da55f2cc 1666 */
8ab6bb9e 1667 ret = blk_mq_get_driver_tag(rq);
c27d53fb 1668 if (!ret) {
5815839b
ML
1669 spin_unlock(&hctx->dispatch_wait_lock);
1670 spin_unlock_irq(&wq->lock);
c27d53fb 1671 return false;
eb619fdb 1672 }
c27d53fb
BVA
1673
1674 /*
1675 * We got a tag, remove ourselves from the wait queue to ensure
1676 * someone else gets the wakeup.
1677 */
c27d53fb 1678 list_del_init(&wait->entry);
e8618575 1679 atomic_dec(&sbq->ws_active);
5815839b
ML
1680 spin_unlock(&hctx->dispatch_wait_lock);
1681 spin_unlock_irq(&wq->lock);
c27d53fb
BVA
1682
1683 return true;
da55f2cc
OS
1684}
1685
6e768717
ML
1686#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1687#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1688/*
1689 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1690 * - EWMA is one simple way to compute running average value
1691 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1692 * - take 4 as factor for avoiding to get too small(0) result, and this
1693 * factor doesn't matter because EWMA decreases exponentially
1694 */
1695static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1696{
1697 unsigned int ewma;
1698
6e768717
ML
1699 ewma = hctx->dispatch_busy;
1700
1701 if (!ewma && !busy)
1702 return;
1703
1704 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1705 if (busy)
1706 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1707 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1708
1709 hctx->dispatch_busy = ewma;
1710}
1711
86ff7c2a
ML
1712#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1713
c92a4103
JT
1714static void blk_mq_handle_dev_resource(struct request *rq,
1715 struct list_head *list)
1716{
1717 struct request *next =
1718 list_first_entry_or_null(list, struct request, queuelist);
1719
1720 /*
1721 * If an I/O scheduler has been configured and we got a driver tag for
1722 * the next request already, free it.
1723 */
1724 if (next)
1725 blk_mq_put_driver_tag(next);
1726
1727 list_add(&rq->queuelist, list);
1728 __blk_mq_requeue_request(rq);
1729}
1730
0512a75b
KB
1731static void blk_mq_handle_zone_resource(struct request *rq,
1732 struct list_head *zone_list)
1733{
1734 /*
1735 * If we end up here it is because we cannot dispatch a request to a
1736 * specific zone due to LLD level zone-write locking or other zone
1737 * related resource not being available. In this case, set the request
1738 * aside in zone_list for retrying it later.
1739 */
1740 list_add(&rq->queuelist, zone_list);
1741 __blk_mq_requeue_request(rq);
1742}
1743
75383524
ML
1744enum prep_dispatch {
1745 PREP_DISPATCH_OK,
1746 PREP_DISPATCH_NO_TAG,
1747 PREP_DISPATCH_NO_BUDGET,
1748};
1749
1750static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1751 bool need_budget)
1752{
1753 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2a5a24aa 1754 int budget_token = -1;
75383524 1755
2a5a24aa
ML
1756 if (need_budget) {
1757 budget_token = blk_mq_get_dispatch_budget(rq->q);
1758 if (budget_token < 0) {
1759 blk_mq_put_driver_tag(rq);
1760 return PREP_DISPATCH_NO_BUDGET;
1761 }
1762 blk_mq_set_rq_budget_token(rq, budget_token);
75383524
ML
1763 }
1764
1765 if (!blk_mq_get_driver_tag(rq)) {
1766 /*
1767 * The initial allocation attempt failed, so we need to
1768 * rerun the hardware queue when a tag is freed. The
1769 * waitqueue takes care of that. If the queue is run
1770 * before we add this entry back on the dispatch list,
1771 * we'll re-run it below.
1772 */
1773 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1fd40b5e
ML
1774 /*
1775 * All budgets not got from this function will be put
1776 * together during handling partial dispatch
1777 */
1778 if (need_budget)
2a5a24aa 1779 blk_mq_put_dispatch_budget(rq->q, budget_token);
75383524
ML
1780 return PREP_DISPATCH_NO_TAG;
1781 }
1782 }
1783
1784 return PREP_DISPATCH_OK;
1785}
1786
1fd40b5e
ML
1787/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1788static void blk_mq_release_budgets(struct request_queue *q,
2a5a24aa 1789 struct list_head *list)
1fd40b5e 1790{
2a5a24aa 1791 struct request *rq;
1fd40b5e 1792
2a5a24aa
ML
1793 list_for_each_entry(rq, list, queuelist) {
1794 int budget_token = blk_mq_get_rq_budget_token(rq);
1fd40b5e 1795
2a5a24aa
ML
1796 if (budget_token >= 0)
1797 blk_mq_put_dispatch_budget(q, budget_token);
1798 }
1fd40b5e
ML
1799}
1800
1f57f8d4
JA
1801/*
1802 * Returns true if we did some work AND can potentially do more.
1803 */
445874e8 1804bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1fd40b5e 1805 unsigned int nr_budgets)
320ae51f 1806{
75383524 1807 enum prep_dispatch prep;
445874e8 1808 struct request_queue *q = hctx->queue;
6d6f167c 1809 struct request *rq, *nxt;
fc17b653 1810 int errors, queued;
86ff7c2a 1811 blk_status_t ret = BLK_STS_OK;
0512a75b 1812 LIST_HEAD(zone_list);
9586e67b 1813 bool needs_resource = false;
320ae51f 1814
81380ca1
OS
1815 if (list_empty(list))
1816 return false;
1817
320ae51f
JA
1818 /*
1819 * Now process all the entries, sending them to the driver.
1820 */
93efe981 1821 errors = queued = 0;
81380ca1 1822 do {
74c45052 1823 struct blk_mq_queue_data bd;
320ae51f 1824
f04c3df3 1825 rq = list_first_entry(list, struct request, queuelist);
0bca799b 1826
445874e8 1827 WARN_ON_ONCE(hctx != rq->mq_hctx);
1fd40b5e 1828 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
75383524 1829 if (prep != PREP_DISPATCH_OK)
0bca799b 1830 break;
de148297 1831
320ae51f 1832 list_del_init(&rq->queuelist);
320ae51f 1833
74c45052 1834 bd.rq = rq;
113285b4
JA
1835
1836 /*
1837 * Flag last if we have no more requests, or if we have more
1838 * but can't assign a driver tag to it.
1839 */
1840 if (list_empty(list))
1841 bd.last = true;
1842 else {
113285b4 1843 nxt = list_first_entry(list, struct request, queuelist);
8ab6bb9e 1844 bd.last = !blk_mq_get_driver_tag(nxt);
113285b4 1845 }
74c45052 1846
1fd40b5e
ML
1847 /*
1848 * once the request is queued to lld, no need to cover the
1849 * budget any more
1850 */
1851 if (nr_budgets)
1852 nr_budgets--;
74c45052 1853 ret = q->mq_ops->queue_rq(hctx, &bd);
7bf13729
ML
1854 switch (ret) {
1855 case BLK_STS_OK:
1856 queued++;
320ae51f 1857 break;
7bf13729 1858 case BLK_STS_RESOURCE:
9586e67b
NA
1859 needs_resource = true;
1860 fallthrough;
7bf13729
ML
1861 case BLK_STS_DEV_RESOURCE:
1862 blk_mq_handle_dev_resource(rq, list);
1863 goto out;
1864 case BLK_STS_ZONE_RESOURCE:
0512a75b
KB
1865 /*
1866 * Move the request to zone_list and keep going through
1867 * the dispatch list to find more requests the drive can
1868 * accept.
1869 */
1870 blk_mq_handle_zone_resource(rq, &zone_list);
9586e67b 1871 needs_resource = true;
7bf13729
ML
1872 break;
1873 default:
93efe981 1874 errors++;
e21ee5a6 1875 blk_mq_end_request(rq, ret);
320ae51f 1876 }
81380ca1 1877 } while (!list_empty(list));
7bf13729 1878out:
0512a75b
KB
1879 if (!list_empty(&zone_list))
1880 list_splice_tail_init(&zone_list, list);
1881
632bfb63 1882 /* If we didn't flush the entire list, we could have told the driver
1883 * there was more coming, but that turned out to be a lie.
1884 */
1885 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1886 q->mq_ops->commit_rqs(hctx);
320ae51f
JA
1887 /*
1888 * Any items that need requeuing? Stuff them into hctx->dispatch,
1889 * that is where we will continue on next queue run.
1890 */
f04c3df3 1891 if (!list_empty(list)) {
86ff7c2a 1892 bool needs_restart;
75383524
ML
1893 /* For non-shared tags, the RESTART check will suffice */
1894 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
51db1c37 1895 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
86ff7c2a 1896
2a5a24aa
ML
1897 if (nr_budgets)
1898 blk_mq_release_budgets(q, list);
86ff7c2a 1899
320ae51f 1900 spin_lock(&hctx->lock);
01e99aec 1901 list_splice_tail_init(list, &hctx->dispatch);
320ae51f 1902 spin_unlock(&hctx->lock);
f04c3df3 1903
d7d8535f
ML
1904 /*
1905 * Order adding requests to hctx->dispatch and checking
1906 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1907 * in blk_mq_sched_restart(). Avoid restart code path to
1908 * miss the new added requests to hctx->dispatch, meantime
1909 * SCHED_RESTART is observed here.
1910 */
1911 smp_mb();
1912
9ba52e58 1913 /*
710c785f
BVA
1914 * If SCHED_RESTART was set by the caller of this function and
1915 * it is no longer set that means that it was cleared by another
1916 * thread and hence that a queue rerun is needed.
9ba52e58 1917 *
eb619fdb
JA
1918 * If 'no_tag' is set, that means that we failed getting
1919 * a driver tag with an I/O scheduler attached. If our dispatch
1920 * waitqueue is no longer active, ensure that we run the queue
1921 * AFTER adding our entries back to the list.
bd166ef1 1922 *
710c785f
BVA
1923 * If no I/O scheduler has been configured it is possible that
1924 * the hardware queue got stopped and restarted before requests
1925 * were pushed back onto the dispatch list. Rerun the queue to
1926 * avoid starvation. Notes:
1927 * - blk_mq_run_hw_queue() checks whether or not a queue has
1928 * been stopped before rerunning a queue.
1929 * - Some but not all block drivers stop a queue before
fc17b653 1930 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1931 * and dm-rq.
86ff7c2a
ML
1932 *
1933 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1934 * bit is set, run queue after a delay to avoid IO stalls
ab3cee37 1935 * that could otherwise occur if the queue is idle. We'll do
9586e67b
NA
1936 * similar if we couldn't get budget or couldn't lock a zone
1937 * and SCHED_RESTART is set.
bd166ef1 1938 */
86ff7c2a 1939 needs_restart = blk_mq_sched_needs_restart(hctx);
9586e67b
NA
1940 if (prep == PREP_DISPATCH_NO_BUDGET)
1941 needs_resource = true;
86ff7c2a 1942 if (!needs_restart ||
eb619fdb 1943 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1944 blk_mq_run_hw_queue(hctx, true);
9586e67b 1945 else if (needs_restart && needs_resource)
86ff7c2a 1946 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1f57f8d4 1947
6e768717 1948 blk_mq_update_dispatch_busy(hctx, true);
1f57f8d4 1949 return false;
6e768717
ML
1950 } else
1951 blk_mq_update_dispatch_busy(hctx, false);
f04c3df3 1952
93efe981 1953 return (queued + errors) != 0;
f04c3df3
JA
1954}
1955
105663f7
AA
1956/**
1957 * __blk_mq_run_hw_queue - Run a hardware queue.
1958 * @hctx: Pointer to the hardware queue to run.
1959 *
1960 * Send pending requests to the hardware.
1961 */
6a83e74d
BVA
1962static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1963{
b7a71e66
JA
1964 /*
1965 * We can't run the queue inline with ints disabled. Ensure that
1966 * we catch bad users of this early.
1967 */
1968 WARN_ON_ONCE(in_interrupt());
1969
bcc330f4
ML
1970 blk_mq_run_dispatch_ops(hctx->queue,
1971 blk_mq_sched_dispatch_requests(hctx));
6a83e74d
BVA
1972}
1973
f82ddf19
ML
1974static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1975{
1976 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1977
1978 if (cpu >= nr_cpu_ids)
1979 cpu = cpumask_first(hctx->cpumask);
1980 return cpu;
1981}
1982
506e931f
JA
1983/*
1984 * It'd be great if the workqueue API had a way to pass
1985 * in a mask and had some smarts for more clever placement.
1986 * For now we just round-robin here, switching for every
1987 * BLK_MQ_CPU_WORK_BATCH queued items.
1988 */
1989static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1990{
7bed4595 1991 bool tried = false;
476f8c98 1992 int next_cpu = hctx->next_cpu;
7bed4595 1993
b657d7e6
CH
1994 if (hctx->queue->nr_hw_queues == 1)
1995 return WORK_CPU_UNBOUND;
506e931f
JA
1996
1997 if (--hctx->next_cpu_batch <= 0) {
7bed4595 1998select_cpu:
476f8c98 1999 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
20e4d813 2000 cpu_online_mask);
506e931f 2001 if (next_cpu >= nr_cpu_ids)
f82ddf19 2002 next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
2003 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2004 }
2005
7bed4595
ML
2006 /*
2007 * Do unbound schedule if we can't find a online CPU for this hctx,
2008 * and it should only happen in the path of handling CPU DEAD.
2009 */
476f8c98 2010 if (!cpu_online(next_cpu)) {
7bed4595
ML
2011 if (!tried) {
2012 tried = true;
2013 goto select_cpu;
2014 }
2015
2016 /*
2017 * Make sure to re-select CPU next time once after CPUs
2018 * in hctx->cpumask become online again.
2019 */
476f8c98 2020 hctx->next_cpu = next_cpu;
7bed4595
ML
2021 hctx->next_cpu_batch = 1;
2022 return WORK_CPU_UNBOUND;
2023 }
476f8c98
ML
2024
2025 hctx->next_cpu = next_cpu;
2026 return next_cpu;
506e931f
JA
2027}
2028
105663f7
AA
2029/**
2030 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2031 * @hctx: Pointer to the hardware queue to run.
2032 * @async: If we want to run the queue asynchronously.
fa94ba8a 2033 * @msecs: Milliseconds of delay to wait before running the queue.
105663f7
AA
2034 *
2035 * If !@async, try to run the queue now. Else, run the queue asynchronously and
2036 * with a delay of @msecs.
2037 */
7587a5ae
BVA
2038static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2039 unsigned long msecs)
320ae51f 2040{
5435c023 2041 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
2042 return;
2043
1b792f2f 2044 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
2045 int cpu = get_cpu();
2046 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 2047 __blk_mq_run_hw_queue(hctx);
2a90d4aa 2048 put_cpu();
398205b8
PB
2049 return;
2050 }
e4043dcf 2051
2a90d4aa 2052 put_cpu();
e4043dcf 2053 }
398205b8 2054
ae943d20
BVA
2055 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2056 msecs_to_jiffies(msecs));
7587a5ae
BVA
2057}
2058
105663f7
AA
2059/**
2060 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2061 * @hctx: Pointer to the hardware queue to run.
fa94ba8a 2062 * @msecs: Milliseconds of delay to wait before running the queue.
105663f7
AA
2063 *
2064 * Run a hardware queue asynchronously with a delay of @msecs.
2065 */
7587a5ae
BVA
2066void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2067{
2068 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2069}
2070EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2071
105663f7
AA
2072/**
2073 * blk_mq_run_hw_queue - Start to run a hardware queue.
2074 * @hctx: Pointer to the hardware queue to run.
2075 * @async: If we want to run the queue asynchronously.
2076 *
2077 * Check if the request queue is not in a quiesced state and if there are
2078 * pending requests to be sent. If this is true, run the queue to send requests
2079 * to hardware.
2080 */
626fb735 2081void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 2082{
24f5a90f
ML
2083 bool need_run;
2084
2085 /*
2086 * When queue is quiesced, we may be switching io scheduler, or
2087 * updating nr_hw_queues, or other things, and we can't run queue
2088 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2089 *
2090 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2091 * quiesced.
2092 */
41adf531 2093 __blk_mq_run_dispatch_ops(hctx->queue, false,
2a904d00
ML
2094 need_run = !blk_queue_quiesced(hctx->queue) &&
2095 blk_mq_hctx_has_pending(hctx));
24f5a90f 2096
626fb735 2097 if (need_run)
79f720a7 2098 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f 2099}
5b727272 2100EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 2101
b6e68ee8
JK
2102/*
2103 * Is the request queue handled by an IO scheduler that does not respect
2104 * hardware queues when dispatching?
2105 */
2106static bool blk_mq_has_sqsched(struct request_queue *q)
2107{
2108 struct elevator_queue *e = q->elevator;
2109
2110 if (e && e->type->ops.dispatch_request &&
2111 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2112 return true;
2113 return false;
2114}
2115
2116/*
2117 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2118 * scheduler.
2119 */
2120static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2121{
2122 struct blk_mq_hw_ctx *hctx;
2123
2124 /*
2125 * If the IO scheduler does not respect hardware queues when
2126 * dispatching, we just don't bother with multiple HW queues and
2127 * dispatch from hctx for the current CPU since running multiple queues
2128 * just causes lock contention inside the scheduler and pointless cache
2129 * bouncing.
2130 */
2131 hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
2132 raw_smp_processor_id());
2133 if (!blk_mq_hctx_stopped(hctx))
2134 return hctx;
2135 return NULL;
2136}
2137
105663f7 2138/**
24f7bb88 2139 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
105663f7
AA
2140 * @q: Pointer to the request queue to run.
2141 * @async: If we want to run the queue asynchronously.
2142 */
b94ec296 2143void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f 2144{
b6e68ee8 2145 struct blk_mq_hw_ctx *hctx, *sq_hctx;
320ae51f
JA
2146 int i;
2147
b6e68ee8
JK
2148 sq_hctx = NULL;
2149 if (blk_mq_has_sqsched(q))
2150 sq_hctx = blk_mq_get_sq_hctx(q);
320ae51f 2151 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 2152 if (blk_mq_hctx_stopped(hctx))
320ae51f 2153 continue;
b6e68ee8
JK
2154 /*
2155 * Dispatch from this hctx either if there's no hctx preferred
2156 * by IO scheduler or if it has requests that bypass the
2157 * scheduler.
2158 */
2159 if (!sq_hctx || sq_hctx == hctx ||
2160 !list_empty_careful(&hctx->dispatch))
2161 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
2162 }
2163}
b94ec296 2164EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 2165
b9151e7b
DA
2166/**
2167 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2168 * @q: Pointer to the request queue to run.
fa94ba8a 2169 * @msecs: Milliseconds of delay to wait before running the queues.
b9151e7b
DA
2170 */
2171void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2172{
b6e68ee8 2173 struct blk_mq_hw_ctx *hctx, *sq_hctx;
b9151e7b
DA
2174 int i;
2175
b6e68ee8
JK
2176 sq_hctx = NULL;
2177 if (blk_mq_has_sqsched(q))
2178 sq_hctx = blk_mq_get_sq_hctx(q);
b9151e7b
DA
2179 queue_for_each_hw_ctx(q, hctx, i) {
2180 if (blk_mq_hctx_stopped(hctx))
2181 continue;
8f5fea65
DJ
2182 /*
2183 * If there is already a run_work pending, leave the
2184 * pending delay untouched. Otherwise, a hctx can stall
2185 * if another hctx is re-delaying the other's work
2186 * before the work executes.
2187 */
2188 if (delayed_work_pending(&hctx->run_work))
2189 continue;
b6e68ee8
JK
2190 /*
2191 * Dispatch from this hctx either if there's no hctx preferred
2192 * by IO scheduler or if it has requests that bypass the
2193 * scheduler.
2194 */
2195 if (!sq_hctx || sq_hctx == hctx ||
2196 !list_empty_careful(&hctx->dispatch))
2197 blk_mq_delay_run_hw_queue(hctx, msecs);
b9151e7b
DA
2198 }
2199}
2200EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2201
fd001443
BVA
2202/**
2203 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2204 * @q: request queue.
2205 *
2206 * The caller is responsible for serializing this function against
2207 * blk_mq_{start,stop}_hw_queue().
2208 */
2209bool blk_mq_queue_stopped(struct request_queue *q)
2210{
2211 struct blk_mq_hw_ctx *hctx;
2212 int i;
2213
2214 queue_for_each_hw_ctx(q, hctx, i)
2215 if (blk_mq_hctx_stopped(hctx))
2216 return true;
2217
2218 return false;
2219}
2220EXPORT_SYMBOL(blk_mq_queue_stopped);
2221
39a70c76
ML
2222/*
2223 * This function is often used for pausing .queue_rq() by driver when
2224 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 2225 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
2226 *
2227 * We do not guarantee that dispatch can be drained or blocked
2228 * after blk_mq_stop_hw_queue() returns. Please use
2229 * blk_mq_quiesce_queue() for that requirement.
2230 */
2719aa21
JA
2231void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2232{
641a9ed6 2233 cancel_delayed_work(&hctx->run_work);
280d45f6 2234
641a9ed6 2235 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 2236}
641a9ed6 2237EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 2238
39a70c76
ML
2239/*
2240 * This function is often used for pausing .queue_rq() by driver when
2241 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 2242 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
2243 *
2244 * We do not guarantee that dispatch can be drained or blocked
2245 * after blk_mq_stop_hw_queues() returns. Please use
2246 * blk_mq_quiesce_queue() for that requirement.
2247 */
2719aa21
JA
2248void blk_mq_stop_hw_queues(struct request_queue *q)
2249{
641a9ed6
ML
2250 struct blk_mq_hw_ctx *hctx;
2251 int i;
2252
2253 queue_for_each_hw_ctx(q, hctx, i)
2254 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
2255}
2256EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2257
320ae51f
JA
2258void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2259{
2260 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 2261
0ffbce80 2262 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
2263}
2264EXPORT_SYMBOL(blk_mq_start_hw_queue);
2265
2f268556
CH
2266void blk_mq_start_hw_queues(struct request_queue *q)
2267{
2268 struct blk_mq_hw_ctx *hctx;
2269 int i;
2270
2271 queue_for_each_hw_ctx(q, hctx, i)
2272 blk_mq_start_hw_queue(hctx);
2273}
2274EXPORT_SYMBOL(blk_mq_start_hw_queues);
2275
ae911c5e
JA
2276void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2277{
2278 if (!blk_mq_hctx_stopped(hctx))
2279 return;
2280
2281 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2282 blk_mq_run_hw_queue(hctx, async);
2283}
2284EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2285
1b4a3258 2286void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
2287{
2288 struct blk_mq_hw_ctx *hctx;
2289 int i;
2290
ae911c5e
JA
2291 queue_for_each_hw_ctx(q, hctx, i)
2292 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
2293}
2294EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2295
70f4db63 2296static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
2297{
2298 struct blk_mq_hw_ctx *hctx;
2299
9f993737 2300 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 2301
21c6e939 2302 /*
15fe8a90 2303 * If we are stopped, don't run the queue.
21c6e939 2304 */
0841031a 2305 if (blk_mq_hctx_stopped(hctx))
0196d6b4 2306 return;
7587a5ae
BVA
2307
2308 __blk_mq_run_hw_queue(hctx);
2309}
2310
cfd0c552 2311static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
2312 struct request *rq,
2313 bool at_head)
320ae51f 2314{
e57690fe 2315 struct blk_mq_ctx *ctx = rq->mq_ctx;
c16d6b5a 2316 enum hctx_type type = hctx->type;
e57690fe 2317
7b607814
BVA
2318 lockdep_assert_held(&ctx->lock);
2319
a54895fa 2320 trace_block_rq_insert(rq);
01b983c9 2321
72a0a36e 2322 if (at_head)
c16d6b5a 2323 list_add(&rq->queuelist, &ctx->rq_lists[type]);
72a0a36e 2324 else
c16d6b5a 2325 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
cfd0c552 2326}
4bb659b1 2327
2c3ad667
JA
2328void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2329 bool at_head)
cfd0c552
ML
2330{
2331 struct blk_mq_ctx *ctx = rq->mq_ctx;
2332
7b607814
BVA
2333 lockdep_assert_held(&ctx->lock);
2334
e57690fe 2335 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 2336 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
2337}
2338
105663f7
AA
2339/**
2340 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2341 * @rq: Pointer to request to be inserted.
26bfeb26 2342 * @at_head: true if the request should be inserted at the head of the list.
105663f7
AA
2343 * @run_queue: If we should run the hardware queue after inserting the request.
2344 *
157f377b
JA
2345 * Should only be used carefully, when the caller knows we want to
2346 * bypass a potential IO scheduler on the target device.
2347 */
01e99aec
ML
2348void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2349 bool run_queue)
157f377b 2350{
ea4f995e 2351 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
157f377b
JA
2352
2353 spin_lock(&hctx->lock);
01e99aec
ML
2354 if (at_head)
2355 list_add(&rq->queuelist, &hctx->dispatch);
2356 else
2357 list_add_tail(&rq->queuelist, &hctx->dispatch);
157f377b
JA
2358 spin_unlock(&hctx->lock);
2359
b0850297
ML
2360 if (run_queue)
2361 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
2362}
2363
bd166ef1
JA
2364void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2365 struct list_head *list)
320ae51f
JA
2366
2367{
3f0cedc7 2368 struct request *rq;
c16d6b5a 2369 enum hctx_type type = hctx->type;
3f0cedc7 2370
320ae51f
JA
2371 /*
2372 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2373 * offline now
2374 */
3f0cedc7 2375 list_for_each_entry(rq, list, queuelist) {
e57690fe 2376 BUG_ON(rq->mq_ctx != ctx);
a54895fa 2377 trace_block_rq_insert(rq);
320ae51f 2378 }
3f0cedc7
ML
2379
2380 spin_lock(&ctx->lock);
c16d6b5a 2381 list_splice_tail_init(list, &ctx->rq_lists[type]);
cfd0c552 2382 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 2383 spin_unlock(&ctx->lock);
320ae51f
JA
2384}
2385
dc5fc361
JA
2386static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2387 bool from_schedule)
320ae51f 2388{
dc5fc361
JA
2389 if (hctx->queue->mq_ops->commit_rqs) {
2390 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2391 hctx->queue->mq_ops->commit_rqs(hctx);
2392 }
2393 *queued = 0;
2394}
320ae51f 2395
14ccb66b
CH
2396static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2397 unsigned int nr_segs)
320ae51f 2398{
93f221ae
EB
2399 int err;
2400
f924cdde
CH
2401 if (bio->bi_opf & REQ_RAHEAD)
2402 rq->cmd_flags |= REQ_FAILFAST_MASK;
2403
2404 rq->__sector = bio->bi_iter.bi_sector;
2405 rq->write_hint = bio->bi_write_hint;
14ccb66b 2406 blk_rq_bio_prep(rq, bio, nr_segs);
93f221ae
EB
2407
2408 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2409 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2410 WARN_ON_ONCE(err);
4b570521 2411
b5af37ab 2412 blk_account_io_start(rq);
320ae51f
JA
2413}
2414
0f95549c 2415static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
3e08773c 2416 struct request *rq, bool last)
f984df1f 2417{
f984df1f 2418 struct request_queue *q = rq->q;
f984df1f
SL
2419 struct blk_mq_queue_data bd = {
2420 .rq = rq,
be94f058 2421 .last = last,
f984df1f 2422 };
f06345ad 2423 blk_status_t ret;
0f95549c 2424
0f95549c
MS
2425 /*
2426 * For OK queue, we are done. For error, caller may kill it.
2427 * Any other error (busy), just add it to our list as we
2428 * previously would have done.
2429 */
2430 ret = q->mq_ops->queue_rq(hctx, &bd);
2431 switch (ret) {
2432 case BLK_STS_OK:
6ce3dd6e 2433 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
2434 break;
2435 case BLK_STS_RESOURCE:
86ff7c2a 2436 case BLK_STS_DEV_RESOURCE:
6ce3dd6e 2437 blk_mq_update_dispatch_busy(hctx, true);
0f95549c
MS
2438 __blk_mq_requeue_request(rq);
2439 break;
2440 default:
6ce3dd6e 2441 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
2442 break;
2443 }
2444
2445 return ret;
2446}
2447
fd9c40f6 2448static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
0f95549c 2449 struct request *rq,
fd9c40f6 2450 bool bypass_insert, bool last)
0f95549c
MS
2451{
2452 struct request_queue *q = rq->q;
d964f04a 2453 bool run_queue = true;
2a5a24aa 2454 int budget_token;
d964f04a 2455
23d4ee19 2456 /*
fd9c40f6 2457 * RCU or SRCU read lock is needed before checking quiesced flag.
23d4ee19 2458 *
fd9c40f6
BVA
2459 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2460 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2461 * and avoid driver to try to dispatch again.
23d4ee19 2462 */
fd9c40f6 2463 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a 2464 run_queue = false;
fd9c40f6
BVA
2465 bypass_insert = false;
2466 goto insert;
d964f04a 2467 }
f984df1f 2468
2ff0682d 2469 if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
fd9c40f6 2470 goto insert;
2253efc8 2471
2a5a24aa
ML
2472 budget_token = blk_mq_get_dispatch_budget(q);
2473 if (budget_token < 0)
fd9c40f6 2474 goto insert;
bd166ef1 2475
2a5a24aa
ML
2476 blk_mq_set_rq_budget_token(rq, budget_token);
2477
8ab6bb9e 2478 if (!blk_mq_get_driver_tag(rq)) {
2a5a24aa 2479 blk_mq_put_dispatch_budget(q, budget_token);
fd9c40f6 2480 goto insert;
88022d72 2481 }
de148297 2482
3e08773c 2483 return __blk_mq_issue_directly(hctx, rq, last);
fd9c40f6
BVA
2484insert:
2485 if (bypass_insert)
2486 return BLK_STS_RESOURCE;
2487
db03f88f
ML
2488 blk_mq_sched_insert_request(rq, false, run_queue, false);
2489
fd9c40f6
BVA
2490 return BLK_STS_OK;
2491}
2492
105663f7
AA
2493/**
2494 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2495 * @hctx: Pointer of the associated hardware queue.
2496 * @rq: Pointer to request to be sent.
105663f7
AA
2497 *
2498 * If the device has enough resources to accept a new request now, send the
2499 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2500 * we can try send it another time in the future. Requests inserted at this
2501 * queue have higher priority.
2502 */
fd9c40f6 2503static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
3e08773c 2504 struct request *rq)
fd9c40f6 2505{
2a904d00
ML
2506 blk_status_t ret =
2507 __blk_mq_try_issue_directly(hctx, rq, false, true);
fd9c40f6 2508
fd9c40f6 2509 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
01e99aec 2510 blk_mq_request_bypass_insert(rq, false, true);
fd9c40f6
BVA
2511 else if (ret != BLK_STS_OK)
2512 blk_mq_end_request(rq, ret);
fd9c40f6
BVA
2513}
2514
06c8c691 2515static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
fd9c40f6 2516{
4cafe86c 2517 return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
5eb6126e
CH
2518}
2519
b84c5b50
CH
2520static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2521{
2522 struct blk_mq_hw_ctx *hctx = NULL;
2523 struct request *rq;
2524 int queued = 0;
2525 int errors = 0;
2526
2527 while ((rq = rq_list_pop(&plug->mq_list))) {
2528 bool last = rq_list_empty(plug->mq_list);
2529 blk_status_t ret;
2530
2531 if (hctx != rq->mq_hctx) {
2532 if (hctx)
2533 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2534 hctx = rq->mq_hctx;
2535 }
2536
2537 ret = blk_mq_request_issue_directly(rq, last);
2538 switch (ret) {
2539 case BLK_STS_OK:
2540 queued++;
2541 break;
2542 case BLK_STS_RESOURCE:
2543 case BLK_STS_DEV_RESOURCE:
2544 blk_mq_request_bypass_insert(rq, false, last);
2545 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2546 return;
2547 default:
2548 blk_mq_end_request(rq, ret);
2549 errors++;
2550 break;
2551 }
2552 }
2553
2554 /*
2555 * If we didn't flush the entire list, we could have told the driver
2556 * there was more coming, but that turned out to be a lie.
2557 */
2558 if (errors)
2559 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2560}
2561
518579a9
KB
2562static void __blk_mq_flush_plug_list(struct request_queue *q,
2563 struct blk_plug *plug)
2564{
2565 if (blk_queue_quiesced(q))
2566 return;
2567 q->mq_ops->queue_rqs(&plug->mq_list);
2568}
2569
b84c5b50
CH
2570void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2571{
2572 struct blk_mq_hw_ctx *this_hctx;
2573 struct blk_mq_ctx *this_ctx;
3c67d44d 2574 struct request *rq;
b84c5b50
CH
2575 unsigned int depth;
2576 LIST_HEAD(list);
2577
2578 if (rq_list_empty(plug->mq_list))
2579 return;
2580 plug->rq_count = 0;
2581
2582 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
3c67d44d
JA
2583 struct request_queue *q;
2584
2585 rq = rq_list_peek(&plug->mq_list);
2586 q = rq->q;
2587
2588 /*
2589 * Peek first request and see if we have a ->queue_rqs() hook.
2590 * If we do, we can dispatch the whole plug list in one go. We
2591 * already know at this point that all requests belong to the
2592 * same queue, caller must ensure that's the case.
2593 *
2594 * Since we pass off the full list to the driver at this point,
2595 * we do not increment the active request count for the queue.
2596 * Bypass shared tags for now because of that.
2597 */
2598 if (q->mq_ops->queue_rqs &&
2599 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2600 blk_mq_run_dispatch_ops(q,
518579a9 2601 __blk_mq_flush_plug_list(q, plug));
3c67d44d
JA
2602 if (rq_list_empty(plug->mq_list))
2603 return;
2604 }
73f3760e
ML
2605
2606 blk_mq_run_dispatch_ops(q,
4cafe86c 2607 blk_mq_plug_issue_direct(plug, false));
b84c5b50
CH
2608 if (rq_list_empty(plug->mq_list))
2609 return;
2610 }
2611
2612 this_hctx = NULL;
2613 this_ctx = NULL;
2614 depth = 0;
2615 do {
b84c5b50
CH
2616 rq = rq_list_pop(&plug->mq_list);
2617
2618 if (!this_hctx) {
2619 this_hctx = rq->mq_hctx;
2620 this_ctx = rq->mq_ctx;
2621 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2622 trace_block_unplug(this_hctx->queue, depth,
2623 !from_schedule);
2624 blk_mq_sched_insert_requests(this_hctx, this_ctx,
2625 &list, from_schedule);
2626 depth = 0;
2627 this_hctx = rq->mq_hctx;
2628 this_ctx = rq->mq_ctx;
2629
2630 }
2631
2632 list_add(&rq->queuelist, &list);
2633 depth++;
2634 } while (!rq_list_empty(plug->mq_list));
2635
2636 if (!list_empty(&list)) {
2637 trace_block_unplug(this_hctx->queue, depth, !from_schedule);
2638 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list,
2639 from_schedule);
2640 }
2641}
2642
6ce3dd6e
ML
2643void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2644 struct list_head *list)
2645{
536167d4 2646 int queued = 0;
632bfb63 2647 int errors = 0;
536167d4 2648
6ce3dd6e 2649 while (!list_empty(list)) {
fd9c40f6 2650 blk_status_t ret;
6ce3dd6e
ML
2651 struct request *rq = list_first_entry(list, struct request,
2652 queuelist);
2653
2654 list_del_init(&rq->queuelist);
fd9c40f6
BVA
2655 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2656 if (ret != BLK_STS_OK) {
2657 if (ret == BLK_STS_RESOURCE ||
2658 ret == BLK_STS_DEV_RESOURCE) {
01e99aec 2659 blk_mq_request_bypass_insert(rq, false,
c616cbee 2660 list_empty(list));
fd9c40f6
BVA
2661 break;
2662 }
2663 blk_mq_end_request(rq, ret);
632bfb63 2664 errors++;
536167d4
KB
2665 } else
2666 queued++;
6ce3dd6e 2667 }
d666ba98
JA
2668
2669 /*
2670 * If we didn't flush the entire list, we could have told
2671 * the driver there was more coming, but that turned out to
2672 * be a lie.
2673 */
632bfb63 2674 if ((!list_empty(list) || errors) &&
2675 hctx->queue->mq_ops->commit_rqs && queued)
d666ba98 2676 hctx->queue->mq_ops->commit_rqs(hctx);
6ce3dd6e
ML
2677}
2678
7f2a6a69 2679/*
ba0ffdd8 2680 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
7f2a6a69
SL
2681 * queues. This is important for md arrays to benefit from merging
2682 * requests.
2683 */
2684static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2685{
2686 if (plug->multiple_queues)
ba0ffdd8 2687 return BLK_MAX_REQUEST_COUNT * 2;
7f2a6a69
SL
2688 return BLK_MAX_REQUEST_COUNT;
2689}
2690
1e9c2303
CH
2691static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2692{
2693 struct request *last = rq_list_peek(&plug->mq_list);
2694
2695 if (!plug->rq_count) {
2696 trace_block_plug(rq->q);
2697 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
2698 (!blk_queue_nomerges(rq->q) &&
2699 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2700 blk_mq_flush_plug_list(plug, false);
2701 trace_block_plug(rq->q);
2702 }
2703
2704 if (!plug->multiple_queues && last && last->q != rq->q)
2705 plug->multiple_queues = true;
2706 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2707 plug->has_elevator = true;
2708 rq->rq_next = NULL;
2709 rq_list_add(&plug->mq_list, rq);
2710 plug->rq_count++;
2711}
2712
b131f201 2713static bool blk_mq_attempt_bio_merge(struct request_queue *q,
0c5bcc92 2714 struct bio *bio, unsigned int nr_segs)
900e0807
JA
2715{
2716 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
0c5bcc92 2717 if (blk_attempt_plug_merge(q, bio, nr_segs))
900e0807
JA
2718 return true;
2719 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2720 return true;
2721 }
2722 return false;
2723}
2724
71539717
JA
2725static struct request *blk_mq_get_new_requests(struct request_queue *q,
2726 struct blk_plug *plug,
9d497e29 2727 struct bio *bio)
71539717
JA
2728{
2729 struct blk_mq_alloc_data data = {
2730 .q = q,
2731 .nr_tags = 1,
9d497e29 2732 .cmd_flags = bio->bi_opf,
71539717
JA
2733 };
2734 struct request *rq;
2735
5b13bc8a 2736 if (unlikely(bio_queue_enter(bio)))
b637108a 2737 return NULL;
900e0807 2738
71539717
JA
2739 if (plug) {
2740 data.nr_tags = plug->nr_ios;
2741 plug->nr_ios = 1;
2742 data.cached_rq = &plug->cached_rq;
2743 }
2744
2745 rq = __blk_mq_alloc_requests(&data);
373b5416
JA
2746 if (rq)
2747 return rq;
71539717
JA
2748 rq_qos_cleanup(q, bio);
2749 if (bio->bi_opf & REQ_NOWAIT)
2750 bio_wouldblock_error(bio);
5b13bc8a 2751 blk_queue_exit(q);
71539717
JA
2752 return NULL;
2753}
2754
5b13bc8a 2755static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
9d497e29 2756 struct blk_plug *plug, struct bio *bio)
71539717 2757{
b637108a 2758 struct request *rq;
b637108a 2759
5b13bc8a
CH
2760 if (!plug)
2761 return NULL;
2762 rq = rq_list_peek(&plug->cached_rq);
2763 if (!rq || rq->q != q)
2764 return NULL;
71539717 2765
9d497e29 2766 if (blk_mq_get_hctx_type(bio->bi_opf) != rq->mq_hctx->type)
5b13bc8a 2767 return NULL;
9d497e29 2768 if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
5b13bc8a
CH
2769 return NULL;
2770
9d497e29 2771 rq->cmd_flags = bio->bi_opf;
5b13bc8a
CH
2772 plug->cached_rq = rq_list_next(rq);
2773 INIT_LIST_HEAD(&rq->queuelist);
5b13bc8a 2774 return rq;
71539717
JA
2775}
2776
105663f7 2777/**
c62b37d9 2778 * blk_mq_submit_bio - Create and send a request to block device.
105663f7
AA
2779 * @bio: Bio pointer.
2780 *
2781 * Builds up a request structure from @q and @bio and send to the device. The
2782 * request may not be queued directly to hardware if:
2783 * * This request can be merged with another one
2784 * * We want to place request at plug queue for possible future merging
2785 * * There is an IO scheduler active at this queue
2786 *
2787 * It will not queue the request if there is an error with the bio, or at the
2788 * request creation.
105663f7 2789 */
3e08773c 2790void blk_mq_submit_bio(struct bio *bio)
07068d5b 2791{
ed6cddef 2792 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
5b13bc8a 2793 struct blk_plug *plug = blk_mq_plug(q, bio);
ef295ecf 2794 const int is_sync = op_is_sync(bio->bi_opf);
07068d5b 2795 struct request *rq;
abd45c15 2796 unsigned int nr_segs = 1;
a892c8d5 2797 blk_status_t ret;
07068d5b
JA
2798
2799 blk_queue_bounce(q, &bio);
abd45c15
JA
2800 if (blk_may_split(q, bio))
2801 __blk_queue_split(q, &bio, &nr_segs);
f36ea50c 2802
e23947bd 2803 if (!bio_integrity_prep(bio))
900e0807 2804 return;
87760e5e 2805
9d497e29
ML
2806 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2807 return;
2808
2809 rq_qos_throttle(q, bio);
2810
2811 rq = blk_mq_get_cached_request(q, plug, bio);
5b13bc8a 2812 if (!rq) {
9d497e29 2813 rq = blk_mq_get_new_requests(q, plug, bio);
5b13bc8a
CH
2814 if (unlikely(!rq))
2815 return;
2816 }
87760e5e 2817
e8a676d6 2818 trace_block_getrq(bio);
d6f1dda2 2819
c1c80384 2820 rq_qos_track(q, rq, bio);
07068d5b 2821
970d168d
BVA
2822 blk_mq_bio_to_request(rq, bio, nr_segs);
2823
a892c8d5
ST
2824 ret = blk_crypto_init_request(rq);
2825 if (ret != BLK_STS_OK) {
2826 bio->bi_status = ret;
2827 bio_endio(bio);
2828 blk_mq_free_request(rq);
3e08773c 2829 return;
a892c8d5
ST
2830 }
2831
2b504bd4
ML
2832 if (op_is_flush(bio->bi_opf)) {
2833 blk_insert_flush(rq);
d92ca9d8 2834 return;
2b504bd4 2835 }
d92ca9d8 2836
1e9c2303 2837 if (plug)
ce5b009c 2838 blk_add_rq_to_plug(plug, rq);
1e9c2303
CH
2839 else if ((rq->rq_flags & RQF_ELV) ||
2840 (rq->mq_hctx->dispatch_busy &&
2841 (q->nr_hw_queues == 1 || !is_sync)))
a12de1d4 2842 blk_mq_sched_insert_request(rq, false, true, true);
1e9c2303 2843 else
bcc330f4 2844 blk_mq_run_dispatch_ops(rq->q,
2a904d00 2845 blk_mq_try_issue_directly(rq->mq_hctx, rq));
320ae51f
JA
2846}
2847
248c7933 2848#ifdef CONFIG_BLK_MQ_STACKING
06c8c691 2849/**
a5efda3c 2850 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
a5efda3c 2851 * @rq: the request being queued
06c8c691 2852 */
28db4711 2853blk_status_t blk_insert_cloned_request(struct request *rq)
06c8c691 2854{
28db4711 2855 struct request_queue *q = rq->q;
06c8c691 2856 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
a5efda3c 2857 blk_status_t ret;
06c8c691
CH
2858
2859 if (blk_rq_sectors(rq) > max_sectors) {
2860 /*
2861 * SCSI device does not have a good way to return if
2862 * Write Same/Zero is actually supported. If a device rejects
2863 * a non-read/write command (discard, write same,etc.) the
2864 * low-level device driver will set the relevant queue limit to
2865 * 0 to prevent blk-lib from issuing more of the offending
2866 * operations. Commands queued prior to the queue limit being
2867 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2868 * errors being propagated to upper layers.
2869 */
2870 if (max_sectors == 0)
2871 return BLK_STS_NOTSUPP;
2872
2873 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2874 __func__, blk_rq_sectors(rq), max_sectors);
2875 return BLK_STS_IOERR;
2876 }
2877
2878 /*
2879 * The queue settings related to segment counting may differ from the
2880 * original queue.
2881 */
2882 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2883 if (rq->nr_phys_segments > queue_max_segments(q)) {
2884 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2885 __func__, rq->nr_phys_segments, queue_max_segments(q));
2886 return BLK_STS_IOERR;
2887 }
2888
28db4711 2889 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
06c8c691
CH
2890 return BLK_STS_IOERR;
2891
2892 if (blk_crypto_insert_cloned_request(rq))
2893 return BLK_STS_IOERR;
2894
2895 blk_account_io_start(rq);
2896
2897 /*
2898 * Since we have a scheduler attached on the top device,
2899 * bypass a potential scheduler on the bottom device for
2900 * insert.
2901 */
28db4711 2902 blk_mq_run_dispatch_ops(q,
4cafe86c 2903 ret = blk_mq_request_issue_directly(rq, true));
592ee119
YK
2904 if (ret)
2905 blk_account_io_done(rq, ktime_get_ns());
4cafe86c 2906 return ret;
06c8c691
CH
2907}
2908EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2909
2910/**
2911 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2912 * @rq: the clone request to be cleaned up
2913 *
2914 * Description:
2915 * Free all bios in @rq for a cloned request.
2916 */
2917void blk_rq_unprep_clone(struct request *rq)
2918{
2919 struct bio *bio;
2920
2921 while ((bio = rq->bio) != NULL) {
2922 rq->bio = bio->bi_next;
2923
2924 bio_put(bio);
2925 }
2926}
2927EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2928
2929/**
2930 * blk_rq_prep_clone - Helper function to setup clone request
2931 * @rq: the request to be setup
2932 * @rq_src: original request to be cloned
2933 * @bs: bio_set that bios for clone are allocated from
2934 * @gfp_mask: memory allocation mask for bio
2935 * @bio_ctr: setup function to be called for each clone bio.
2936 * Returns %0 for success, non %0 for failure.
2937 * @data: private data to be passed to @bio_ctr
2938 *
2939 * Description:
2940 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2941 * Also, pages which the original bios are pointing to are not copied
2942 * and the cloned bios just point same pages.
2943 * So cloned bios must be completed before original bios, which means
2944 * the caller must complete @rq before @rq_src.
2945 */
2946int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2947 struct bio_set *bs, gfp_t gfp_mask,
2948 int (*bio_ctr)(struct bio *, struct bio *, void *),
2949 void *data)
2950{
2951 struct bio *bio, *bio_src;
2952
2953 if (!bs)
2954 bs = &fs_bio_set;
2955
2956 __rq_for_each_bio(bio_src, rq_src) {
abfc426d
CH
2957 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2958 bs);
06c8c691
CH
2959 if (!bio)
2960 goto free_and_out;
2961
2962 if (bio_ctr && bio_ctr(bio, bio_src, data))
2963 goto free_and_out;
2964
2965 if (rq->bio) {
2966 rq->biotail->bi_next = bio;
2967 rq->biotail = bio;
2968 } else {
2969 rq->bio = rq->biotail = bio;
2970 }
2971 bio = NULL;
2972 }
2973
2974 /* Copy attributes of the original request to the clone request. */
2975 rq->__sector = blk_rq_pos(rq_src);
2976 rq->__data_len = blk_rq_bytes(rq_src);
2977 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2978 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2979 rq->special_vec = rq_src->special_vec;
2980 }
2981 rq->nr_phys_segments = rq_src->nr_phys_segments;
2982 rq->ioprio = rq_src->ioprio;
2983
2984 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
2985 goto free_and_out;
2986
2987 return 0;
2988
2989free_and_out:
2990 if (bio)
2991 bio_put(bio);
2992 blk_rq_unprep_clone(rq);
2993
2994 return -ENOMEM;
2995}
2996EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
248c7933 2997#endif /* CONFIG_BLK_MQ_STACKING */
06c8c691 2998
f2b8f3ce
CH
2999/*
3000 * Steal bios from a request and add them to a bio list.
3001 * The request must not have been partially completed before.
3002 */
3003void blk_steal_bios(struct bio_list *list, struct request *rq)
3004{
3005 if (rq->bio) {
3006 if (list->tail)
3007 list->tail->bi_next = rq->bio;
3008 else
3009 list->head = rq->bio;
3010 list->tail = rq->biotail;
3011
3012 rq->bio = NULL;
3013 rq->biotail = NULL;
3014 }
3015
3016 rq->__data_len = 0;
3017}
3018EXPORT_SYMBOL_GPL(blk_steal_bios);
3019
bd63141d
ML
3020static size_t order_to_size(unsigned int order)
3021{
3022 return (size_t)PAGE_SIZE << order;
3023}
3024
3025/* called before freeing request pool in @tags */
f32e4eaf
JG
3026static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3027 struct blk_mq_tags *tags)
bd63141d 3028{
bd63141d
ML
3029 struct page *page;
3030 unsigned long flags;
3031
4f245d5b
JG
3032 /* There is no need to clear a driver tags own mapping */
3033 if (drv_tags == tags)
3034 return;
3035
bd63141d
ML
3036 list_for_each_entry(page, &tags->page_list, lru) {
3037 unsigned long start = (unsigned long)page_address(page);
3038 unsigned long end = start + order_to_size(page->private);
3039 int i;
3040
f32e4eaf 3041 for (i = 0; i < drv_tags->nr_tags; i++) {
bd63141d
ML
3042 struct request *rq = drv_tags->rqs[i];
3043 unsigned long rq_addr = (unsigned long)rq;
3044
3045 if (rq_addr >= start && rq_addr < end) {
0a467d0f 3046 WARN_ON_ONCE(req_ref_read(rq) != 0);
bd63141d
ML
3047 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3048 }
3049 }
3050 }
3051
3052 /*
3053 * Wait until all pending iteration is done.
3054 *
3055 * Request reference is cleared and it is guaranteed to be observed
3056 * after the ->lock is released.
3057 */
3058 spin_lock_irqsave(&drv_tags->lock, flags);
3059 spin_unlock_irqrestore(&drv_tags->lock, flags);
3060}
3061
cc71a6f4
JA
3062void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3063 unsigned int hctx_idx)
95363efd 3064{
f32e4eaf 3065 struct blk_mq_tags *drv_tags;
e9b267d9 3066 struct page *page;
320ae51f 3067
079a2e3e
JG
3068 if (blk_mq_is_shared_tags(set->flags))
3069 drv_tags = set->shared_tags;
e155b0c2
JG
3070 else
3071 drv_tags = set->tags[hctx_idx];
f32e4eaf 3072
65de57bb 3073 if (tags->static_rqs && set->ops->exit_request) {
e9b267d9 3074 int i;
320ae51f 3075
24d2f903 3076 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
3077 struct request *rq = tags->static_rqs[i];
3078
3079 if (!rq)
e9b267d9 3080 continue;
d6296d39 3081 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 3082 tags->static_rqs[i] = NULL;
e9b267d9 3083 }
320ae51f 3084 }
320ae51f 3085
f32e4eaf 3086 blk_mq_clear_rq_mapping(drv_tags, tags);
bd63141d 3087
24d2f903
CH
3088 while (!list_empty(&tags->page_list)) {
3089 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 3090 list_del_init(&page->lru);
f75782e4
CM
3091 /*
3092 * Remove kmemleak object previously allocated in
273938bf 3093 * blk_mq_alloc_rqs().
f75782e4
CM
3094 */
3095 kmemleak_free(page_address(page));
320ae51f
JA
3096 __free_pages(page, page->private);
3097 }
cc71a6f4 3098}
320ae51f 3099
e155b0c2 3100void blk_mq_free_rq_map(struct blk_mq_tags *tags)
cc71a6f4 3101{
24d2f903 3102 kfree(tags->rqs);
cc71a6f4 3103 tags->rqs = NULL;
2af8cbe3
JA
3104 kfree(tags->static_rqs);
3105 tags->static_rqs = NULL;
320ae51f 3106
e155b0c2 3107 blk_mq_free_tags(tags);
320ae51f
JA
3108}
3109
4d805131
ML
3110static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3111 unsigned int hctx_idx)
3112{
3113 int i;
3114
3115 for (i = 0; i < set->nr_maps; i++) {
3116 unsigned int start = set->map[i].queue_offset;
3117 unsigned int end = start + set->map[i].nr_queues;
3118
3119 if (hctx_idx >= start && hctx_idx < end)
3120 break;
3121 }
3122
3123 if (i >= set->nr_maps)
3124 i = HCTX_TYPE_DEFAULT;
3125
3126 return i;
3127}
3128
3129static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3130 unsigned int hctx_idx)
3131{
3132 enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3133
3134 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3135}
3136
63064be1
JG
3137static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3138 unsigned int hctx_idx,
3139 unsigned int nr_tags,
e155b0c2 3140 unsigned int reserved_tags)
320ae51f 3141{
4d805131 3142 int node = blk_mq_get_hctx_node(set, hctx_idx);
24d2f903 3143 struct blk_mq_tags *tags;
320ae51f 3144
59f082e4
SL
3145 if (node == NUMA_NO_NODE)
3146 node = set->numa_node;
3147
e155b0c2
JG
3148 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3149 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
3150 if (!tags)
3151 return NULL;
320ae51f 3152
590b5b7d 3153 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
36e1f3d1 3154 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 3155 node);
24d2f903 3156 if (!tags->rqs) {
e155b0c2 3157 blk_mq_free_tags(tags);
24d2f903
CH
3158 return NULL;
3159 }
320ae51f 3160
590b5b7d
KC
3161 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3162 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3163 node);
2af8cbe3
JA
3164 if (!tags->static_rqs) {
3165 kfree(tags->rqs);
e155b0c2 3166 blk_mq_free_tags(tags);
2af8cbe3
JA
3167 return NULL;
3168 }
3169
cc71a6f4
JA
3170 return tags;
3171}
3172
1d9bd516
TH
3173static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3174 unsigned int hctx_idx, int node)
3175{
3176 int ret;
3177
3178 if (set->ops->init_request) {
3179 ret = set->ops->init_request(set, rq, hctx_idx, node);
3180 if (ret)
3181 return ret;
3182 }
3183
12f5b931 3184 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1d9bd516
TH
3185 return 0;
3186}
3187
63064be1
JG
3188static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3189 struct blk_mq_tags *tags,
3190 unsigned int hctx_idx, unsigned int depth)
cc71a6f4
JA
3191{
3192 unsigned int i, j, entries_per_page, max_order = 4;
4d805131 3193 int node = blk_mq_get_hctx_node(set, hctx_idx);
cc71a6f4 3194 size_t rq_size, left;
59f082e4 3195
59f082e4
SL
3196 if (node == NUMA_NO_NODE)
3197 node = set->numa_node;
cc71a6f4
JA
3198
3199 INIT_LIST_HEAD(&tags->page_list);
3200
320ae51f
JA
3201 /*
3202 * rq_size is the size of the request plus driver payload, rounded
3203 * to the cacheline size
3204 */
24d2f903 3205 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 3206 cache_line_size());
cc71a6f4 3207 left = rq_size * depth;
320ae51f 3208
cc71a6f4 3209 for (i = 0; i < depth; ) {
320ae51f
JA
3210 int this_order = max_order;
3211 struct page *page;
3212 int to_do;
3213 void *p;
3214
b3a834b1 3215 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
3216 this_order--;
3217
3218 do {
59f082e4 3219 page = alloc_pages_node(node,
36e1f3d1 3220 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 3221 this_order);
320ae51f
JA
3222 if (page)
3223 break;
3224 if (!this_order--)
3225 break;
3226 if (order_to_size(this_order) < rq_size)
3227 break;
3228 } while (1);
3229
3230 if (!page)
24d2f903 3231 goto fail;
320ae51f
JA
3232
3233 page->private = this_order;
24d2f903 3234 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
3235
3236 p = page_address(page);
f75782e4
CM
3237 /*
3238 * Allow kmemleak to scan these pages as they contain pointers
3239 * to additional allocations like via ops->init_request().
3240 */
36e1f3d1 3241 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 3242 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 3243 to_do = min(entries_per_page, depth - i);
320ae51f
JA
3244 left -= to_do * rq_size;
3245 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
3246 struct request *rq = p;
3247
3248 tags->static_rqs[i] = rq;
1d9bd516
TH
3249 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3250 tags->static_rqs[i] = NULL;
3251 goto fail;
e9b267d9
CH
3252 }
3253
320ae51f
JA
3254 p += rq_size;
3255 i++;
3256 }
3257 }
cc71a6f4 3258 return 0;
320ae51f 3259
24d2f903 3260fail:
cc71a6f4
JA
3261 blk_mq_free_rqs(set, tags, hctx_idx);
3262 return -ENOMEM;
320ae51f
JA
3263}
3264
bf0beec0
ML
3265struct rq_iter_data {
3266 struct blk_mq_hw_ctx *hctx;
3267 bool has_rq;
3268};
3269
3270static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3271{
3272 struct rq_iter_data *iter_data = data;
3273
3274 if (rq->mq_hctx != iter_data->hctx)
3275 return true;
3276 iter_data->has_rq = true;
3277 return false;
3278}
3279
3280static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3281{
3282 struct blk_mq_tags *tags = hctx->sched_tags ?
3283 hctx->sched_tags : hctx->tags;
3284 struct rq_iter_data data = {
3285 .hctx = hctx,
3286 };
3287
3288 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3289 return data.has_rq;
3290}
3291
3292static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3293 struct blk_mq_hw_ctx *hctx)
3294{
9b51d9d8 3295 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
bf0beec0
ML
3296 return false;
3297 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3298 return false;
3299 return true;
3300}
3301
3302static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3303{
3304 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3305 struct blk_mq_hw_ctx, cpuhp_online);
3306
3307 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3308 !blk_mq_last_cpu_in_hctx(cpu, hctx))
3309 return 0;
3310
3311 /*
3312 * Prevent new request from being allocated on the current hctx.
3313 *
3314 * The smp_mb__after_atomic() Pairs with the implied barrier in
3315 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3316 * seen once we return from the tag allocator.
3317 */
3318 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3319 smp_mb__after_atomic();
3320
3321 /*
3322 * Try to grab a reference to the queue and wait for any outstanding
3323 * requests. If we could not grab a reference the queue has been
3324 * frozen and there are no requests.
3325 */
3326 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3327 while (blk_mq_hctx_has_requests(hctx))
3328 msleep(5);
3329 percpu_ref_put(&hctx->queue->q_usage_counter);
3330 }
3331
3332 return 0;
3333}
3334
3335static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3336{
3337 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3338 struct blk_mq_hw_ctx, cpuhp_online);
3339
3340 if (cpumask_test_cpu(cpu, hctx->cpumask))
3341 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3342 return 0;
3343}
3344
e57690fe
JA
3345/*
3346 * 'cpu' is going away. splice any existing rq_list entries from this
3347 * software queue to the hw queue dispatch list, and ensure that it
3348 * gets run.
3349 */
9467f859 3350static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 3351{
9467f859 3352 struct blk_mq_hw_ctx *hctx;
484b4061
JA
3353 struct blk_mq_ctx *ctx;
3354 LIST_HEAD(tmp);
c16d6b5a 3355 enum hctx_type type;
484b4061 3356
9467f859 3357 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
bf0beec0
ML
3358 if (!cpumask_test_cpu(cpu, hctx->cpumask))
3359 return 0;
3360
e57690fe 3361 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
c16d6b5a 3362 type = hctx->type;
484b4061
JA
3363
3364 spin_lock(&ctx->lock);
c16d6b5a
ML
3365 if (!list_empty(&ctx->rq_lists[type])) {
3366 list_splice_init(&ctx->rq_lists[type], &tmp);
484b4061
JA
3367 blk_mq_hctx_clear_pending(hctx, ctx);
3368 }
3369 spin_unlock(&ctx->lock);
3370
3371 if (list_empty(&tmp))
9467f859 3372 return 0;
484b4061 3373
e57690fe
JA
3374 spin_lock(&hctx->lock);
3375 list_splice_tail_init(&tmp, &hctx->dispatch);
3376 spin_unlock(&hctx->lock);
484b4061
JA
3377
3378 blk_mq_run_hw_queue(hctx, true);
9467f859 3379 return 0;
484b4061
JA
3380}
3381
9467f859 3382static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 3383{
bf0beec0
ML
3384 if (!(hctx->flags & BLK_MQ_F_STACKING))
3385 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3386 &hctx->cpuhp_online);
9467f859
TG
3387 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3388 &hctx->cpuhp_dead);
484b4061
JA
3389}
3390
364b6181
ML
3391/*
3392 * Before freeing hw queue, clearing the flush request reference in
3393 * tags->rqs[] for avoiding potential UAF.
3394 */
3395static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3396 unsigned int queue_depth, struct request *flush_rq)
3397{
3398 int i;
3399 unsigned long flags;
3400
3401 /* The hw queue may not be mapped yet */
3402 if (!tags)
3403 return;
3404
0a467d0f 3405 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
364b6181
ML
3406
3407 for (i = 0; i < queue_depth; i++)
3408 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3409
3410 /*
3411 * Wait until all pending iteration is done.
3412 *
3413 * Request reference is cleared and it is guaranteed to be observed
3414 * after the ->lock is released.
3415 */
3416 spin_lock_irqsave(&tags->lock, flags);
3417 spin_unlock_irqrestore(&tags->lock, flags);
3418}
3419
c3b4afca 3420/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
3421static void blk_mq_exit_hctx(struct request_queue *q,
3422 struct blk_mq_tag_set *set,
3423 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3424{
364b6181
ML
3425 struct request *flush_rq = hctx->fq->flush_rq;
3426
8ab0b7dc
ML
3427 if (blk_mq_hw_queue_mapped(hctx))
3428 blk_mq_tag_idle(hctx);
08e98fc6 3429
364b6181
ML
3430 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3431 set->queue_depth, flush_rq);
f70ced09 3432 if (set->ops->exit_request)
364b6181 3433 set->ops->exit_request(set, flush_rq, hctx_idx);
f70ced09 3434
08e98fc6
ML
3435 if (set->ops->exit_hctx)
3436 set->ops->exit_hctx(hctx, hctx_idx);
3437
9467f859 3438 blk_mq_remove_cpuhp(hctx);
2f8f1336
ML
3439
3440 spin_lock(&q->unused_hctx_lock);
3441 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3442 spin_unlock(&q->unused_hctx_lock);
08e98fc6
ML
3443}
3444
624dbe47
ML
3445static void blk_mq_exit_hw_queues(struct request_queue *q,
3446 struct blk_mq_tag_set *set, int nr_queue)
3447{
3448 struct blk_mq_hw_ctx *hctx;
3449 unsigned int i;
3450
3451 queue_for_each_hw_ctx(q, hctx, i) {
3452 if (i == nr_queue)
3453 break;
477e19de 3454 blk_mq_debugfs_unregister_hctx(hctx);
08e98fc6 3455 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 3456 }
624dbe47
ML
3457}
3458
08e98fc6
ML
3459static int blk_mq_init_hctx(struct request_queue *q,
3460 struct blk_mq_tag_set *set,
3461 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 3462{
7c6c5b7c
ML
3463 hctx->queue_num = hctx_idx;
3464
bf0beec0
ML
3465 if (!(hctx->flags & BLK_MQ_F_STACKING))
3466 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3467 &hctx->cpuhp_online);
7c6c5b7c
ML
3468 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3469
3470 hctx->tags = set->tags[hctx_idx];
3471
3472 if (set->ops->init_hctx &&
3473 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3474 goto unregister_cpu_notifier;
08e98fc6 3475
7c6c5b7c
ML
3476 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3477 hctx->numa_node))
3478 goto exit_hctx;
3479 return 0;
3480
3481 exit_hctx:
3482 if (set->ops->exit_hctx)
3483 set->ops->exit_hctx(hctx, hctx_idx);
3484 unregister_cpu_notifier:
3485 blk_mq_remove_cpuhp(hctx);
3486 return -1;
3487}
3488
3489static struct blk_mq_hw_ctx *
3490blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3491 int node)
3492{
3493 struct blk_mq_hw_ctx *hctx;
3494 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3495
704b914f 3496 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
7c6c5b7c
ML
3497 if (!hctx)
3498 goto fail_alloc_hctx;
3499
3500 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3501 goto free_hctx;
3502
3503 atomic_set(&hctx->nr_active, 0);
08e98fc6 3504 if (node == NUMA_NO_NODE)
7c6c5b7c
ML
3505 node = set->numa_node;
3506 hctx->numa_node = node;
08e98fc6 3507
9f993737 3508 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
3509 spin_lock_init(&hctx->lock);
3510 INIT_LIST_HEAD(&hctx->dispatch);
3511 hctx->queue = q;
51db1c37 3512 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
08e98fc6 3513
2f8f1336
ML
3514 INIT_LIST_HEAD(&hctx->hctx_list);
3515
320ae51f 3516 /*
08e98fc6
ML
3517 * Allocate space for all possible cpus to avoid allocation at
3518 * runtime
320ae51f 3519 */
d904bfa7 3520 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
7c6c5b7c 3521 gfp, node);
08e98fc6 3522 if (!hctx->ctxs)
7c6c5b7c 3523 goto free_cpumask;
320ae51f 3524
5b202853 3525 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
c548e62b 3526 gfp, node, false, false))
08e98fc6 3527 goto free_ctxs;
08e98fc6 3528 hctx->nr_ctx = 0;
320ae51f 3529
5815839b 3530 spin_lock_init(&hctx->dispatch_wait_lock);
eb619fdb
JA
3531 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3532 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3533
754a1572 3534 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
f70ced09 3535 if (!hctx->fq)
7c6c5b7c 3536 goto free_bitmap;
320ae51f 3537
7c6c5b7c 3538 blk_mq_hctx_kobj_init(hctx);
6a83e74d 3539
7c6c5b7c 3540 return hctx;
320ae51f 3541
08e98fc6 3542 free_bitmap:
88459642 3543 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
3544 free_ctxs:
3545 kfree(hctx->ctxs);
7c6c5b7c
ML
3546 free_cpumask:
3547 free_cpumask_var(hctx->cpumask);
3548 free_hctx:
3549 kfree(hctx);
3550 fail_alloc_hctx:
3551 return NULL;
08e98fc6 3552}
320ae51f 3553
320ae51f
JA
3554static void blk_mq_init_cpu_queues(struct request_queue *q,
3555 unsigned int nr_hw_queues)
3556{
b3c661b1
JA
3557 struct blk_mq_tag_set *set = q->tag_set;
3558 unsigned int i, j;
320ae51f
JA
3559
3560 for_each_possible_cpu(i) {
3561 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3562 struct blk_mq_hw_ctx *hctx;
c16d6b5a 3563 int k;
320ae51f 3564
320ae51f
JA
3565 __ctx->cpu = i;
3566 spin_lock_init(&__ctx->lock);
c16d6b5a
ML
3567 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3568 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3569
320ae51f
JA
3570 __ctx->queue = q;
3571
320ae51f
JA
3572 /*
3573 * Set local node, IFF we have more than one hw queue. If
3574 * not, we remain on the home node of the device
3575 */
b3c661b1
JA
3576 for (j = 0; j < set->nr_maps; j++) {
3577 hctx = blk_mq_map_queue_type(q, j, i);
3578 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
576e85c5 3579 hctx->numa_node = cpu_to_node(i);
b3c661b1 3580 }
320ae51f
JA
3581 }
3582}
3583
63064be1
JG
3584struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3585 unsigned int hctx_idx,
3586 unsigned int depth)
cc71a6f4 3587{
63064be1
JG
3588 struct blk_mq_tags *tags;
3589 int ret;
cc71a6f4 3590
e155b0c2 3591 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
63064be1
JG
3592 if (!tags)
3593 return NULL;
cc71a6f4 3594
63064be1
JG
3595 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3596 if (ret) {
e155b0c2 3597 blk_mq_free_rq_map(tags);
63064be1
JG
3598 return NULL;
3599 }
cc71a6f4 3600
63064be1 3601 return tags;
cc71a6f4
JA
3602}
3603
63064be1
JG
3604static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3605 int hctx_idx)
cc71a6f4 3606{
079a2e3e
JG
3607 if (blk_mq_is_shared_tags(set->flags)) {
3608 set->tags[hctx_idx] = set->shared_tags;
1c0706a7 3609
e155b0c2 3610 return true;
bd166ef1 3611 }
e155b0c2 3612
63064be1
JG
3613 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3614 set->queue_depth);
3615
3616 return set->tags[hctx_idx];
cc71a6f4
JA
3617}
3618
645db34e
JG
3619void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3620 struct blk_mq_tags *tags,
3621 unsigned int hctx_idx)
cc71a6f4 3622{
645db34e
JG
3623 if (tags) {
3624 blk_mq_free_rqs(set, tags, hctx_idx);
e155b0c2 3625 blk_mq_free_rq_map(tags);
bd166ef1 3626 }
cc71a6f4
JA
3627}
3628
e155b0c2
JG
3629static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3630 unsigned int hctx_idx)
3631{
079a2e3e 3632 if (!blk_mq_is_shared_tags(set->flags))
e155b0c2
JG
3633 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3634
3635 set->tags[hctx_idx] = NULL;
cc71a6f4
JA
3636}
3637
4b855ad3 3638static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 3639{
b3c661b1 3640 unsigned int i, j, hctx_idx;
320ae51f
JA
3641 struct blk_mq_hw_ctx *hctx;
3642 struct blk_mq_ctx *ctx;
2a34c087 3643 struct blk_mq_tag_set *set = q->tag_set;
320ae51f
JA
3644
3645 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 3646 cpumask_clear(hctx->cpumask);
320ae51f 3647 hctx->nr_ctx = 0;
d416c92c 3648 hctx->dispatch_from = NULL;
320ae51f
JA
3649 }
3650
3651 /*
4b855ad3 3652 * Map software to hardware queues.
4412efec
ML
3653 *
3654 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 3655 */
20e4d813 3656 for_each_possible_cpu(i) {
4412efec 3657
897bb0c7 3658 ctx = per_cpu_ptr(q->queue_ctx, i);
b3c661b1 3659 for (j = 0; j < set->nr_maps; j++) {
bb94aea1
JW
3660 if (!set->map[j].nr_queues) {
3661 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3662 HCTX_TYPE_DEFAULT, i);
e5edd5f2 3663 continue;
bb94aea1 3664 }
fd689871
ML
3665 hctx_idx = set->map[j].mq_map[i];
3666 /* unmapped hw queue can be remapped after CPU topo changed */
3667 if (!set->tags[hctx_idx] &&
63064be1 3668 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
fd689871
ML
3669 /*
3670 * If tags initialization fail for some hctx,
3671 * that hctx won't be brought online. In this
3672 * case, remap the current ctx to hctx[0] which
3673 * is guaranteed to always have tags allocated
3674 */
3675 set->map[j].mq_map[i] = 0;
3676 }
e5edd5f2 3677
b3c661b1 3678 hctx = blk_mq_map_queue_type(q, j, i);
8ccdf4a3 3679 ctx->hctxs[j] = hctx;
b3c661b1
JA
3680 /*
3681 * If the CPU is already set in the mask, then we've
3682 * mapped this one already. This can happen if
3683 * devices share queues across queue maps.
3684 */
3685 if (cpumask_test_cpu(i, hctx->cpumask))
3686 continue;
3687
3688 cpumask_set_cpu(i, hctx->cpumask);
3689 hctx->type = j;
3690 ctx->index_hw[hctx->type] = hctx->nr_ctx;
3691 hctx->ctxs[hctx->nr_ctx++] = ctx;
3692
3693 /*
3694 * If the nr_ctx type overflows, we have exceeded the
3695 * amount of sw queues we can support.
3696 */
3697 BUG_ON(!hctx->nr_ctx);
3698 }
bb94aea1
JW
3699
3700 for (; j < HCTX_MAX_TYPES; j++)
3701 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3702 HCTX_TYPE_DEFAULT, i);
320ae51f 3703 }
506e931f
JA
3704
3705 queue_for_each_hw_ctx(q, hctx, i) {
4412efec
ML
3706 /*
3707 * If no software queues are mapped to this hardware queue,
3708 * disable it and free the request entries.
3709 */
3710 if (!hctx->nr_ctx) {
3711 /* Never unmap queue 0. We need it as a
3712 * fallback in case of a new remap fails
3713 * allocation
3714 */
e155b0c2
JG
3715 if (i)
3716 __blk_mq_free_map_and_rqs(set, i);
4412efec
ML
3717
3718 hctx->tags = NULL;
3719 continue;
3720 }
484b4061 3721
2a34c087
ML
3722 hctx->tags = set->tags[i];
3723 WARN_ON(!hctx->tags);
3724
889fa31f
CY
3725 /*
3726 * Set the map size to the number of mapped software queues.
3727 * This is more accurate and more efficient than looping
3728 * over all possibly mapped software queues.
3729 */
88459642 3730 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 3731
484b4061
JA
3732 /*
3733 * Initialize batch roundrobin counts
3734 */
f82ddf19 3735 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
3736 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3737 }
320ae51f
JA
3738}
3739
8e8320c9
JA
3740/*
3741 * Caller needs to ensure that we're either frozen/quiesced, or that
3742 * the queue isn't live yet.
3743 */
2404e607 3744static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
3745{
3746 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
3747 int i;
3748
2404e607 3749 queue_for_each_hw_ctx(q, hctx, i) {
454bb677 3750 if (shared) {
51db1c37 3751 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
454bb677
YK
3752 } else {
3753 blk_mq_tag_idle(hctx);
51db1c37 3754 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
454bb677 3755 }
2404e607
JM
3756 }
3757}
3758
655ac300
HR
3759static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3760 bool shared)
2404e607
JM
3761{
3762 struct request_queue *q;
0d2602ca 3763
705cda97
BVA
3764 lockdep_assert_held(&set->tag_list_lock);
3765
0d2602ca
JA
3766 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3767 blk_mq_freeze_queue(q);
2404e607 3768 queue_set_hctx_shared(q, shared);
0d2602ca
JA
3769 blk_mq_unfreeze_queue(q);
3770 }
3771}
3772
3773static void blk_mq_del_queue_tag_set(struct request_queue *q)
3774{
3775 struct blk_mq_tag_set *set = q->tag_set;
3776
0d2602ca 3777 mutex_lock(&set->tag_list_lock);
08c875cb 3778 list_del(&q->tag_set_list);
2404e607
JM
3779 if (list_is_singular(&set->tag_list)) {
3780 /* just transitioned to unshared */
51db1c37 3781 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2404e607 3782 /* update existing queue */
655ac300 3783 blk_mq_update_tag_set_shared(set, false);
2404e607 3784 }
0d2602ca 3785 mutex_unlock(&set->tag_list_lock);
a347c7ad 3786 INIT_LIST_HEAD(&q->tag_set_list);
0d2602ca
JA
3787}
3788
3789static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3790 struct request_queue *q)
3791{
0d2602ca 3792 mutex_lock(&set->tag_list_lock);
2404e607 3793
ff821d27
JA
3794 /*
3795 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3796 */
3797 if (!list_empty(&set->tag_list) &&
51db1c37
ML
3798 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3799 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2404e607 3800 /* update existing queue */
655ac300 3801 blk_mq_update_tag_set_shared(set, true);
2404e607 3802 }
51db1c37 3803 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2404e607 3804 queue_set_hctx_shared(q, true);
08c875cb 3805 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 3806
0d2602ca
JA
3807 mutex_unlock(&set->tag_list_lock);
3808}
3809
1db4909e
ML
3810/* All allocations will be freed in release handler of q->mq_kobj */
3811static int blk_mq_alloc_ctxs(struct request_queue *q)
3812{
3813 struct blk_mq_ctxs *ctxs;
3814 int cpu;
3815
3816 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3817 if (!ctxs)
3818 return -ENOMEM;
3819
3820 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3821 if (!ctxs->queue_ctx)
3822 goto fail;
3823
3824 for_each_possible_cpu(cpu) {
3825 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3826 ctx->ctxs = ctxs;
3827 }
3828
3829 q->mq_kobj = &ctxs->kobj;
3830 q->queue_ctx = ctxs->queue_ctx;
3831
3832 return 0;
3833 fail:
3834 kfree(ctxs);
3835 return -ENOMEM;
3836}
3837
e09aae7e
ML
3838/*
3839 * It is the actual release handler for mq, but we do it from
3840 * request queue's release handler for avoiding use-after-free
3841 * and headache because q->mq_kobj shouldn't have been introduced,
3842 * but we can't group ctx/kctx kobj without it.
3843 */
3844void blk_mq_release(struct request_queue *q)
3845{
2f8f1336
ML
3846 struct blk_mq_hw_ctx *hctx, *next;
3847 int i;
e09aae7e 3848
2f8f1336
ML
3849 queue_for_each_hw_ctx(q, hctx, i)
3850 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3851
3852 /* all hctx are in .unused_hctx_list now */
3853 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3854 list_del_init(&hctx->hctx_list);
6c8b232e 3855 kobject_put(&hctx->kobj);
c3b4afca 3856 }
e09aae7e
ML
3857
3858 kfree(q->queue_hw_ctx);
3859
7ea5fe31
ML
3860 /*
3861 * release .mq_kobj and sw queue's kobject now because
3862 * both share lifetime with request queue.
3863 */
3864 blk_mq_sysfs_deinit(q);
e09aae7e
ML
3865}
3866
5ec780a6 3867static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
2f227bb9 3868 void *queuedata)
b62c21b7 3869{
26a9750a
CH
3870 struct request_queue *q;
3871 int ret;
b62c21b7 3872
704b914f 3873 q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
26a9750a 3874 if (!q)
b62c21b7 3875 return ERR_PTR(-ENOMEM);
26a9750a
CH
3876 q->queuedata = queuedata;
3877 ret = blk_mq_init_allocated_queue(set, q);
3878 if (ret) {
3879 blk_cleanup_queue(q);
3880 return ERR_PTR(ret);
3881 }
b62c21b7
MS
3882 return q;
3883}
2f227bb9
CH
3884
3885struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3886{
3887 return blk_mq_init_queue_data(set, NULL);
3888}
b62c21b7
MS
3889EXPORT_SYMBOL(blk_mq_init_queue);
3890
4dcc4874
CH
3891struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3892 struct lock_class_key *lkclass)
9316a9ed
JA
3893{
3894 struct request_queue *q;
b461dfc4 3895 struct gendisk *disk;
9316a9ed 3896
b461dfc4
CH
3897 q = blk_mq_init_queue_data(set, queuedata);
3898 if (IS_ERR(q))
3899 return ERR_CAST(q);
9316a9ed 3900
4a1fa41d 3901 disk = __alloc_disk_node(q, set->numa_node, lkclass);
b461dfc4
CH
3902 if (!disk) {
3903 blk_cleanup_queue(q);
3904 return ERR_PTR(-ENOMEM);
9316a9ed 3905 }
b461dfc4 3906 return disk;
9316a9ed 3907}
b461dfc4 3908EXPORT_SYMBOL(__blk_mq_alloc_disk);
9316a9ed 3909
34d11ffa
JW
3910static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3911 struct blk_mq_tag_set *set, struct request_queue *q,
3912 int hctx_idx, int node)
3913{
2f8f1336 3914 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
34d11ffa 3915
2f8f1336
ML
3916 /* reuse dead hctx first */
3917 spin_lock(&q->unused_hctx_lock);
3918 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3919 if (tmp->numa_node == node) {
3920 hctx = tmp;
3921 break;
3922 }
3923 }
3924 if (hctx)
3925 list_del_init(&hctx->hctx_list);
3926 spin_unlock(&q->unused_hctx_lock);
3927
3928 if (!hctx)
3929 hctx = blk_mq_alloc_hctx(q, set, node);
34d11ffa 3930 if (!hctx)
7c6c5b7c 3931 goto fail;
34d11ffa 3932
7c6c5b7c
ML
3933 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3934 goto free_hctx;
34d11ffa
JW
3935
3936 return hctx;
7c6c5b7c
ML
3937
3938 free_hctx:
3939 kobject_put(&hctx->kobj);
3940 fail:
3941 return NULL;
34d11ffa
JW
3942}
3943
868f2f0b
KB
3944static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3945 struct request_queue *q)
320ae51f 3946{
e01ad46d 3947 int i, j, end;
868f2f0b 3948 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 3949
ac0d6b92
BVA
3950 if (q->nr_hw_queues < set->nr_hw_queues) {
3951 struct blk_mq_hw_ctx **new_hctxs;
3952
3953 new_hctxs = kcalloc_node(set->nr_hw_queues,
3954 sizeof(*new_hctxs), GFP_KERNEL,
3955 set->numa_node);
3956 if (!new_hctxs)
3957 return;
3958 if (hctxs)
3959 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3960 sizeof(*hctxs));
3961 q->queue_hw_ctx = new_hctxs;
ac0d6b92
BVA
3962 kfree(hctxs);
3963 hctxs = new_hctxs;
3964 }
3965
fb350e0a
ML
3966 /* protect against switching io scheduler */
3967 mutex_lock(&q->sysfs_lock);
24d2f903 3968 for (i = 0; i < set->nr_hw_queues; i++) {
4d805131 3969 int node = blk_mq_get_hctx_node(set, i);
34d11ffa 3970 struct blk_mq_hw_ctx *hctx;
868f2f0b 3971
34d11ffa
JW
3972 /*
3973 * If the hw queue has been mapped to another numa node,
3974 * we need to realloc the hctx. If allocation fails, fallback
3975 * to use the previous one.
3976 */
3977 if (hctxs[i] && (hctxs[i]->numa_node == node))
3978 continue;
868f2f0b 3979
34d11ffa
JW
3980 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3981 if (hctx) {
2f8f1336 3982 if (hctxs[i])
34d11ffa 3983 blk_mq_exit_hctx(q, set, hctxs[i], i);
34d11ffa
JW
3984 hctxs[i] = hctx;
3985 } else {
3986 if (hctxs[i])
3987 pr_warn("Allocate new hctx on node %d fails,\
3988 fallback to previous one on node %d\n",
3989 node, hctxs[i]->numa_node);
3990 else
3991 break;
868f2f0b 3992 }
320ae51f 3993 }
e01ad46d
JW
3994 /*
3995 * Increasing nr_hw_queues fails. Free the newly allocated
3996 * hctxs and keep the previous q->nr_hw_queues.
3997 */
3998 if (i != set->nr_hw_queues) {
3999 j = q->nr_hw_queues;
4000 end = i;
4001 } else {
4002 j = i;
4003 end = q->nr_hw_queues;
4004 q->nr_hw_queues = set->nr_hw_queues;
4005 }
34d11ffa 4006
e01ad46d 4007 for (; j < end; j++) {
868f2f0b
KB
4008 struct blk_mq_hw_ctx *hctx = hctxs[j];
4009
4010 if (hctx) {
868f2f0b 4011 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 4012 hctxs[j] = NULL;
868f2f0b
KB
4013 }
4014 }
fb350e0a 4015 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
4016}
4017
26a9750a
CH
4018int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4019 struct request_queue *q)
868f2f0b 4020{
704b914f
ML
4021 WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4022 !!(set->flags & BLK_MQ_F_BLOCKING));
4023
66841672
ML
4024 /* mark the queue as mq asap */
4025 q->mq_ops = set->ops;
4026
34dbad5d 4027 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
4028 blk_mq_poll_stats_bkt,
4029 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
4030 if (!q->poll_cb)
4031 goto err_exit;
4032
1db4909e 4033 if (blk_mq_alloc_ctxs(q))
41de54c6 4034 goto err_poll;
868f2f0b 4035
737f98cf
ML
4036 /* init q->mq_kobj and sw queues' kobjects */
4037 blk_mq_sysfs_init(q);
4038
2f8f1336
ML
4039 INIT_LIST_HEAD(&q->unused_hctx_list);
4040 spin_lock_init(&q->unused_hctx_lock);
4041
868f2f0b
KB
4042 blk_mq_realloc_hw_ctxs(set, q);
4043 if (!q->nr_hw_queues)
4044 goto err_hctxs;
320ae51f 4045
287922eb 4046 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 4047 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f 4048
a8908939 4049 q->tag_set = set;
320ae51f 4050
94eddfbe 4051 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
cd19181b
ML
4052 if (set->nr_maps > HCTX_TYPE_POLL &&
4053 set->map[HCTX_TYPE_POLL].nr_queues)
6544d229 4054 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
320ae51f 4055
2849450a 4056 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
4057 INIT_LIST_HEAD(&q->requeue_list);
4058 spin_lock_init(&q->requeue_lock);
4059
eba71768
JA
4060 q->nr_requests = set->queue_depth;
4061
64f1c21e
JA
4062 /*
4063 * Default to classic polling
4064 */
29ece8b4 4065 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
64f1c21e 4066
24d2f903 4067 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 4068 blk_mq_add_queue_tag_set(set, q);
4b855ad3 4069 blk_mq_map_swqueue(q);
26a9750a 4070 return 0;
18741986 4071
320ae51f 4072err_hctxs:
868f2f0b 4073 kfree(q->queue_hw_ctx);
73d9c8d4 4074 q->nr_hw_queues = 0;
1db4909e 4075 blk_mq_sysfs_deinit(q);
41de54c6
JS
4076err_poll:
4077 blk_stat_free_callback(q->poll_cb);
4078 q->poll_cb = NULL;
c7de5726
ML
4079err_exit:
4080 q->mq_ops = NULL;
26a9750a 4081 return -ENOMEM;
320ae51f 4082}
b62c21b7 4083EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f 4084
c7e2d94b
ML
4085/* tags can _not_ be used after returning from blk_mq_exit_queue */
4086void blk_mq_exit_queue(struct request_queue *q)
320ae51f 4087{
630ef623 4088 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 4089
630ef623 4090 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
624dbe47 4091 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
630ef623
BVA
4092 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4093 blk_mq_del_queue_tag_set(q);
320ae51f 4094}
320ae51f 4095
a5164405
JA
4096static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4097{
4098 int i;
4099
079a2e3e
JG
4100 if (blk_mq_is_shared_tags(set->flags)) {
4101 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
e155b0c2
JG
4102 BLK_MQ_NO_HCTX_IDX,
4103 set->queue_depth);
079a2e3e 4104 if (!set->shared_tags)
e155b0c2
JG
4105 return -ENOMEM;
4106 }
4107
8229cca8 4108 for (i = 0; i < set->nr_hw_queues; i++) {
63064be1 4109 if (!__blk_mq_alloc_map_and_rqs(set, i))
a5164405 4110 goto out_unwind;
8229cca8
XT
4111 cond_resched();
4112 }
a5164405
JA
4113
4114 return 0;
4115
4116out_unwind:
4117 while (--i >= 0)
e155b0c2
JG
4118 __blk_mq_free_map_and_rqs(set, i);
4119
079a2e3e
JG
4120 if (blk_mq_is_shared_tags(set->flags)) {
4121 blk_mq_free_map_and_rqs(set, set->shared_tags,
e155b0c2 4122 BLK_MQ_NO_HCTX_IDX);
645db34e 4123 }
a5164405 4124
a5164405
JA
4125 return -ENOMEM;
4126}
4127
4128/*
4129 * Allocate the request maps associated with this tag_set. Note that this
4130 * may reduce the depth asked for, if memory is tight. set->queue_depth
4131 * will be updated to reflect the allocated depth.
4132 */
63064be1 4133static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
a5164405
JA
4134{
4135 unsigned int depth;
4136 int err;
4137
4138 depth = set->queue_depth;
4139 do {
4140 err = __blk_mq_alloc_rq_maps(set);
4141 if (!err)
4142 break;
4143
4144 set->queue_depth >>= 1;
4145 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4146 err = -ENOMEM;
4147 break;
4148 }
4149 } while (set->queue_depth);
4150
4151 if (!set->queue_depth || err) {
4152 pr_err("blk-mq: failed to allocate request map\n");
4153 return -ENOMEM;
4154 }
4155
4156 if (depth != set->queue_depth)
4157 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4158 depth, set->queue_depth);
4159
4160 return 0;
4161}
4162
ebe8bddb
OS
4163static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4164{
6e66b493
BVA
4165 /*
4166 * blk_mq_map_queues() and multiple .map_queues() implementations
4167 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4168 * number of hardware queues.
4169 */
4170 if (set->nr_maps == 1)
4171 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4172
59388702 4173 if (set->ops->map_queues && !is_kdump_kernel()) {
b3c661b1
JA
4174 int i;
4175
7d4901a9
ML
4176 /*
4177 * transport .map_queues is usually done in the following
4178 * way:
4179 *
4180 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4181 * mask = get_cpu_mask(queue)
4182 * for_each_cpu(cpu, mask)
b3c661b1 4183 * set->map[x].mq_map[cpu] = queue;
7d4901a9
ML
4184 * }
4185 *
4186 * When we need to remap, the table has to be cleared for
4187 * killing stale mapping since one CPU may not be mapped
4188 * to any hw queue.
4189 */
b3c661b1
JA
4190 for (i = 0; i < set->nr_maps; i++)
4191 blk_mq_clear_mq_map(&set->map[i]);
7d4901a9 4192
ebe8bddb 4193 return set->ops->map_queues(set);
b3c661b1
JA
4194 } else {
4195 BUG_ON(set->nr_maps > 1);
7d76f856 4196 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
b3c661b1 4197 }
ebe8bddb
OS
4198}
4199
f7e76dbc
BVA
4200static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4201 int cur_nr_hw_queues, int new_nr_hw_queues)
4202{
4203 struct blk_mq_tags **new_tags;
4204
4205 if (cur_nr_hw_queues >= new_nr_hw_queues)
4206 return 0;
4207
4208 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4209 GFP_KERNEL, set->numa_node);
4210 if (!new_tags)
4211 return -ENOMEM;
4212
4213 if (set->tags)
4214 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4215 sizeof(*set->tags));
4216 kfree(set->tags);
4217 set->tags = new_tags;
4218 set->nr_hw_queues = new_nr_hw_queues;
4219
4220 return 0;
4221}
4222
91cdf265
MI
4223static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4224 int new_nr_hw_queues)
4225{
4226 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4227}
4228
a4391c64
JA
4229/*
4230 * Alloc a tag set to be associated with one or more request queues.
4231 * May fail with EINVAL for various error conditions. May adjust the
c018c84f 4232 * requested depth down, if it's too large. In that case, the set
a4391c64
JA
4233 * value will be stored in set->queue_depth.
4234 */
24d2f903
CH
4235int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4236{
b3c661b1 4237 int i, ret;
da695ba2 4238
205fb5f5
BVA
4239 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4240
24d2f903
CH
4241 if (!set->nr_hw_queues)
4242 return -EINVAL;
a4391c64 4243 if (!set->queue_depth)
24d2f903
CH
4244 return -EINVAL;
4245 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4246 return -EINVAL;
4247
7d7e0f90 4248 if (!set->ops->queue_rq)
24d2f903
CH
4249 return -EINVAL;
4250
de148297
ML
4251 if (!set->ops->get_budget ^ !set->ops->put_budget)
4252 return -EINVAL;
4253
a4391c64
JA
4254 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4255 pr_info("blk-mq: reduced tag depth to %u\n",
4256 BLK_MQ_MAX_DEPTH);
4257 set->queue_depth = BLK_MQ_MAX_DEPTH;
4258 }
24d2f903 4259
b3c661b1
JA
4260 if (!set->nr_maps)
4261 set->nr_maps = 1;
4262 else if (set->nr_maps > HCTX_MAX_TYPES)
4263 return -EINVAL;
4264
6637fadf
SL
4265 /*
4266 * If a crashdump is active, then we are potentially in a very
4267 * memory constrained environment. Limit us to 1 queue and
4268 * 64 tags to prevent using too much memory.
4269 */
4270 if (is_kdump_kernel()) {
4271 set->nr_hw_queues = 1;
59388702 4272 set->nr_maps = 1;
6637fadf
SL
4273 set->queue_depth = min(64U, set->queue_depth);
4274 }
868f2f0b 4275 /*
392546ae
JA
4276 * There is no use for more h/w queues than cpus if we just have
4277 * a single map
868f2f0b 4278 */
392546ae 4279 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
868f2f0b 4280 set->nr_hw_queues = nr_cpu_ids;
6637fadf 4281
91cdf265 4282 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
a5164405 4283 return -ENOMEM;
24d2f903 4284
da695ba2 4285 ret = -ENOMEM;
b3c661b1
JA
4286 for (i = 0; i < set->nr_maps; i++) {
4287 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
07b35eb5 4288 sizeof(set->map[i].mq_map[0]),
b3c661b1
JA
4289 GFP_KERNEL, set->numa_node);
4290 if (!set->map[i].mq_map)
4291 goto out_free_mq_map;
59388702 4292 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
b3c661b1 4293 }
bdd17e75 4294
ebe8bddb 4295 ret = blk_mq_update_queue_map(set);
da695ba2
CH
4296 if (ret)
4297 goto out_free_mq_map;
4298
63064be1 4299 ret = blk_mq_alloc_set_map_and_rqs(set);
da695ba2 4300 if (ret)
bdd17e75 4301 goto out_free_mq_map;
24d2f903 4302
0d2602ca
JA
4303 mutex_init(&set->tag_list_lock);
4304 INIT_LIST_HEAD(&set->tag_list);
4305
24d2f903 4306 return 0;
bdd17e75
CH
4307
4308out_free_mq_map:
b3c661b1
JA
4309 for (i = 0; i < set->nr_maps; i++) {
4310 kfree(set->map[i].mq_map);
4311 set->map[i].mq_map = NULL;
4312 }
5676e7b6
RE
4313 kfree(set->tags);
4314 set->tags = NULL;
da695ba2 4315 return ret;
24d2f903
CH
4316}
4317EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4318
cdb14e0f
CH
4319/* allocate and initialize a tagset for a simple single-queue device */
4320int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4321 const struct blk_mq_ops *ops, unsigned int queue_depth,
4322 unsigned int set_flags)
4323{
4324 memset(set, 0, sizeof(*set));
4325 set->ops = ops;
4326 set->nr_hw_queues = 1;
4327 set->nr_maps = 1;
4328 set->queue_depth = queue_depth;
4329 set->numa_node = NUMA_NO_NODE;
4330 set->flags = set_flags;
4331 return blk_mq_alloc_tag_set(set);
4332}
4333EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4334
24d2f903
CH
4335void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4336{
b3c661b1 4337 int i, j;
24d2f903 4338
f7e76dbc 4339 for (i = 0; i < set->nr_hw_queues; i++)
e155b0c2 4340 __blk_mq_free_map_and_rqs(set, i);
484b4061 4341
079a2e3e
JG
4342 if (blk_mq_is_shared_tags(set->flags)) {
4343 blk_mq_free_map_and_rqs(set, set->shared_tags,
e155b0c2
JG
4344 BLK_MQ_NO_HCTX_IDX);
4345 }
32bc15af 4346
b3c661b1
JA
4347 for (j = 0; j < set->nr_maps; j++) {
4348 kfree(set->map[j].mq_map);
4349 set->map[j].mq_map = NULL;
4350 }
bdd17e75 4351
981bd189 4352 kfree(set->tags);
5676e7b6 4353 set->tags = NULL;
24d2f903
CH
4354}
4355EXPORT_SYMBOL(blk_mq_free_tag_set);
4356
e3a2b3f9
JA
4357int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4358{
4359 struct blk_mq_tag_set *set = q->tag_set;
4360 struct blk_mq_hw_ctx *hctx;
4361 int i, ret;
4362
bd166ef1 4363 if (!set)
e3a2b3f9
JA
4364 return -EINVAL;
4365
e5fa8140
AZ
4366 if (q->nr_requests == nr)
4367 return 0;
4368
70f36b60 4369 blk_mq_freeze_queue(q);
24f5a90f 4370 blk_mq_quiesce_queue(q);
70f36b60 4371
e3a2b3f9
JA
4372 ret = 0;
4373 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
4374 if (!hctx->tags)
4375 continue;
bd166ef1
JA
4376 /*
4377 * If we're using an MQ scheduler, just update the scheduler
4378 * queue depth. This is similar to what the old code would do.
4379 */
f6adcef5 4380 if (hctx->sched_tags) {
70f36b60 4381 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
f6adcef5 4382 nr, true);
f6adcef5
JG
4383 } else {
4384 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4385 false);
70f36b60 4386 }
e3a2b3f9
JA
4387 if (ret)
4388 break;
77f1e0a5
JA
4389 if (q->elevator && q->elevator->type->ops.depth_updated)
4390 q->elevator->type->ops.depth_updated(hctx);
e3a2b3f9 4391 }
d97e594c 4392 if (!ret) {
e3a2b3f9 4393 q->nr_requests = nr;
079a2e3e 4394 if (blk_mq_is_shared_tags(set->flags)) {
8fa04464 4395 if (q->elevator)
079a2e3e 4396 blk_mq_tag_update_sched_shared_tags(q);
8fa04464 4397 else
079a2e3e 4398 blk_mq_tag_resize_shared_tags(set, nr);
8fa04464 4399 }
d97e594c 4400 }
e3a2b3f9 4401
24f5a90f 4402 blk_mq_unquiesce_queue(q);
70f36b60 4403 blk_mq_unfreeze_queue(q);
70f36b60 4404
e3a2b3f9
JA
4405 return ret;
4406}
4407
d48ece20
JW
4408/*
4409 * request_queue and elevator_type pair.
4410 * It is just used by __blk_mq_update_nr_hw_queues to cache
4411 * the elevator_type associated with a request_queue.
4412 */
4413struct blk_mq_qe_pair {
4414 struct list_head node;
4415 struct request_queue *q;
4416 struct elevator_type *type;
4417};
4418
4419/*
4420 * Cache the elevator_type in qe pair list and switch the
4421 * io scheduler to 'none'
4422 */
4423static bool blk_mq_elv_switch_none(struct list_head *head,
4424 struct request_queue *q)
4425{
4426 struct blk_mq_qe_pair *qe;
4427
4428 if (!q->elevator)
4429 return true;
4430
4431 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4432 if (!qe)
4433 return false;
4434
4435 INIT_LIST_HEAD(&qe->node);
4436 qe->q = q;
4437 qe->type = q->elevator->type;
4438 list_add(&qe->node, head);
4439
4440 mutex_lock(&q->sysfs_lock);
4441 /*
4442 * After elevator_switch_mq, the previous elevator_queue will be
4443 * released by elevator_release. The reference of the io scheduler
4444 * module get by elevator_get will also be put. So we need to get
4445 * a reference of the io scheduler module here to prevent it to be
4446 * removed.
4447 */
4448 __module_get(qe->type->elevator_owner);
4449 elevator_switch_mq(q, NULL);
4450 mutex_unlock(&q->sysfs_lock);
4451
4452 return true;
4453}
4454
4455static void blk_mq_elv_switch_back(struct list_head *head,
4456 struct request_queue *q)
4457{
4458 struct blk_mq_qe_pair *qe;
4459 struct elevator_type *t = NULL;
4460
4461 list_for_each_entry(qe, head, node)
4462 if (qe->q == q) {
4463 t = qe->type;
4464 break;
4465 }
4466
4467 if (!t)
4468 return;
4469
4470 list_del(&qe->node);
4471 kfree(qe);
4472
4473 mutex_lock(&q->sysfs_lock);
4474 elevator_switch_mq(q, t);
4475 mutex_unlock(&q->sysfs_lock);
4476}
4477
e4dc2b32
KB
4478static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4479 int nr_hw_queues)
868f2f0b
KB
4480{
4481 struct request_queue *q;
d48ece20 4482 LIST_HEAD(head);
e01ad46d 4483 int prev_nr_hw_queues;
868f2f0b 4484
705cda97
BVA
4485 lockdep_assert_held(&set->tag_list_lock);
4486
392546ae 4487 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
868f2f0b 4488 nr_hw_queues = nr_cpu_ids;
fe35ec58
WZ
4489 if (nr_hw_queues < 1)
4490 return;
4491 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
868f2f0b
KB
4492 return;
4493
4494 list_for_each_entry(q, &set->tag_list, tag_set_list)
4495 blk_mq_freeze_queue(q);
d48ece20
JW
4496 /*
4497 * Switch IO scheduler to 'none', cleaning up the data associated
4498 * with the previous scheduler. We will switch back once we are done
4499 * updating the new sw to hw queue mappings.
4500 */
4501 list_for_each_entry(q, &set->tag_list, tag_set_list)
4502 if (!blk_mq_elv_switch_none(&head, q))
4503 goto switch_back;
868f2f0b 4504
477e19de
JW
4505 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4506 blk_mq_debugfs_unregister_hctxs(q);
4507 blk_mq_sysfs_unregister(q);
4508 }
4509
a2584e43 4510 prev_nr_hw_queues = set->nr_hw_queues;
f7e76dbc
BVA
4511 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4512 0)
4513 goto reregister;
4514
868f2f0b 4515 set->nr_hw_queues = nr_hw_queues;
e01ad46d 4516fallback:
aa880ad6 4517 blk_mq_update_queue_map(set);
868f2f0b
KB
4518 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4519 blk_mq_realloc_hw_ctxs(set, q);
e01ad46d 4520 if (q->nr_hw_queues != set->nr_hw_queues) {
a846a8e6
YB
4521 int i = prev_nr_hw_queues;
4522
e01ad46d
JW
4523 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4524 nr_hw_queues, prev_nr_hw_queues);
a846a8e6
YB
4525 for (; i < set->nr_hw_queues; i++)
4526 __blk_mq_free_map_and_rqs(set, i);
4527
e01ad46d 4528 set->nr_hw_queues = prev_nr_hw_queues;
7d76f856 4529 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
e01ad46d
JW
4530 goto fallback;
4531 }
477e19de
JW
4532 blk_mq_map_swqueue(q);
4533 }
4534
f7e76dbc 4535reregister:
477e19de
JW
4536 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4537 blk_mq_sysfs_register(q);
4538 blk_mq_debugfs_register_hctxs(q);
868f2f0b
KB
4539 }
4540
d48ece20
JW
4541switch_back:
4542 list_for_each_entry(q, &set->tag_list, tag_set_list)
4543 blk_mq_elv_switch_back(&head, q);
4544
868f2f0b
KB
4545 list_for_each_entry(q, &set->tag_list, tag_set_list)
4546 blk_mq_unfreeze_queue(q);
4547}
e4dc2b32
KB
4548
4549void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4550{
4551 mutex_lock(&set->tag_list_lock);
4552 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4553 mutex_unlock(&set->tag_list_lock);
4554}
868f2f0b
KB
4555EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4556
34dbad5d
OS
4557/* Enable polling stats and return whether they were already enabled. */
4558static bool blk_poll_stats_enable(struct request_queue *q)
4559{
48b5c1fb 4560 if (q->poll_stat)
34dbad5d 4561 return true;
48b5c1fb
JA
4562
4563 return blk_stats_alloc_enable(q);
34dbad5d
OS
4564}
4565
4566static void blk_mq_poll_stats_start(struct request_queue *q)
4567{
4568 /*
4569 * We don't arm the callback if polling stats are not enabled or the
4570 * callback is already active.
4571 */
48b5c1fb 4572 if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
34dbad5d
OS
4573 return;
4574
4575 blk_stat_activate_msecs(q->poll_cb, 100);
4576}
4577
4578static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4579{
4580 struct request_queue *q = cb->data;
720b8ccc 4581 int bucket;
34dbad5d 4582
720b8ccc
SB
4583 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4584 if (cb->stat[bucket].nr_samples)
4585 q->poll_stat[bucket] = cb->stat[bucket];
4586 }
34dbad5d
OS
4587}
4588
64f1c21e 4589static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
64f1c21e
JA
4590 struct request *rq)
4591{
64f1c21e 4592 unsigned long ret = 0;
720b8ccc 4593 int bucket;
64f1c21e
JA
4594
4595 /*
4596 * If stats collection isn't on, don't sleep but turn it on for
4597 * future users
4598 */
34dbad5d 4599 if (!blk_poll_stats_enable(q))
64f1c21e
JA
4600 return 0;
4601
64f1c21e
JA
4602 /*
4603 * As an optimistic guess, use half of the mean service time
4604 * for this type of request. We can (and should) make this smarter.
4605 * For instance, if the completion latencies are tight, we can
4606 * get closer than just half the mean. This is especially
4607 * important on devices where the completion latencies are longer
720b8ccc
SB
4608 * than ~10 usec. We do use the stats for the relevant IO size
4609 * if available which does lead to better estimates.
64f1c21e 4610 */
720b8ccc
SB
4611 bucket = blk_mq_poll_stats_bkt(rq);
4612 if (bucket < 0)
4613 return ret;
4614
4615 if (q->poll_stat[bucket].nr_samples)
4616 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
4617
4618 return ret;
4619}
4620
c6699d6f 4621static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
06426adf 4622{
c6699d6f
CH
4623 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4624 struct request *rq = blk_qc_to_rq(hctx, qc);
06426adf
JA
4625 struct hrtimer_sleeper hs;
4626 enum hrtimer_mode mode;
64f1c21e 4627 unsigned int nsecs;
06426adf
JA
4628 ktime_t kt;
4629
c6699d6f
CH
4630 /*
4631 * If a request has completed on queue that uses an I/O scheduler, we
4632 * won't get back a request from blk_qc_to_rq.
4633 */
4634 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
64f1c21e
JA
4635 return false;
4636
4637 /*
1052b8ac 4638 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
64f1c21e 4639 *
64f1c21e
JA
4640 * 0: use half of prev avg
4641 * >0: use this specific value
4642 */
1052b8ac 4643 if (q->poll_nsec > 0)
64f1c21e
JA
4644 nsecs = q->poll_nsec;
4645 else
cae740a0 4646 nsecs = blk_mq_poll_nsecs(q, rq);
64f1c21e
JA
4647
4648 if (!nsecs)
06426adf
JA
4649 return false;
4650
76a86f9d 4651 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
06426adf
JA
4652
4653 /*
4654 * This will be replaced with the stats tracking code, using
4655 * 'avg_completion_time / 2' as the pre-sleep target.
4656 */
8b0e1953 4657 kt = nsecs;
06426adf
JA
4658
4659 mode = HRTIMER_MODE_REL;
dbc1625f 4660 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
06426adf
JA
4661 hrtimer_set_expires(&hs.timer, kt);
4662
06426adf 4663 do {
5a61c363 4664 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
06426adf
JA
4665 break;
4666 set_current_state(TASK_UNINTERRUPTIBLE);
9dd8813e 4667 hrtimer_sleeper_start_expires(&hs, mode);
06426adf
JA
4668 if (hs.task)
4669 io_schedule();
4670 hrtimer_cancel(&hs.timer);
4671 mode = HRTIMER_MODE_ABS;
4672 } while (hs.task && !signal_pending(current));
4673
4674 __set_current_state(TASK_RUNNING);
4675 destroy_hrtimer_on_stack(&hs.timer);
1052b8ac 4676
06426adf 4677 /*
c6699d6f
CH
4678 * If we sleep, have the caller restart the poll loop to reset the
4679 * state. Like for the other success return cases, the caller is
4680 * responsible for checking if the IO completed. If the IO isn't
4681 * complete, we'll get called again and will go straight to the busy
4682 * poll loop.
06426adf 4683 */
06426adf
JA
4684 return true;
4685}
06426adf 4686
c6699d6f 4687static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
5a72e899 4688 struct io_comp_batch *iob, unsigned int flags)
bbd7bb70 4689{
c6699d6f
CH
4690 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4691 long state = get_current_state();
4692 int ret;
bbd7bb70 4693
aa61bec3 4694 do {
5a72e899 4695 ret = q->mq_ops->poll(hctx, iob);
bbd7bb70 4696 if (ret > 0) {
849a3700 4697 __set_current_state(TASK_RUNNING);
85f4d4b6 4698 return ret;
bbd7bb70
JA
4699 }
4700
4701 if (signal_pending_state(state, current))
849a3700 4702 __set_current_state(TASK_RUNNING);
b03fbd4f 4703 if (task_is_running(current))
85f4d4b6 4704 return 1;
c6699d6f 4705
ef99b2d3 4706 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
bbd7bb70
JA
4707 break;
4708 cpu_relax();
aa61bec3 4709 } while (!need_resched());
bbd7bb70 4710
67b4110f 4711 __set_current_state(TASK_RUNNING);
85f4d4b6 4712 return 0;
bbd7bb70 4713}
1052b8ac 4714
5a72e899
JA
4715int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4716 unsigned int flags)
1052b8ac 4717{
d729cf9a
CH
4718 if (!(flags & BLK_POLL_NOSLEEP) &&
4719 q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
c6699d6f 4720 if (blk_mq_poll_hybrid(q, cookie))
85f4d4b6 4721 return 1;
c6699d6f 4722 }
5a72e899 4723 return blk_mq_poll_classic(q, cookie, iob, flags);
bbd7bb70
JA
4724}
4725
9cf2bab6
JA
4726unsigned int blk_mq_rq_cpu(struct request *rq)
4727{
4728 return rq->mq_ctx->cpu;
4729}
4730EXPORT_SYMBOL(blk_mq_rq_cpu);
4731
2a19b28f
ML
4732void blk_mq_cancel_work_sync(struct request_queue *q)
4733{
4734 if (queue_is_mq(q)) {
4735 struct blk_mq_hw_ctx *hctx;
4736 int i;
4737
4738 cancel_delayed_work_sync(&q->requeue_work);
4739
4740 queue_for_each_hw_ctx(q, hctx, i)
4741 cancel_delayed_work_sync(&hctx->run_work);
4742 }
4743}
4744
320ae51f
JA
4745static int __init blk_mq_init(void)
4746{
c3077b5d
CH
4747 int i;
4748
4749 for_each_possible_cpu(i)
f9ab4918 4750 init_llist_head(&per_cpu(blk_cpu_done, i));
c3077b5d
CH
4751 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4752
4753 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4754 "block/softirq:dead", NULL,
4755 blk_softirq_cpu_dead);
9467f859
TG
4756 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4757 blk_mq_hctx_notify_dead);
bf0beec0
ML
4758 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4759 blk_mq_hctx_notify_online,
4760 blk_mq_hctx_notify_offline);
320ae51f
JA
4761 return 0;
4762}
4763subsys_initcall(blk_mq_init);