block: move blk_account_io_{start,done} to blk-mq.c
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
75bb4625
JA
2/*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
320ae51f
JA
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/backing-dev.h>
11#include <linux/bio.h>
12#include <linux/blkdev.h>
fe45e630 13#include <linux/blk-integrity.h>
f75782e4 14#include <linux/kmemleak.h>
320ae51f
JA
15#include <linux/mm.h>
16#include <linux/init.h>
17#include <linux/slab.h>
18#include <linux/workqueue.h>
19#include <linux/smp.h>
e41d12f5 20#include <linux/interrupt.h>
320ae51f 21#include <linux/llist.h>
320ae51f
JA
22#include <linux/cpu.h>
23#include <linux/cache.h>
24#include <linux/sched/sysctl.h>
105ab3d8 25#include <linux/sched/topology.h>
174cd4b1 26#include <linux/sched/signal.h>
320ae51f 27#include <linux/delay.h>
aedcd72f 28#include <linux/crash_dump.h>
88c7b2b7 29#include <linux/prefetch.h>
a892c8d5 30#include <linux/blk-crypto.h>
4054cff9 31#include <linux/sched/sysctl.h>
320ae51f
JA
32
33#include <trace/events/block.h>
34
35#include <linux/blk-mq.h>
54d4e6ab 36#include <linux/t10-pi.h>
320ae51f
JA
37#include "blk.h"
38#include "blk-mq.h"
9c1051aa 39#include "blk-mq-debugfs.h"
320ae51f 40#include "blk-mq-tag.h"
986d413b 41#include "blk-pm.h"
cf43e6be 42#include "blk-stat.h"
bd166ef1 43#include "blk-mq-sched.h"
c1c80384 44#include "blk-rq-qos.h"
320ae51f 45
f9ab4918 46static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
c3077b5d 47
34dbad5d
OS
48static void blk_mq_poll_stats_start(struct request_queue *q);
49static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50
720b8ccc
SB
51static int blk_mq_poll_stats_bkt(const struct request *rq)
52{
3d244306 53 int ddir, sectors, bucket;
720b8ccc 54
99c749a4 55 ddir = rq_data_dir(rq);
3d244306 56 sectors = blk_rq_stats_sectors(rq);
720b8ccc 57
3d244306 58 bucket = ddir + 2 * ilog2(sectors);
720b8ccc
SB
59
60 if (bucket < 0)
61 return -1;
62 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64
65 return bucket;
66}
67
3e08773c
CH
68#define BLK_QC_T_SHIFT 16
69#define BLK_QC_T_INTERNAL (1U << 31)
70
f70299f0
CH
71static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72 blk_qc_t qc)
73{
74 return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
75}
76
c6699d6f
CH
77static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
78 blk_qc_t qc)
79{
efbabbe1
CH
80 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
81
82 if (qc & BLK_QC_T_INTERNAL)
83 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
84 return blk_mq_tag_to_rq(hctx->tags, tag);
c6699d6f
CH
85}
86
3e08773c
CH
87static inline blk_qc_t blk_rq_to_qc(struct request *rq)
88{
89 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
90 (rq->tag != -1 ?
91 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
92}
93
320ae51f 94/*
85fae294
YY
95 * Check if any of the ctx, dispatch list or elevator
96 * have pending work in this hardware queue.
320ae51f 97 */
79f720a7 98static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 99{
79f720a7
JA
100 return !list_empty_careful(&hctx->dispatch) ||
101 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 102 blk_mq_sched_has_work(hctx);
1429d7c9
JA
103}
104
320ae51f
JA
105/*
106 * Mark this ctx as having pending work in this hardware queue
107 */
108static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
109 struct blk_mq_ctx *ctx)
110{
f31967f0
JA
111 const int bit = ctx->index_hw[hctx->type];
112
113 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
114 sbitmap_set_bit(&hctx->ctx_map, bit);
1429d7c9
JA
115}
116
117static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
118 struct blk_mq_ctx *ctx)
119{
f31967f0
JA
120 const int bit = ctx->index_hw[hctx->type];
121
122 sbitmap_clear_bit(&hctx->ctx_map, bit);
320ae51f
JA
123}
124
f299b7c7 125struct mq_inflight {
8446fe92 126 struct block_device *part;
a2e80f6f 127 unsigned int inflight[2];
f299b7c7
JA
128};
129
7baa8572 130static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
f299b7c7
JA
131 struct request *rq, void *priv,
132 bool reserved)
133{
134 struct mq_inflight *mi = priv;
135
b0d97557
JX
136 if ((!mi->part->bd_partno || rq->part == mi->part) &&
137 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
bb4e6b14 138 mi->inflight[rq_data_dir(rq)]++;
7baa8572
JA
139
140 return true;
f299b7c7
JA
141}
142
8446fe92
CH
143unsigned int blk_mq_in_flight(struct request_queue *q,
144 struct block_device *part)
f299b7c7 145{
a2e80f6f 146 struct mq_inflight mi = { .part = part };
f299b7c7 147
f299b7c7 148 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
e016b782 149
a2e80f6f 150 return mi.inflight[0] + mi.inflight[1];
bf0ddaba
OS
151}
152
8446fe92
CH
153void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
154 unsigned int inflight[2])
bf0ddaba 155{
a2e80f6f 156 struct mq_inflight mi = { .part = part };
bf0ddaba 157
bb4e6b14 158 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
a2e80f6f
PB
159 inflight[0] = mi.inflight[0];
160 inflight[1] = mi.inflight[1];
bf0ddaba
OS
161}
162
1671d522 163void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 164{
7996a8b5
BL
165 mutex_lock(&q->mq_freeze_lock);
166 if (++q->mq_freeze_depth == 1) {
3ef28e83 167 percpu_ref_kill(&q->q_usage_counter);
7996a8b5 168 mutex_unlock(&q->mq_freeze_lock);
344e9ffc 169 if (queue_is_mq(q))
055f6e18 170 blk_mq_run_hw_queues(q, false);
7996a8b5
BL
171 } else {
172 mutex_unlock(&q->mq_freeze_lock);
cddd5d17 173 }
f3af020b 174}
1671d522 175EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 176
6bae363e 177void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 178{
3ef28e83 179 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 180}
6bae363e 181EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 182
f91328c4
KB
183int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
184 unsigned long timeout)
185{
186 return wait_event_timeout(q->mq_freeze_wq,
187 percpu_ref_is_zero(&q->q_usage_counter),
188 timeout);
189}
190EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 191
f3af020b
TH
192/*
193 * Guarantee no request is in use, so we can change any data structure of
194 * the queue afterward.
195 */
3ef28e83 196void blk_freeze_queue(struct request_queue *q)
f3af020b 197{
3ef28e83
DW
198 /*
199 * In the !blk_mq case we are only calling this to kill the
200 * q_usage_counter, otherwise this increases the freeze depth
201 * and waits for it to return to zero. For this reason there is
202 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
203 * exported to drivers as the only user for unfreeze is blk_mq.
204 */
1671d522 205 blk_freeze_queue_start(q);
f3af020b
TH
206 blk_mq_freeze_queue_wait(q);
207}
3ef28e83
DW
208
209void blk_mq_freeze_queue(struct request_queue *q)
210{
211 /*
212 * ...just an alias to keep freeze and unfreeze actions balanced
213 * in the blk_mq_* namespace
214 */
215 blk_freeze_queue(q);
216}
c761d96b 217EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 218
aec89dc5 219void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
320ae51f 220{
7996a8b5 221 mutex_lock(&q->mq_freeze_lock);
aec89dc5
CH
222 if (force_atomic)
223 q->q_usage_counter.data->force_atomic = true;
7996a8b5
BL
224 q->mq_freeze_depth--;
225 WARN_ON_ONCE(q->mq_freeze_depth < 0);
226 if (!q->mq_freeze_depth) {
bdd63160 227 percpu_ref_resurrect(&q->q_usage_counter);
320ae51f 228 wake_up_all(&q->mq_freeze_wq);
add703fd 229 }
7996a8b5 230 mutex_unlock(&q->mq_freeze_lock);
320ae51f 231}
aec89dc5
CH
232
233void blk_mq_unfreeze_queue(struct request_queue *q)
234{
235 __blk_mq_unfreeze_queue(q, false);
236}
b4c6a028 237EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 238
852ec809
BVA
239/*
240 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
241 * mpt3sas driver such that this function can be removed.
242 */
243void blk_mq_quiesce_queue_nowait(struct request_queue *q)
244{
e70feb8b
ML
245 unsigned long flags;
246
247 spin_lock_irqsave(&q->queue_lock, flags);
248 if (!q->quiesce_depth++)
249 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
250 spin_unlock_irqrestore(&q->queue_lock, flags);
852ec809
BVA
251}
252EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
253
6a83e74d 254/**
9ef4d020 255 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
6a83e74d
BVA
256 * @q: request queue.
257 *
9ef4d020
ML
258 * Note: it is driver's responsibility for making sure that quiesce has
259 * been started.
6a83e74d 260 */
9ef4d020 261void blk_mq_wait_quiesce_done(struct request_queue *q)
6a83e74d
BVA
262{
263 struct blk_mq_hw_ctx *hctx;
264 unsigned int i;
265 bool rcu = false;
266
6a83e74d
BVA
267 queue_for_each_hw_ctx(q, hctx, i) {
268 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 269 synchronize_srcu(hctx->srcu);
6a83e74d
BVA
270 else
271 rcu = true;
272 }
273 if (rcu)
274 synchronize_rcu();
275}
9ef4d020
ML
276EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
277
278/**
279 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
280 * @q: request queue.
281 *
282 * Note: this function does not prevent that the struct request end_io()
283 * callback function is invoked. Once this function is returned, we make
284 * sure no dispatch can happen until the queue is unquiesced via
285 * blk_mq_unquiesce_queue().
286 */
287void blk_mq_quiesce_queue(struct request_queue *q)
288{
289 blk_mq_quiesce_queue_nowait(q);
290 blk_mq_wait_quiesce_done(q);
291}
6a83e74d
BVA
292EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
293
e4e73913
ML
294/*
295 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
296 * @q: request queue.
297 *
298 * This function recovers queue into the state before quiescing
299 * which is done by blk_mq_quiesce_queue.
300 */
301void blk_mq_unquiesce_queue(struct request_queue *q)
302{
e70feb8b
ML
303 unsigned long flags;
304 bool run_queue = false;
305
306 spin_lock_irqsave(&q->queue_lock, flags);
307 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
308 ;
309 } else if (!--q->quiesce_depth) {
310 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
311 run_queue = true;
312 }
313 spin_unlock_irqrestore(&q->queue_lock, flags);
f4560ffe 314
1d9e9bc6 315 /* dispatch requests which are inserted during quiescing */
e70feb8b
ML
316 if (run_queue)
317 blk_mq_run_hw_queues(q, true);
e4e73913
ML
318}
319EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
320
aed3ea94
JA
321void blk_mq_wake_waiters(struct request_queue *q)
322{
323 struct blk_mq_hw_ctx *hctx;
324 unsigned int i;
325
326 queue_for_each_hw_ctx(q, hctx, i)
327 if (blk_mq_hw_queue_mapped(hctx))
328 blk_mq_tag_wakeup_all(hctx->tags, true);
329}
330
52fdbbcc
CH
331void blk_rq_init(struct request_queue *q, struct request *rq)
332{
333 memset(rq, 0, sizeof(*rq));
334
335 INIT_LIST_HEAD(&rq->queuelist);
336 rq->q = q;
337 rq->__sector = (sector_t) -1;
338 INIT_HLIST_NODE(&rq->hash);
339 RB_CLEAR_NODE(&rq->rb_node);
340 rq->tag = BLK_MQ_NO_TAG;
341 rq->internal_tag = BLK_MQ_NO_TAG;
342 rq->start_time_ns = ktime_get_ns();
343 rq->part = NULL;
344 blk_crypto_rq_set_defaults(rq);
345}
346EXPORT_SYMBOL(blk_rq_init);
347
e4cdf1a1 348static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
fe6134f6 349 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
320ae51f 350{
605f784e
PB
351 struct blk_mq_ctx *ctx = data->ctx;
352 struct blk_mq_hw_ctx *hctx = data->hctx;
353 struct request_queue *q = data->q;
e4cdf1a1 354 struct request *rq = tags->static_rqs[tag];
c3a148d2 355
c7b84d42
JA
356 rq->q = q;
357 rq->mq_ctx = ctx;
358 rq->mq_hctx = hctx;
359 rq->cmd_flags = data->cmd_flags;
360
361 if (data->flags & BLK_MQ_REQ_PM)
362 data->rq_flags |= RQF_PM;
363 if (blk_queue_io_stat(q))
364 data->rq_flags |= RQF_IO_STAT;
365 rq->rq_flags = data->rq_flags;
366
56f8da64 367 if (!(data->rq_flags & RQF_ELV)) {
e4cdf1a1 368 rq->tag = tag;
76647368 369 rq->internal_tag = BLK_MQ_NO_TAG;
56f8da64
JA
370 } else {
371 rq->tag = BLK_MQ_NO_TAG;
372 rq->internal_tag = tag;
e4cdf1a1 373 }
c7b84d42 374 rq->timeout = 0;
e4cdf1a1 375
4f266f2b
PB
376 if (blk_mq_need_time_stamp(rq))
377 rq->start_time_ns = ktime_get_ns();
378 else
379 rq->start_time_ns = 0;
af76e555
CH
380 rq->rq_disk = NULL;
381 rq->part = NULL;
6f816b4b
TH
382#ifdef CONFIG_BLK_RQ_ALLOC_TIME
383 rq->alloc_time_ns = alloc_time_ns;
384#endif
544ccc8d 385 rq->io_start_time_ns = 0;
3d244306 386 rq->stats_sectors = 0;
af76e555
CH
387 rq->nr_phys_segments = 0;
388#if defined(CONFIG_BLK_DEV_INTEGRITY)
389 rq->nr_integrity_segments = 0;
390#endif
af76e555
CH
391 rq->end_io = NULL;
392 rq->end_io_data = NULL;
af76e555 393
4f266f2b
PB
394 blk_crypto_rq_set_defaults(rq);
395 INIT_LIST_HEAD(&rq->queuelist);
396 /* tag was already set */
397 WRITE_ONCE(rq->deadline, 0);
12f5b931 398 refcount_set(&rq->ref, 1);
7ea4d8a4 399
4f266f2b 400 if (rq->rq_flags & RQF_ELV) {
7ea4d8a4
CH
401 struct elevator_queue *e = data->q->elevator;
402
403 rq->elv.icq = NULL;
4f266f2b
PB
404 INIT_HLIST_NODE(&rq->hash);
405 RB_CLEAR_NODE(&rq->rb_node);
406
407 if (!op_is_flush(data->cmd_flags) &&
408 e->type->ops.prepare_request) {
7ea4d8a4
CH
409 if (e->type->icq_cache)
410 blk_mq_sched_assign_ioc(rq);
411
412 e->type->ops.prepare_request(rq);
413 rq->rq_flags |= RQF_ELVPRIV;
414 }
415 }
416
e4cdf1a1 417 return rq;
5dee8577
CH
418}
419
349302da
JA
420static inline struct request *
421__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
422 u64 alloc_time_ns)
423{
424 unsigned int tag, tag_offset;
fe6134f6 425 struct blk_mq_tags *tags;
349302da 426 struct request *rq;
fe6134f6 427 unsigned long tag_mask;
349302da
JA
428 int i, nr = 0;
429
fe6134f6
JA
430 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
431 if (unlikely(!tag_mask))
349302da
JA
432 return NULL;
433
fe6134f6
JA
434 tags = blk_mq_tags_from_data(data);
435 for (i = 0; tag_mask; i++) {
436 if (!(tag_mask & (1UL << i)))
349302da
JA
437 continue;
438 tag = tag_offset + i;
a22c00be 439 prefetch(tags->static_rqs[tag]);
fe6134f6
JA
440 tag_mask &= ~(1UL << i);
441 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
013a7f95 442 rq_list_add(data->cached_rq, rq);
c5fc7b93 443 nr++;
349302da 444 }
c5fc7b93
JA
445 /* caller already holds a reference, add for remainder */
446 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
349302da
JA
447 data->nr_tags -= nr;
448
013a7f95 449 return rq_list_pop(data->cached_rq);
349302da
JA
450}
451
b90cfaed 452static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
d2c0d383 453{
e6e7abff 454 struct request_queue *q = data->q;
6f816b4b 455 u64 alloc_time_ns = 0;
47c122e3 456 struct request *rq;
600c3b0c 457 unsigned int tag;
d2c0d383 458
6f816b4b
TH
459 /* alloc_time includes depth and tag waits */
460 if (blk_queue_rq_alloc_time(q))
461 alloc_time_ns = ktime_get_ns();
462
f9afca4d 463 if (data->cmd_flags & REQ_NOWAIT)
03a07c92 464 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383 465
781dd830
JA
466 if (q->elevator) {
467 struct elevator_queue *e = q->elevator;
468
469 data->rq_flags |= RQF_ELV;
470
d2c0d383 471 /*
8d663f34 472 * Flush/passthrough requests are special and go directly to the
17a51199
JA
473 * dispatch list. Don't include reserved tags in the
474 * limiting, as it isn't useful.
d2c0d383 475 */
f9afca4d 476 if (!op_is_flush(data->cmd_flags) &&
8d663f34 477 !blk_op_is_passthrough(data->cmd_flags) &&
f9afca4d 478 e->type->ops.limit_depth &&
17a51199 479 !(data->flags & BLK_MQ_REQ_RESERVED))
f9afca4d 480 e->type->ops.limit_depth(data->cmd_flags, data);
d2c0d383
CH
481 }
482
bf0beec0 483retry:
600c3b0c
CH
484 data->ctx = blk_mq_get_ctx(q);
485 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
781dd830 486 if (!(data->rq_flags & RQF_ELV))
600c3b0c
CH
487 blk_mq_tag_busy(data->hctx);
488
349302da
JA
489 /*
490 * Try batched alloc if we want more than 1 tag.
491 */
492 if (data->nr_tags > 1) {
493 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
494 if (rq)
495 return rq;
496 data->nr_tags = 1;
497 }
498
bf0beec0
ML
499 /*
500 * Waiting allocations only fail because of an inactive hctx. In that
501 * case just retry the hctx assignment and tag allocation as CPU hotplug
502 * should have migrated us to an online CPU by now.
503 */
e4cdf1a1 504 tag = blk_mq_get_tag(data);
bf0beec0
ML
505 if (tag == BLK_MQ_NO_TAG) {
506 if (data->flags & BLK_MQ_REQ_NOWAIT)
507 return NULL;
bf0beec0 508 /*
349302da
JA
509 * Give up the CPU and sleep for a random short time to
510 * ensure that thread using a realtime scheduling class
511 * are migrated off the CPU, and thus off the hctx that
512 * is going away.
bf0beec0
ML
513 */
514 msleep(3);
515 goto retry;
516 }
47c122e3 517
fe6134f6
JA
518 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
519 alloc_time_ns);
d2c0d383
CH
520}
521
cd6ce148 522struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 523 blk_mq_req_flags_t flags)
320ae51f 524{
e6e7abff
CH
525 struct blk_mq_alloc_data data = {
526 .q = q,
527 .flags = flags,
528 .cmd_flags = op,
47c122e3 529 .nr_tags = 1,
e6e7abff 530 };
bd166ef1 531 struct request *rq;
a492f075 532 int ret;
320ae51f 533
3a0a5299 534 ret = blk_queue_enter(q, flags);
a492f075
JL
535 if (ret)
536 return ERR_PTR(ret);
320ae51f 537
b90cfaed 538 rq = __blk_mq_alloc_requests(&data);
bd166ef1 539 if (!rq)
a5ea5811 540 goto out_queue_exit;
0c4de0f3
CH
541 rq->__data_len = 0;
542 rq->__sector = (sector_t) -1;
543 rq->bio = rq->biotail = NULL;
320ae51f 544 return rq;
a5ea5811
CH
545out_queue_exit:
546 blk_queue_exit(q);
547 return ERR_PTR(-EWOULDBLOCK);
320ae51f 548}
4bb659b1 549EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 550
cd6ce148 551struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 552 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 553{
e6e7abff
CH
554 struct blk_mq_alloc_data data = {
555 .q = q,
556 .flags = flags,
557 .cmd_flags = op,
47c122e3 558 .nr_tags = 1,
e6e7abff 559 };
600c3b0c 560 u64 alloc_time_ns = 0;
6d2809d5 561 unsigned int cpu;
600c3b0c 562 unsigned int tag;
1f5bd336
ML
563 int ret;
564
600c3b0c
CH
565 /* alloc_time includes depth and tag waits */
566 if (blk_queue_rq_alloc_time(q))
567 alloc_time_ns = ktime_get_ns();
568
1f5bd336
ML
569 /*
570 * If the tag allocator sleeps we could get an allocation for a
571 * different hardware context. No need to complicate the low level
572 * allocator for this for the rare use case of a command tied to
573 * a specific queue.
574 */
600c3b0c 575 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
1f5bd336
ML
576 return ERR_PTR(-EINVAL);
577
578 if (hctx_idx >= q->nr_hw_queues)
579 return ERR_PTR(-EIO);
580
3a0a5299 581 ret = blk_queue_enter(q, flags);
1f5bd336
ML
582 if (ret)
583 return ERR_PTR(ret);
584
c8712c6a
CH
585 /*
586 * Check if the hardware context is actually mapped to anything.
587 * If not tell the caller that it should skip this queue.
588 */
a5ea5811 589 ret = -EXDEV;
e6e7abff
CH
590 data.hctx = q->queue_hw_ctx[hctx_idx];
591 if (!blk_mq_hw_queue_mapped(data.hctx))
a5ea5811 592 goto out_queue_exit;
e6e7abff
CH
593 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
594 data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 595
42fdc5e4 596 if (!q->elevator)
600c3b0c 597 blk_mq_tag_busy(data.hctx);
781dd830
JA
598 else
599 data.rq_flags |= RQF_ELV;
600c3b0c 600
a5ea5811 601 ret = -EWOULDBLOCK;
600c3b0c
CH
602 tag = blk_mq_get_tag(&data);
603 if (tag == BLK_MQ_NO_TAG)
a5ea5811 604 goto out_queue_exit;
fe6134f6
JA
605 return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
606 alloc_time_ns);
600c3b0c 607
a5ea5811
CH
608out_queue_exit:
609 blk_queue_exit(q);
610 return ERR_PTR(ret);
1f5bd336
ML
611}
612EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
613
12f5b931
KB
614static void __blk_mq_free_request(struct request *rq)
615{
616 struct request_queue *q = rq->q;
617 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 618 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
12f5b931
KB
619 const int sched_tag = rq->internal_tag;
620
a892c8d5 621 blk_crypto_free_request(rq);
986d413b 622 blk_pm_mark_last_busy(rq);
ea4f995e 623 rq->mq_hctx = NULL;
76647368 624 if (rq->tag != BLK_MQ_NO_TAG)
cae740a0 625 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
76647368 626 if (sched_tag != BLK_MQ_NO_TAG)
cae740a0 627 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
12f5b931
KB
628 blk_mq_sched_restart(hctx);
629 blk_queue_exit(q);
630}
631
6af54051 632void blk_mq_free_request(struct request *rq)
320ae51f 633{
320ae51f 634 struct request_queue *q = rq->q;
ea4f995e 635 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
6af54051 636
5bbf4e5a 637 if (rq->rq_flags & RQF_ELVPRIV) {
2ff0682d
JA
638 struct elevator_queue *e = q->elevator;
639
640 if (e->type->ops.finish_request)
f9cd4bfe 641 e->type->ops.finish_request(rq);
6af54051
CH
642 if (rq->elv.icq) {
643 put_io_context(rq->elv.icq->ioc);
644 rq->elv.icq = NULL;
645 }
646 }
320ae51f 647
e8064021 648 if (rq->rq_flags & RQF_MQ_INFLIGHT)
bccf5e26 649 __blk_mq_dec_active_requests(hctx);
87760e5e 650
7beb2f84 651 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
d152c682 652 laptop_io_completion(q->disk->bdi);
7beb2f84 653
a7905043 654 rq_qos_done(q, rq);
0d2602ca 655
12f5b931
KB
656 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
657 if (refcount_dec_and_test(&rq->ref))
658 __blk_mq_free_request(rq);
320ae51f 659}
1a3b595a 660EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 661
47c122e3 662void blk_mq_free_plug_rqs(struct blk_plug *plug)
320ae51f 663{
013a7f95 664 struct request *rq;
fe1f4526 665
c5fc7b93 666 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
47c122e3 667 blk_mq_free_request(rq);
47c122e3 668}
522a7775 669
9be3e06f
JA
670static void req_bio_endio(struct request *rq, struct bio *bio,
671 unsigned int nbytes, blk_status_t error)
672{
478eb72b 673 if (unlikely(error)) {
9be3e06f 674 bio->bi_status = error;
478eb72b 675 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
9be3e06f
JA
676 /*
677 * Partial zone append completions cannot be supported as the
678 * BIO fragments may end up not being written sequentially.
679 */
297db731 680 if (bio->bi_iter.bi_size != nbytes)
9be3e06f
JA
681 bio->bi_status = BLK_STS_IOERR;
682 else
683 bio->bi_iter.bi_sector = rq->__sector;
684 }
685
478eb72b
PB
686 bio_advance(bio, nbytes);
687
688 if (unlikely(rq->rq_flags & RQF_QUIET))
689 bio_set_flag(bio, BIO_QUIET);
9be3e06f
JA
690 /* don't actually finish bio if it's part of flush sequence */
691 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
692 bio_endio(bio);
693}
694
695static void blk_account_io_completion(struct request *req, unsigned int bytes)
696{
697 if (req->part && blk_do_io_stat(req)) {
698 const int sgrp = op_stat_group(req_op(req));
699
700 part_stat_lock();
701 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
702 part_stat_unlock();
703 }
704}
705
706/**
707 * blk_update_request - Complete multiple bytes without completing the request
708 * @req: the request being processed
709 * @error: block status code
710 * @nr_bytes: number of bytes to complete for @req
711 *
712 * Description:
713 * Ends I/O on a number of bytes attached to @req, but doesn't complete
714 * the request structure even if @req doesn't have leftover.
715 * If @req has leftover, sets it up for the next range of segments.
716 *
717 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
718 * %false return from this function.
719 *
720 * Note:
721 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
722 * except in the consistency check at the end of this function.
723 *
724 * Return:
725 * %false - this request doesn't have any more data
726 * %true - this request has more data
727 **/
728bool blk_update_request(struct request *req, blk_status_t error,
729 unsigned int nr_bytes)
730{
731 int total_bytes;
732
8a7d267b 733 trace_block_rq_complete(req, error, nr_bytes);
9be3e06f
JA
734
735 if (!req->bio)
736 return false;
737
738#ifdef CONFIG_BLK_DEV_INTEGRITY
739 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
740 error == BLK_STS_OK)
741 req->q->integrity.profile->complete_fn(req, nr_bytes);
742#endif
743
744 if (unlikely(error && !blk_rq_is_passthrough(req) &&
745 !(req->rq_flags & RQF_QUIET)))
746 blk_print_req_error(req, error);
747
748 blk_account_io_completion(req, nr_bytes);
749
750 total_bytes = 0;
751 while (req->bio) {
752 struct bio *bio = req->bio;
753 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
754
755 if (bio_bytes == bio->bi_iter.bi_size)
756 req->bio = bio->bi_next;
757
758 /* Completion has already been traced */
759 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
760 req_bio_endio(req, bio, bio_bytes, error);
761
762 total_bytes += bio_bytes;
763 nr_bytes -= bio_bytes;
764
765 if (!nr_bytes)
766 break;
767 }
768
769 /*
770 * completely done
771 */
772 if (!req->bio) {
773 /*
774 * Reset counters so that the request stacking driver
775 * can find how many bytes remain in the request
776 * later.
777 */
778 req->__data_len = 0;
779 return false;
780 }
781
782 req->__data_len -= total_bytes;
783
784 /* update sector only for requests with clear definition of sector */
785 if (!blk_rq_is_passthrough(req))
786 req->__sector += total_bytes >> 9;
787
788 /* mixed attributes always follow the first bio */
789 if (req->rq_flags & RQF_MIXED_MERGE) {
790 req->cmd_flags &= ~REQ_FAILFAST_MASK;
791 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
792 }
793
794 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
795 /*
796 * If total number of sectors is less than the first segment
797 * size, something has gone terribly wrong.
798 */
799 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
800 blk_dump_rq_flags(req, "request botched");
801 req->__data_len = blk_rq_cur_bytes(req);
802 }
803
804 /* recalculate the number of segments */
805 req->nr_phys_segments = blk_recalc_rq_segments(req);
806 }
807
808 return true;
809}
810EXPORT_SYMBOL_GPL(blk_update_request);
811
450b7879
CH
812static void __blk_account_io_done(struct request *req, u64 now)
813{
814 const int sgrp = op_stat_group(req_op(req));
815
816 part_stat_lock();
817 update_io_ticks(req->part, jiffies, true);
818 part_stat_inc(req->part, ios[sgrp]);
819 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
820 part_stat_unlock();
821}
822
823static inline void blk_account_io_done(struct request *req, u64 now)
824{
825 /*
826 * Account IO completion. flush_rq isn't accounted as a
827 * normal IO on queueing nor completion. Accounting the
828 * containing request is enough.
829 */
830 if (blk_do_io_stat(req) && req->part &&
831 !(req->rq_flags & RQF_FLUSH_SEQ))
832 __blk_account_io_done(req, now);
833}
834
835static void __blk_account_io_start(struct request *rq)
836{
837 /* passthrough requests can hold bios that do not have ->bi_bdev set */
838 if (rq->bio && rq->bio->bi_bdev)
839 rq->part = rq->bio->bi_bdev;
840 else
841 rq->part = rq->rq_disk->part0;
842
843 part_stat_lock();
844 update_io_ticks(rq->part, jiffies, false);
845 part_stat_unlock();
846}
847
848static inline void blk_account_io_start(struct request *req)
849{
850 if (blk_do_io_stat(req))
851 __blk_account_io_start(req);
852}
853
f794f335 854static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
320ae51f 855{
4bc6339a
OS
856 if (rq->rq_flags & RQF_STATS) {
857 blk_mq_poll_stats_start(rq->q);
522a7775 858 blk_stat_add(rq, now);
4bc6339a
OS
859 }
860
87890092 861 blk_mq_sched_completed_request(rq, now);
522a7775 862 blk_account_io_done(rq, now);
f794f335 863}
522a7775 864
f794f335
JA
865inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
866{
867 if (blk_mq_need_time_stamp(rq))
868 __blk_mq_end_request_acct(rq, ktime_get_ns());
0d11e6ac 869
91b63639 870 if (rq->end_io) {
a7905043 871 rq_qos_done(rq->q, rq);
320ae51f 872 rq->end_io(rq, error);
91b63639 873 } else {
320ae51f 874 blk_mq_free_request(rq);
91b63639 875 }
320ae51f 876}
c8a446ad 877EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 878
2a842aca 879void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
880{
881 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
882 BUG();
c8a446ad 883 __blk_mq_end_request(rq, error);
63151a44 884}
c8a446ad 885EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 886
f794f335
JA
887#define TAG_COMP_BATCH 32
888
889static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
890 int *tag_array, int nr_tags)
891{
892 struct request_queue *q = hctx->queue;
893
3b87c6ea
ML
894 /*
895 * All requests should have been marked as RQF_MQ_INFLIGHT, so
896 * update hctx->nr_active in batch
897 */
898 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
899 __blk_mq_sub_active_requests(hctx, nr_tags);
900
f794f335
JA
901 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
902 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
903}
904
905void blk_mq_end_request_batch(struct io_comp_batch *iob)
906{
907 int tags[TAG_COMP_BATCH], nr_tags = 0;
02f7eab0 908 struct blk_mq_hw_ctx *cur_hctx = NULL;
f794f335
JA
909 struct request *rq;
910 u64 now = 0;
911
912 if (iob->need_ts)
913 now = ktime_get_ns();
914
915 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
916 prefetch(rq->bio);
917 prefetch(rq->rq_next);
918
919 blk_update_request(rq, BLK_STS_OK, blk_rq_bytes(rq));
920 if (iob->need_ts)
921 __blk_mq_end_request_acct(rq, now);
922
98b26a0e
JA
923 rq_qos_done(rq->q, rq);
924
f794f335
JA
925 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
926 if (!refcount_dec_and_test(&rq->ref))
927 continue;
928
929 blk_crypto_free_request(rq);
930 blk_pm_mark_last_busy(rq);
f794f335 931
02f7eab0
JA
932 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
933 if (cur_hctx)
934 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
f794f335 935 nr_tags = 0;
02f7eab0 936 cur_hctx = rq->mq_hctx;
f794f335
JA
937 }
938 tags[nr_tags++] = rq->tag;
f794f335
JA
939 }
940
941 if (nr_tags)
02f7eab0 942 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
f794f335
JA
943}
944EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
945
f9ab4918 946static void blk_complete_reqs(struct llist_head *list)
320ae51f 947{
f9ab4918
SAS
948 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
949 struct request *rq, *next;
c3077b5d 950
f9ab4918 951 llist_for_each_entry_safe(rq, next, entry, ipi_list)
c3077b5d 952 rq->q->mq_ops->complete(rq);
320ae51f 953}
320ae51f 954
f9ab4918 955static __latent_entropy void blk_done_softirq(struct softirq_action *h)
320ae51f 956{
f9ab4918 957 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
115243f5
CH
958}
959
c3077b5d
CH
960static int blk_softirq_cpu_dead(unsigned int cpu)
961{
f9ab4918 962 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
c3077b5d
CH
963 return 0;
964}
965
40d09b53 966static void __blk_mq_complete_request_remote(void *data)
c3077b5d 967{
f9ab4918 968 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
c3077b5d
CH
969}
970
96339526
CH
971static inline bool blk_mq_complete_need_ipi(struct request *rq)
972{
973 int cpu = raw_smp_processor_id();
974
975 if (!IS_ENABLED(CONFIG_SMP) ||
976 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
977 return false;
71425189
SAS
978 /*
979 * With force threaded interrupts enabled, raising softirq from an SMP
980 * function call will always result in waking the ksoftirqd thread.
981 * This is probably worse than completing the request on a different
982 * cache domain.
983 */
91cc470e 984 if (force_irqthreads())
71425189 985 return false;
96339526
CH
986
987 /* same CPU or cache domain? Complete locally */
988 if (cpu == rq->mq_ctx->cpu ||
989 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
990 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
991 return false;
992
993 /* don't try to IPI to an offline CPU */
994 return cpu_online(rq->mq_ctx->cpu);
995}
996
f9ab4918
SAS
997static void blk_mq_complete_send_ipi(struct request *rq)
998{
999 struct llist_head *list;
1000 unsigned int cpu;
1001
1002 cpu = rq->mq_ctx->cpu;
1003 list = &per_cpu(blk_cpu_done, cpu);
1004 if (llist_add(&rq->ipi_list, list)) {
1005 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1006 smp_call_function_single_async(cpu, &rq->csd);
1007 }
1008}
1009
1010static void blk_mq_raise_softirq(struct request *rq)
1011{
1012 struct llist_head *list;
1013
1014 preempt_disable();
1015 list = this_cpu_ptr(&blk_cpu_done);
1016 if (llist_add(&rq->ipi_list, list))
1017 raise_softirq(BLOCK_SOFTIRQ);
1018 preempt_enable();
1019}
1020
40d09b53 1021bool blk_mq_complete_request_remote(struct request *rq)
320ae51f 1022{
af78ff7c 1023 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
36e76539 1024
4ab32bf3
JA
1025 /*
1026 * For a polled request, always complete locallly, it's pointless
1027 * to redirect the completion.
1028 */
6ce913fe 1029 if (rq->cmd_flags & REQ_POLLED)
40d09b53 1030 return false;
38535201 1031
96339526 1032 if (blk_mq_complete_need_ipi(rq)) {
f9ab4918
SAS
1033 blk_mq_complete_send_ipi(rq);
1034 return true;
3d6efbf6 1035 }
40d09b53 1036
f9ab4918
SAS
1037 if (rq->q->nr_hw_queues == 1) {
1038 blk_mq_raise_softirq(rq);
1039 return true;
1040 }
1041 return false;
40d09b53
CH
1042}
1043EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1044
1045/**
1046 * blk_mq_complete_request - end I/O on a request
1047 * @rq: the request being processed
1048 *
1049 * Description:
1050 * Complete a request by scheduling the ->complete_rq operation.
1051 **/
1052void blk_mq_complete_request(struct request *rq)
1053{
1054 if (!blk_mq_complete_request_remote(rq))
1055 rq->q->mq_ops->complete(rq);
320ae51f 1056}
15f73f5b 1057EXPORT_SYMBOL(blk_mq_complete_request);
30a91cb4 1058
04ced159 1059static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
b7435db8 1060 __releases(hctx->srcu)
04ced159
JA
1061{
1062 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
1063 rcu_read_unlock();
1064 else
05707b64 1065 srcu_read_unlock(hctx->srcu, srcu_idx);
04ced159
JA
1066}
1067
1068static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
b7435db8 1069 __acquires(hctx->srcu)
04ced159 1070{
08b5a6e2
JA
1071 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1072 /* shut up gcc false positive */
1073 *srcu_idx = 0;
04ced159 1074 rcu_read_lock();
08b5a6e2 1075 } else
05707b64 1076 *srcu_idx = srcu_read_lock(hctx->srcu);
04ced159
JA
1077}
1078
105663f7
AA
1079/**
1080 * blk_mq_start_request - Start processing a request
1081 * @rq: Pointer to request to be started
1082 *
1083 * Function used by device drivers to notify the block layer that a request
1084 * is going to be processed now, so blk layer can do proper initializations
1085 * such as starting the timeout timer.
1086 */
e2490073 1087void blk_mq_start_request(struct request *rq)
320ae51f
JA
1088{
1089 struct request_queue *q = rq->q;
1090
a54895fa 1091 trace_block_rq_issue(rq);
320ae51f 1092
cf43e6be 1093 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
00067077
JA
1094 u64 start_time;
1095#ifdef CONFIG_BLK_CGROUP
1096 if (rq->bio)
1097 start_time = bio_issue_time(&rq->bio->bi_issue);
1098 else
1099#endif
1100 start_time = ktime_get_ns();
1101 rq->io_start_time_ns = start_time;
3d244306 1102 rq->stats_sectors = blk_rq_sectors(rq);
cf43e6be 1103 rq->rq_flags |= RQF_STATS;
a7905043 1104 rq_qos_issue(q, rq);
cf43e6be
JA
1105 }
1106
1d9bd516 1107 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 1108
1d9bd516 1109 blk_add_timer(rq);
12f5b931 1110 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
49f5baa5 1111
54d4e6ab
MG
1112#ifdef CONFIG_BLK_DEV_INTEGRITY
1113 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1114 q->integrity.profile->prepare_fn(rq);
1115#endif
3e08773c
CH
1116 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1117 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
320ae51f 1118}
e2490073 1119EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 1120
4054cff9
CH
1121/**
1122 * blk_end_sync_rq - executes a completion event on a request
1123 * @rq: request to complete
1124 * @error: end I/O status of the request
1125 */
1126static void blk_end_sync_rq(struct request *rq, blk_status_t error)
1127{
1128 struct completion *waiting = rq->end_io_data;
1129
1130 rq->end_io_data = (void *)(uintptr_t)error;
1131
1132 /*
1133 * complete last, if this is a stack request the process (and thus
1134 * the rq pointer) could be invalid right after this complete()
1135 */
1136 complete(waiting);
1137}
1138
1139/**
1140 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1141 * @bd_disk: matching gendisk
1142 * @rq: request to insert
1143 * @at_head: insert request at head or tail of queue
1144 * @done: I/O completion handler
1145 *
1146 * Description:
1147 * Insert a fully prepared request at the back of the I/O scheduler queue
1148 * for execution. Don't wait for completion.
1149 *
1150 * Note:
1151 * This function will invoke @done directly if the queue is dead.
1152 */
1153void blk_execute_rq_nowait(struct gendisk *bd_disk, struct request *rq,
1154 int at_head, rq_end_io_fn *done)
1155{
1156 WARN_ON(irqs_disabled());
1157 WARN_ON(!blk_rq_is_passthrough(rq));
1158
1159 rq->rq_disk = bd_disk;
1160 rq->end_io = done;
1161
1162 blk_account_io_start(rq);
1163
1164 /*
1165 * don't check dying flag for MQ because the request won't
1166 * be reused after dying flag is set
1167 */
1168 blk_mq_sched_insert_request(rq, at_head, true, false);
1169}
1170EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1171
1172static bool blk_rq_is_poll(struct request *rq)
1173{
1174 if (!rq->mq_hctx)
1175 return false;
1176 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1177 return false;
1178 if (WARN_ON_ONCE(!rq->bio))
1179 return false;
1180 return true;
1181}
1182
1183static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1184{
1185 do {
1186 bio_poll(rq->bio, NULL, 0);
1187 cond_resched();
1188 } while (!completion_done(wait));
1189}
1190
1191/**
1192 * blk_execute_rq - insert a request into queue for execution
1193 * @bd_disk: matching gendisk
1194 * @rq: request to insert
1195 * @at_head: insert request at head or tail of queue
1196 *
1197 * Description:
1198 * Insert a fully prepared request at the back of the I/O scheduler queue
1199 * for execution and wait for completion.
1200 * Return: The blk_status_t result provided to blk_mq_end_request().
1201 */
1202blk_status_t blk_execute_rq(struct gendisk *bd_disk, struct request *rq,
1203 int at_head)
1204{
1205 DECLARE_COMPLETION_ONSTACK(wait);
1206 unsigned long hang_check;
1207
1208 rq->end_io_data = &wait;
1209 blk_execute_rq_nowait(bd_disk, rq, at_head, blk_end_sync_rq);
1210
1211 /* Prevent hang_check timer from firing at us during very long I/O */
1212 hang_check = sysctl_hung_task_timeout_secs;
1213
1214 if (blk_rq_is_poll(rq))
1215 blk_rq_poll_completion(rq, &wait);
1216 else if (hang_check)
1217 while (!wait_for_completion_io_timeout(&wait,
1218 hang_check * (HZ/2)))
1219 ;
1220 else
1221 wait_for_completion_io(&wait);
1222
1223 return (blk_status_t)(uintptr_t)rq->end_io_data;
1224}
1225EXPORT_SYMBOL(blk_execute_rq);
1226
ed0791b2 1227static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
1228{
1229 struct request_queue *q = rq->q;
1230
923218f6
ML
1231 blk_mq_put_driver_tag(rq);
1232
a54895fa 1233 trace_block_rq_requeue(rq);
a7905043 1234 rq_qos_requeue(q, rq);
49f5baa5 1235
12f5b931
KB
1236 if (blk_mq_request_started(rq)) {
1237 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
da661267 1238 rq->rq_flags &= ~RQF_TIMED_OUT;
e2490073 1239 }
320ae51f
JA
1240}
1241
2b053aca 1242void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 1243{
ed0791b2 1244 __blk_mq_requeue_request(rq);
ed0791b2 1245
105976f5
ML
1246 /* this request will be re-inserted to io scheduler queue */
1247 blk_mq_sched_requeue_request(rq);
1248
2b053aca 1249 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
1250}
1251EXPORT_SYMBOL(blk_mq_requeue_request);
1252
6fca6a61
CH
1253static void blk_mq_requeue_work(struct work_struct *work)
1254{
1255 struct request_queue *q =
2849450a 1256 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
1257 LIST_HEAD(rq_list);
1258 struct request *rq, *next;
6fca6a61 1259
18e9781d 1260 spin_lock_irq(&q->requeue_lock);
6fca6a61 1261 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 1262 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
1263
1264 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
aef1897c 1265 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
6fca6a61
CH
1266 continue;
1267
e8064021 1268 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 1269 list_del_init(&rq->queuelist);
aef1897c
JW
1270 /*
1271 * If RQF_DONTPREP, rq has contained some driver specific
1272 * data, so insert it to hctx dispatch list to avoid any
1273 * merge.
1274 */
1275 if (rq->rq_flags & RQF_DONTPREP)
01e99aec 1276 blk_mq_request_bypass_insert(rq, false, false);
aef1897c
JW
1277 else
1278 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
1279 }
1280
1281 while (!list_empty(&rq_list)) {
1282 rq = list_entry(rq_list.next, struct request, queuelist);
1283 list_del_init(&rq->queuelist);
9e97d295 1284 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
1285 }
1286
52d7f1b5 1287 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
1288}
1289
2b053aca
BVA
1290void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1291 bool kick_requeue_list)
6fca6a61
CH
1292{
1293 struct request_queue *q = rq->q;
1294 unsigned long flags;
1295
1296 /*
1297 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 1298 * request head insertion from the workqueue.
6fca6a61 1299 */
e8064021 1300 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
1301
1302 spin_lock_irqsave(&q->requeue_lock, flags);
1303 if (at_head) {
e8064021 1304 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
1305 list_add(&rq->queuelist, &q->requeue_list);
1306 } else {
1307 list_add_tail(&rq->queuelist, &q->requeue_list);
1308 }
1309 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
1310
1311 if (kick_requeue_list)
1312 blk_mq_kick_requeue_list(q);
6fca6a61 1313}
6fca6a61
CH
1314
1315void blk_mq_kick_requeue_list(struct request_queue *q)
1316{
ae943d20 1317 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
6fca6a61
CH
1318}
1319EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1320
2849450a
MS
1321void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1322 unsigned long msecs)
1323{
d4acf365
BVA
1324 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1325 msecs_to_jiffies(msecs));
2849450a
MS
1326}
1327EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1328
3c94d83c
JA
1329static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
1330 void *priv, bool reserved)
ae879912
JA
1331{
1332 /*
05a4fed6 1333 * If we find a request that isn't idle and the queue matches,
3c94d83c 1334 * we know the queue is busy. Return false to stop the iteration.
ae879912 1335 */
05a4fed6 1336 if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
ae879912
JA
1337 bool *busy = priv;
1338
1339 *busy = true;
1340 return false;
1341 }
1342
1343 return true;
1344}
1345
3c94d83c 1346bool blk_mq_queue_inflight(struct request_queue *q)
ae879912
JA
1347{
1348 bool busy = false;
1349
3c94d83c 1350 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
ae879912
JA
1351 return busy;
1352}
3c94d83c 1353EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
ae879912 1354
358f70da 1355static void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 1356{
da661267 1357 req->rq_flags |= RQF_TIMED_OUT;
d1210d5a
CH
1358 if (req->q->mq_ops->timeout) {
1359 enum blk_eh_timer_return ret;
1360
1361 ret = req->q->mq_ops->timeout(req, reserved);
1362 if (ret == BLK_EH_DONE)
1363 return;
1364 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
46f92d42 1365 }
d1210d5a
CH
1366
1367 blk_add_timer(req);
87ee7b11 1368}
5b3f25fc 1369
12f5b931 1370static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
81481eb4 1371{
12f5b931 1372 unsigned long deadline;
87ee7b11 1373
12f5b931
KB
1374 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1375 return false;
da661267
CH
1376 if (rq->rq_flags & RQF_TIMED_OUT)
1377 return false;
a7af0af3 1378
079076b3 1379 deadline = READ_ONCE(rq->deadline);
12f5b931
KB
1380 if (time_after_eq(jiffies, deadline))
1381 return true;
a7af0af3 1382
12f5b931
KB
1383 if (*next == 0)
1384 *next = deadline;
1385 else if (time_after(*next, deadline))
1386 *next = deadline;
1387 return false;
87ee7b11
JA
1388}
1389
2e315dc0
ML
1390void blk_mq_put_rq_ref(struct request *rq)
1391{
a9ed27a7 1392 if (is_flush_rq(rq))
2e315dc0
ML
1393 rq->end_io(rq, 0);
1394 else if (refcount_dec_and_test(&rq->ref))
1395 __blk_mq_free_request(rq);
1396}
1397
7baa8572 1398static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1d9bd516
TH
1399 struct request *rq, void *priv, bool reserved)
1400{
12f5b931
KB
1401 unsigned long *next = priv;
1402
1403 /*
c797b40c
ML
1404 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1405 * be reallocated underneath the timeout handler's processing, then
1406 * the expire check is reliable. If the request is not expired, then
1407 * it was completed and reallocated as a new request after returning
1408 * from blk_mq_check_expired().
1d9bd516 1409 */
12f5b931 1410 if (blk_mq_req_expired(rq, next))
1d9bd516 1411 blk_mq_rq_timed_out(rq, reserved);
7baa8572 1412 return true;
1d9bd516
TH
1413}
1414
287922eb 1415static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 1416{
287922eb
CH
1417 struct request_queue *q =
1418 container_of(work, struct request_queue, timeout_work);
12f5b931 1419 unsigned long next = 0;
1d9bd516 1420 struct blk_mq_hw_ctx *hctx;
81481eb4 1421 int i;
320ae51f 1422
71f79fb3
GKB
1423 /* A deadlock might occur if a request is stuck requiring a
1424 * timeout at the same time a queue freeze is waiting
1425 * completion, since the timeout code would not be able to
1426 * acquire the queue reference here.
1427 *
1428 * That's why we don't use blk_queue_enter here; instead, we use
1429 * percpu_ref_tryget directly, because we need to be able to
1430 * obtain a reference even in the short window between the queue
1431 * starting to freeze, by dropping the first reference in
1671d522 1432 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
1433 * consumed, marked by the instant q_usage_counter reaches
1434 * zero.
1435 */
1436 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
1437 return;
1438
12f5b931 1439 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
320ae51f 1440
12f5b931
KB
1441 if (next != 0) {
1442 mod_timer(&q->timeout, next);
0d2602ca 1443 } else {
fcd36c36
BVA
1444 /*
1445 * Request timeouts are handled as a forward rolling timer. If
1446 * we end up here it means that no requests are pending and
1447 * also that no request has been pending for a while. Mark
1448 * each hctx as idle.
1449 */
f054b56c
ML
1450 queue_for_each_hw_ctx(q, hctx, i) {
1451 /* the hctx may be unmapped, so check it here */
1452 if (blk_mq_hw_queue_mapped(hctx))
1453 blk_mq_tag_idle(hctx);
1454 }
0d2602ca 1455 }
287922eb 1456 blk_queue_exit(q);
320ae51f
JA
1457}
1458
88459642
OS
1459struct flush_busy_ctx_data {
1460 struct blk_mq_hw_ctx *hctx;
1461 struct list_head *list;
1462};
1463
1464static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1465{
1466 struct flush_busy_ctx_data *flush_data = data;
1467 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1468 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 1469 enum hctx_type type = hctx->type;
88459642 1470
88459642 1471 spin_lock(&ctx->lock);
c16d6b5a 1472 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
e9a99a63 1473 sbitmap_clear_bit(sb, bitnr);
88459642
OS
1474 spin_unlock(&ctx->lock);
1475 return true;
1476}
1477
1429d7c9
JA
1478/*
1479 * Process software queues that have been marked busy, splicing them
1480 * to the for-dispatch
1481 */
2c3ad667 1482void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 1483{
88459642
OS
1484 struct flush_busy_ctx_data data = {
1485 .hctx = hctx,
1486 .list = list,
1487 };
1429d7c9 1488
88459642 1489 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 1490}
2c3ad667 1491EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 1492
b347689f
ML
1493struct dispatch_rq_data {
1494 struct blk_mq_hw_ctx *hctx;
1495 struct request *rq;
1496};
1497
1498static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1499 void *data)
1500{
1501 struct dispatch_rq_data *dispatch_data = data;
1502 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1503 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 1504 enum hctx_type type = hctx->type;
b347689f
ML
1505
1506 spin_lock(&ctx->lock);
c16d6b5a
ML
1507 if (!list_empty(&ctx->rq_lists[type])) {
1508 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
b347689f 1509 list_del_init(&dispatch_data->rq->queuelist);
c16d6b5a 1510 if (list_empty(&ctx->rq_lists[type]))
b347689f
ML
1511 sbitmap_clear_bit(sb, bitnr);
1512 }
1513 spin_unlock(&ctx->lock);
1514
1515 return !dispatch_data->rq;
1516}
1517
1518struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1519 struct blk_mq_ctx *start)
1520{
f31967f0 1521 unsigned off = start ? start->index_hw[hctx->type] : 0;
b347689f
ML
1522 struct dispatch_rq_data data = {
1523 .hctx = hctx,
1524 .rq = NULL,
1525 };
1526
1527 __sbitmap_for_each_set(&hctx->ctx_map, off,
1528 dispatch_rq_from_ctx, &data);
1529
1530 return data.rq;
1531}
1532
a808a9d5 1533static bool __blk_mq_alloc_driver_tag(struct request *rq)
570e9b73 1534{
ae0f1a73 1535 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
570e9b73 1536 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
570e9b73
ML
1537 int tag;
1538
568f2700
ML
1539 blk_mq_tag_busy(rq->mq_hctx);
1540
570e9b73 1541 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
ae0f1a73 1542 bt = &rq->mq_hctx->tags->breserved_tags;
570e9b73 1543 tag_offset = 0;
28500850
ML
1544 } else {
1545 if (!hctx_may_queue(rq->mq_hctx, bt))
1546 return false;
570e9b73
ML
1547 }
1548
570e9b73
ML
1549 tag = __sbitmap_queue_get(bt);
1550 if (tag == BLK_MQ_NO_TAG)
1551 return false;
1552
1553 rq->tag = tag + tag_offset;
570e9b73
ML
1554 return true;
1555}
1556
a808a9d5 1557bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
570e9b73 1558{
a808a9d5 1559 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
568f2700
ML
1560 return false;
1561
51db1c37 1562 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
568f2700
ML
1563 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1564 rq->rq_flags |= RQF_MQ_INFLIGHT;
bccf5e26 1565 __blk_mq_inc_active_requests(hctx);
568f2700
ML
1566 }
1567 hctx->tags->rqs[rq->tag] = rq;
1568 return true;
570e9b73
ML
1569}
1570
eb619fdb
JA
1571static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1572 int flags, void *key)
da55f2cc
OS
1573{
1574 struct blk_mq_hw_ctx *hctx;
1575
1576 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1577
5815839b 1578 spin_lock(&hctx->dispatch_wait_lock);
e8618575
JA
1579 if (!list_empty(&wait->entry)) {
1580 struct sbitmap_queue *sbq;
1581
1582 list_del_init(&wait->entry);
ae0f1a73 1583 sbq = &hctx->tags->bitmap_tags;
e8618575
JA
1584 atomic_dec(&sbq->ws_active);
1585 }
5815839b
ML
1586 spin_unlock(&hctx->dispatch_wait_lock);
1587
da55f2cc
OS
1588 blk_mq_run_hw_queue(hctx, true);
1589 return 1;
1590}
1591
f906a6a0
JA
1592/*
1593 * Mark us waiting for a tag. For shared tags, this involves hooking us into
ee3e4de5
BVA
1594 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1595 * restart. For both cases, take care to check the condition again after
f906a6a0
JA
1596 * marking us as waiting.
1597 */
2278d69f 1598static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
f906a6a0 1599 struct request *rq)
da55f2cc 1600{
ae0f1a73 1601 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
5815839b 1602 struct wait_queue_head *wq;
f906a6a0
JA
1603 wait_queue_entry_t *wait;
1604 bool ret;
da55f2cc 1605
51db1c37 1606 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
684b7324 1607 blk_mq_sched_mark_restart_hctx(hctx);
f906a6a0 1608
c27d53fb
BVA
1609 /*
1610 * It's possible that a tag was freed in the window between the
1611 * allocation failure and adding the hardware queue to the wait
1612 * queue.
1613 *
1614 * Don't clear RESTART here, someone else could have set it.
1615 * At most this will cost an extra queue run.
1616 */
8ab6bb9e 1617 return blk_mq_get_driver_tag(rq);
eb619fdb 1618 }
eb619fdb 1619
2278d69f 1620 wait = &hctx->dispatch_wait;
c27d53fb
BVA
1621 if (!list_empty_careful(&wait->entry))
1622 return false;
1623
e8618575 1624 wq = &bt_wait_ptr(sbq, hctx)->wait;
5815839b
ML
1625
1626 spin_lock_irq(&wq->lock);
1627 spin_lock(&hctx->dispatch_wait_lock);
c27d53fb 1628 if (!list_empty(&wait->entry)) {
5815839b
ML
1629 spin_unlock(&hctx->dispatch_wait_lock);
1630 spin_unlock_irq(&wq->lock);
c27d53fb 1631 return false;
eb619fdb
JA
1632 }
1633
e8618575 1634 atomic_inc(&sbq->ws_active);
5815839b
ML
1635 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1636 __add_wait_queue(wq, wait);
c27d53fb 1637
da55f2cc 1638 /*
eb619fdb
JA
1639 * It's possible that a tag was freed in the window between the
1640 * allocation failure and adding the hardware queue to the wait
1641 * queue.
da55f2cc 1642 */
8ab6bb9e 1643 ret = blk_mq_get_driver_tag(rq);
c27d53fb 1644 if (!ret) {
5815839b
ML
1645 spin_unlock(&hctx->dispatch_wait_lock);
1646 spin_unlock_irq(&wq->lock);
c27d53fb 1647 return false;
eb619fdb 1648 }
c27d53fb
BVA
1649
1650 /*
1651 * We got a tag, remove ourselves from the wait queue to ensure
1652 * someone else gets the wakeup.
1653 */
c27d53fb 1654 list_del_init(&wait->entry);
e8618575 1655 atomic_dec(&sbq->ws_active);
5815839b
ML
1656 spin_unlock(&hctx->dispatch_wait_lock);
1657 spin_unlock_irq(&wq->lock);
c27d53fb
BVA
1658
1659 return true;
da55f2cc
OS
1660}
1661
6e768717
ML
1662#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1663#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1664/*
1665 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1666 * - EWMA is one simple way to compute running average value
1667 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1668 * - take 4 as factor for avoiding to get too small(0) result, and this
1669 * factor doesn't matter because EWMA decreases exponentially
1670 */
1671static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1672{
1673 unsigned int ewma;
1674
6e768717
ML
1675 ewma = hctx->dispatch_busy;
1676
1677 if (!ewma && !busy)
1678 return;
1679
1680 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1681 if (busy)
1682 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1683 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1684
1685 hctx->dispatch_busy = ewma;
1686}
1687
86ff7c2a
ML
1688#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1689
c92a4103
JT
1690static void blk_mq_handle_dev_resource(struct request *rq,
1691 struct list_head *list)
1692{
1693 struct request *next =
1694 list_first_entry_or_null(list, struct request, queuelist);
1695
1696 /*
1697 * If an I/O scheduler has been configured and we got a driver tag for
1698 * the next request already, free it.
1699 */
1700 if (next)
1701 blk_mq_put_driver_tag(next);
1702
1703 list_add(&rq->queuelist, list);
1704 __blk_mq_requeue_request(rq);
1705}
1706
0512a75b
KB
1707static void blk_mq_handle_zone_resource(struct request *rq,
1708 struct list_head *zone_list)
1709{
1710 /*
1711 * If we end up here it is because we cannot dispatch a request to a
1712 * specific zone due to LLD level zone-write locking or other zone
1713 * related resource not being available. In this case, set the request
1714 * aside in zone_list for retrying it later.
1715 */
1716 list_add(&rq->queuelist, zone_list);
1717 __blk_mq_requeue_request(rq);
1718}
1719
75383524
ML
1720enum prep_dispatch {
1721 PREP_DISPATCH_OK,
1722 PREP_DISPATCH_NO_TAG,
1723 PREP_DISPATCH_NO_BUDGET,
1724};
1725
1726static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1727 bool need_budget)
1728{
1729 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2a5a24aa 1730 int budget_token = -1;
75383524 1731
2a5a24aa
ML
1732 if (need_budget) {
1733 budget_token = blk_mq_get_dispatch_budget(rq->q);
1734 if (budget_token < 0) {
1735 blk_mq_put_driver_tag(rq);
1736 return PREP_DISPATCH_NO_BUDGET;
1737 }
1738 blk_mq_set_rq_budget_token(rq, budget_token);
75383524
ML
1739 }
1740
1741 if (!blk_mq_get_driver_tag(rq)) {
1742 /*
1743 * The initial allocation attempt failed, so we need to
1744 * rerun the hardware queue when a tag is freed. The
1745 * waitqueue takes care of that. If the queue is run
1746 * before we add this entry back on the dispatch list,
1747 * we'll re-run it below.
1748 */
1749 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1fd40b5e
ML
1750 /*
1751 * All budgets not got from this function will be put
1752 * together during handling partial dispatch
1753 */
1754 if (need_budget)
2a5a24aa 1755 blk_mq_put_dispatch_budget(rq->q, budget_token);
75383524
ML
1756 return PREP_DISPATCH_NO_TAG;
1757 }
1758 }
1759
1760 return PREP_DISPATCH_OK;
1761}
1762
1fd40b5e
ML
1763/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1764static void blk_mq_release_budgets(struct request_queue *q,
2a5a24aa 1765 struct list_head *list)
1fd40b5e 1766{
2a5a24aa 1767 struct request *rq;
1fd40b5e 1768
2a5a24aa
ML
1769 list_for_each_entry(rq, list, queuelist) {
1770 int budget_token = blk_mq_get_rq_budget_token(rq);
1fd40b5e 1771
2a5a24aa
ML
1772 if (budget_token >= 0)
1773 blk_mq_put_dispatch_budget(q, budget_token);
1774 }
1fd40b5e
ML
1775}
1776
1f57f8d4
JA
1777/*
1778 * Returns true if we did some work AND can potentially do more.
1779 */
445874e8 1780bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1fd40b5e 1781 unsigned int nr_budgets)
320ae51f 1782{
75383524 1783 enum prep_dispatch prep;
445874e8 1784 struct request_queue *q = hctx->queue;
6d6f167c 1785 struct request *rq, *nxt;
fc17b653 1786 int errors, queued;
86ff7c2a 1787 blk_status_t ret = BLK_STS_OK;
0512a75b 1788 LIST_HEAD(zone_list);
9586e67b 1789 bool needs_resource = false;
320ae51f 1790
81380ca1
OS
1791 if (list_empty(list))
1792 return false;
1793
320ae51f
JA
1794 /*
1795 * Now process all the entries, sending them to the driver.
1796 */
93efe981 1797 errors = queued = 0;
81380ca1 1798 do {
74c45052 1799 struct blk_mq_queue_data bd;
320ae51f 1800
f04c3df3 1801 rq = list_first_entry(list, struct request, queuelist);
0bca799b 1802
445874e8 1803 WARN_ON_ONCE(hctx != rq->mq_hctx);
1fd40b5e 1804 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
75383524 1805 if (prep != PREP_DISPATCH_OK)
0bca799b 1806 break;
de148297 1807
320ae51f 1808 list_del_init(&rq->queuelist);
320ae51f 1809
74c45052 1810 bd.rq = rq;
113285b4
JA
1811
1812 /*
1813 * Flag last if we have no more requests, or if we have more
1814 * but can't assign a driver tag to it.
1815 */
1816 if (list_empty(list))
1817 bd.last = true;
1818 else {
113285b4 1819 nxt = list_first_entry(list, struct request, queuelist);
8ab6bb9e 1820 bd.last = !blk_mq_get_driver_tag(nxt);
113285b4 1821 }
74c45052 1822
1fd40b5e
ML
1823 /*
1824 * once the request is queued to lld, no need to cover the
1825 * budget any more
1826 */
1827 if (nr_budgets)
1828 nr_budgets--;
74c45052 1829 ret = q->mq_ops->queue_rq(hctx, &bd);
7bf13729
ML
1830 switch (ret) {
1831 case BLK_STS_OK:
1832 queued++;
320ae51f 1833 break;
7bf13729 1834 case BLK_STS_RESOURCE:
9586e67b
NA
1835 needs_resource = true;
1836 fallthrough;
7bf13729
ML
1837 case BLK_STS_DEV_RESOURCE:
1838 blk_mq_handle_dev_resource(rq, list);
1839 goto out;
1840 case BLK_STS_ZONE_RESOURCE:
0512a75b
KB
1841 /*
1842 * Move the request to zone_list and keep going through
1843 * the dispatch list to find more requests the drive can
1844 * accept.
1845 */
1846 blk_mq_handle_zone_resource(rq, &zone_list);
9586e67b 1847 needs_resource = true;
7bf13729
ML
1848 break;
1849 default:
93efe981 1850 errors++;
e21ee5a6 1851 blk_mq_end_request(rq, ret);
320ae51f 1852 }
81380ca1 1853 } while (!list_empty(list));
7bf13729 1854out:
0512a75b
KB
1855 if (!list_empty(&zone_list))
1856 list_splice_tail_init(&zone_list, list);
1857
632bfb63 1858 /* If we didn't flush the entire list, we could have told the driver
1859 * there was more coming, but that turned out to be a lie.
1860 */
1861 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1862 q->mq_ops->commit_rqs(hctx);
320ae51f
JA
1863 /*
1864 * Any items that need requeuing? Stuff them into hctx->dispatch,
1865 * that is where we will continue on next queue run.
1866 */
f04c3df3 1867 if (!list_empty(list)) {
86ff7c2a 1868 bool needs_restart;
75383524
ML
1869 /* For non-shared tags, the RESTART check will suffice */
1870 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
51db1c37 1871 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
86ff7c2a 1872
2a5a24aa
ML
1873 if (nr_budgets)
1874 blk_mq_release_budgets(q, list);
86ff7c2a 1875
320ae51f 1876 spin_lock(&hctx->lock);
01e99aec 1877 list_splice_tail_init(list, &hctx->dispatch);
320ae51f 1878 spin_unlock(&hctx->lock);
f04c3df3 1879
d7d8535f
ML
1880 /*
1881 * Order adding requests to hctx->dispatch and checking
1882 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1883 * in blk_mq_sched_restart(). Avoid restart code path to
1884 * miss the new added requests to hctx->dispatch, meantime
1885 * SCHED_RESTART is observed here.
1886 */
1887 smp_mb();
1888
9ba52e58 1889 /*
710c785f
BVA
1890 * If SCHED_RESTART was set by the caller of this function and
1891 * it is no longer set that means that it was cleared by another
1892 * thread and hence that a queue rerun is needed.
9ba52e58 1893 *
eb619fdb
JA
1894 * If 'no_tag' is set, that means that we failed getting
1895 * a driver tag with an I/O scheduler attached. If our dispatch
1896 * waitqueue is no longer active, ensure that we run the queue
1897 * AFTER adding our entries back to the list.
bd166ef1 1898 *
710c785f
BVA
1899 * If no I/O scheduler has been configured it is possible that
1900 * the hardware queue got stopped and restarted before requests
1901 * were pushed back onto the dispatch list. Rerun the queue to
1902 * avoid starvation. Notes:
1903 * - blk_mq_run_hw_queue() checks whether or not a queue has
1904 * been stopped before rerunning a queue.
1905 * - Some but not all block drivers stop a queue before
fc17b653 1906 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1907 * and dm-rq.
86ff7c2a
ML
1908 *
1909 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1910 * bit is set, run queue after a delay to avoid IO stalls
ab3cee37 1911 * that could otherwise occur if the queue is idle. We'll do
9586e67b
NA
1912 * similar if we couldn't get budget or couldn't lock a zone
1913 * and SCHED_RESTART is set.
bd166ef1 1914 */
86ff7c2a 1915 needs_restart = blk_mq_sched_needs_restart(hctx);
9586e67b
NA
1916 if (prep == PREP_DISPATCH_NO_BUDGET)
1917 needs_resource = true;
86ff7c2a 1918 if (!needs_restart ||
eb619fdb 1919 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1920 blk_mq_run_hw_queue(hctx, true);
9586e67b 1921 else if (needs_restart && needs_resource)
86ff7c2a 1922 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1f57f8d4 1923
6e768717 1924 blk_mq_update_dispatch_busy(hctx, true);
1f57f8d4 1925 return false;
6e768717
ML
1926 } else
1927 blk_mq_update_dispatch_busy(hctx, false);
f04c3df3 1928
93efe981 1929 return (queued + errors) != 0;
f04c3df3
JA
1930}
1931
105663f7
AA
1932/**
1933 * __blk_mq_run_hw_queue - Run a hardware queue.
1934 * @hctx: Pointer to the hardware queue to run.
1935 *
1936 * Send pending requests to the hardware.
1937 */
6a83e74d
BVA
1938static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1939{
1940 int srcu_idx;
1941
b7a71e66
JA
1942 /*
1943 * We can't run the queue inline with ints disabled. Ensure that
1944 * we catch bad users of this early.
1945 */
1946 WARN_ON_ONCE(in_interrupt());
1947
04ced159 1948 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1949
04ced159
JA
1950 hctx_lock(hctx, &srcu_idx);
1951 blk_mq_sched_dispatch_requests(hctx);
1952 hctx_unlock(hctx, srcu_idx);
6a83e74d
BVA
1953}
1954
f82ddf19
ML
1955static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1956{
1957 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1958
1959 if (cpu >= nr_cpu_ids)
1960 cpu = cpumask_first(hctx->cpumask);
1961 return cpu;
1962}
1963
506e931f
JA
1964/*
1965 * It'd be great if the workqueue API had a way to pass
1966 * in a mask and had some smarts for more clever placement.
1967 * For now we just round-robin here, switching for every
1968 * BLK_MQ_CPU_WORK_BATCH queued items.
1969 */
1970static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1971{
7bed4595 1972 bool tried = false;
476f8c98 1973 int next_cpu = hctx->next_cpu;
7bed4595 1974
b657d7e6
CH
1975 if (hctx->queue->nr_hw_queues == 1)
1976 return WORK_CPU_UNBOUND;
506e931f
JA
1977
1978 if (--hctx->next_cpu_batch <= 0) {
7bed4595 1979select_cpu:
476f8c98 1980 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
20e4d813 1981 cpu_online_mask);
506e931f 1982 if (next_cpu >= nr_cpu_ids)
f82ddf19 1983 next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
1984 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1985 }
1986
7bed4595
ML
1987 /*
1988 * Do unbound schedule if we can't find a online CPU for this hctx,
1989 * and it should only happen in the path of handling CPU DEAD.
1990 */
476f8c98 1991 if (!cpu_online(next_cpu)) {
7bed4595
ML
1992 if (!tried) {
1993 tried = true;
1994 goto select_cpu;
1995 }
1996
1997 /*
1998 * Make sure to re-select CPU next time once after CPUs
1999 * in hctx->cpumask become online again.
2000 */
476f8c98 2001 hctx->next_cpu = next_cpu;
7bed4595
ML
2002 hctx->next_cpu_batch = 1;
2003 return WORK_CPU_UNBOUND;
2004 }
476f8c98
ML
2005
2006 hctx->next_cpu = next_cpu;
2007 return next_cpu;
506e931f
JA
2008}
2009
105663f7
AA
2010/**
2011 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2012 * @hctx: Pointer to the hardware queue to run.
2013 * @async: If we want to run the queue asynchronously.
fa94ba8a 2014 * @msecs: Milliseconds of delay to wait before running the queue.
105663f7
AA
2015 *
2016 * If !@async, try to run the queue now. Else, run the queue asynchronously and
2017 * with a delay of @msecs.
2018 */
7587a5ae
BVA
2019static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2020 unsigned long msecs)
320ae51f 2021{
5435c023 2022 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
2023 return;
2024
1b792f2f 2025 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
2026 int cpu = get_cpu();
2027 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 2028 __blk_mq_run_hw_queue(hctx);
2a90d4aa 2029 put_cpu();
398205b8
PB
2030 return;
2031 }
e4043dcf 2032
2a90d4aa 2033 put_cpu();
e4043dcf 2034 }
398205b8 2035
ae943d20
BVA
2036 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2037 msecs_to_jiffies(msecs));
7587a5ae
BVA
2038}
2039
105663f7
AA
2040/**
2041 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2042 * @hctx: Pointer to the hardware queue to run.
fa94ba8a 2043 * @msecs: Milliseconds of delay to wait before running the queue.
105663f7
AA
2044 *
2045 * Run a hardware queue asynchronously with a delay of @msecs.
2046 */
7587a5ae
BVA
2047void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2048{
2049 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2050}
2051EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2052
105663f7
AA
2053/**
2054 * blk_mq_run_hw_queue - Start to run a hardware queue.
2055 * @hctx: Pointer to the hardware queue to run.
2056 * @async: If we want to run the queue asynchronously.
2057 *
2058 * Check if the request queue is not in a quiesced state and if there are
2059 * pending requests to be sent. If this is true, run the queue to send requests
2060 * to hardware.
2061 */
626fb735 2062void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 2063{
24f5a90f
ML
2064 int srcu_idx;
2065 bool need_run;
2066
2067 /*
2068 * When queue is quiesced, we may be switching io scheduler, or
2069 * updating nr_hw_queues, or other things, and we can't run queue
2070 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2071 *
2072 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2073 * quiesced.
2074 */
04ced159
JA
2075 hctx_lock(hctx, &srcu_idx);
2076 need_run = !blk_queue_quiesced(hctx->queue) &&
2077 blk_mq_hctx_has_pending(hctx);
2078 hctx_unlock(hctx, srcu_idx);
24f5a90f 2079
626fb735 2080 if (need_run)
79f720a7 2081 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f 2082}
5b727272 2083EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 2084
b6e68ee8
JK
2085/*
2086 * Is the request queue handled by an IO scheduler that does not respect
2087 * hardware queues when dispatching?
2088 */
2089static bool blk_mq_has_sqsched(struct request_queue *q)
2090{
2091 struct elevator_queue *e = q->elevator;
2092
2093 if (e && e->type->ops.dispatch_request &&
2094 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2095 return true;
2096 return false;
2097}
2098
2099/*
2100 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2101 * scheduler.
2102 */
2103static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2104{
2105 struct blk_mq_hw_ctx *hctx;
2106
2107 /*
2108 * If the IO scheduler does not respect hardware queues when
2109 * dispatching, we just don't bother with multiple HW queues and
2110 * dispatch from hctx for the current CPU since running multiple queues
2111 * just causes lock contention inside the scheduler and pointless cache
2112 * bouncing.
2113 */
2114 hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
2115 raw_smp_processor_id());
2116 if (!blk_mq_hctx_stopped(hctx))
2117 return hctx;
2118 return NULL;
2119}
2120
105663f7 2121/**
24f7bb88 2122 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
105663f7
AA
2123 * @q: Pointer to the request queue to run.
2124 * @async: If we want to run the queue asynchronously.
2125 */
b94ec296 2126void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f 2127{
b6e68ee8 2128 struct blk_mq_hw_ctx *hctx, *sq_hctx;
320ae51f
JA
2129 int i;
2130
b6e68ee8
JK
2131 sq_hctx = NULL;
2132 if (blk_mq_has_sqsched(q))
2133 sq_hctx = blk_mq_get_sq_hctx(q);
320ae51f 2134 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 2135 if (blk_mq_hctx_stopped(hctx))
320ae51f 2136 continue;
b6e68ee8
JK
2137 /*
2138 * Dispatch from this hctx either if there's no hctx preferred
2139 * by IO scheduler or if it has requests that bypass the
2140 * scheduler.
2141 */
2142 if (!sq_hctx || sq_hctx == hctx ||
2143 !list_empty_careful(&hctx->dispatch))
2144 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
2145 }
2146}
b94ec296 2147EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 2148
b9151e7b
DA
2149/**
2150 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2151 * @q: Pointer to the request queue to run.
fa94ba8a 2152 * @msecs: Milliseconds of delay to wait before running the queues.
b9151e7b
DA
2153 */
2154void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2155{
b6e68ee8 2156 struct blk_mq_hw_ctx *hctx, *sq_hctx;
b9151e7b
DA
2157 int i;
2158
b6e68ee8
JK
2159 sq_hctx = NULL;
2160 if (blk_mq_has_sqsched(q))
2161 sq_hctx = blk_mq_get_sq_hctx(q);
b9151e7b
DA
2162 queue_for_each_hw_ctx(q, hctx, i) {
2163 if (blk_mq_hctx_stopped(hctx))
2164 continue;
b6e68ee8
JK
2165 /*
2166 * Dispatch from this hctx either if there's no hctx preferred
2167 * by IO scheduler or if it has requests that bypass the
2168 * scheduler.
2169 */
2170 if (!sq_hctx || sq_hctx == hctx ||
2171 !list_empty_careful(&hctx->dispatch))
2172 blk_mq_delay_run_hw_queue(hctx, msecs);
b9151e7b
DA
2173 }
2174}
2175EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2176
fd001443
BVA
2177/**
2178 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2179 * @q: request queue.
2180 *
2181 * The caller is responsible for serializing this function against
2182 * blk_mq_{start,stop}_hw_queue().
2183 */
2184bool blk_mq_queue_stopped(struct request_queue *q)
2185{
2186 struct blk_mq_hw_ctx *hctx;
2187 int i;
2188
2189 queue_for_each_hw_ctx(q, hctx, i)
2190 if (blk_mq_hctx_stopped(hctx))
2191 return true;
2192
2193 return false;
2194}
2195EXPORT_SYMBOL(blk_mq_queue_stopped);
2196
39a70c76
ML
2197/*
2198 * This function is often used for pausing .queue_rq() by driver when
2199 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 2200 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
2201 *
2202 * We do not guarantee that dispatch can be drained or blocked
2203 * after blk_mq_stop_hw_queue() returns. Please use
2204 * blk_mq_quiesce_queue() for that requirement.
2205 */
2719aa21
JA
2206void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2207{
641a9ed6 2208 cancel_delayed_work(&hctx->run_work);
280d45f6 2209
641a9ed6 2210 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 2211}
641a9ed6 2212EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 2213
39a70c76
ML
2214/*
2215 * This function is often used for pausing .queue_rq() by driver when
2216 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 2217 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
2218 *
2219 * We do not guarantee that dispatch can be drained or blocked
2220 * after blk_mq_stop_hw_queues() returns. Please use
2221 * blk_mq_quiesce_queue() for that requirement.
2222 */
2719aa21
JA
2223void blk_mq_stop_hw_queues(struct request_queue *q)
2224{
641a9ed6
ML
2225 struct blk_mq_hw_ctx *hctx;
2226 int i;
2227
2228 queue_for_each_hw_ctx(q, hctx, i)
2229 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
2230}
2231EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2232
320ae51f
JA
2233void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2234{
2235 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 2236
0ffbce80 2237 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
2238}
2239EXPORT_SYMBOL(blk_mq_start_hw_queue);
2240
2f268556
CH
2241void blk_mq_start_hw_queues(struct request_queue *q)
2242{
2243 struct blk_mq_hw_ctx *hctx;
2244 int i;
2245
2246 queue_for_each_hw_ctx(q, hctx, i)
2247 blk_mq_start_hw_queue(hctx);
2248}
2249EXPORT_SYMBOL(blk_mq_start_hw_queues);
2250
ae911c5e
JA
2251void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2252{
2253 if (!blk_mq_hctx_stopped(hctx))
2254 return;
2255
2256 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2257 blk_mq_run_hw_queue(hctx, async);
2258}
2259EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2260
1b4a3258 2261void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
2262{
2263 struct blk_mq_hw_ctx *hctx;
2264 int i;
2265
ae911c5e
JA
2266 queue_for_each_hw_ctx(q, hctx, i)
2267 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
2268}
2269EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2270
70f4db63 2271static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
2272{
2273 struct blk_mq_hw_ctx *hctx;
2274
9f993737 2275 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 2276
21c6e939 2277 /*
15fe8a90 2278 * If we are stopped, don't run the queue.
21c6e939 2279 */
0841031a 2280 if (blk_mq_hctx_stopped(hctx))
0196d6b4 2281 return;
7587a5ae
BVA
2282
2283 __blk_mq_run_hw_queue(hctx);
2284}
2285
cfd0c552 2286static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
2287 struct request *rq,
2288 bool at_head)
320ae51f 2289{
e57690fe 2290 struct blk_mq_ctx *ctx = rq->mq_ctx;
c16d6b5a 2291 enum hctx_type type = hctx->type;
e57690fe 2292
7b607814
BVA
2293 lockdep_assert_held(&ctx->lock);
2294
a54895fa 2295 trace_block_rq_insert(rq);
01b983c9 2296
72a0a36e 2297 if (at_head)
c16d6b5a 2298 list_add(&rq->queuelist, &ctx->rq_lists[type]);
72a0a36e 2299 else
c16d6b5a 2300 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
cfd0c552 2301}
4bb659b1 2302
2c3ad667
JA
2303void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2304 bool at_head)
cfd0c552
ML
2305{
2306 struct blk_mq_ctx *ctx = rq->mq_ctx;
2307
7b607814
BVA
2308 lockdep_assert_held(&ctx->lock);
2309
e57690fe 2310 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 2311 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
2312}
2313
105663f7
AA
2314/**
2315 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2316 * @rq: Pointer to request to be inserted.
26bfeb26 2317 * @at_head: true if the request should be inserted at the head of the list.
105663f7
AA
2318 * @run_queue: If we should run the hardware queue after inserting the request.
2319 *
157f377b
JA
2320 * Should only be used carefully, when the caller knows we want to
2321 * bypass a potential IO scheduler on the target device.
2322 */
01e99aec
ML
2323void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2324 bool run_queue)
157f377b 2325{
ea4f995e 2326 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
157f377b
JA
2327
2328 spin_lock(&hctx->lock);
01e99aec
ML
2329 if (at_head)
2330 list_add(&rq->queuelist, &hctx->dispatch);
2331 else
2332 list_add_tail(&rq->queuelist, &hctx->dispatch);
157f377b
JA
2333 spin_unlock(&hctx->lock);
2334
b0850297
ML
2335 if (run_queue)
2336 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
2337}
2338
bd166ef1
JA
2339void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2340 struct list_head *list)
320ae51f
JA
2341
2342{
3f0cedc7 2343 struct request *rq;
c16d6b5a 2344 enum hctx_type type = hctx->type;
3f0cedc7 2345
320ae51f
JA
2346 /*
2347 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2348 * offline now
2349 */
3f0cedc7 2350 list_for_each_entry(rq, list, queuelist) {
e57690fe 2351 BUG_ON(rq->mq_ctx != ctx);
a54895fa 2352 trace_block_rq_insert(rq);
320ae51f 2353 }
3f0cedc7
ML
2354
2355 spin_lock(&ctx->lock);
c16d6b5a 2356 list_splice_tail_init(list, &ctx->rq_lists[type]);
cfd0c552 2357 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 2358 spin_unlock(&ctx->lock);
320ae51f
JA
2359}
2360
dc5fc361
JA
2361static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2362 bool from_schedule)
320ae51f 2363{
dc5fc361
JA
2364 if (hctx->queue->mq_ops->commit_rqs) {
2365 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2366 hctx->queue->mq_ops->commit_rqs(hctx);
2367 }
2368 *queued = 0;
2369}
320ae51f 2370
14ccb66b
CH
2371static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2372 unsigned int nr_segs)
320ae51f 2373{
93f221ae
EB
2374 int err;
2375
f924cdde
CH
2376 if (bio->bi_opf & REQ_RAHEAD)
2377 rq->cmd_flags |= REQ_FAILFAST_MASK;
2378
2379 rq->__sector = bio->bi_iter.bi_sector;
2380 rq->write_hint = bio->bi_write_hint;
14ccb66b 2381 blk_rq_bio_prep(rq, bio, nr_segs);
93f221ae
EB
2382
2383 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2384 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2385 WARN_ON_ONCE(err);
4b570521 2386
b5af37ab 2387 blk_account_io_start(rq);
320ae51f
JA
2388}
2389
0f95549c 2390static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
3e08773c 2391 struct request *rq, bool last)
f984df1f 2392{
f984df1f 2393 struct request_queue *q = rq->q;
f984df1f
SL
2394 struct blk_mq_queue_data bd = {
2395 .rq = rq,
be94f058 2396 .last = last,
f984df1f 2397 };
f06345ad 2398 blk_status_t ret;
0f95549c 2399
0f95549c
MS
2400 /*
2401 * For OK queue, we are done. For error, caller may kill it.
2402 * Any other error (busy), just add it to our list as we
2403 * previously would have done.
2404 */
2405 ret = q->mq_ops->queue_rq(hctx, &bd);
2406 switch (ret) {
2407 case BLK_STS_OK:
6ce3dd6e 2408 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
2409 break;
2410 case BLK_STS_RESOURCE:
86ff7c2a 2411 case BLK_STS_DEV_RESOURCE:
6ce3dd6e 2412 blk_mq_update_dispatch_busy(hctx, true);
0f95549c
MS
2413 __blk_mq_requeue_request(rq);
2414 break;
2415 default:
6ce3dd6e 2416 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
2417 break;
2418 }
2419
2420 return ret;
2421}
2422
fd9c40f6 2423static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
0f95549c 2424 struct request *rq,
fd9c40f6 2425 bool bypass_insert, bool last)
0f95549c
MS
2426{
2427 struct request_queue *q = rq->q;
d964f04a 2428 bool run_queue = true;
2a5a24aa 2429 int budget_token;
d964f04a 2430
23d4ee19 2431 /*
fd9c40f6 2432 * RCU or SRCU read lock is needed before checking quiesced flag.
23d4ee19 2433 *
fd9c40f6
BVA
2434 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2435 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2436 * and avoid driver to try to dispatch again.
23d4ee19 2437 */
fd9c40f6 2438 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a 2439 run_queue = false;
fd9c40f6
BVA
2440 bypass_insert = false;
2441 goto insert;
d964f04a 2442 }
f984df1f 2443
2ff0682d 2444 if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
fd9c40f6 2445 goto insert;
2253efc8 2446
2a5a24aa
ML
2447 budget_token = blk_mq_get_dispatch_budget(q);
2448 if (budget_token < 0)
fd9c40f6 2449 goto insert;
bd166ef1 2450
2a5a24aa
ML
2451 blk_mq_set_rq_budget_token(rq, budget_token);
2452
8ab6bb9e 2453 if (!blk_mq_get_driver_tag(rq)) {
2a5a24aa 2454 blk_mq_put_dispatch_budget(q, budget_token);
fd9c40f6 2455 goto insert;
88022d72 2456 }
de148297 2457
3e08773c 2458 return __blk_mq_issue_directly(hctx, rq, last);
fd9c40f6
BVA
2459insert:
2460 if (bypass_insert)
2461 return BLK_STS_RESOURCE;
2462
db03f88f
ML
2463 blk_mq_sched_insert_request(rq, false, run_queue, false);
2464
fd9c40f6
BVA
2465 return BLK_STS_OK;
2466}
2467
105663f7
AA
2468/**
2469 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2470 * @hctx: Pointer of the associated hardware queue.
2471 * @rq: Pointer to request to be sent.
105663f7
AA
2472 *
2473 * If the device has enough resources to accept a new request now, send the
2474 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2475 * we can try send it another time in the future. Requests inserted at this
2476 * queue have higher priority.
2477 */
fd9c40f6 2478static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
3e08773c 2479 struct request *rq)
fd9c40f6
BVA
2480{
2481 blk_status_t ret;
2482 int srcu_idx;
2483
2484 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2485
2486 hctx_lock(hctx, &srcu_idx);
2487
3e08773c 2488 ret = __blk_mq_try_issue_directly(hctx, rq, false, true);
fd9c40f6 2489 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
01e99aec 2490 blk_mq_request_bypass_insert(rq, false, true);
fd9c40f6
BVA
2491 else if (ret != BLK_STS_OK)
2492 blk_mq_end_request(rq, ret);
2493
2494 hctx_unlock(hctx, srcu_idx);
2495}
2496
06c8c691 2497static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
fd9c40f6
BVA
2498{
2499 blk_status_t ret;
2500 int srcu_idx;
fd9c40f6
BVA
2501 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2502
2503 hctx_lock(hctx, &srcu_idx);
3e08773c 2504 ret = __blk_mq_try_issue_directly(hctx, rq, true, last);
04ced159 2505 hctx_unlock(hctx, srcu_idx);
7f556a44
JW
2506
2507 return ret;
5eb6126e
CH
2508}
2509
b84c5b50
CH
2510static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2511{
2512 struct blk_mq_hw_ctx *hctx = NULL;
2513 struct request *rq;
2514 int queued = 0;
2515 int errors = 0;
2516
2517 while ((rq = rq_list_pop(&plug->mq_list))) {
2518 bool last = rq_list_empty(plug->mq_list);
2519 blk_status_t ret;
2520
2521 if (hctx != rq->mq_hctx) {
2522 if (hctx)
2523 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2524 hctx = rq->mq_hctx;
2525 }
2526
2527 ret = blk_mq_request_issue_directly(rq, last);
2528 switch (ret) {
2529 case BLK_STS_OK:
2530 queued++;
2531 break;
2532 case BLK_STS_RESOURCE:
2533 case BLK_STS_DEV_RESOURCE:
2534 blk_mq_request_bypass_insert(rq, false, last);
2535 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2536 return;
2537 default:
2538 blk_mq_end_request(rq, ret);
2539 errors++;
2540 break;
2541 }
2542 }
2543
2544 /*
2545 * If we didn't flush the entire list, we could have told the driver
2546 * there was more coming, but that turned out to be a lie.
2547 */
2548 if (errors)
2549 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2550}
2551
2552void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2553{
2554 struct blk_mq_hw_ctx *this_hctx;
2555 struct blk_mq_ctx *this_ctx;
2556 unsigned int depth;
2557 LIST_HEAD(list);
2558
2559 if (rq_list_empty(plug->mq_list))
2560 return;
2561 plug->rq_count = 0;
2562
2563 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2564 blk_mq_plug_issue_direct(plug, false);
2565 if (rq_list_empty(plug->mq_list))
2566 return;
2567 }
2568
2569 this_hctx = NULL;
2570 this_ctx = NULL;
2571 depth = 0;
2572 do {
2573 struct request *rq;
2574
2575 rq = rq_list_pop(&plug->mq_list);
2576
2577 if (!this_hctx) {
2578 this_hctx = rq->mq_hctx;
2579 this_ctx = rq->mq_ctx;
2580 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2581 trace_block_unplug(this_hctx->queue, depth,
2582 !from_schedule);
2583 blk_mq_sched_insert_requests(this_hctx, this_ctx,
2584 &list, from_schedule);
2585 depth = 0;
2586 this_hctx = rq->mq_hctx;
2587 this_ctx = rq->mq_ctx;
2588
2589 }
2590
2591 list_add(&rq->queuelist, &list);
2592 depth++;
2593 } while (!rq_list_empty(plug->mq_list));
2594
2595 if (!list_empty(&list)) {
2596 trace_block_unplug(this_hctx->queue, depth, !from_schedule);
2597 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list,
2598 from_schedule);
2599 }
2600}
2601
6ce3dd6e
ML
2602void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2603 struct list_head *list)
2604{
536167d4 2605 int queued = 0;
632bfb63 2606 int errors = 0;
536167d4 2607
6ce3dd6e 2608 while (!list_empty(list)) {
fd9c40f6 2609 blk_status_t ret;
6ce3dd6e
ML
2610 struct request *rq = list_first_entry(list, struct request,
2611 queuelist);
2612
2613 list_del_init(&rq->queuelist);
fd9c40f6
BVA
2614 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2615 if (ret != BLK_STS_OK) {
2616 if (ret == BLK_STS_RESOURCE ||
2617 ret == BLK_STS_DEV_RESOURCE) {
01e99aec 2618 blk_mq_request_bypass_insert(rq, false,
c616cbee 2619 list_empty(list));
fd9c40f6
BVA
2620 break;
2621 }
2622 blk_mq_end_request(rq, ret);
632bfb63 2623 errors++;
536167d4
KB
2624 } else
2625 queued++;
6ce3dd6e 2626 }
d666ba98
JA
2627
2628 /*
2629 * If we didn't flush the entire list, we could have told
2630 * the driver there was more coming, but that turned out to
2631 * be a lie.
2632 */
632bfb63 2633 if ((!list_empty(list) || errors) &&
2634 hctx->queue->mq_ops->commit_rqs && queued)
d666ba98 2635 hctx->queue->mq_ops->commit_rqs(hctx);
6ce3dd6e
ML
2636}
2637
ce5b009c
JA
2638static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2639{
bc490f81
JA
2640 if (!plug->multiple_queues) {
2641 struct request *nxt = rq_list_peek(&plug->mq_list);
ce5b009c 2642
bc490f81 2643 if (nxt && nxt->q != rq->q)
ce5b009c
JA
2644 plug->multiple_queues = true;
2645 }
dc5fc361
JA
2646 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2647 plug->has_elevator = true;
bc490f81
JA
2648 rq->rq_next = NULL;
2649 rq_list_add(&plug->mq_list, rq);
2650 plug->rq_count++;
ce5b009c
JA
2651}
2652
7f2a6a69 2653/*
ba0ffdd8 2654 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
7f2a6a69
SL
2655 * queues. This is important for md arrays to benefit from merging
2656 * requests.
2657 */
2658static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2659{
2660 if (plug->multiple_queues)
ba0ffdd8 2661 return BLK_MAX_REQUEST_COUNT * 2;
7f2a6a69
SL
2662 return BLK_MAX_REQUEST_COUNT;
2663}
2664
b131f201
ML
2665static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2666 struct bio *bio, unsigned int nr_segs,
2667 bool *same_queue_rq)
900e0807
JA
2668{
2669 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2670 if (blk_attempt_plug_merge(q, bio, nr_segs, same_queue_rq))
2671 return true;
2672 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2673 return true;
2674 }
2675 return false;
2676}
2677
71539717
JA
2678static struct request *blk_mq_get_new_requests(struct request_queue *q,
2679 struct blk_plug *plug,
900e0807
JA
2680 struct bio *bio,
2681 unsigned int nsegs,
2682 bool *same_queue_rq)
71539717
JA
2683{
2684 struct blk_mq_alloc_data data = {
2685 .q = q,
2686 .nr_tags = 1,
2687 .cmd_flags = bio->bi_opf,
2688 };
2689 struct request *rq;
2690
b131f201 2691 if (blk_mq_attempt_bio_merge(q, bio, nsegs, same_queue_rq))
b637108a 2692 return NULL;
900e0807
JA
2693
2694 rq_qos_throttle(q, bio);
2695
71539717
JA
2696 if (plug) {
2697 data.nr_tags = plug->nr_ios;
2698 plug->nr_ios = 1;
2699 data.cached_rq = &plug->cached_rq;
2700 }
2701
2702 rq = __blk_mq_alloc_requests(&data);
2703 if (rq)
2704 return rq;
2705
2706 rq_qos_cleanup(q, bio);
2707 if (bio->bi_opf & REQ_NOWAIT)
2708 bio_wouldblock_error(bio);
b637108a 2709
71539717
JA
2710 return NULL;
2711}
2712
95febeb6 2713static inline bool blk_mq_can_use_cached_rq(struct request *rq, struct bio *bio)
b637108a
ML
2714{
2715 if (blk_mq_get_hctx_type(bio->bi_opf) != rq->mq_hctx->type)
2716 return false;
2717
2718 if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2719 return false;
2720
2721 return true;
2722}
2723
71539717
JA
2724static inline struct request *blk_mq_get_request(struct request_queue *q,
2725 struct blk_plug *plug,
900e0807
JA
2726 struct bio *bio,
2727 unsigned int nsegs,
2728 bool *same_queue_rq)
71539717 2729{
b637108a
ML
2730 struct request *rq;
2731 bool checked = false;
2732
71539717 2733 if (plug) {
71539717 2734 rq = rq_list_peek(&plug->cached_rq);
10c47870 2735 if (rq && rq->q == q) {
900e0807
JA
2736 if (unlikely(!submit_bio_checks(bio)))
2737 return NULL;
b131f201
ML
2738 if (blk_mq_attempt_bio_merge(q, bio, nsegs,
2739 same_queue_rq))
900e0807 2740 return NULL;
b637108a
ML
2741 checked = true;
2742 if (!blk_mq_can_use_cached_rq(rq, bio))
2743 goto fallback;
2744 rq->cmd_flags = bio->bi_opf;
71539717
JA
2745 plug->cached_rq = rq_list_next(rq);
2746 INIT_LIST_HEAD(&rq->queuelist);
900e0807 2747 rq_qos_throttle(q, bio);
71539717
JA
2748 return rq;
2749 }
2750 }
2751
b637108a
ML
2752fallback:
2753 if (unlikely(bio_queue_enter(bio)))
2754 return NULL;
95febeb6
JA
2755 if (unlikely(!checked && !submit_bio_checks(bio)))
2756 goto out_put;
b637108a 2757 rq = blk_mq_get_new_requests(q, plug, bio, nsegs, same_queue_rq);
95febeb6
JA
2758 if (rq)
2759 return rq;
2760out_put:
2761 blk_queue_exit(q);
2762 return NULL;
71539717
JA
2763}
2764
105663f7 2765/**
c62b37d9 2766 * blk_mq_submit_bio - Create and send a request to block device.
105663f7
AA
2767 * @bio: Bio pointer.
2768 *
2769 * Builds up a request structure from @q and @bio and send to the device. The
2770 * request may not be queued directly to hardware if:
2771 * * This request can be merged with another one
2772 * * We want to place request at plug queue for possible future merging
2773 * * There is an IO scheduler active at this queue
2774 *
2775 * It will not queue the request if there is an error with the bio, or at the
2776 * request creation.
105663f7 2777 */
3e08773c 2778void blk_mq_submit_bio(struct bio *bio)
07068d5b 2779{
ed6cddef 2780 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ef295ecf 2781 const int is_sync = op_is_sync(bio->bi_opf);
07068d5b 2782 struct request *rq;
f984df1f 2783 struct blk_plug *plug;
87c037d1 2784 bool same_queue_rq = false;
abd45c15 2785 unsigned int nr_segs = 1;
a892c8d5 2786 blk_status_t ret;
07068d5b 2787
900e0807
JA
2788 if (unlikely(!blk_crypto_bio_prep(&bio)))
2789 return;
2790
07068d5b 2791 blk_queue_bounce(q, &bio);
abd45c15
JA
2792 if (blk_may_split(q, bio))
2793 __blk_queue_split(q, &bio, &nr_segs);
f36ea50c 2794
e23947bd 2795 if (!bio_integrity_prep(bio))
900e0807 2796 return;
87760e5e 2797
47c122e3 2798 plug = blk_mq_plug(q, bio);
900e0807 2799 rq = blk_mq_get_request(q, plug, bio, nr_segs, &same_queue_rq);
71539717 2800 if (unlikely(!rq))
900e0807 2801 return;
87760e5e 2802
e8a676d6 2803 trace_block_getrq(bio);
d6f1dda2 2804
c1c80384 2805 rq_qos_track(q, rq, bio);
07068d5b 2806
970d168d
BVA
2807 blk_mq_bio_to_request(rq, bio, nr_segs);
2808
a892c8d5
ST
2809 ret = blk_crypto_init_request(rq);
2810 if (ret != BLK_STS_OK) {
2811 bio->bi_status = ret;
2812 bio_endio(bio);
2813 blk_mq_free_request(rq);
3e08773c 2814 return;
a892c8d5
ST
2815 }
2816
2b504bd4
ML
2817 if (op_is_flush(bio->bi_opf)) {
2818 blk_insert_flush(rq);
d92ca9d8 2819 return;
2b504bd4 2820 }
d92ca9d8
CH
2821
2822 if (plug && (q->nr_hw_queues == 1 ||
2823 blk_mq_is_shared_tags(rq->mq_hctx->flags) ||
2824 q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
b2c5d16b
JA
2825 /*
2826 * Use plugging if we have a ->commit_rqs() hook as well, as
2827 * we know the driver uses bd->last in a smart fashion.
3154df26
ML
2828 *
2829 * Use normal plugging if this disk is slow HDD, as sequential
2830 * IO may benefit a lot from plug merging.
b2c5d16b 2831 */
5f0ed774 2832 unsigned int request_count = plug->rq_count;
600271d9
SL
2833 struct request *last = NULL;
2834
bc490f81 2835 if (!request_count) {
e6c4438b 2836 trace_block_plug(q);
bc490f81
JA
2837 } else if (!blk_queue_nomerges(q)) {
2838 last = rq_list_peek(&plug->mq_list);
2839 if (blk_rq_bytes(last) < BLK_PLUG_FLUSH_SIZE)
2840 last = NULL;
2841 }
b094f89c 2842
bc490f81 2843 if (request_count >= blk_plug_max_rq_count(plug) || last) {
a214b949 2844 blk_mq_flush_plug_list(plug, false);
e6c4438b 2845 trace_block_plug(q);
320ae51f 2846 }
b094f89c 2847
ce5b009c 2848 blk_add_rq_to_plug(plug, rq);
2ff0682d 2849 } else if (rq->rq_flags & RQF_ELV) {
105663f7 2850 /* Insert the request at the IO scheduler queue */
a12de1d4 2851 blk_mq_sched_insert_request(rq, false, true, true);
2299722c 2852 } else if (plug && !blk_queue_nomerges(q)) {
87c037d1
JA
2853 struct request *next_rq = NULL;
2854
07068d5b 2855 /*
6a83e74d 2856 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
2857 * Otherwise the existing request in the plug list will be
2858 * issued. So the plug list will have one request at most
2299722c
CH
2859 * The plug list might get flushed before this. If that happens,
2860 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 2861 */
4711b573 2862 if (same_queue_rq) {
bc490f81 2863 next_rq = rq_list_pop(&plug->mq_list);
4711b573
JA
2864 plug->rq_count--;
2865 }
ce5b009c 2866 blk_add_rq_to_plug(plug, rq);
ff3b74b8 2867 trace_block_plug(q);
2299722c 2868
87c037d1 2869 if (next_rq) {
ff3b74b8 2870 trace_block_unplug(q, 1, true);
87c037d1 2871 blk_mq_try_issue_directly(next_rq->mq_hctx, next_rq);
dad7a3be 2872 }
a12de1d4 2873 } else if ((q->nr_hw_queues > 1 && is_sync) ||
0f38d766 2874 !rq->mq_hctx->dispatch_busy) {
105663f7
AA
2875 /*
2876 * There is no scheduler and we can try to send directly
2877 * to the hardware.
2878 */
3e08773c 2879 blk_mq_try_issue_directly(rq->mq_hctx, rq);
ab42f35d 2880 } else {
105663f7 2881 /* Default case. */
8fa9f556 2882 blk_mq_sched_insert_request(rq, false, true, true);
ab42f35d 2883 }
320ae51f
JA
2884}
2885
06c8c691
CH
2886/**
2887 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2888 * for the new queue limits
2889 * @q: the queue
2890 * @rq: the request being checked
2891 *
2892 * Description:
2893 * @rq may have been made based on weaker limitations of upper-level queues
2894 * in request stacking drivers, and it may violate the limitation of @q.
2895 * Since the block layer and the underlying device driver trust @rq
2896 * after it is inserted to @q, it should be checked against @q before
2897 * the insertion using this generic function.
2898 *
2899 * Request stacking drivers like request-based dm may change the queue
2900 * limits when retrying requests on other queues. Those requests need
2901 * to be checked against the new queue limits again during dispatch.
2902 */
2903static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
2904 struct request *rq)
2905{
2906 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2907
2908 if (blk_rq_sectors(rq) > max_sectors) {
2909 /*
2910 * SCSI device does not have a good way to return if
2911 * Write Same/Zero is actually supported. If a device rejects
2912 * a non-read/write command (discard, write same,etc.) the
2913 * low-level device driver will set the relevant queue limit to
2914 * 0 to prevent blk-lib from issuing more of the offending
2915 * operations. Commands queued prior to the queue limit being
2916 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2917 * errors being propagated to upper layers.
2918 */
2919 if (max_sectors == 0)
2920 return BLK_STS_NOTSUPP;
2921
2922 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2923 __func__, blk_rq_sectors(rq), max_sectors);
2924 return BLK_STS_IOERR;
2925 }
2926
2927 /*
2928 * The queue settings related to segment counting may differ from the
2929 * original queue.
2930 */
2931 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2932 if (rq->nr_phys_segments > queue_max_segments(q)) {
2933 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2934 __func__, rq->nr_phys_segments, queue_max_segments(q));
2935 return BLK_STS_IOERR;
2936 }
2937
2938 return BLK_STS_OK;
2939}
2940
2941/**
2942 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2943 * @q: the queue to submit the request
2944 * @rq: the request being queued
2945 */
2946blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2947{
2948 blk_status_t ret;
2949
2950 ret = blk_cloned_rq_check_limits(q, rq);
2951 if (ret != BLK_STS_OK)
2952 return ret;
2953
2954 if (rq->rq_disk &&
2955 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
2956 return BLK_STS_IOERR;
2957
2958 if (blk_crypto_insert_cloned_request(rq))
2959 return BLK_STS_IOERR;
2960
2961 blk_account_io_start(rq);
2962
2963 /*
2964 * Since we have a scheduler attached on the top device,
2965 * bypass a potential scheduler on the bottom device for
2966 * insert.
2967 */
2968 return blk_mq_request_issue_directly(rq, true);
2969}
2970EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2971
2972/**
2973 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2974 * @rq: the clone request to be cleaned up
2975 *
2976 * Description:
2977 * Free all bios in @rq for a cloned request.
2978 */
2979void blk_rq_unprep_clone(struct request *rq)
2980{
2981 struct bio *bio;
2982
2983 while ((bio = rq->bio) != NULL) {
2984 rq->bio = bio->bi_next;
2985
2986 bio_put(bio);
2987 }
2988}
2989EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2990
2991/**
2992 * blk_rq_prep_clone - Helper function to setup clone request
2993 * @rq: the request to be setup
2994 * @rq_src: original request to be cloned
2995 * @bs: bio_set that bios for clone are allocated from
2996 * @gfp_mask: memory allocation mask for bio
2997 * @bio_ctr: setup function to be called for each clone bio.
2998 * Returns %0 for success, non %0 for failure.
2999 * @data: private data to be passed to @bio_ctr
3000 *
3001 * Description:
3002 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3003 * Also, pages which the original bios are pointing to are not copied
3004 * and the cloned bios just point same pages.
3005 * So cloned bios must be completed before original bios, which means
3006 * the caller must complete @rq before @rq_src.
3007 */
3008int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3009 struct bio_set *bs, gfp_t gfp_mask,
3010 int (*bio_ctr)(struct bio *, struct bio *, void *),
3011 void *data)
3012{
3013 struct bio *bio, *bio_src;
3014
3015 if (!bs)
3016 bs = &fs_bio_set;
3017
3018 __rq_for_each_bio(bio_src, rq_src) {
3019 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3020 if (!bio)
3021 goto free_and_out;
3022
3023 if (bio_ctr && bio_ctr(bio, bio_src, data))
3024 goto free_and_out;
3025
3026 if (rq->bio) {
3027 rq->biotail->bi_next = bio;
3028 rq->biotail = bio;
3029 } else {
3030 rq->bio = rq->biotail = bio;
3031 }
3032 bio = NULL;
3033 }
3034
3035 /* Copy attributes of the original request to the clone request. */
3036 rq->__sector = blk_rq_pos(rq_src);
3037 rq->__data_len = blk_rq_bytes(rq_src);
3038 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3039 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3040 rq->special_vec = rq_src->special_vec;
3041 }
3042 rq->nr_phys_segments = rq_src->nr_phys_segments;
3043 rq->ioprio = rq_src->ioprio;
3044
3045 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3046 goto free_and_out;
3047
3048 return 0;
3049
3050free_and_out:
3051 if (bio)
3052 bio_put(bio);
3053 blk_rq_unprep_clone(rq);
3054
3055 return -ENOMEM;
3056}
3057EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3058
f2b8f3ce
CH
3059/*
3060 * Steal bios from a request and add them to a bio list.
3061 * The request must not have been partially completed before.
3062 */
3063void blk_steal_bios(struct bio_list *list, struct request *rq)
3064{
3065 if (rq->bio) {
3066 if (list->tail)
3067 list->tail->bi_next = rq->bio;
3068 else
3069 list->head = rq->bio;
3070 list->tail = rq->biotail;
3071
3072 rq->bio = NULL;
3073 rq->biotail = NULL;
3074 }
3075
3076 rq->__data_len = 0;
3077}
3078EXPORT_SYMBOL_GPL(blk_steal_bios);
3079
bd63141d
ML
3080static size_t order_to_size(unsigned int order)
3081{
3082 return (size_t)PAGE_SIZE << order;
3083}
3084
3085/* called before freeing request pool in @tags */
f32e4eaf
JG
3086static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3087 struct blk_mq_tags *tags)
bd63141d 3088{
bd63141d
ML
3089 struct page *page;
3090 unsigned long flags;
3091
4f245d5b
JG
3092 /* There is no need to clear a driver tags own mapping */
3093 if (drv_tags == tags)
3094 return;
3095
bd63141d
ML
3096 list_for_each_entry(page, &tags->page_list, lru) {
3097 unsigned long start = (unsigned long)page_address(page);
3098 unsigned long end = start + order_to_size(page->private);
3099 int i;
3100
f32e4eaf 3101 for (i = 0; i < drv_tags->nr_tags; i++) {
bd63141d
ML
3102 struct request *rq = drv_tags->rqs[i];
3103 unsigned long rq_addr = (unsigned long)rq;
3104
3105 if (rq_addr >= start && rq_addr < end) {
3106 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
3107 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3108 }
3109 }
3110 }
3111
3112 /*
3113 * Wait until all pending iteration is done.
3114 *
3115 * Request reference is cleared and it is guaranteed to be observed
3116 * after the ->lock is released.
3117 */
3118 spin_lock_irqsave(&drv_tags->lock, flags);
3119 spin_unlock_irqrestore(&drv_tags->lock, flags);
3120}
3121
cc71a6f4
JA
3122void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3123 unsigned int hctx_idx)
95363efd 3124{
f32e4eaf 3125 struct blk_mq_tags *drv_tags;
e9b267d9 3126 struct page *page;
320ae51f 3127
079a2e3e
JG
3128 if (blk_mq_is_shared_tags(set->flags))
3129 drv_tags = set->shared_tags;
e155b0c2
JG
3130 else
3131 drv_tags = set->tags[hctx_idx];
f32e4eaf 3132
65de57bb 3133 if (tags->static_rqs && set->ops->exit_request) {
e9b267d9 3134 int i;
320ae51f 3135
24d2f903 3136 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
3137 struct request *rq = tags->static_rqs[i];
3138
3139 if (!rq)
e9b267d9 3140 continue;
d6296d39 3141 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 3142 tags->static_rqs[i] = NULL;
e9b267d9 3143 }
320ae51f 3144 }
320ae51f 3145
f32e4eaf 3146 blk_mq_clear_rq_mapping(drv_tags, tags);
bd63141d 3147
24d2f903
CH
3148 while (!list_empty(&tags->page_list)) {
3149 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 3150 list_del_init(&page->lru);
f75782e4
CM
3151 /*
3152 * Remove kmemleak object previously allocated in
273938bf 3153 * blk_mq_alloc_rqs().
f75782e4
CM
3154 */
3155 kmemleak_free(page_address(page));
320ae51f
JA
3156 __free_pages(page, page->private);
3157 }
cc71a6f4 3158}
320ae51f 3159
e155b0c2 3160void blk_mq_free_rq_map(struct blk_mq_tags *tags)
cc71a6f4 3161{
24d2f903 3162 kfree(tags->rqs);
cc71a6f4 3163 tags->rqs = NULL;
2af8cbe3
JA
3164 kfree(tags->static_rqs);
3165 tags->static_rqs = NULL;
320ae51f 3166
e155b0c2 3167 blk_mq_free_tags(tags);
320ae51f
JA
3168}
3169
63064be1
JG
3170static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3171 unsigned int hctx_idx,
3172 unsigned int nr_tags,
e155b0c2 3173 unsigned int reserved_tags)
320ae51f 3174{
24d2f903 3175 struct blk_mq_tags *tags;
59f082e4 3176 int node;
320ae51f 3177
7d76f856 3178 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
59f082e4
SL
3179 if (node == NUMA_NO_NODE)
3180 node = set->numa_node;
3181
e155b0c2
JG
3182 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3183 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
3184 if (!tags)
3185 return NULL;
320ae51f 3186
590b5b7d 3187 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
36e1f3d1 3188 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 3189 node);
24d2f903 3190 if (!tags->rqs) {
e155b0c2 3191 blk_mq_free_tags(tags);
24d2f903
CH
3192 return NULL;
3193 }
320ae51f 3194
590b5b7d
KC
3195 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3196 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3197 node);
2af8cbe3
JA
3198 if (!tags->static_rqs) {
3199 kfree(tags->rqs);
e155b0c2 3200 blk_mq_free_tags(tags);
2af8cbe3
JA
3201 return NULL;
3202 }
3203
cc71a6f4
JA
3204 return tags;
3205}
3206
1d9bd516
TH
3207static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3208 unsigned int hctx_idx, int node)
3209{
3210 int ret;
3211
3212 if (set->ops->init_request) {
3213 ret = set->ops->init_request(set, rq, hctx_idx, node);
3214 if (ret)
3215 return ret;
3216 }
3217
12f5b931 3218 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1d9bd516
TH
3219 return 0;
3220}
3221
63064be1
JG
3222static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3223 struct blk_mq_tags *tags,
3224 unsigned int hctx_idx, unsigned int depth)
cc71a6f4
JA
3225{
3226 unsigned int i, j, entries_per_page, max_order = 4;
3227 size_t rq_size, left;
59f082e4
SL
3228 int node;
3229
7d76f856 3230 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
59f082e4
SL
3231 if (node == NUMA_NO_NODE)
3232 node = set->numa_node;
cc71a6f4
JA
3233
3234 INIT_LIST_HEAD(&tags->page_list);
3235
320ae51f
JA
3236 /*
3237 * rq_size is the size of the request plus driver payload, rounded
3238 * to the cacheline size
3239 */
24d2f903 3240 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 3241 cache_line_size());
cc71a6f4 3242 left = rq_size * depth;
320ae51f 3243
cc71a6f4 3244 for (i = 0; i < depth; ) {
320ae51f
JA
3245 int this_order = max_order;
3246 struct page *page;
3247 int to_do;
3248 void *p;
3249
b3a834b1 3250 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
3251 this_order--;
3252
3253 do {
59f082e4 3254 page = alloc_pages_node(node,
36e1f3d1 3255 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 3256 this_order);
320ae51f
JA
3257 if (page)
3258 break;
3259 if (!this_order--)
3260 break;
3261 if (order_to_size(this_order) < rq_size)
3262 break;
3263 } while (1);
3264
3265 if (!page)
24d2f903 3266 goto fail;
320ae51f
JA
3267
3268 page->private = this_order;
24d2f903 3269 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
3270
3271 p = page_address(page);
f75782e4
CM
3272 /*
3273 * Allow kmemleak to scan these pages as they contain pointers
3274 * to additional allocations like via ops->init_request().
3275 */
36e1f3d1 3276 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 3277 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 3278 to_do = min(entries_per_page, depth - i);
320ae51f
JA
3279 left -= to_do * rq_size;
3280 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
3281 struct request *rq = p;
3282
3283 tags->static_rqs[i] = rq;
1d9bd516
TH
3284 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3285 tags->static_rqs[i] = NULL;
3286 goto fail;
e9b267d9
CH
3287 }
3288
320ae51f
JA
3289 p += rq_size;
3290 i++;
3291 }
3292 }
cc71a6f4 3293 return 0;
320ae51f 3294
24d2f903 3295fail:
cc71a6f4
JA
3296 blk_mq_free_rqs(set, tags, hctx_idx);
3297 return -ENOMEM;
320ae51f
JA
3298}
3299
bf0beec0
ML
3300struct rq_iter_data {
3301 struct blk_mq_hw_ctx *hctx;
3302 bool has_rq;
3303};
3304
3305static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3306{
3307 struct rq_iter_data *iter_data = data;
3308
3309 if (rq->mq_hctx != iter_data->hctx)
3310 return true;
3311 iter_data->has_rq = true;
3312 return false;
3313}
3314
3315static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3316{
3317 struct blk_mq_tags *tags = hctx->sched_tags ?
3318 hctx->sched_tags : hctx->tags;
3319 struct rq_iter_data data = {
3320 .hctx = hctx,
3321 };
3322
3323 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3324 return data.has_rq;
3325}
3326
3327static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3328 struct blk_mq_hw_ctx *hctx)
3329{
3330 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
3331 return false;
3332 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3333 return false;
3334 return true;
3335}
3336
3337static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3338{
3339 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3340 struct blk_mq_hw_ctx, cpuhp_online);
3341
3342 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3343 !blk_mq_last_cpu_in_hctx(cpu, hctx))
3344 return 0;
3345
3346 /*
3347 * Prevent new request from being allocated on the current hctx.
3348 *
3349 * The smp_mb__after_atomic() Pairs with the implied barrier in
3350 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3351 * seen once we return from the tag allocator.
3352 */
3353 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3354 smp_mb__after_atomic();
3355
3356 /*
3357 * Try to grab a reference to the queue and wait for any outstanding
3358 * requests. If we could not grab a reference the queue has been
3359 * frozen and there are no requests.
3360 */
3361 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3362 while (blk_mq_hctx_has_requests(hctx))
3363 msleep(5);
3364 percpu_ref_put(&hctx->queue->q_usage_counter);
3365 }
3366
3367 return 0;
3368}
3369
3370static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3371{
3372 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3373 struct blk_mq_hw_ctx, cpuhp_online);
3374
3375 if (cpumask_test_cpu(cpu, hctx->cpumask))
3376 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3377 return 0;
3378}
3379
e57690fe
JA
3380/*
3381 * 'cpu' is going away. splice any existing rq_list entries from this
3382 * software queue to the hw queue dispatch list, and ensure that it
3383 * gets run.
3384 */
9467f859 3385static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 3386{
9467f859 3387 struct blk_mq_hw_ctx *hctx;
484b4061
JA
3388 struct blk_mq_ctx *ctx;
3389 LIST_HEAD(tmp);
c16d6b5a 3390 enum hctx_type type;
484b4061 3391
9467f859 3392 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
bf0beec0
ML
3393 if (!cpumask_test_cpu(cpu, hctx->cpumask))
3394 return 0;
3395
e57690fe 3396 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
c16d6b5a 3397 type = hctx->type;
484b4061
JA
3398
3399 spin_lock(&ctx->lock);
c16d6b5a
ML
3400 if (!list_empty(&ctx->rq_lists[type])) {
3401 list_splice_init(&ctx->rq_lists[type], &tmp);
484b4061
JA
3402 blk_mq_hctx_clear_pending(hctx, ctx);
3403 }
3404 spin_unlock(&ctx->lock);
3405
3406 if (list_empty(&tmp))
9467f859 3407 return 0;
484b4061 3408
e57690fe
JA
3409 spin_lock(&hctx->lock);
3410 list_splice_tail_init(&tmp, &hctx->dispatch);
3411 spin_unlock(&hctx->lock);
484b4061
JA
3412
3413 blk_mq_run_hw_queue(hctx, true);
9467f859 3414 return 0;
484b4061
JA
3415}
3416
9467f859 3417static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 3418{
bf0beec0
ML
3419 if (!(hctx->flags & BLK_MQ_F_STACKING))
3420 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3421 &hctx->cpuhp_online);
9467f859
TG
3422 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3423 &hctx->cpuhp_dead);
484b4061
JA
3424}
3425
364b6181
ML
3426/*
3427 * Before freeing hw queue, clearing the flush request reference in
3428 * tags->rqs[] for avoiding potential UAF.
3429 */
3430static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3431 unsigned int queue_depth, struct request *flush_rq)
3432{
3433 int i;
3434 unsigned long flags;
3435
3436 /* The hw queue may not be mapped yet */
3437 if (!tags)
3438 return;
3439
3440 WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
3441
3442 for (i = 0; i < queue_depth; i++)
3443 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3444
3445 /*
3446 * Wait until all pending iteration is done.
3447 *
3448 * Request reference is cleared and it is guaranteed to be observed
3449 * after the ->lock is released.
3450 */
3451 spin_lock_irqsave(&tags->lock, flags);
3452 spin_unlock_irqrestore(&tags->lock, flags);
3453}
3454
c3b4afca 3455/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
3456static void blk_mq_exit_hctx(struct request_queue *q,
3457 struct blk_mq_tag_set *set,
3458 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3459{
364b6181
ML
3460 struct request *flush_rq = hctx->fq->flush_rq;
3461
8ab0b7dc
ML
3462 if (blk_mq_hw_queue_mapped(hctx))
3463 blk_mq_tag_idle(hctx);
08e98fc6 3464
364b6181
ML
3465 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3466 set->queue_depth, flush_rq);
f70ced09 3467 if (set->ops->exit_request)
364b6181 3468 set->ops->exit_request(set, flush_rq, hctx_idx);
f70ced09 3469
08e98fc6
ML
3470 if (set->ops->exit_hctx)
3471 set->ops->exit_hctx(hctx, hctx_idx);
3472
9467f859 3473 blk_mq_remove_cpuhp(hctx);
2f8f1336
ML
3474
3475 spin_lock(&q->unused_hctx_lock);
3476 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3477 spin_unlock(&q->unused_hctx_lock);
08e98fc6
ML
3478}
3479
624dbe47
ML
3480static void blk_mq_exit_hw_queues(struct request_queue *q,
3481 struct blk_mq_tag_set *set, int nr_queue)
3482{
3483 struct blk_mq_hw_ctx *hctx;
3484 unsigned int i;
3485
3486 queue_for_each_hw_ctx(q, hctx, i) {
3487 if (i == nr_queue)
3488 break;
477e19de 3489 blk_mq_debugfs_unregister_hctx(hctx);
08e98fc6 3490 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 3491 }
624dbe47
ML
3492}
3493
7c6c5b7c
ML
3494static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
3495{
3496 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
3497
3498 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
3499 __alignof__(struct blk_mq_hw_ctx)) !=
3500 sizeof(struct blk_mq_hw_ctx));
3501
3502 if (tag_set->flags & BLK_MQ_F_BLOCKING)
3503 hw_ctx_size += sizeof(struct srcu_struct);
3504
3505 return hw_ctx_size;
3506}
3507
08e98fc6
ML
3508static int blk_mq_init_hctx(struct request_queue *q,
3509 struct blk_mq_tag_set *set,
3510 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 3511{
7c6c5b7c
ML
3512 hctx->queue_num = hctx_idx;
3513
bf0beec0
ML
3514 if (!(hctx->flags & BLK_MQ_F_STACKING))
3515 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3516 &hctx->cpuhp_online);
7c6c5b7c
ML
3517 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3518
3519 hctx->tags = set->tags[hctx_idx];
3520
3521 if (set->ops->init_hctx &&
3522 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3523 goto unregister_cpu_notifier;
08e98fc6 3524
7c6c5b7c
ML
3525 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3526 hctx->numa_node))
3527 goto exit_hctx;
3528 return 0;
3529
3530 exit_hctx:
3531 if (set->ops->exit_hctx)
3532 set->ops->exit_hctx(hctx, hctx_idx);
3533 unregister_cpu_notifier:
3534 blk_mq_remove_cpuhp(hctx);
3535 return -1;
3536}
3537
3538static struct blk_mq_hw_ctx *
3539blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3540 int node)
3541{
3542 struct blk_mq_hw_ctx *hctx;
3543 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3544
3545 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
3546 if (!hctx)
3547 goto fail_alloc_hctx;
3548
3549 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3550 goto free_hctx;
3551
3552 atomic_set(&hctx->nr_active, 0);
08e98fc6 3553 if (node == NUMA_NO_NODE)
7c6c5b7c
ML
3554 node = set->numa_node;
3555 hctx->numa_node = node;
08e98fc6 3556
9f993737 3557 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
3558 spin_lock_init(&hctx->lock);
3559 INIT_LIST_HEAD(&hctx->dispatch);
3560 hctx->queue = q;
51db1c37 3561 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
08e98fc6 3562
2f8f1336
ML
3563 INIT_LIST_HEAD(&hctx->hctx_list);
3564
320ae51f 3565 /*
08e98fc6
ML
3566 * Allocate space for all possible cpus to avoid allocation at
3567 * runtime
320ae51f 3568 */
d904bfa7 3569 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
7c6c5b7c 3570 gfp, node);
08e98fc6 3571 if (!hctx->ctxs)
7c6c5b7c 3572 goto free_cpumask;
320ae51f 3573
5b202853 3574 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
c548e62b 3575 gfp, node, false, false))
08e98fc6 3576 goto free_ctxs;
08e98fc6 3577 hctx->nr_ctx = 0;
320ae51f 3578
5815839b 3579 spin_lock_init(&hctx->dispatch_wait_lock);
eb619fdb
JA
3580 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3581 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3582
754a1572 3583 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
f70ced09 3584 if (!hctx->fq)
7c6c5b7c 3585 goto free_bitmap;
320ae51f 3586
6a83e74d 3587 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 3588 init_srcu_struct(hctx->srcu);
7c6c5b7c 3589 blk_mq_hctx_kobj_init(hctx);
6a83e74d 3590
7c6c5b7c 3591 return hctx;
320ae51f 3592
08e98fc6 3593 free_bitmap:
88459642 3594 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
3595 free_ctxs:
3596 kfree(hctx->ctxs);
7c6c5b7c
ML
3597 free_cpumask:
3598 free_cpumask_var(hctx->cpumask);
3599 free_hctx:
3600 kfree(hctx);
3601 fail_alloc_hctx:
3602 return NULL;
08e98fc6 3603}
320ae51f 3604
320ae51f
JA
3605static void blk_mq_init_cpu_queues(struct request_queue *q,
3606 unsigned int nr_hw_queues)
3607{
b3c661b1
JA
3608 struct blk_mq_tag_set *set = q->tag_set;
3609 unsigned int i, j;
320ae51f
JA
3610
3611 for_each_possible_cpu(i) {
3612 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3613 struct blk_mq_hw_ctx *hctx;
c16d6b5a 3614 int k;
320ae51f 3615
320ae51f
JA
3616 __ctx->cpu = i;
3617 spin_lock_init(&__ctx->lock);
c16d6b5a
ML
3618 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3619 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3620
320ae51f
JA
3621 __ctx->queue = q;
3622
320ae51f
JA
3623 /*
3624 * Set local node, IFF we have more than one hw queue. If
3625 * not, we remain on the home node of the device
3626 */
b3c661b1
JA
3627 for (j = 0; j < set->nr_maps; j++) {
3628 hctx = blk_mq_map_queue_type(q, j, i);
3629 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
576e85c5 3630 hctx->numa_node = cpu_to_node(i);
b3c661b1 3631 }
320ae51f
JA
3632 }
3633}
3634
63064be1
JG
3635struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3636 unsigned int hctx_idx,
3637 unsigned int depth)
cc71a6f4 3638{
63064be1
JG
3639 struct blk_mq_tags *tags;
3640 int ret;
cc71a6f4 3641
e155b0c2 3642 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
63064be1
JG
3643 if (!tags)
3644 return NULL;
cc71a6f4 3645
63064be1
JG
3646 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3647 if (ret) {
e155b0c2 3648 blk_mq_free_rq_map(tags);
63064be1
JG
3649 return NULL;
3650 }
cc71a6f4 3651
63064be1 3652 return tags;
cc71a6f4
JA
3653}
3654
63064be1
JG
3655static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3656 int hctx_idx)
cc71a6f4 3657{
079a2e3e
JG
3658 if (blk_mq_is_shared_tags(set->flags)) {
3659 set->tags[hctx_idx] = set->shared_tags;
1c0706a7 3660
e155b0c2 3661 return true;
bd166ef1 3662 }
e155b0c2 3663
63064be1
JG
3664 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3665 set->queue_depth);
3666
3667 return set->tags[hctx_idx];
cc71a6f4
JA
3668}
3669
645db34e
JG
3670void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3671 struct blk_mq_tags *tags,
3672 unsigned int hctx_idx)
cc71a6f4 3673{
645db34e
JG
3674 if (tags) {
3675 blk_mq_free_rqs(set, tags, hctx_idx);
e155b0c2 3676 blk_mq_free_rq_map(tags);
bd166ef1 3677 }
cc71a6f4
JA
3678}
3679
e155b0c2
JG
3680static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3681 unsigned int hctx_idx)
3682{
079a2e3e 3683 if (!blk_mq_is_shared_tags(set->flags))
e155b0c2
JG
3684 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3685
3686 set->tags[hctx_idx] = NULL;
cc71a6f4
JA
3687}
3688
4b855ad3 3689static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 3690{
b3c661b1 3691 unsigned int i, j, hctx_idx;
320ae51f
JA
3692 struct blk_mq_hw_ctx *hctx;
3693 struct blk_mq_ctx *ctx;
2a34c087 3694 struct blk_mq_tag_set *set = q->tag_set;
320ae51f
JA
3695
3696 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 3697 cpumask_clear(hctx->cpumask);
320ae51f 3698 hctx->nr_ctx = 0;
d416c92c 3699 hctx->dispatch_from = NULL;
320ae51f
JA
3700 }
3701
3702 /*
4b855ad3 3703 * Map software to hardware queues.
4412efec
ML
3704 *
3705 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 3706 */
20e4d813 3707 for_each_possible_cpu(i) {
4412efec 3708
897bb0c7 3709 ctx = per_cpu_ptr(q->queue_ctx, i);
b3c661b1 3710 for (j = 0; j < set->nr_maps; j++) {
bb94aea1
JW
3711 if (!set->map[j].nr_queues) {
3712 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3713 HCTX_TYPE_DEFAULT, i);
e5edd5f2 3714 continue;
bb94aea1 3715 }
fd689871
ML
3716 hctx_idx = set->map[j].mq_map[i];
3717 /* unmapped hw queue can be remapped after CPU topo changed */
3718 if (!set->tags[hctx_idx] &&
63064be1 3719 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
fd689871
ML
3720 /*
3721 * If tags initialization fail for some hctx,
3722 * that hctx won't be brought online. In this
3723 * case, remap the current ctx to hctx[0] which
3724 * is guaranteed to always have tags allocated
3725 */
3726 set->map[j].mq_map[i] = 0;
3727 }
e5edd5f2 3728
b3c661b1 3729 hctx = blk_mq_map_queue_type(q, j, i);
8ccdf4a3 3730 ctx->hctxs[j] = hctx;
b3c661b1
JA
3731 /*
3732 * If the CPU is already set in the mask, then we've
3733 * mapped this one already. This can happen if
3734 * devices share queues across queue maps.
3735 */
3736 if (cpumask_test_cpu(i, hctx->cpumask))
3737 continue;
3738
3739 cpumask_set_cpu(i, hctx->cpumask);
3740 hctx->type = j;
3741 ctx->index_hw[hctx->type] = hctx->nr_ctx;
3742 hctx->ctxs[hctx->nr_ctx++] = ctx;
3743
3744 /*
3745 * If the nr_ctx type overflows, we have exceeded the
3746 * amount of sw queues we can support.
3747 */
3748 BUG_ON(!hctx->nr_ctx);
3749 }
bb94aea1
JW
3750
3751 for (; j < HCTX_MAX_TYPES; j++)
3752 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3753 HCTX_TYPE_DEFAULT, i);
320ae51f 3754 }
506e931f
JA
3755
3756 queue_for_each_hw_ctx(q, hctx, i) {
4412efec
ML
3757 /*
3758 * If no software queues are mapped to this hardware queue,
3759 * disable it and free the request entries.
3760 */
3761 if (!hctx->nr_ctx) {
3762 /* Never unmap queue 0. We need it as a
3763 * fallback in case of a new remap fails
3764 * allocation
3765 */
e155b0c2
JG
3766 if (i)
3767 __blk_mq_free_map_and_rqs(set, i);
4412efec
ML
3768
3769 hctx->tags = NULL;
3770 continue;
3771 }
484b4061 3772
2a34c087
ML
3773 hctx->tags = set->tags[i];
3774 WARN_ON(!hctx->tags);
3775
889fa31f
CY
3776 /*
3777 * Set the map size to the number of mapped software queues.
3778 * This is more accurate and more efficient than looping
3779 * over all possibly mapped software queues.
3780 */
88459642 3781 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 3782
484b4061
JA
3783 /*
3784 * Initialize batch roundrobin counts
3785 */
f82ddf19 3786 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
3787 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3788 }
320ae51f
JA
3789}
3790
8e8320c9
JA
3791/*
3792 * Caller needs to ensure that we're either frozen/quiesced, or that
3793 * the queue isn't live yet.
3794 */
2404e607 3795static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
3796{
3797 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
3798 int i;
3799
2404e607 3800 queue_for_each_hw_ctx(q, hctx, i) {
454bb677 3801 if (shared) {
51db1c37 3802 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
454bb677
YK
3803 } else {
3804 blk_mq_tag_idle(hctx);
51db1c37 3805 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
454bb677 3806 }
2404e607
JM
3807 }
3808}
3809
655ac300
HR
3810static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3811 bool shared)
2404e607
JM
3812{
3813 struct request_queue *q;
0d2602ca 3814
705cda97
BVA
3815 lockdep_assert_held(&set->tag_list_lock);
3816
0d2602ca
JA
3817 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3818 blk_mq_freeze_queue(q);
2404e607 3819 queue_set_hctx_shared(q, shared);
0d2602ca
JA
3820 blk_mq_unfreeze_queue(q);
3821 }
3822}
3823
3824static void blk_mq_del_queue_tag_set(struct request_queue *q)
3825{
3826 struct blk_mq_tag_set *set = q->tag_set;
3827
0d2602ca 3828 mutex_lock(&set->tag_list_lock);
08c875cb 3829 list_del(&q->tag_set_list);
2404e607
JM
3830 if (list_is_singular(&set->tag_list)) {
3831 /* just transitioned to unshared */
51db1c37 3832 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2404e607 3833 /* update existing queue */
655ac300 3834 blk_mq_update_tag_set_shared(set, false);
2404e607 3835 }
0d2602ca 3836 mutex_unlock(&set->tag_list_lock);
a347c7ad 3837 INIT_LIST_HEAD(&q->tag_set_list);
0d2602ca
JA
3838}
3839
3840static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3841 struct request_queue *q)
3842{
0d2602ca 3843 mutex_lock(&set->tag_list_lock);
2404e607 3844
ff821d27
JA
3845 /*
3846 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3847 */
3848 if (!list_empty(&set->tag_list) &&
51db1c37
ML
3849 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3850 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2404e607 3851 /* update existing queue */
655ac300 3852 blk_mq_update_tag_set_shared(set, true);
2404e607 3853 }
51db1c37 3854 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2404e607 3855 queue_set_hctx_shared(q, true);
08c875cb 3856 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 3857
0d2602ca
JA
3858 mutex_unlock(&set->tag_list_lock);
3859}
3860
1db4909e
ML
3861/* All allocations will be freed in release handler of q->mq_kobj */
3862static int blk_mq_alloc_ctxs(struct request_queue *q)
3863{
3864 struct blk_mq_ctxs *ctxs;
3865 int cpu;
3866
3867 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3868 if (!ctxs)
3869 return -ENOMEM;
3870
3871 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3872 if (!ctxs->queue_ctx)
3873 goto fail;
3874
3875 for_each_possible_cpu(cpu) {
3876 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3877 ctx->ctxs = ctxs;
3878 }
3879
3880 q->mq_kobj = &ctxs->kobj;
3881 q->queue_ctx = ctxs->queue_ctx;
3882
3883 return 0;
3884 fail:
3885 kfree(ctxs);
3886 return -ENOMEM;
3887}
3888
e09aae7e
ML
3889/*
3890 * It is the actual release handler for mq, but we do it from
3891 * request queue's release handler for avoiding use-after-free
3892 * and headache because q->mq_kobj shouldn't have been introduced,
3893 * but we can't group ctx/kctx kobj without it.
3894 */
3895void blk_mq_release(struct request_queue *q)
3896{
2f8f1336
ML
3897 struct blk_mq_hw_ctx *hctx, *next;
3898 int i;
e09aae7e 3899
2f8f1336
ML
3900 queue_for_each_hw_ctx(q, hctx, i)
3901 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3902
3903 /* all hctx are in .unused_hctx_list now */
3904 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3905 list_del_init(&hctx->hctx_list);
6c8b232e 3906 kobject_put(&hctx->kobj);
c3b4afca 3907 }
e09aae7e
ML
3908
3909 kfree(q->queue_hw_ctx);
3910
7ea5fe31
ML
3911 /*
3912 * release .mq_kobj and sw queue's kobject now because
3913 * both share lifetime with request queue.
3914 */
3915 blk_mq_sysfs_deinit(q);
e09aae7e
ML
3916}
3917
5ec780a6 3918static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
2f227bb9 3919 void *queuedata)
b62c21b7 3920{
26a9750a
CH
3921 struct request_queue *q;
3922 int ret;
b62c21b7 3923
26a9750a
CH
3924 q = blk_alloc_queue(set->numa_node);
3925 if (!q)
b62c21b7 3926 return ERR_PTR(-ENOMEM);
26a9750a
CH
3927 q->queuedata = queuedata;
3928 ret = blk_mq_init_allocated_queue(set, q);
3929 if (ret) {
3930 blk_cleanup_queue(q);
3931 return ERR_PTR(ret);
3932 }
b62c21b7
MS
3933 return q;
3934}
2f227bb9
CH
3935
3936struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3937{
3938 return blk_mq_init_queue_data(set, NULL);
3939}
b62c21b7
MS
3940EXPORT_SYMBOL(blk_mq_init_queue);
3941
4dcc4874
CH
3942struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3943 struct lock_class_key *lkclass)
9316a9ed
JA
3944{
3945 struct request_queue *q;
b461dfc4 3946 struct gendisk *disk;
9316a9ed 3947
b461dfc4
CH
3948 q = blk_mq_init_queue_data(set, queuedata);
3949 if (IS_ERR(q))
3950 return ERR_CAST(q);
9316a9ed 3951
4a1fa41d 3952 disk = __alloc_disk_node(q, set->numa_node, lkclass);
b461dfc4
CH
3953 if (!disk) {
3954 blk_cleanup_queue(q);
3955 return ERR_PTR(-ENOMEM);
9316a9ed 3956 }
b461dfc4 3957 return disk;
9316a9ed 3958}
b461dfc4 3959EXPORT_SYMBOL(__blk_mq_alloc_disk);
9316a9ed 3960
34d11ffa
JW
3961static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3962 struct blk_mq_tag_set *set, struct request_queue *q,
3963 int hctx_idx, int node)
3964{
2f8f1336 3965 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
34d11ffa 3966
2f8f1336
ML
3967 /* reuse dead hctx first */
3968 spin_lock(&q->unused_hctx_lock);
3969 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3970 if (tmp->numa_node == node) {
3971 hctx = tmp;
3972 break;
3973 }
3974 }
3975 if (hctx)
3976 list_del_init(&hctx->hctx_list);
3977 spin_unlock(&q->unused_hctx_lock);
3978
3979 if (!hctx)
3980 hctx = blk_mq_alloc_hctx(q, set, node);
34d11ffa 3981 if (!hctx)
7c6c5b7c 3982 goto fail;
34d11ffa 3983
7c6c5b7c
ML
3984 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3985 goto free_hctx;
34d11ffa
JW
3986
3987 return hctx;
7c6c5b7c
ML
3988
3989 free_hctx:
3990 kobject_put(&hctx->kobj);
3991 fail:
3992 return NULL;
34d11ffa
JW
3993}
3994
868f2f0b
KB
3995static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3996 struct request_queue *q)
320ae51f 3997{
e01ad46d 3998 int i, j, end;
868f2f0b 3999 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 4000
ac0d6b92
BVA
4001 if (q->nr_hw_queues < set->nr_hw_queues) {
4002 struct blk_mq_hw_ctx **new_hctxs;
4003
4004 new_hctxs = kcalloc_node(set->nr_hw_queues,
4005 sizeof(*new_hctxs), GFP_KERNEL,
4006 set->numa_node);
4007 if (!new_hctxs)
4008 return;
4009 if (hctxs)
4010 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
4011 sizeof(*hctxs));
4012 q->queue_hw_ctx = new_hctxs;
ac0d6b92
BVA
4013 kfree(hctxs);
4014 hctxs = new_hctxs;
4015 }
4016
fb350e0a
ML
4017 /* protect against switching io scheduler */
4018 mutex_lock(&q->sysfs_lock);
24d2f903 4019 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 4020 int node;
34d11ffa 4021 struct blk_mq_hw_ctx *hctx;
868f2f0b 4022
7d76f856 4023 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
34d11ffa
JW
4024 /*
4025 * If the hw queue has been mapped to another numa node,
4026 * we need to realloc the hctx. If allocation fails, fallback
4027 * to use the previous one.
4028 */
4029 if (hctxs[i] && (hctxs[i]->numa_node == node))
4030 continue;
868f2f0b 4031
34d11ffa
JW
4032 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
4033 if (hctx) {
2f8f1336 4034 if (hctxs[i])
34d11ffa 4035 blk_mq_exit_hctx(q, set, hctxs[i], i);
34d11ffa
JW
4036 hctxs[i] = hctx;
4037 } else {
4038 if (hctxs[i])
4039 pr_warn("Allocate new hctx on node %d fails,\
4040 fallback to previous one on node %d\n",
4041 node, hctxs[i]->numa_node);
4042 else
4043 break;
868f2f0b 4044 }
320ae51f 4045 }
e01ad46d
JW
4046 /*
4047 * Increasing nr_hw_queues fails. Free the newly allocated
4048 * hctxs and keep the previous q->nr_hw_queues.
4049 */
4050 if (i != set->nr_hw_queues) {
4051 j = q->nr_hw_queues;
4052 end = i;
4053 } else {
4054 j = i;
4055 end = q->nr_hw_queues;
4056 q->nr_hw_queues = set->nr_hw_queues;
4057 }
34d11ffa 4058
e01ad46d 4059 for (; j < end; j++) {
868f2f0b
KB
4060 struct blk_mq_hw_ctx *hctx = hctxs[j];
4061
4062 if (hctx) {
868f2f0b 4063 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 4064 hctxs[j] = NULL;
868f2f0b
KB
4065 }
4066 }
fb350e0a 4067 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
4068}
4069
26a9750a
CH
4070int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4071 struct request_queue *q)
868f2f0b 4072{
66841672
ML
4073 /* mark the queue as mq asap */
4074 q->mq_ops = set->ops;
4075
34dbad5d 4076 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
4077 blk_mq_poll_stats_bkt,
4078 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
4079 if (!q->poll_cb)
4080 goto err_exit;
4081
1db4909e 4082 if (blk_mq_alloc_ctxs(q))
41de54c6 4083 goto err_poll;
868f2f0b 4084
737f98cf
ML
4085 /* init q->mq_kobj and sw queues' kobjects */
4086 blk_mq_sysfs_init(q);
4087
2f8f1336
ML
4088 INIT_LIST_HEAD(&q->unused_hctx_list);
4089 spin_lock_init(&q->unused_hctx_lock);
4090
868f2f0b
KB
4091 blk_mq_realloc_hw_ctxs(set, q);
4092 if (!q->nr_hw_queues)
4093 goto err_hctxs;
320ae51f 4094
287922eb 4095 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 4096 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f 4097
a8908939 4098 q->tag_set = set;
320ae51f 4099
94eddfbe 4100 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
cd19181b
ML
4101 if (set->nr_maps > HCTX_TYPE_POLL &&
4102 set->map[HCTX_TYPE_POLL].nr_queues)
6544d229 4103 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
320ae51f 4104
2849450a 4105 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
4106 INIT_LIST_HEAD(&q->requeue_list);
4107 spin_lock_init(&q->requeue_lock);
4108
eba71768
JA
4109 q->nr_requests = set->queue_depth;
4110
64f1c21e
JA
4111 /*
4112 * Default to classic polling
4113 */
29ece8b4 4114 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
64f1c21e 4115
24d2f903 4116 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 4117 blk_mq_add_queue_tag_set(set, q);
4b855ad3 4118 blk_mq_map_swqueue(q);
26a9750a 4119 return 0;
18741986 4120
320ae51f 4121err_hctxs:
868f2f0b 4122 kfree(q->queue_hw_ctx);
73d9c8d4 4123 q->nr_hw_queues = 0;
1db4909e 4124 blk_mq_sysfs_deinit(q);
41de54c6
JS
4125err_poll:
4126 blk_stat_free_callback(q->poll_cb);
4127 q->poll_cb = NULL;
c7de5726
ML
4128err_exit:
4129 q->mq_ops = NULL;
26a9750a 4130 return -ENOMEM;
320ae51f 4131}
b62c21b7 4132EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f 4133
c7e2d94b
ML
4134/* tags can _not_ be used after returning from blk_mq_exit_queue */
4135void blk_mq_exit_queue(struct request_queue *q)
320ae51f 4136{
630ef623 4137 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 4138
630ef623 4139 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
624dbe47 4140 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
630ef623
BVA
4141 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4142 blk_mq_del_queue_tag_set(q);
320ae51f 4143}
320ae51f 4144
a5164405
JA
4145static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4146{
4147 int i;
4148
079a2e3e
JG
4149 if (blk_mq_is_shared_tags(set->flags)) {
4150 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
e155b0c2
JG
4151 BLK_MQ_NO_HCTX_IDX,
4152 set->queue_depth);
079a2e3e 4153 if (!set->shared_tags)
e155b0c2
JG
4154 return -ENOMEM;
4155 }
4156
8229cca8 4157 for (i = 0; i < set->nr_hw_queues; i++) {
63064be1 4158 if (!__blk_mq_alloc_map_and_rqs(set, i))
a5164405 4159 goto out_unwind;
8229cca8
XT
4160 cond_resched();
4161 }
a5164405
JA
4162
4163 return 0;
4164
4165out_unwind:
4166 while (--i >= 0)
e155b0c2
JG
4167 __blk_mq_free_map_and_rqs(set, i);
4168
079a2e3e
JG
4169 if (blk_mq_is_shared_tags(set->flags)) {
4170 blk_mq_free_map_and_rqs(set, set->shared_tags,
e155b0c2 4171 BLK_MQ_NO_HCTX_IDX);
645db34e 4172 }
a5164405 4173
a5164405
JA
4174 return -ENOMEM;
4175}
4176
4177/*
4178 * Allocate the request maps associated with this tag_set. Note that this
4179 * may reduce the depth asked for, if memory is tight. set->queue_depth
4180 * will be updated to reflect the allocated depth.
4181 */
63064be1 4182static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
a5164405
JA
4183{
4184 unsigned int depth;
4185 int err;
4186
4187 depth = set->queue_depth;
4188 do {
4189 err = __blk_mq_alloc_rq_maps(set);
4190 if (!err)
4191 break;
4192
4193 set->queue_depth >>= 1;
4194 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4195 err = -ENOMEM;
4196 break;
4197 }
4198 } while (set->queue_depth);
4199
4200 if (!set->queue_depth || err) {
4201 pr_err("blk-mq: failed to allocate request map\n");
4202 return -ENOMEM;
4203 }
4204
4205 if (depth != set->queue_depth)
4206 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4207 depth, set->queue_depth);
4208
4209 return 0;
4210}
4211
ebe8bddb
OS
4212static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4213{
6e66b493
BVA
4214 /*
4215 * blk_mq_map_queues() and multiple .map_queues() implementations
4216 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4217 * number of hardware queues.
4218 */
4219 if (set->nr_maps == 1)
4220 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4221
59388702 4222 if (set->ops->map_queues && !is_kdump_kernel()) {
b3c661b1
JA
4223 int i;
4224
7d4901a9
ML
4225 /*
4226 * transport .map_queues is usually done in the following
4227 * way:
4228 *
4229 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4230 * mask = get_cpu_mask(queue)
4231 * for_each_cpu(cpu, mask)
b3c661b1 4232 * set->map[x].mq_map[cpu] = queue;
7d4901a9
ML
4233 * }
4234 *
4235 * When we need to remap, the table has to be cleared for
4236 * killing stale mapping since one CPU may not be mapped
4237 * to any hw queue.
4238 */
b3c661b1
JA
4239 for (i = 0; i < set->nr_maps; i++)
4240 blk_mq_clear_mq_map(&set->map[i]);
7d4901a9 4241
ebe8bddb 4242 return set->ops->map_queues(set);
b3c661b1
JA
4243 } else {
4244 BUG_ON(set->nr_maps > 1);
7d76f856 4245 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
b3c661b1 4246 }
ebe8bddb
OS
4247}
4248
f7e76dbc
BVA
4249static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4250 int cur_nr_hw_queues, int new_nr_hw_queues)
4251{
4252 struct blk_mq_tags **new_tags;
4253
4254 if (cur_nr_hw_queues >= new_nr_hw_queues)
4255 return 0;
4256
4257 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4258 GFP_KERNEL, set->numa_node);
4259 if (!new_tags)
4260 return -ENOMEM;
4261
4262 if (set->tags)
4263 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4264 sizeof(*set->tags));
4265 kfree(set->tags);
4266 set->tags = new_tags;
4267 set->nr_hw_queues = new_nr_hw_queues;
4268
4269 return 0;
4270}
4271
91cdf265
MI
4272static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4273 int new_nr_hw_queues)
4274{
4275 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4276}
4277
a4391c64
JA
4278/*
4279 * Alloc a tag set to be associated with one or more request queues.
4280 * May fail with EINVAL for various error conditions. May adjust the
c018c84f 4281 * requested depth down, if it's too large. In that case, the set
a4391c64
JA
4282 * value will be stored in set->queue_depth.
4283 */
24d2f903
CH
4284int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4285{
b3c661b1 4286 int i, ret;
da695ba2 4287
205fb5f5
BVA
4288 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4289
24d2f903
CH
4290 if (!set->nr_hw_queues)
4291 return -EINVAL;
a4391c64 4292 if (!set->queue_depth)
24d2f903
CH
4293 return -EINVAL;
4294 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4295 return -EINVAL;
4296
7d7e0f90 4297 if (!set->ops->queue_rq)
24d2f903
CH
4298 return -EINVAL;
4299
de148297
ML
4300 if (!set->ops->get_budget ^ !set->ops->put_budget)
4301 return -EINVAL;
4302
a4391c64
JA
4303 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4304 pr_info("blk-mq: reduced tag depth to %u\n",
4305 BLK_MQ_MAX_DEPTH);
4306 set->queue_depth = BLK_MQ_MAX_DEPTH;
4307 }
24d2f903 4308
b3c661b1
JA
4309 if (!set->nr_maps)
4310 set->nr_maps = 1;
4311 else if (set->nr_maps > HCTX_MAX_TYPES)
4312 return -EINVAL;
4313
6637fadf
SL
4314 /*
4315 * If a crashdump is active, then we are potentially in a very
4316 * memory constrained environment. Limit us to 1 queue and
4317 * 64 tags to prevent using too much memory.
4318 */
4319 if (is_kdump_kernel()) {
4320 set->nr_hw_queues = 1;
59388702 4321 set->nr_maps = 1;
6637fadf
SL
4322 set->queue_depth = min(64U, set->queue_depth);
4323 }
868f2f0b 4324 /*
392546ae
JA
4325 * There is no use for more h/w queues than cpus if we just have
4326 * a single map
868f2f0b 4327 */
392546ae 4328 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
868f2f0b 4329 set->nr_hw_queues = nr_cpu_ids;
6637fadf 4330
91cdf265 4331 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
a5164405 4332 return -ENOMEM;
24d2f903 4333
da695ba2 4334 ret = -ENOMEM;
b3c661b1
JA
4335 for (i = 0; i < set->nr_maps; i++) {
4336 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
07b35eb5 4337 sizeof(set->map[i].mq_map[0]),
b3c661b1
JA
4338 GFP_KERNEL, set->numa_node);
4339 if (!set->map[i].mq_map)
4340 goto out_free_mq_map;
59388702 4341 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
b3c661b1 4342 }
bdd17e75 4343
ebe8bddb 4344 ret = blk_mq_update_queue_map(set);
da695ba2
CH
4345 if (ret)
4346 goto out_free_mq_map;
4347
63064be1 4348 ret = blk_mq_alloc_set_map_and_rqs(set);
da695ba2 4349 if (ret)
bdd17e75 4350 goto out_free_mq_map;
24d2f903 4351
0d2602ca
JA
4352 mutex_init(&set->tag_list_lock);
4353 INIT_LIST_HEAD(&set->tag_list);
4354
24d2f903 4355 return 0;
bdd17e75
CH
4356
4357out_free_mq_map:
b3c661b1
JA
4358 for (i = 0; i < set->nr_maps; i++) {
4359 kfree(set->map[i].mq_map);
4360 set->map[i].mq_map = NULL;
4361 }
5676e7b6
RE
4362 kfree(set->tags);
4363 set->tags = NULL;
da695ba2 4364 return ret;
24d2f903
CH
4365}
4366EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4367
cdb14e0f
CH
4368/* allocate and initialize a tagset for a simple single-queue device */
4369int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4370 const struct blk_mq_ops *ops, unsigned int queue_depth,
4371 unsigned int set_flags)
4372{
4373 memset(set, 0, sizeof(*set));
4374 set->ops = ops;
4375 set->nr_hw_queues = 1;
4376 set->nr_maps = 1;
4377 set->queue_depth = queue_depth;
4378 set->numa_node = NUMA_NO_NODE;
4379 set->flags = set_flags;
4380 return blk_mq_alloc_tag_set(set);
4381}
4382EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4383
24d2f903
CH
4384void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4385{
b3c661b1 4386 int i, j;
24d2f903 4387
f7e76dbc 4388 for (i = 0; i < set->nr_hw_queues; i++)
e155b0c2 4389 __blk_mq_free_map_and_rqs(set, i);
484b4061 4390
079a2e3e
JG
4391 if (blk_mq_is_shared_tags(set->flags)) {
4392 blk_mq_free_map_and_rqs(set, set->shared_tags,
e155b0c2
JG
4393 BLK_MQ_NO_HCTX_IDX);
4394 }
32bc15af 4395
b3c661b1
JA
4396 for (j = 0; j < set->nr_maps; j++) {
4397 kfree(set->map[j].mq_map);
4398 set->map[j].mq_map = NULL;
4399 }
bdd17e75 4400
981bd189 4401 kfree(set->tags);
5676e7b6 4402 set->tags = NULL;
24d2f903
CH
4403}
4404EXPORT_SYMBOL(blk_mq_free_tag_set);
4405
e3a2b3f9
JA
4406int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4407{
4408 struct blk_mq_tag_set *set = q->tag_set;
4409 struct blk_mq_hw_ctx *hctx;
4410 int i, ret;
4411
bd166ef1 4412 if (!set)
e3a2b3f9
JA
4413 return -EINVAL;
4414
e5fa8140
AZ
4415 if (q->nr_requests == nr)
4416 return 0;
4417
70f36b60 4418 blk_mq_freeze_queue(q);
24f5a90f 4419 blk_mq_quiesce_queue(q);
70f36b60 4420
e3a2b3f9
JA
4421 ret = 0;
4422 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
4423 if (!hctx->tags)
4424 continue;
bd166ef1
JA
4425 /*
4426 * If we're using an MQ scheduler, just update the scheduler
4427 * queue depth. This is similar to what the old code would do.
4428 */
f6adcef5 4429 if (hctx->sched_tags) {
70f36b60 4430 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
f6adcef5 4431 nr, true);
f6adcef5
JG
4432 } else {
4433 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4434 false);
70f36b60 4435 }
e3a2b3f9
JA
4436 if (ret)
4437 break;
77f1e0a5
JA
4438 if (q->elevator && q->elevator->type->ops.depth_updated)
4439 q->elevator->type->ops.depth_updated(hctx);
e3a2b3f9 4440 }
d97e594c 4441 if (!ret) {
e3a2b3f9 4442 q->nr_requests = nr;
079a2e3e 4443 if (blk_mq_is_shared_tags(set->flags)) {
8fa04464 4444 if (q->elevator)
079a2e3e 4445 blk_mq_tag_update_sched_shared_tags(q);
8fa04464 4446 else
079a2e3e 4447 blk_mq_tag_resize_shared_tags(set, nr);
8fa04464 4448 }
d97e594c 4449 }
e3a2b3f9 4450
24f5a90f 4451 blk_mq_unquiesce_queue(q);
70f36b60 4452 blk_mq_unfreeze_queue(q);
70f36b60 4453
e3a2b3f9
JA
4454 return ret;
4455}
4456
d48ece20
JW
4457/*
4458 * request_queue and elevator_type pair.
4459 * It is just used by __blk_mq_update_nr_hw_queues to cache
4460 * the elevator_type associated with a request_queue.
4461 */
4462struct blk_mq_qe_pair {
4463 struct list_head node;
4464 struct request_queue *q;
4465 struct elevator_type *type;
4466};
4467
4468/*
4469 * Cache the elevator_type in qe pair list and switch the
4470 * io scheduler to 'none'
4471 */
4472static bool blk_mq_elv_switch_none(struct list_head *head,
4473 struct request_queue *q)
4474{
4475 struct blk_mq_qe_pair *qe;
4476
4477 if (!q->elevator)
4478 return true;
4479
4480 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4481 if (!qe)
4482 return false;
4483
4484 INIT_LIST_HEAD(&qe->node);
4485 qe->q = q;
4486 qe->type = q->elevator->type;
4487 list_add(&qe->node, head);
4488
4489 mutex_lock(&q->sysfs_lock);
4490 /*
4491 * After elevator_switch_mq, the previous elevator_queue will be
4492 * released by elevator_release. The reference of the io scheduler
4493 * module get by elevator_get will also be put. So we need to get
4494 * a reference of the io scheduler module here to prevent it to be
4495 * removed.
4496 */
4497 __module_get(qe->type->elevator_owner);
4498 elevator_switch_mq(q, NULL);
4499 mutex_unlock(&q->sysfs_lock);
4500
4501 return true;
4502}
4503
4504static void blk_mq_elv_switch_back(struct list_head *head,
4505 struct request_queue *q)
4506{
4507 struct blk_mq_qe_pair *qe;
4508 struct elevator_type *t = NULL;
4509
4510 list_for_each_entry(qe, head, node)
4511 if (qe->q == q) {
4512 t = qe->type;
4513 break;
4514 }
4515
4516 if (!t)
4517 return;
4518
4519 list_del(&qe->node);
4520 kfree(qe);
4521
4522 mutex_lock(&q->sysfs_lock);
4523 elevator_switch_mq(q, t);
4524 mutex_unlock(&q->sysfs_lock);
4525}
4526
e4dc2b32
KB
4527static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4528 int nr_hw_queues)
868f2f0b
KB
4529{
4530 struct request_queue *q;
d48ece20 4531 LIST_HEAD(head);
e01ad46d 4532 int prev_nr_hw_queues;
868f2f0b 4533
705cda97
BVA
4534 lockdep_assert_held(&set->tag_list_lock);
4535
392546ae 4536 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
868f2f0b 4537 nr_hw_queues = nr_cpu_ids;
fe35ec58
WZ
4538 if (nr_hw_queues < 1)
4539 return;
4540 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
868f2f0b
KB
4541 return;
4542
4543 list_for_each_entry(q, &set->tag_list, tag_set_list)
4544 blk_mq_freeze_queue(q);
d48ece20
JW
4545 /*
4546 * Switch IO scheduler to 'none', cleaning up the data associated
4547 * with the previous scheduler. We will switch back once we are done
4548 * updating the new sw to hw queue mappings.
4549 */
4550 list_for_each_entry(q, &set->tag_list, tag_set_list)
4551 if (!blk_mq_elv_switch_none(&head, q))
4552 goto switch_back;
868f2f0b 4553
477e19de
JW
4554 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4555 blk_mq_debugfs_unregister_hctxs(q);
4556 blk_mq_sysfs_unregister(q);
4557 }
4558
a2584e43 4559 prev_nr_hw_queues = set->nr_hw_queues;
f7e76dbc
BVA
4560 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4561 0)
4562 goto reregister;
4563
868f2f0b 4564 set->nr_hw_queues = nr_hw_queues;
e01ad46d 4565fallback:
aa880ad6 4566 blk_mq_update_queue_map(set);
868f2f0b
KB
4567 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4568 blk_mq_realloc_hw_ctxs(set, q);
e01ad46d 4569 if (q->nr_hw_queues != set->nr_hw_queues) {
a846a8e6
YB
4570 int i = prev_nr_hw_queues;
4571
e01ad46d
JW
4572 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4573 nr_hw_queues, prev_nr_hw_queues);
a846a8e6
YB
4574 for (; i < set->nr_hw_queues; i++)
4575 __blk_mq_free_map_and_rqs(set, i);
4576
e01ad46d 4577 set->nr_hw_queues = prev_nr_hw_queues;
7d76f856 4578 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
e01ad46d
JW
4579 goto fallback;
4580 }
477e19de
JW
4581 blk_mq_map_swqueue(q);
4582 }
4583
f7e76dbc 4584reregister:
477e19de
JW
4585 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4586 blk_mq_sysfs_register(q);
4587 blk_mq_debugfs_register_hctxs(q);
868f2f0b
KB
4588 }
4589
d48ece20
JW
4590switch_back:
4591 list_for_each_entry(q, &set->tag_list, tag_set_list)
4592 blk_mq_elv_switch_back(&head, q);
4593
868f2f0b
KB
4594 list_for_each_entry(q, &set->tag_list, tag_set_list)
4595 blk_mq_unfreeze_queue(q);
4596}
e4dc2b32
KB
4597
4598void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4599{
4600 mutex_lock(&set->tag_list_lock);
4601 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4602 mutex_unlock(&set->tag_list_lock);
4603}
868f2f0b
KB
4604EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4605
34dbad5d
OS
4606/* Enable polling stats and return whether they were already enabled. */
4607static bool blk_poll_stats_enable(struct request_queue *q)
4608{
4609 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
7dfdbc73 4610 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
34dbad5d
OS
4611 return true;
4612 blk_stat_add_callback(q, q->poll_cb);
4613 return false;
4614}
4615
4616static void blk_mq_poll_stats_start(struct request_queue *q)
4617{
4618 /*
4619 * We don't arm the callback if polling stats are not enabled or the
4620 * callback is already active.
4621 */
4622 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
4623 blk_stat_is_active(q->poll_cb))
4624 return;
4625
4626 blk_stat_activate_msecs(q->poll_cb, 100);
4627}
4628
4629static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4630{
4631 struct request_queue *q = cb->data;
720b8ccc 4632 int bucket;
34dbad5d 4633
720b8ccc
SB
4634 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4635 if (cb->stat[bucket].nr_samples)
4636 q->poll_stat[bucket] = cb->stat[bucket];
4637 }
34dbad5d
OS
4638}
4639
64f1c21e 4640static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
64f1c21e
JA
4641 struct request *rq)
4642{
64f1c21e 4643 unsigned long ret = 0;
720b8ccc 4644 int bucket;
64f1c21e
JA
4645
4646 /*
4647 * If stats collection isn't on, don't sleep but turn it on for
4648 * future users
4649 */
34dbad5d 4650 if (!blk_poll_stats_enable(q))
64f1c21e
JA
4651 return 0;
4652
64f1c21e
JA
4653 /*
4654 * As an optimistic guess, use half of the mean service time
4655 * for this type of request. We can (and should) make this smarter.
4656 * For instance, if the completion latencies are tight, we can
4657 * get closer than just half the mean. This is especially
4658 * important on devices where the completion latencies are longer
720b8ccc
SB
4659 * than ~10 usec. We do use the stats for the relevant IO size
4660 * if available which does lead to better estimates.
64f1c21e 4661 */
720b8ccc
SB
4662 bucket = blk_mq_poll_stats_bkt(rq);
4663 if (bucket < 0)
4664 return ret;
4665
4666 if (q->poll_stat[bucket].nr_samples)
4667 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
4668
4669 return ret;
4670}
4671
c6699d6f 4672static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
06426adf 4673{
c6699d6f
CH
4674 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4675 struct request *rq = blk_qc_to_rq(hctx, qc);
06426adf
JA
4676 struct hrtimer_sleeper hs;
4677 enum hrtimer_mode mode;
64f1c21e 4678 unsigned int nsecs;
06426adf
JA
4679 ktime_t kt;
4680
c6699d6f
CH
4681 /*
4682 * If a request has completed on queue that uses an I/O scheduler, we
4683 * won't get back a request from blk_qc_to_rq.
4684 */
4685 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
64f1c21e
JA
4686 return false;
4687
4688 /*
1052b8ac 4689 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
64f1c21e 4690 *
64f1c21e
JA
4691 * 0: use half of prev avg
4692 * >0: use this specific value
4693 */
1052b8ac 4694 if (q->poll_nsec > 0)
64f1c21e
JA
4695 nsecs = q->poll_nsec;
4696 else
cae740a0 4697 nsecs = blk_mq_poll_nsecs(q, rq);
64f1c21e
JA
4698
4699 if (!nsecs)
06426adf
JA
4700 return false;
4701
76a86f9d 4702 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
06426adf
JA
4703
4704 /*
4705 * This will be replaced with the stats tracking code, using
4706 * 'avg_completion_time / 2' as the pre-sleep target.
4707 */
8b0e1953 4708 kt = nsecs;
06426adf
JA
4709
4710 mode = HRTIMER_MODE_REL;
dbc1625f 4711 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
06426adf
JA
4712 hrtimer_set_expires(&hs.timer, kt);
4713
06426adf 4714 do {
5a61c363 4715 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
06426adf
JA
4716 break;
4717 set_current_state(TASK_UNINTERRUPTIBLE);
9dd8813e 4718 hrtimer_sleeper_start_expires(&hs, mode);
06426adf
JA
4719 if (hs.task)
4720 io_schedule();
4721 hrtimer_cancel(&hs.timer);
4722 mode = HRTIMER_MODE_ABS;
4723 } while (hs.task && !signal_pending(current));
4724
4725 __set_current_state(TASK_RUNNING);
4726 destroy_hrtimer_on_stack(&hs.timer);
1052b8ac 4727
06426adf 4728 /*
c6699d6f
CH
4729 * If we sleep, have the caller restart the poll loop to reset the
4730 * state. Like for the other success return cases, the caller is
4731 * responsible for checking if the IO completed. If the IO isn't
4732 * complete, we'll get called again and will go straight to the busy
4733 * poll loop.
06426adf 4734 */
06426adf
JA
4735 return true;
4736}
06426adf 4737
c6699d6f 4738static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
5a72e899 4739 struct io_comp_batch *iob, unsigned int flags)
bbd7bb70 4740{
c6699d6f
CH
4741 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4742 long state = get_current_state();
4743 int ret;
bbd7bb70 4744
aa61bec3 4745 do {
5a72e899 4746 ret = q->mq_ops->poll(hctx, iob);
bbd7bb70 4747 if (ret > 0) {
849a3700 4748 __set_current_state(TASK_RUNNING);
85f4d4b6 4749 return ret;
bbd7bb70
JA
4750 }
4751
4752 if (signal_pending_state(state, current))
849a3700 4753 __set_current_state(TASK_RUNNING);
b03fbd4f 4754 if (task_is_running(current))
85f4d4b6 4755 return 1;
c6699d6f 4756
ef99b2d3 4757 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
bbd7bb70
JA
4758 break;
4759 cpu_relax();
aa61bec3 4760 } while (!need_resched());
bbd7bb70 4761
67b4110f 4762 __set_current_state(TASK_RUNNING);
85f4d4b6 4763 return 0;
bbd7bb70 4764}
1052b8ac 4765
5a72e899
JA
4766int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4767 unsigned int flags)
1052b8ac 4768{
d729cf9a
CH
4769 if (!(flags & BLK_POLL_NOSLEEP) &&
4770 q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
c6699d6f 4771 if (blk_mq_poll_hybrid(q, cookie))
85f4d4b6 4772 return 1;
c6699d6f 4773 }
5a72e899 4774 return blk_mq_poll_classic(q, cookie, iob, flags);
bbd7bb70
JA
4775}
4776
9cf2bab6
JA
4777unsigned int blk_mq_rq_cpu(struct request *rq)
4778{
4779 return rq->mq_ctx->cpu;
4780}
4781EXPORT_SYMBOL(blk_mq_rq_cpu);
4782
2a19b28f
ML
4783void blk_mq_cancel_work_sync(struct request_queue *q)
4784{
4785 if (queue_is_mq(q)) {
4786 struct blk_mq_hw_ctx *hctx;
4787 int i;
4788
4789 cancel_delayed_work_sync(&q->requeue_work);
4790
4791 queue_for_each_hw_ctx(q, hctx, i)
4792 cancel_delayed_work_sync(&hctx->run_work);
4793 }
4794}
4795
320ae51f
JA
4796static int __init blk_mq_init(void)
4797{
c3077b5d
CH
4798 int i;
4799
4800 for_each_possible_cpu(i)
f9ab4918 4801 init_llist_head(&per_cpu(blk_cpu_done, i));
c3077b5d
CH
4802 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4803
4804 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4805 "block/softirq:dead", NULL,
4806 blk_softirq_cpu_dead);
9467f859
TG
4807 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4808 blk_mq_hctx_notify_dead);
bf0beec0
ML
4809 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4810 blk_mq_hctx_notify_online,
4811 blk_mq_hctx_notify_offline);
320ae51f
JA
4812 return 0;
4813}
4814subsys_initcall(blk_mq_init);