blk-mq: grab rq->refcount before calling ->fn in blk_mq_tagset_busy_iter
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
75bb4625
JA
2/*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
320ae51f
JA
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/backing-dev.h>
11#include <linux/bio.h>
12#include <linux/blkdev.h>
f75782e4 13#include <linux/kmemleak.h>
320ae51f
JA
14#include <linux/mm.h>
15#include <linux/init.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18#include <linux/smp.h>
19#include <linux/llist.h>
20#include <linux/list_sort.h>
21#include <linux/cpu.h>
22#include <linux/cache.h>
23#include <linux/sched/sysctl.h>
105ab3d8 24#include <linux/sched/topology.h>
174cd4b1 25#include <linux/sched/signal.h>
320ae51f 26#include <linux/delay.h>
aedcd72f 27#include <linux/crash_dump.h>
88c7b2b7 28#include <linux/prefetch.h>
a892c8d5 29#include <linux/blk-crypto.h>
320ae51f
JA
30
31#include <trace/events/block.h>
32
33#include <linux/blk-mq.h>
54d4e6ab 34#include <linux/t10-pi.h>
320ae51f
JA
35#include "blk.h"
36#include "blk-mq.h"
9c1051aa 37#include "blk-mq-debugfs.h"
320ae51f 38#include "blk-mq-tag.h"
986d413b 39#include "blk-pm.h"
cf43e6be 40#include "blk-stat.h"
bd166ef1 41#include "blk-mq-sched.h"
c1c80384 42#include "blk-rq-qos.h"
320ae51f 43
f9ab4918 44static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
c3077b5d 45
34dbad5d
OS
46static void blk_mq_poll_stats_start(struct request_queue *q);
47static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
720b8ccc
SB
49static int blk_mq_poll_stats_bkt(const struct request *rq)
50{
3d244306 51 int ddir, sectors, bucket;
720b8ccc 52
99c749a4 53 ddir = rq_data_dir(rq);
3d244306 54 sectors = blk_rq_stats_sectors(rq);
720b8ccc 55
3d244306 56 bucket = ddir + 2 * ilog2(sectors);
720b8ccc
SB
57
58 if (bucket < 0)
59 return -1;
60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63 return bucket;
64}
65
320ae51f 66/*
85fae294
YY
67 * Check if any of the ctx, dispatch list or elevator
68 * have pending work in this hardware queue.
320ae51f 69 */
79f720a7 70static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 71{
79f720a7
JA
72 return !list_empty_careful(&hctx->dispatch) ||
73 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 74 blk_mq_sched_has_work(hctx);
1429d7c9
JA
75}
76
320ae51f
JA
77/*
78 * Mark this ctx as having pending work in this hardware queue
79 */
80static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82{
f31967f0
JA
83 const int bit = ctx->index_hw[hctx->type];
84
85 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 sbitmap_set_bit(&hctx->ctx_map, bit);
1429d7c9
JA
87}
88
89static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 struct blk_mq_ctx *ctx)
91{
f31967f0
JA
92 const int bit = ctx->index_hw[hctx->type];
93
94 sbitmap_clear_bit(&hctx->ctx_map, bit);
320ae51f
JA
95}
96
f299b7c7 97struct mq_inflight {
8446fe92 98 struct block_device *part;
a2e80f6f 99 unsigned int inflight[2];
f299b7c7
JA
100};
101
7baa8572 102static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
f299b7c7
JA
103 struct request *rq, void *priv,
104 bool reserved)
105{
106 struct mq_inflight *mi = priv;
107
b0d97557
JX
108 if ((!mi->part->bd_partno || rq->part == mi->part) &&
109 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
bb4e6b14 110 mi->inflight[rq_data_dir(rq)]++;
7baa8572
JA
111
112 return true;
f299b7c7
JA
113}
114
8446fe92
CH
115unsigned int blk_mq_in_flight(struct request_queue *q,
116 struct block_device *part)
f299b7c7 117{
a2e80f6f 118 struct mq_inflight mi = { .part = part };
f299b7c7 119
f299b7c7 120 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
e016b782 121
a2e80f6f 122 return mi.inflight[0] + mi.inflight[1];
bf0ddaba
OS
123}
124
8446fe92
CH
125void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126 unsigned int inflight[2])
bf0ddaba 127{
a2e80f6f 128 struct mq_inflight mi = { .part = part };
bf0ddaba 129
bb4e6b14 130 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
a2e80f6f
PB
131 inflight[0] = mi.inflight[0];
132 inflight[1] = mi.inflight[1];
bf0ddaba
OS
133}
134
1671d522 135void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 136{
7996a8b5
BL
137 mutex_lock(&q->mq_freeze_lock);
138 if (++q->mq_freeze_depth == 1) {
3ef28e83 139 percpu_ref_kill(&q->q_usage_counter);
7996a8b5 140 mutex_unlock(&q->mq_freeze_lock);
344e9ffc 141 if (queue_is_mq(q))
055f6e18 142 blk_mq_run_hw_queues(q, false);
7996a8b5
BL
143 } else {
144 mutex_unlock(&q->mq_freeze_lock);
cddd5d17 145 }
f3af020b 146}
1671d522 147EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 148
6bae363e 149void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 150{
3ef28e83 151 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 152}
6bae363e 153EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 154
f91328c4
KB
155int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156 unsigned long timeout)
157{
158 return wait_event_timeout(q->mq_freeze_wq,
159 percpu_ref_is_zero(&q->q_usage_counter),
160 timeout);
161}
162EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 163
f3af020b
TH
164/*
165 * Guarantee no request is in use, so we can change any data structure of
166 * the queue afterward.
167 */
3ef28e83 168void blk_freeze_queue(struct request_queue *q)
f3af020b 169{
3ef28e83
DW
170 /*
171 * In the !blk_mq case we are only calling this to kill the
172 * q_usage_counter, otherwise this increases the freeze depth
173 * and waits for it to return to zero. For this reason there is
174 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175 * exported to drivers as the only user for unfreeze is blk_mq.
176 */
1671d522 177 blk_freeze_queue_start(q);
f3af020b
TH
178 blk_mq_freeze_queue_wait(q);
179}
3ef28e83
DW
180
181void blk_mq_freeze_queue(struct request_queue *q)
182{
183 /*
184 * ...just an alias to keep freeze and unfreeze actions balanced
185 * in the blk_mq_* namespace
186 */
187 blk_freeze_queue(q);
188}
c761d96b 189EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 190
b4c6a028 191void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 192{
7996a8b5
BL
193 mutex_lock(&q->mq_freeze_lock);
194 q->mq_freeze_depth--;
195 WARN_ON_ONCE(q->mq_freeze_depth < 0);
196 if (!q->mq_freeze_depth) {
bdd63160 197 percpu_ref_resurrect(&q->q_usage_counter);
320ae51f 198 wake_up_all(&q->mq_freeze_wq);
add703fd 199 }
7996a8b5 200 mutex_unlock(&q->mq_freeze_lock);
320ae51f 201}
b4c6a028 202EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 203
852ec809
BVA
204/*
205 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206 * mpt3sas driver such that this function can be removed.
207 */
208void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209{
8814ce8a 210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
852ec809
BVA
211}
212EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
6a83e74d 214/**
69e07c4a 215 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
216 * @q: request queue.
217 *
218 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
219 * callback function is invoked. Once this function is returned, we make
220 * sure no dispatch can happen until the queue is unquiesced via
221 * blk_mq_unquiesce_queue().
6a83e74d
BVA
222 */
223void blk_mq_quiesce_queue(struct request_queue *q)
224{
225 struct blk_mq_hw_ctx *hctx;
226 unsigned int i;
227 bool rcu = false;
228
1d9e9bc6 229 blk_mq_quiesce_queue_nowait(q);
f4560ffe 230
6a83e74d
BVA
231 queue_for_each_hw_ctx(q, hctx, i) {
232 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 233 synchronize_srcu(hctx->srcu);
6a83e74d
BVA
234 else
235 rcu = true;
236 }
237 if (rcu)
238 synchronize_rcu();
239}
240EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241
e4e73913
ML
242/*
243 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244 * @q: request queue.
245 *
246 * This function recovers queue into the state before quiescing
247 * which is done by blk_mq_quiesce_queue.
248 */
249void blk_mq_unquiesce_queue(struct request_queue *q)
250{
8814ce8a 251 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
f4560ffe 252
1d9e9bc6
ML
253 /* dispatch requests which are inserted during quiescing */
254 blk_mq_run_hw_queues(q, true);
e4e73913
ML
255}
256EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257
aed3ea94
JA
258void blk_mq_wake_waiters(struct request_queue *q)
259{
260 struct blk_mq_hw_ctx *hctx;
261 unsigned int i;
262
263 queue_for_each_hw_ctx(q, hctx, i)
264 if (blk_mq_hw_queue_mapped(hctx))
265 blk_mq_tag_wakeup_all(hctx->tags, true);
266}
267
fe1f4526 268/*
9a91b05b
HT
269 * Only need start/end time stamping if we have iostat or
270 * blk stats enabled, or using an IO scheduler.
fe1f4526
JA
271 */
272static inline bool blk_mq_need_time_stamp(struct request *rq)
273{
9a91b05b 274 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
fe1f4526
JA
275}
276
e4cdf1a1 277static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
7ea4d8a4 278 unsigned int tag, u64 alloc_time_ns)
320ae51f 279{
e4cdf1a1
CH
280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 struct request *rq = tags->static_rqs[tag];
c3a148d2 282
42fdc5e4 283 if (data->q->elevator) {
76647368 284 rq->tag = BLK_MQ_NO_TAG;
e4cdf1a1
CH
285 rq->internal_tag = tag;
286 } else {
e4cdf1a1 287 rq->tag = tag;
76647368 288 rq->internal_tag = BLK_MQ_NO_TAG;
e4cdf1a1
CH
289 }
290
af76e555 291 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
292 rq->q = data->q;
293 rq->mq_ctx = data->ctx;
ea4f995e 294 rq->mq_hctx = data->hctx;
568f2700 295 rq->rq_flags = 0;
7ea4d8a4 296 rq->cmd_flags = data->cmd_flags;
0854bcdc
BVA
297 if (data->flags & BLK_MQ_REQ_PM)
298 rq->rq_flags |= RQF_PM;
e4cdf1a1 299 if (blk_queue_io_stat(data->q))
e8064021 300 rq->rq_flags |= RQF_IO_STAT;
7c3fb70f 301 INIT_LIST_HEAD(&rq->queuelist);
af76e555
CH
302 INIT_HLIST_NODE(&rq->hash);
303 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
304 rq->rq_disk = NULL;
305 rq->part = NULL;
6f816b4b
TH
306#ifdef CONFIG_BLK_RQ_ALLOC_TIME
307 rq->alloc_time_ns = alloc_time_ns;
308#endif
fe1f4526
JA
309 if (blk_mq_need_time_stamp(rq))
310 rq->start_time_ns = ktime_get_ns();
311 else
312 rq->start_time_ns = 0;
544ccc8d 313 rq->io_start_time_ns = 0;
3d244306 314 rq->stats_sectors = 0;
af76e555
CH
315 rq->nr_phys_segments = 0;
316#if defined(CONFIG_BLK_DEV_INTEGRITY)
317 rq->nr_integrity_segments = 0;
318#endif
a892c8d5 319 blk_crypto_rq_set_defaults(rq);
af76e555 320 /* tag was already set */
079076b3 321 WRITE_ONCE(rq->deadline, 0);
af76e555 322
f6be4fb4
JA
323 rq->timeout = 0;
324
af76e555
CH
325 rq->end_io = NULL;
326 rq->end_io_data = NULL;
af76e555 327
7ea4d8a4 328 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
12f5b931 329 refcount_set(&rq->ref, 1);
7ea4d8a4
CH
330
331 if (!op_is_flush(data->cmd_flags)) {
332 struct elevator_queue *e = data->q->elevator;
333
334 rq->elv.icq = NULL;
335 if (e && e->type->ops.prepare_request) {
336 if (e->type->icq_cache)
337 blk_mq_sched_assign_ioc(rq);
338
339 e->type->ops.prepare_request(rq);
340 rq->rq_flags |= RQF_ELVPRIV;
341 }
342 }
343
344 data->hctx->queued++;
e4cdf1a1 345 return rq;
5dee8577
CH
346}
347
e6e7abff 348static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
d2c0d383 349{
e6e7abff 350 struct request_queue *q = data->q;
d2c0d383 351 struct elevator_queue *e = q->elevator;
6f816b4b 352 u64 alloc_time_ns = 0;
600c3b0c 353 unsigned int tag;
d2c0d383 354
6f816b4b
TH
355 /* alloc_time includes depth and tag waits */
356 if (blk_queue_rq_alloc_time(q))
357 alloc_time_ns = ktime_get_ns();
358
f9afca4d 359 if (data->cmd_flags & REQ_NOWAIT)
03a07c92 360 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
361
362 if (e) {
d2c0d383 363 /*
8d663f34 364 * Flush/passthrough requests are special and go directly to the
17a51199
JA
365 * dispatch list. Don't include reserved tags in the
366 * limiting, as it isn't useful.
d2c0d383 367 */
f9afca4d 368 if (!op_is_flush(data->cmd_flags) &&
8d663f34 369 !blk_op_is_passthrough(data->cmd_flags) &&
f9afca4d 370 e->type->ops.limit_depth &&
17a51199 371 !(data->flags & BLK_MQ_REQ_RESERVED))
f9afca4d 372 e->type->ops.limit_depth(data->cmd_flags, data);
d2c0d383
CH
373 }
374
bf0beec0 375retry:
600c3b0c
CH
376 data->ctx = blk_mq_get_ctx(q);
377 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
42fdc5e4 378 if (!e)
600c3b0c
CH
379 blk_mq_tag_busy(data->hctx);
380
bf0beec0
ML
381 /*
382 * Waiting allocations only fail because of an inactive hctx. In that
383 * case just retry the hctx assignment and tag allocation as CPU hotplug
384 * should have migrated us to an online CPU by now.
385 */
e4cdf1a1 386 tag = blk_mq_get_tag(data);
bf0beec0
ML
387 if (tag == BLK_MQ_NO_TAG) {
388 if (data->flags & BLK_MQ_REQ_NOWAIT)
389 return NULL;
390
391 /*
392 * Give up the CPU and sleep for a random short time to ensure
393 * that thread using a realtime scheduling class are migrated
70f15a4f 394 * off the CPU, and thus off the hctx that is going away.
bf0beec0
ML
395 */
396 msleep(3);
397 goto retry;
398 }
7ea4d8a4 399 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
d2c0d383
CH
400}
401
cd6ce148 402struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 403 blk_mq_req_flags_t flags)
320ae51f 404{
e6e7abff
CH
405 struct blk_mq_alloc_data data = {
406 .q = q,
407 .flags = flags,
408 .cmd_flags = op,
409 };
bd166ef1 410 struct request *rq;
a492f075 411 int ret;
320ae51f 412
3a0a5299 413 ret = blk_queue_enter(q, flags);
a492f075
JL
414 if (ret)
415 return ERR_PTR(ret);
320ae51f 416
e6e7abff 417 rq = __blk_mq_alloc_request(&data);
bd166ef1 418 if (!rq)
a5ea5811 419 goto out_queue_exit;
0c4de0f3
CH
420 rq->__data_len = 0;
421 rq->__sector = (sector_t) -1;
422 rq->bio = rq->biotail = NULL;
320ae51f 423 return rq;
a5ea5811
CH
424out_queue_exit:
425 blk_queue_exit(q);
426 return ERR_PTR(-EWOULDBLOCK);
320ae51f 427}
4bb659b1 428EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 429
cd6ce148 430struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 431 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 432{
e6e7abff
CH
433 struct blk_mq_alloc_data data = {
434 .q = q,
435 .flags = flags,
436 .cmd_flags = op,
437 };
600c3b0c 438 u64 alloc_time_ns = 0;
6d2809d5 439 unsigned int cpu;
600c3b0c 440 unsigned int tag;
1f5bd336
ML
441 int ret;
442
600c3b0c
CH
443 /* alloc_time includes depth and tag waits */
444 if (blk_queue_rq_alloc_time(q))
445 alloc_time_ns = ktime_get_ns();
446
1f5bd336
ML
447 /*
448 * If the tag allocator sleeps we could get an allocation for a
449 * different hardware context. No need to complicate the low level
450 * allocator for this for the rare use case of a command tied to
451 * a specific queue.
452 */
600c3b0c 453 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
1f5bd336
ML
454 return ERR_PTR(-EINVAL);
455
456 if (hctx_idx >= q->nr_hw_queues)
457 return ERR_PTR(-EIO);
458
3a0a5299 459 ret = blk_queue_enter(q, flags);
1f5bd336
ML
460 if (ret)
461 return ERR_PTR(ret);
462
c8712c6a
CH
463 /*
464 * Check if the hardware context is actually mapped to anything.
465 * If not tell the caller that it should skip this queue.
466 */
a5ea5811 467 ret = -EXDEV;
e6e7abff
CH
468 data.hctx = q->queue_hw_ctx[hctx_idx];
469 if (!blk_mq_hw_queue_mapped(data.hctx))
a5ea5811 470 goto out_queue_exit;
e6e7abff
CH
471 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
472 data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 473
42fdc5e4 474 if (!q->elevator)
600c3b0c
CH
475 blk_mq_tag_busy(data.hctx);
476
a5ea5811 477 ret = -EWOULDBLOCK;
600c3b0c
CH
478 tag = blk_mq_get_tag(&data);
479 if (tag == BLK_MQ_NO_TAG)
a5ea5811 480 goto out_queue_exit;
600c3b0c
CH
481 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
482
a5ea5811
CH
483out_queue_exit:
484 blk_queue_exit(q);
485 return ERR_PTR(ret);
1f5bd336
ML
486}
487EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
488
12f5b931
KB
489static void __blk_mq_free_request(struct request *rq)
490{
491 struct request_queue *q = rq->q;
492 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 493 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
12f5b931
KB
494 const int sched_tag = rq->internal_tag;
495
a892c8d5 496 blk_crypto_free_request(rq);
986d413b 497 blk_pm_mark_last_busy(rq);
ea4f995e 498 rq->mq_hctx = NULL;
76647368 499 if (rq->tag != BLK_MQ_NO_TAG)
cae740a0 500 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
76647368 501 if (sched_tag != BLK_MQ_NO_TAG)
cae740a0 502 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
12f5b931
KB
503 blk_mq_sched_restart(hctx);
504 blk_queue_exit(q);
505}
506
6af54051 507void blk_mq_free_request(struct request *rq)
320ae51f 508{
320ae51f 509 struct request_queue *q = rq->q;
6af54051
CH
510 struct elevator_queue *e = q->elevator;
511 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 512 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
6af54051 513
5bbf4e5a 514 if (rq->rq_flags & RQF_ELVPRIV) {
f9cd4bfe
JA
515 if (e && e->type->ops.finish_request)
516 e->type->ops.finish_request(rq);
6af54051
CH
517 if (rq->elv.icq) {
518 put_io_context(rq->elv.icq->ioc);
519 rq->elv.icq = NULL;
520 }
521 }
320ae51f 522
6af54051 523 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 524 if (rq->rq_flags & RQF_MQ_INFLIGHT)
bccf5e26 525 __blk_mq_dec_active_requests(hctx);
87760e5e 526
7beb2f84
JA
527 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
528 laptop_io_completion(q->backing_dev_info);
529
a7905043 530 rq_qos_done(q, rq);
0d2602ca 531
12f5b931
KB
532 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
533 if (refcount_dec_and_test(&rq->ref))
534 __blk_mq_free_request(rq);
320ae51f 535}
1a3b595a 536EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 537
2a842aca 538inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 539{
fe1f4526
JA
540 u64 now = 0;
541
542 if (blk_mq_need_time_stamp(rq))
543 now = ktime_get_ns();
522a7775 544
4bc6339a
OS
545 if (rq->rq_flags & RQF_STATS) {
546 blk_mq_poll_stats_start(rq->q);
522a7775 547 blk_stat_add(rq, now);
4bc6339a
OS
548 }
549
87890092 550 blk_mq_sched_completed_request(rq, now);
ed88660a 551
522a7775 552 blk_account_io_done(rq, now);
0d11e6ac 553
91b63639 554 if (rq->end_io) {
a7905043 555 rq_qos_done(rq->q, rq);
320ae51f 556 rq->end_io(rq, error);
91b63639 557 } else {
320ae51f 558 blk_mq_free_request(rq);
91b63639 559 }
320ae51f 560}
c8a446ad 561EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 562
2a842aca 563void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
564{
565 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
566 BUG();
c8a446ad 567 __blk_mq_end_request(rq, error);
63151a44 568}
c8a446ad 569EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 570
f9ab4918 571static void blk_complete_reqs(struct llist_head *list)
320ae51f 572{
f9ab4918
SAS
573 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
574 struct request *rq, *next;
c3077b5d 575
f9ab4918 576 llist_for_each_entry_safe(rq, next, entry, ipi_list)
c3077b5d 577 rq->q->mq_ops->complete(rq);
320ae51f 578}
320ae51f 579
f9ab4918 580static __latent_entropy void blk_done_softirq(struct softirq_action *h)
320ae51f 581{
f9ab4918 582 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
115243f5
CH
583}
584
c3077b5d
CH
585static int blk_softirq_cpu_dead(unsigned int cpu)
586{
f9ab4918 587 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
c3077b5d
CH
588 return 0;
589}
590
40d09b53 591static void __blk_mq_complete_request_remote(void *data)
c3077b5d 592{
f9ab4918 593 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
c3077b5d
CH
594}
595
96339526
CH
596static inline bool blk_mq_complete_need_ipi(struct request *rq)
597{
598 int cpu = raw_smp_processor_id();
599
600 if (!IS_ENABLED(CONFIG_SMP) ||
601 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
602 return false;
71425189
SAS
603 /*
604 * With force threaded interrupts enabled, raising softirq from an SMP
605 * function call will always result in waking the ksoftirqd thread.
606 * This is probably worse than completing the request on a different
607 * cache domain.
608 */
609 if (force_irqthreads)
610 return false;
96339526
CH
611
612 /* same CPU or cache domain? Complete locally */
613 if (cpu == rq->mq_ctx->cpu ||
614 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
615 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
616 return false;
617
618 /* don't try to IPI to an offline CPU */
619 return cpu_online(rq->mq_ctx->cpu);
620}
621
f9ab4918
SAS
622static void blk_mq_complete_send_ipi(struct request *rq)
623{
624 struct llist_head *list;
625 unsigned int cpu;
626
627 cpu = rq->mq_ctx->cpu;
628 list = &per_cpu(blk_cpu_done, cpu);
629 if (llist_add(&rq->ipi_list, list)) {
630 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
631 smp_call_function_single_async(cpu, &rq->csd);
632 }
633}
634
635static void blk_mq_raise_softirq(struct request *rq)
636{
637 struct llist_head *list;
638
639 preempt_disable();
640 list = this_cpu_ptr(&blk_cpu_done);
641 if (llist_add(&rq->ipi_list, list))
642 raise_softirq(BLOCK_SOFTIRQ);
643 preempt_enable();
644}
645
40d09b53 646bool blk_mq_complete_request_remote(struct request *rq)
320ae51f 647{
af78ff7c 648 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
36e76539 649
4ab32bf3
JA
650 /*
651 * For a polled request, always complete locallly, it's pointless
652 * to redirect the completion.
653 */
40d09b53
CH
654 if (rq->cmd_flags & REQ_HIPRI)
655 return false;
38535201 656
96339526 657 if (blk_mq_complete_need_ipi(rq)) {
f9ab4918
SAS
658 blk_mq_complete_send_ipi(rq);
659 return true;
3d6efbf6 660 }
40d09b53 661
f9ab4918
SAS
662 if (rq->q->nr_hw_queues == 1) {
663 blk_mq_raise_softirq(rq);
664 return true;
665 }
666 return false;
40d09b53
CH
667}
668EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
669
670/**
671 * blk_mq_complete_request - end I/O on a request
672 * @rq: the request being processed
673 *
674 * Description:
675 * Complete a request by scheduling the ->complete_rq operation.
676 **/
677void blk_mq_complete_request(struct request *rq)
678{
679 if (!blk_mq_complete_request_remote(rq))
680 rq->q->mq_ops->complete(rq);
320ae51f 681}
15f73f5b 682EXPORT_SYMBOL(blk_mq_complete_request);
30a91cb4 683
04ced159 684static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
b7435db8 685 __releases(hctx->srcu)
04ced159
JA
686{
687 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
688 rcu_read_unlock();
689 else
05707b64 690 srcu_read_unlock(hctx->srcu, srcu_idx);
04ced159
JA
691}
692
693static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
b7435db8 694 __acquires(hctx->srcu)
04ced159 695{
08b5a6e2
JA
696 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
697 /* shut up gcc false positive */
698 *srcu_idx = 0;
04ced159 699 rcu_read_lock();
08b5a6e2 700 } else
05707b64 701 *srcu_idx = srcu_read_lock(hctx->srcu);
04ced159
JA
702}
703
105663f7
AA
704/**
705 * blk_mq_start_request - Start processing a request
706 * @rq: Pointer to request to be started
707 *
708 * Function used by device drivers to notify the block layer that a request
709 * is going to be processed now, so blk layer can do proper initializations
710 * such as starting the timeout timer.
711 */
e2490073 712void blk_mq_start_request(struct request *rq)
320ae51f
JA
713{
714 struct request_queue *q = rq->q;
715
a54895fa 716 trace_block_rq_issue(rq);
320ae51f 717
cf43e6be 718 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
544ccc8d 719 rq->io_start_time_ns = ktime_get_ns();
3d244306 720 rq->stats_sectors = blk_rq_sectors(rq);
cf43e6be 721 rq->rq_flags |= RQF_STATS;
a7905043 722 rq_qos_issue(q, rq);
cf43e6be
JA
723 }
724
1d9bd516 725 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 726
1d9bd516 727 blk_add_timer(rq);
12f5b931 728 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
49f5baa5 729
54d4e6ab
MG
730#ifdef CONFIG_BLK_DEV_INTEGRITY
731 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
732 q->integrity.profile->prepare_fn(rq);
733#endif
320ae51f 734}
e2490073 735EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 736
ed0791b2 737static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
738{
739 struct request_queue *q = rq->q;
740
923218f6
ML
741 blk_mq_put_driver_tag(rq);
742
a54895fa 743 trace_block_rq_requeue(rq);
a7905043 744 rq_qos_requeue(q, rq);
49f5baa5 745
12f5b931
KB
746 if (blk_mq_request_started(rq)) {
747 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
da661267 748 rq->rq_flags &= ~RQF_TIMED_OUT;
e2490073 749 }
320ae51f
JA
750}
751
2b053aca 752void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 753{
ed0791b2 754 __blk_mq_requeue_request(rq);
ed0791b2 755
105976f5
ML
756 /* this request will be re-inserted to io scheduler queue */
757 blk_mq_sched_requeue_request(rq);
758
7d692330 759 BUG_ON(!list_empty(&rq->queuelist));
2b053aca 760 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
761}
762EXPORT_SYMBOL(blk_mq_requeue_request);
763
6fca6a61
CH
764static void blk_mq_requeue_work(struct work_struct *work)
765{
766 struct request_queue *q =
2849450a 767 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
768 LIST_HEAD(rq_list);
769 struct request *rq, *next;
6fca6a61 770
18e9781d 771 spin_lock_irq(&q->requeue_lock);
6fca6a61 772 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 773 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
774
775 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
aef1897c 776 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
6fca6a61
CH
777 continue;
778
e8064021 779 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 780 list_del_init(&rq->queuelist);
aef1897c
JW
781 /*
782 * If RQF_DONTPREP, rq has contained some driver specific
783 * data, so insert it to hctx dispatch list to avoid any
784 * merge.
785 */
786 if (rq->rq_flags & RQF_DONTPREP)
01e99aec 787 blk_mq_request_bypass_insert(rq, false, false);
aef1897c
JW
788 else
789 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
790 }
791
792 while (!list_empty(&rq_list)) {
793 rq = list_entry(rq_list.next, struct request, queuelist);
794 list_del_init(&rq->queuelist);
9e97d295 795 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
796 }
797
52d7f1b5 798 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
799}
800
2b053aca
BVA
801void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
802 bool kick_requeue_list)
6fca6a61
CH
803{
804 struct request_queue *q = rq->q;
805 unsigned long flags;
806
807 /*
808 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 809 * request head insertion from the workqueue.
6fca6a61 810 */
e8064021 811 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
812
813 spin_lock_irqsave(&q->requeue_lock, flags);
814 if (at_head) {
e8064021 815 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
816 list_add(&rq->queuelist, &q->requeue_list);
817 } else {
818 list_add_tail(&rq->queuelist, &q->requeue_list);
819 }
820 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
821
822 if (kick_requeue_list)
823 blk_mq_kick_requeue_list(q);
6fca6a61 824}
6fca6a61
CH
825
826void blk_mq_kick_requeue_list(struct request_queue *q)
827{
ae943d20 828 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
6fca6a61
CH
829}
830EXPORT_SYMBOL(blk_mq_kick_requeue_list);
831
2849450a
MS
832void blk_mq_delay_kick_requeue_list(struct request_queue *q,
833 unsigned long msecs)
834{
d4acf365
BVA
835 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
836 msecs_to_jiffies(msecs));
2849450a
MS
837}
838EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
839
0e62f51f
JA
840struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
841{
88c7b2b7
JA
842 if (tag < tags->nr_tags) {
843 prefetch(tags->rqs[tag]);
4ee86bab 844 return tags->rqs[tag];
88c7b2b7 845 }
4ee86bab
HR
846
847 return NULL;
24d2f903
CH
848}
849EXPORT_SYMBOL(blk_mq_tag_to_rq);
850
3c94d83c
JA
851static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
852 void *priv, bool reserved)
ae879912
JA
853{
854 /*
05a4fed6 855 * If we find a request that isn't idle and the queue matches,
3c94d83c 856 * we know the queue is busy. Return false to stop the iteration.
ae879912 857 */
05a4fed6 858 if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
ae879912
JA
859 bool *busy = priv;
860
861 *busy = true;
862 return false;
863 }
864
865 return true;
866}
867
3c94d83c 868bool blk_mq_queue_inflight(struct request_queue *q)
ae879912
JA
869{
870 bool busy = false;
871
3c94d83c 872 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
ae879912
JA
873 return busy;
874}
3c94d83c 875EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
ae879912 876
358f70da 877static void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 878{
da661267 879 req->rq_flags |= RQF_TIMED_OUT;
d1210d5a
CH
880 if (req->q->mq_ops->timeout) {
881 enum blk_eh_timer_return ret;
882
883 ret = req->q->mq_ops->timeout(req, reserved);
884 if (ret == BLK_EH_DONE)
885 return;
886 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
46f92d42 887 }
d1210d5a
CH
888
889 blk_add_timer(req);
87ee7b11 890}
5b3f25fc 891
12f5b931 892static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
81481eb4 893{
12f5b931 894 unsigned long deadline;
87ee7b11 895
12f5b931
KB
896 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
897 return false;
da661267
CH
898 if (rq->rq_flags & RQF_TIMED_OUT)
899 return false;
a7af0af3 900
079076b3 901 deadline = READ_ONCE(rq->deadline);
12f5b931
KB
902 if (time_after_eq(jiffies, deadline))
903 return true;
a7af0af3 904
12f5b931
KB
905 if (*next == 0)
906 *next = deadline;
907 else if (time_after(*next, deadline))
908 *next = deadline;
909 return false;
87ee7b11
JA
910}
911
2e315dc0
ML
912void blk_mq_put_rq_ref(struct request *rq)
913{
914 if (is_flush_rq(rq, rq->mq_hctx))
915 rq->end_io(rq, 0);
916 else if (refcount_dec_and_test(&rq->ref))
917 __blk_mq_free_request(rq);
918}
919
7baa8572 920static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1d9bd516
TH
921 struct request *rq, void *priv, bool reserved)
922{
12f5b931
KB
923 unsigned long *next = priv;
924
925 /*
926 * Just do a quick check if it is expired before locking the request in
927 * so we're not unnecessarilly synchronizing across CPUs.
928 */
929 if (!blk_mq_req_expired(rq, next))
7baa8572 930 return true;
12f5b931
KB
931
932 /*
933 * We have reason to believe the request may be expired. Take a
934 * reference on the request to lock this request lifetime into its
935 * currently allocated context to prevent it from being reallocated in
936 * the event the completion by-passes this timeout handler.
937 *
938 * If the reference was already released, then the driver beat the
939 * timeout handler to posting a natural completion.
940 */
941 if (!refcount_inc_not_zero(&rq->ref))
7baa8572 942 return true;
12f5b931 943
1d9bd516 944 /*
12f5b931
KB
945 * The request is now locked and cannot be reallocated underneath the
946 * timeout handler's processing. Re-verify this exact request is truly
947 * expired; if it is not expired, then the request was completed and
948 * reallocated as a new request.
1d9bd516 949 */
12f5b931 950 if (blk_mq_req_expired(rq, next))
1d9bd516 951 blk_mq_rq_timed_out(rq, reserved);
8d699663 952
2e315dc0 953 blk_mq_put_rq_ref(rq);
7baa8572 954 return true;
1d9bd516
TH
955}
956
287922eb 957static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 958{
287922eb
CH
959 struct request_queue *q =
960 container_of(work, struct request_queue, timeout_work);
12f5b931 961 unsigned long next = 0;
1d9bd516 962 struct blk_mq_hw_ctx *hctx;
81481eb4 963 int i;
320ae51f 964
71f79fb3
GKB
965 /* A deadlock might occur if a request is stuck requiring a
966 * timeout at the same time a queue freeze is waiting
967 * completion, since the timeout code would not be able to
968 * acquire the queue reference here.
969 *
970 * That's why we don't use blk_queue_enter here; instead, we use
971 * percpu_ref_tryget directly, because we need to be able to
972 * obtain a reference even in the short window between the queue
973 * starting to freeze, by dropping the first reference in
1671d522 974 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
975 * consumed, marked by the instant q_usage_counter reaches
976 * zero.
977 */
978 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
979 return;
980
12f5b931 981 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
320ae51f 982
12f5b931
KB
983 if (next != 0) {
984 mod_timer(&q->timeout, next);
0d2602ca 985 } else {
fcd36c36
BVA
986 /*
987 * Request timeouts are handled as a forward rolling timer. If
988 * we end up here it means that no requests are pending and
989 * also that no request has been pending for a while. Mark
990 * each hctx as idle.
991 */
f054b56c
ML
992 queue_for_each_hw_ctx(q, hctx, i) {
993 /* the hctx may be unmapped, so check it here */
994 if (blk_mq_hw_queue_mapped(hctx))
995 blk_mq_tag_idle(hctx);
996 }
0d2602ca 997 }
287922eb 998 blk_queue_exit(q);
320ae51f
JA
999}
1000
88459642
OS
1001struct flush_busy_ctx_data {
1002 struct blk_mq_hw_ctx *hctx;
1003 struct list_head *list;
1004};
1005
1006static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1007{
1008 struct flush_busy_ctx_data *flush_data = data;
1009 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1010 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 1011 enum hctx_type type = hctx->type;
88459642 1012
88459642 1013 spin_lock(&ctx->lock);
c16d6b5a 1014 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
e9a99a63 1015 sbitmap_clear_bit(sb, bitnr);
88459642
OS
1016 spin_unlock(&ctx->lock);
1017 return true;
1018}
1019
1429d7c9
JA
1020/*
1021 * Process software queues that have been marked busy, splicing them
1022 * to the for-dispatch
1023 */
2c3ad667 1024void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 1025{
88459642
OS
1026 struct flush_busy_ctx_data data = {
1027 .hctx = hctx,
1028 .list = list,
1029 };
1429d7c9 1030
88459642 1031 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 1032}
2c3ad667 1033EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 1034
b347689f
ML
1035struct dispatch_rq_data {
1036 struct blk_mq_hw_ctx *hctx;
1037 struct request *rq;
1038};
1039
1040static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1041 void *data)
1042{
1043 struct dispatch_rq_data *dispatch_data = data;
1044 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1045 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 1046 enum hctx_type type = hctx->type;
b347689f
ML
1047
1048 spin_lock(&ctx->lock);
c16d6b5a
ML
1049 if (!list_empty(&ctx->rq_lists[type])) {
1050 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
b347689f 1051 list_del_init(&dispatch_data->rq->queuelist);
c16d6b5a 1052 if (list_empty(&ctx->rq_lists[type]))
b347689f
ML
1053 sbitmap_clear_bit(sb, bitnr);
1054 }
1055 spin_unlock(&ctx->lock);
1056
1057 return !dispatch_data->rq;
1058}
1059
1060struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1061 struct blk_mq_ctx *start)
1062{
f31967f0 1063 unsigned off = start ? start->index_hw[hctx->type] : 0;
b347689f
ML
1064 struct dispatch_rq_data data = {
1065 .hctx = hctx,
1066 .rq = NULL,
1067 };
1068
1069 __sbitmap_for_each_set(&hctx->ctx_map, off,
1070 dispatch_rq_from_ctx, &data);
1071
1072 return data.rq;
1073}
1074
703fd1c0
JA
1075static inline unsigned int queued_to_index(unsigned int queued)
1076{
1077 if (!queued)
1078 return 0;
1429d7c9 1079
703fd1c0 1080 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
1081}
1082
570e9b73
ML
1083static bool __blk_mq_get_driver_tag(struct request *rq)
1084{
222a5ae0 1085 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
570e9b73 1086 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
570e9b73
ML
1087 int tag;
1088
568f2700
ML
1089 blk_mq_tag_busy(rq->mq_hctx);
1090
570e9b73 1091 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
222a5ae0 1092 bt = rq->mq_hctx->tags->breserved_tags;
570e9b73 1093 tag_offset = 0;
28500850
ML
1094 } else {
1095 if (!hctx_may_queue(rq->mq_hctx, bt))
1096 return false;
570e9b73
ML
1097 }
1098
570e9b73
ML
1099 tag = __sbitmap_queue_get(bt);
1100 if (tag == BLK_MQ_NO_TAG)
1101 return false;
1102
1103 rq->tag = tag + tag_offset;
570e9b73
ML
1104 return true;
1105}
1106
1107static bool blk_mq_get_driver_tag(struct request *rq)
1108{
568f2700
ML
1109 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1110
1111 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1112 return false;
1113
51db1c37 1114 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
568f2700
ML
1115 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1116 rq->rq_flags |= RQF_MQ_INFLIGHT;
bccf5e26 1117 __blk_mq_inc_active_requests(hctx);
568f2700
ML
1118 }
1119 hctx->tags->rqs[rq->tag] = rq;
1120 return true;
570e9b73
ML
1121}
1122
eb619fdb
JA
1123static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1124 int flags, void *key)
da55f2cc
OS
1125{
1126 struct blk_mq_hw_ctx *hctx;
1127
1128 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1129
5815839b 1130 spin_lock(&hctx->dispatch_wait_lock);
e8618575
JA
1131 if (!list_empty(&wait->entry)) {
1132 struct sbitmap_queue *sbq;
1133
1134 list_del_init(&wait->entry);
222a5ae0 1135 sbq = hctx->tags->bitmap_tags;
e8618575
JA
1136 atomic_dec(&sbq->ws_active);
1137 }
5815839b
ML
1138 spin_unlock(&hctx->dispatch_wait_lock);
1139
da55f2cc
OS
1140 blk_mq_run_hw_queue(hctx, true);
1141 return 1;
1142}
1143
f906a6a0
JA
1144/*
1145 * Mark us waiting for a tag. For shared tags, this involves hooking us into
ee3e4de5
BVA
1146 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1147 * restart. For both cases, take care to check the condition again after
f906a6a0
JA
1148 * marking us as waiting.
1149 */
2278d69f 1150static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
f906a6a0 1151 struct request *rq)
da55f2cc 1152{
222a5ae0 1153 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
5815839b 1154 struct wait_queue_head *wq;
f906a6a0
JA
1155 wait_queue_entry_t *wait;
1156 bool ret;
da55f2cc 1157
51db1c37 1158 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
684b7324 1159 blk_mq_sched_mark_restart_hctx(hctx);
f906a6a0 1160
c27d53fb
BVA
1161 /*
1162 * It's possible that a tag was freed in the window between the
1163 * allocation failure and adding the hardware queue to the wait
1164 * queue.
1165 *
1166 * Don't clear RESTART here, someone else could have set it.
1167 * At most this will cost an extra queue run.
1168 */
8ab6bb9e 1169 return blk_mq_get_driver_tag(rq);
eb619fdb 1170 }
eb619fdb 1171
2278d69f 1172 wait = &hctx->dispatch_wait;
c27d53fb
BVA
1173 if (!list_empty_careful(&wait->entry))
1174 return false;
1175
e8618575 1176 wq = &bt_wait_ptr(sbq, hctx)->wait;
5815839b
ML
1177
1178 spin_lock_irq(&wq->lock);
1179 spin_lock(&hctx->dispatch_wait_lock);
c27d53fb 1180 if (!list_empty(&wait->entry)) {
5815839b
ML
1181 spin_unlock(&hctx->dispatch_wait_lock);
1182 spin_unlock_irq(&wq->lock);
c27d53fb 1183 return false;
eb619fdb
JA
1184 }
1185
e8618575 1186 atomic_inc(&sbq->ws_active);
5815839b
ML
1187 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1188 __add_wait_queue(wq, wait);
c27d53fb 1189
da55f2cc 1190 /*
eb619fdb
JA
1191 * It's possible that a tag was freed in the window between the
1192 * allocation failure and adding the hardware queue to the wait
1193 * queue.
da55f2cc 1194 */
8ab6bb9e 1195 ret = blk_mq_get_driver_tag(rq);
c27d53fb 1196 if (!ret) {
5815839b
ML
1197 spin_unlock(&hctx->dispatch_wait_lock);
1198 spin_unlock_irq(&wq->lock);
c27d53fb 1199 return false;
eb619fdb 1200 }
c27d53fb
BVA
1201
1202 /*
1203 * We got a tag, remove ourselves from the wait queue to ensure
1204 * someone else gets the wakeup.
1205 */
c27d53fb 1206 list_del_init(&wait->entry);
e8618575 1207 atomic_dec(&sbq->ws_active);
5815839b
ML
1208 spin_unlock(&hctx->dispatch_wait_lock);
1209 spin_unlock_irq(&wq->lock);
c27d53fb
BVA
1210
1211 return true;
da55f2cc
OS
1212}
1213
6e768717
ML
1214#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1215#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1216/*
1217 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1218 * - EWMA is one simple way to compute running average value
1219 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1220 * - take 4 as factor for avoiding to get too small(0) result, and this
1221 * factor doesn't matter because EWMA decreases exponentially
1222 */
1223static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1224{
1225 unsigned int ewma;
1226
1227 if (hctx->queue->elevator)
1228 return;
1229
1230 ewma = hctx->dispatch_busy;
1231
1232 if (!ewma && !busy)
1233 return;
1234
1235 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1236 if (busy)
1237 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1238 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1239
1240 hctx->dispatch_busy = ewma;
1241}
1242
86ff7c2a
ML
1243#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1244
c92a4103
JT
1245static void blk_mq_handle_dev_resource(struct request *rq,
1246 struct list_head *list)
1247{
1248 struct request *next =
1249 list_first_entry_or_null(list, struct request, queuelist);
1250
1251 /*
1252 * If an I/O scheduler has been configured and we got a driver tag for
1253 * the next request already, free it.
1254 */
1255 if (next)
1256 blk_mq_put_driver_tag(next);
1257
1258 list_add(&rq->queuelist, list);
1259 __blk_mq_requeue_request(rq);
1260}
1261
0512a75b
KB
1262static void blk_mq_handle_zone_resource(struct request *rq,
1263 struct list_head *zone_list)
1264{
1265 /*
1266 * If we end up here it is because we cannot dispatch a request to a
1267 * specific zone due to LLD level zone-write locking or other zone
1268 * related resource not being available. In this case, set the request
1269 * aside in zone_list for retrying it later.
1270 */
1271 list_add(&rq->queuelist, zone_list);
1272 __blk_mq_requeue_request(rq);
1273}
1274
75383524
ML
1275enum prep_dispatch {
1276 PREP_DISPATCH_OK,
1277 PREP_DISPATCH_NO_TAG,
1278 PREP_DISPATCH_NO_BUDGET,
1279};
1280
1281static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1282 bool need_budget)
1283{
1284 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2a5a24aa 1285 int budget_token = -1;
75383524 1286
2a5a24aa
ML
1287 if (need_budget) {
1288 budget_token = blk_mq_get_dispatch_budget(rq->q);
1289 if (budget_token < 0) {
1290 blk_mq_put_driver_tag(rq);
1291 return PREP_DISPATCH_NO_BUDGET;
1292 }
1293 blk_mq_set_rq_budget_token(rq, budget_token);
75383524
ML
1294 }
1295
1296 if (!blk_mq_get_driver_tag(rq)) {
1297 /*
1298 * The initial allocation attempt failed, so we need to
1299 * rerun the hardware queue when a tag is freed. The
1300 * waitqueue takes care of that. If the queue is run
1301 * before we add this entry back on the dispatch list,
1302 * we'll re-run it below.
1303 */
1304 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1fd40b5e
ML
1305 /*
1306 * All budgets not got from this function will be put
1307 * together during handling partial dispatch
1308 */
1309 if (need_budget)
2a5a24aa 1310 blk_mq_put_dispatch_budget(rq->q, budget_token);
75383524
ML
1311 return PREP_DISPATCH_NO_TAG;
1312 }
1313 }
1314
1315 return PREP_DISPATCH_OK;
1316}
1317
1fd40b5e
ML
1318/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1319static void blk_mq_release_budgets(struct request_queue *q,
2a5a24aa 1320 struct list_head *list)
1fd40b5e 1321{
2a5a24aa 1322 struct request *rq;
1fd40b5e 1323
2a5a24aa
ML
1324 list_for_each_entry(rq, list, queuelist) {
1325 int budget_token = blk_mq_get_rq_budget_token(rq);
1fd40b5e 1326
2a5a24aa
ML
1327 if (budget_token >= 0)
1328 blk_mq_put_dispatch_budget(q, budget_token);
1329 }
1fd40b5e
ML
1330}
1331
1f57f8d4
JA
1332/*
1333 * Returns true if we did some work AND can potentially do more.
1334 */
445874e8 1335bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1fd40b5e 1336 unsigned int nr_budgets)
320ae51f 1337{
75383524 1338 enum prep_dispatch prep;
445874e8 1339 struct request_queue *q = hctx->queue;
6d6f167c 1340 struct request *rq, *nxt;
fc17b653 1341 int errors, queued;
86ff7c2a 1342 blk_status_t ret = BLK_STS_OK;
0512a75b 1343 LIST_HEAD(zone_list);
320ae51f 1344
81380ca1
OS
1345 if (list_empty(list))
1346 return false;
1347
320ae51f
JA
1348 /*
1349 * Now process all the entries, sending them to the driver.
1350 */
93efe981 1351 errors = queued = 0;
81380ca1 1352 do {
74c45052 1353 struct blk_mq_queue_data bd;
320ae51f 1354
f04c3df3 1355 rq = list_first_entry(list, struct request, queuelist);
0bca799b 1356
445874e8 1357 WARN_ON_ONCE(hctx != rq->mq_hctx);
1fd40b5e 1358 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
75383524 1359 if (prep != PREP_DISPATCH_OK)
0bca799b 1360 break;
de148297 1361
320ae51f 1362 list_del_init(&rq->queuelist);
320ae51f 1363
74c45052 1364 bd.rq = rq;
113285b4
JA
1365
1366 /*
1367 * Flag last if we have no more requests, or if we have more
1368 * but can't assign a driver tag to it.
1369 */
1370 if (list_empty(list))
1371 bd.last = true;
1372 else {
113285b4 1373 nxt = list_first_entry(list, struct request, queuelist);
8ab6bb9e 1374 bd.last = !blk_mq_get_driver_tag(nxt);
113285b4 1375 }
74c45052 1376
1fd40b5e
ML
1377 /*
1378 * once the request is queued to lld, no need to cover the
1379 * budget any more
1380 */
1381 if (nr_budgets)
1382 nr_budgets--;
74c45052 1383 ret = q->mq_ops->queue_rq(hctx, &bd);
7bf13729
ML
1384 switch (ret) {
1385 case BLK_STS_OK:
1386 queued++;
320ae51f 1387 break;
7bf13729
ML
1388 case BLK_STS_RESOURCE:
1389 case BLK_STS_DEV_RESOURCE:
1390 blk_mq_handle_dev_resource(rq, list);
1391 goto out;
1392 case BLK_STS_ZONE_RESOURCE:
0512a75b
KB
1393 /*
1394 * Move the request to zone_list and keep going through
1395 * the dispatch list to find more requests the drive can
1396 * accept.
1397 */
1398 blk_mq_handle_zone_resource(rq, &zone_list);
7bf13729
ML
1399 break;
1400 default:
93efe981 1401 errors++;
e21ee5a6 1402 blk_mq_end_request(rq, ret);
320ae51f 1403 }
81380ca1 1404 } while (!list_empty(list));
7bf13729 1405out:
0512a75b
KB
1406 if (!list_empty(&zone_list))
1407 list_splice_tail_init(&zone_list, list);
1408
703fd1c0 1409 hctx->dispatched[queued_to_index(queued)]++;
320ae51f 1410
632bfb63 1411 /* If we didn't flush the entire list, we could have told the driver
1412 * there was more coming, but that turned out to be a lie.
1413 */
1414 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1415 q->mq_ops->commit_rqs(hctx);
320ae51f
JA
1416 /*
1417 * Any items that need requeuing? Stuff them into hctx->dispatch,
1418 * that is where we will continue on next queue run.
1419 */
f04c3df3 1420 if (!list_empty(list)) {
86ff7c2a 1421 bool needs_restart;
75383524
ML
1422 /* For non-shared tags, the RESTART check will suffice */
1423 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
51db1c37 1424 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
75383524 1425 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
86ff7c2a 1426
2a5a24aa
ML
1427 if (nr_budgets)
1428 blk_mq_release_budgets(q, list);
86ff7c2a 1429
320ae51f 1430 spin_lock(&hctx->lock);
01e99aec 1431 list_splice_tail_init(list, &hctx->dispatch);
320ae51f 1432 spin_unlock(&hctx->lock);
f04c3df3 1433
d7d8535f
ML
1434 /*
1435 * Order adding requests to hctx->dispatch and checking
1436 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1437 * in blk_mq_sched_restart(). Avoid restart code path to
1438 * miss the new added requests to hctx->dispatch, meantime
1439 * SCHED_RESTART is observed here.
1440 */
1441 smp_mb();
1442
9ba52e58 1443 /*
710c785f
BVA
1444 * If SCHED_RESTART was set by the caller of this function and
1445 * it is no longer set that means that it was cleared by another
1446 * thread and hence that a queue rerun is needed.
9ba52e58 1447 *
eb619fdb
JA
1448 * If 'no_tag' is set, that means that we failed getting
1449 * a driver tag with an I/O scheduler attached. If our dispatch
1450 * waitqueue is no longer active, ensure that we run the queue
1451 * AFTER adding our entries back to the list.
bd166ef1 1452 *
710c785f
BVA
1453 * If no I/O scheduler has been configured it is possible that
1454 * the hardware queue got stopped and restarted before requests
1455 * were pushed back onto the dispatch list. Rerun the queue to
1456 * avoid starvation. Notes:
1457 * - blk_mq_run_hw_queue() checks whether or not a queue has
1458 * been stopped before rerunning a queue.
1459 * - Some but not all block drivers stop a queue before
fc17b653 1460 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1461 * and dm-rq.
86ff7c2a
ML
1462 *
1463 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1464 * bit is set, run queue after a delay to avoid IO stalls
ab3cee37
DA
1465 * that could otherwise occur if the queue is idle. We'll do
1466 * similar if we couldn't get budget and SCHED_RESTART is set.
bd166ef1 1467 */
86ff7c2a
ML
1468 needs_restart = blk_mq_sched_needs_restart(hctx);
1469 if (!needs_restart ||
eb619fdb 1470 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1471 blk_mq_run_hw_queue(hctx, true);
ab3cee37
DA
1472 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1473 no_budget_avail))
86ff7c2a 1474 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1f57f8d4 1475
6e768717 1476 blk_mq_update_dispatch_busy(hctx, true);
1f57f8d4 1477 return false;
6e768717
ML
1478 } else
1479 blk_mq_update_dispatch_busy(hctx, false);
f04c3df3 1480
93efe981 1481 return (queued + errors) != 0;
f04c3df3
JA
1482}
1483
105663f7
AA
1484/**
1485 * __blk_mq_run_hw_queue - Run a hardware queue.
1486 * @hctx: Pointer to the hardware queue to run.
1487 *
1488 * Send pending requests to the hardware.
1489 */
6a83e74d
BVA
1490static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1491{
1492 int srcu_idx;
1493
b7a71e66
JA
1494 /*
1495 * We can't run the queue inline with ints disabled. Ensure that
1496 * we catch bad users of this early.
1497 */
1498 WARN_ON_ONCE(in_interrupt());
1499
04ced159 1500 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1501
04ced159
JA
1502 hctx_lock(hctx, &srcu_idx);
1503 blk_mq_sched_dispatch_requests(hctx);
1504 hctx_unlock(hctx, srcu_idx);
6a83e74d
BVA
1505}
1506
f82ddf19
ML
1507static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1508{
1509 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1510
1511 if (cpu >= nr_cpu_ids)
1512 cpu = cpumask_first(hctx->cpumask);
1513 return cpu;
1514}
1515
506e931f
JA
1516/*
1517 * It'd be great if the workqueue API had a way to pass
1518 * in a mask and had some smarts for more clever placement.
1519 * For now we just round-robin here, switching for every
1520 * BLK_MQ_CPU_WORK_BATCH queued items.
1521 */
1522static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1523{
7bed4595 1524 bool tried = false;
476f8c98 1525 int next_cpu = hctx->next_cpu;
7bed4595 1526
b657d7e6
CH
1527 if (hctx->queue->nr_hw_queues == 1)
1528 return WORK_CPU_UNBOUND;
506e931f
JA
1529
1530 if (--hctx->next_cpu_batch <= 0) {
7bed4595 1531select_cpu:
476f8c98 1532 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
20e4d813 1533 cpu_online_mask);
506e931f 1534 if (next_cpu >= nr_cpu_ids)
f82ddf19 1535 next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
1536 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1537 }
1538
7bed4595
ML
1539 /*
1540 * Do unbound schedule if we can't find a online CPU for this hctx,
1541 * and it should only happen in the path of handling CPU DEAD.
1542 */
476f8c98 1543 if (!cpu_online(next_cpu)) {
7bed4595
ML
1544 if (!tried) {
1545 tried = true;
1546 goto select_cpu;
1547 }
1548
1549 /*
1550 * Make sure to re-select CPU next time once after CPUs
1551 * in hctx->cpumask become online again.
1552 */
476f8c98 1553 hctx->next_cpu = next_cpu;
7bed4595
ML
1554 hctx->next_cpu_batch = 1;
1555 return WORK_CPU_UNBOUND;
1556 }
476f8c98
ML
1557
1558 hctx->next_cpu = next_cpu;
1559 return next_cpu;
506e931f
JA
1560}
1561
105663f7
AA
1562/**
1563 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1564 * @hctx: Pointer to the hardware queue to run.
1565 * @async: If we want to run the queue asynchronously.
fa94ba8a 1566 * @msecs: Milliseconds of delay to wait before running the queue.
105663f7
AA
1567 *
1568 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1569 * with a delay of @msecs.
1570 */
7587a5ae
BVA
1571static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1572 unsigned long msecs)
320ae51f 1573{
5435c023 1574 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1575 return;
1576
1b792f2f 1577 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1578 int cpu = get_cpu();
1579 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1580 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1581 put_cpu();
398205b8
PB
1582 return;
1583 }
e4043dcf 1584
2a90d4aa 1585 put_cpu();
e4043dcf 1586 }
398205b8 1587
ae943d20
BVA
1588 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1589 msecs_to_jiffies(msecs));
7587a5ae
BVA
1590}
1591
105663f7
AA
1592/**
1593 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1594 * @hctx: Pointer to the hardware queue to run.
fa94ba8a 1595 * @msecs: Milliseconds of delay to wait before running the queue.
105663f7
AA
1596 *
1597 * Run a hardware queue asynchronously with a delay of @msecs.
1598 */
7587a5ae
BVA
1599void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1600{
1601 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1602}
1603EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1604
105663f7
AA
1605/**
1606 * blk_mq_run_hw_queue - Start to run a hardware queue.
1607 * @hctx: Pointer to the hardware queue to run.
1608 * @async: If we want to run the queue asynchronously.
1609 *
1610 * Check if the request queue is not in a quiesced state and if there are
1611 * pending requests to be sent. If this is true, run the queue to send requests
1612 * to hardware.
1613 */
626fb735 1614void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1615{
24f5a90f
ML
1616 int srcu_idx;
1617 bool need_run;
1618
1619 /*
1620 * When queue is quiesced, we may be switching io scheduler, or
1621 * updating nr_hw_queues, or other things, and we can't run queue
1622 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1623 *
1624 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1625 * quiesced.
1626 */
04ced159
JA
1627 hctx_lock(hctx, &srcu_idx);
1628 need_run = !blk_queue_quiesced(hctx->queue) &&
1629 blk_mq_hctx_has_pending(hctx);
1630 hctx_unlock(hctx, srcu_idx);
24f5a90f 1631
626fb735 1632 if (need_run)
79f720a7 1633 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f 1634}
5b727272 1635EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1636
b6e68ee8
JK
1637/*
1638 * Is the request queue handled by an IO scheduler that does not respect
1639 * hardware queues when dispatching?
1640 */
1641static bool blk_mq_has_sqsched(struct request_queue *q)
1642{
1643 struct elevator_queue *e = q->elevator;
1644
1645 if (e && e->type->ops.dispatch_request &&
1646 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1647 return true;
1648 return false;
1649}
1650
1651/*
1652 * Return prefered queue to dispatch from (if any) for non-mq aware IO
1653 * scheduler.
1654 */
1655static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1656{
1657 struct blk_mq_hw_ctx *hctx;
1658
1659 /*
1660 * If the IO scheduler does not respect hardware queues when
1661 * dispatching, we just don't bother with multiple HW queues and
1662 * dispatch from hctx for the current CPU since running multiple queues
1663 * just causes lock contention inside the scheduler and pointless cache
1664 * bouncing.
1665 */
1666 hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1667 raw_smp_processor_id());
1668 if (!blk_mq_hctx_stopped(hctx))
1669 return hctx;
1670 return NULL;
1671}
1672
105663f7 1673/**
24f7bb88 1674 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
105663f7
AA
1675 * @q: Pointer to the request queue to run.
1676 * @async: If we want to run the queue asynchronously.
1677 */
b94ec296 1678void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f 1679{
b6e68ee8 1680 struct blk_mq_hw_ctx *hctx, *sq_hctx;
320ae51f
JA
1681 int i;
1682
b6e68ee8
JK
1683 sq_hctx = NULL;
1684 if (blk_mq_has_sqsched(q))
1685 sq_hctx = blk_mq_get_sq_hctx(q);
320ae51f 1686 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1687 if (blk_mq_hctx_stopped(hctx))
320ae51f 1688 continue;
b6e68ee8
JK
1689 /*
1690 * Dispatch from this hctx either if there's no hctx preferred
1691 * by IO scheduler or if it has requests that bypass the
1692 * scheduler.
1693 */
1694 if (!sq_hctx || sq_hctx == hctx ||
1695 !list_empty_careful(&hctx->dispatch))
1696 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1697 }
1698}
b94ec296 1699EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1700
b9151e7b
DA
1701/**
1702 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1703 * @q: Pointer to the request queue to run.
fa94ba8a 1704 * @msecs: Milliseconds of delay to wait before running the queues.
b9151e7b
DA
1705 */
1706void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1707{
b6e68ee8 1708 struct blk_mq_hw_ctx *hctx, *sq_hctx;
b9151e7b
DA
1709 int i;
1710
b6e68ee8
JK
1711 sq_hctx = NULL;
1712 if (blk_mq_has_sqsched(q))
1713 sq_hctx = blk_mq_get_sq_hctx(q);
b9151e7b
DA
1714 queue_for_each_hw_ctx(q, hctx, i) {
1715 if (blk_mq_hctx_stopped(hctx))
1716 continue;
b6e68ee8
JK
1717 /*
1718 * Dispatch from this hctx either if there's no hctx preferred
1719 * by IO scheduler or if it has requests that bypass the
1720 * scheduler.
1721 */
1722 if (!sq_hctx || sq_hctx == hctx ||
1723 !list_empty_careful(&hctx->dispatch))
1724 blk_mq_delay_run_hw_queue(hctx, msecs);
b9151e7b
DA
1725 }
1726}
1727EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1728
fd001443
BVA
1729/**
1730 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1731 * @q: request queue.
1732 *
1733 * The caller is responsible for serializing this function against
1734 * blk_mq_{start,stop}_hw_queue().
1735 */
1736bool blk_mq_queue_stopped(struct request_queue *q)
1737{
1738 struct blk_mq_hw_ctx *hctx;
1739 int i;
1740
1741 queue_for_each_hw_ctx(q, hctx, i)
1742 if (blk_mq_hctx_stopped(hctx))
1743 return true;
1744
1745 return false;
1746}
1747EXPORT_SYMBOL(blk_mq_queue_stopped);
1748
39a70c76
ML
1749/*
1750 * This function is often used for pausing .queue_rq() by driver when
1751 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1752 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1753 *
1754 * We do not guarantee that dispatch can be drained or blocked
1755 * after blk_mq_stop_hw_queue() returns. Please use
1756 * blk_mq_quiesce_queue() for that requirement.
1757 */
2719aa21
JA
1758void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1759{
641a9ed6 1760 cancel_delayed_work(&hctx->run_work);
280d45f6 1761
641a9ed6 1762 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1763}
641a9ed6 1764EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1765
39a70c76
ML
1766/*
1767 * This function is often used for pausing .queue_rq() by driver when
1768 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1769 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1770 *
1771 * We do not guarantee that dispatch can be drained or blocked
1772 * after blk_mq_stop_hw_queues() returns. Please use
1773 * blk_mq_quiesce_queue() for that requirement.
1774 */
2719aa21
JA
1775void blk_mq_stop_hw_queues(struct request_queue *q)
1776{
641a9ed6
ML
1777 struct blk_mq_hw_ctx *hctx;
1778 int i;
1779
1780 queue_for_each_hw_ctx(q, hctx, i)
1781 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1782}
1783EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1784
320ae51f
JA
1785void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1786{
1787 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1788
0ffbce80 1789 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1790}
1791EXPORT_SYMBOL(blk_mq_start_hw_queue);
1792
2f268556
CH
1793void blk_mq_start_hw_queues(struct request_queue *q)
1794{
1795 struct blk_mq_hw_ctx *hctx;
1796 int i;
1797
1798 queue_for_each_hw_ctx(q, hctx, i)
1799 blk_mq_start_hw_queue(hctx);
1800}
1801EXPORT_SYMBOL(blk_mq_start_hw_queues);
1802
ae911c5e
JA
1803void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1804{
1805 if (!blk_mq_hctx_stopped(hctx))
1806 return;
1807
1808 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1809 blk_mq_run_hw_queue(hctx, async);
1810}
1811EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1812
1b4a3258 1813void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1814{
1815 struct blk_mq_hw_ctx *hctx;
1816 int i;
1817
ae911c5e
JA
1818 queue_for_each_hw_ctx(q, hctx, i)
1819 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1820}
1821EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1822
70f4db63 1823static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1824{
1825 struct blk_mq_hw_ctx *hctx;
1826
9f993737 1827 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1828
21c6e939 1829 /*
15fe8a90 1830 * If we are stopped, don't run the queue.
21c6e939 1831 */
0841031a 1832 if (blk_mq_hctx_stopped(hctx))
0196d6b4 1833 return;
7587a5ae
BVA
1834
1835 __blk_mq_run_hw_queue(hctx);
1836}
1837
cfd0c552 1838static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1839 struct request *rq,
1840 bool at_head)
320ae51f 1841{
e57690fe 1842 struct blk_mq_ctx *ctx = rq->mq_ctx;
c16d6b5a 1843 enum hctx_type type = hctx->type;
e57690fe 1844
7b607814
BVA
1845 lockdep_assert_held(&ctx->lock);
1846
a54895fa 1847 trace_block_rq_insert(rq);
01b983c9 1848
72a0a36e 1849 if (at_head)
c16d6b5a 1850 list_add(&rq->queuelist, &ctx->rq_lists[type]);
72a0a36e 1851 else
c16d6b5a 1852 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
cfd0c552 1853}
4bb659b1 1854
2c3ad667
JA
1855void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1856 bool at_head)
cfd0c552
ML
1857{
1858 struct blk_mq_ctx *ctx = rq->mq_ctx;
1859
7b607814
BVA
1860 lockdep_assert_held(&ctx->lock);
1861
e57690fe 1862 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1863 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1864}
1865
105663f7
AA
1866/**
1867 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1868 * @rq: Pointer to request to be inserted.
26bfeb26 1869 * @at_head: true if the request should be inserted at the head of the list.
105663f7
AA
1870 * @run_queue: If we should run the hardware queue after inserting the request.
1871 *
157f377b
JA
1872 * Should only be used carefully, when the caller knows we want to
1873 * bypass a potential IO scheduler on the target device.
1874 */
01e99aec
ML
1875void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1876 bool run_queue)
157f377b 1877{
ea4f995e 1878 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
157f377b
JA
1879
1880 spin_lock(&hctx->lock);
01e99aec
ML
1881 if (at_head)
1882 list_add(&rq->queuelist, &hctx->dispatch);
1883 else
1884 list_add_tail(&rq->queuelist, &hctx->dispatch);
157f377b
JA
1885 spin_unlock(&hctx->lock);
1886
b0850297
ML
1887 if (run_queue)
1888 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1889}
1890
bd166ef1
JA
1891void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1892 struct list_head *list)
320ae51f
JA
1893
1894{
3f0cedc7 1895 struct request *rq;
c16d6b5a 1896 enum hctx_type type = hctx->type;
3f0cedc7 1897
320ae51f
JA
1898 /*
1899 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1900 * offline now
1901 */
3f0cedc7 1902 list_for_each_entry(rq, list, queuelist) {
e57690fe 1903 BUG_ON(rq->mq_ctx != ctx);
a54895fa 1904 trace_block_rq_insert(rq);
320ae51f 1905 }
3f0cedc7
ML
1906
1907 spin_lock(&ctx->lock);
c16d6b5a 1908 list_splice_tail_init(list, &ctx->rq_lists[type]);
cfd0c552 1909 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1910 spin_unlock(&ctx->lock);
320ae51f
JA
1911}
1912
4f0f586b
ST
1913static int plug_rq_cmp(void *priv, const struct list_head *a,
1914 const struct list_head *b)
320ae51f
JA
1915{
1916 struct request *rqa = container_of(a, struct request, queuelist);
1917 struct request *rqb = container_of(b, struct request, queuelist);
1918
7d30a621
PB
1919 if (rqa->mq_ctx != rqb->mq_ctx)
1920 return rqa->mq_ctx > rqb->mq_ctx;
1921 if (rqa->mq_hctx != rqb->mq_hctx)
1922 return rqa->mq_hctx > rqb->mq_hctx;
3110fc79
JA
1923
1924 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
320ae51f
JA
1925}
1926
1927void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1928{
320ae51f 1929 LIST_HEAD(list);
320ae51f 1930
95ed0c5b
PB
1931 if (list_empty(&plug->mq_list))
1932 return;
320ae51f
JA
1933 list_splice_init(&plug->mq_list, &list);
1934
ce5b009c
JA
1935 if (plug->rq_count > 2 && plug->multiple_queues)
1936 list_sort(NULL, &list, plug_rq_cmp);
320ae51f 1937
bcc816df
DZ
1938 plug->rq_count = 0;
1939
95ed0c5b
PB
1940 do {
1941 struct list_head rq_list;
1942 struct request *rq, *head_rq = list_entry_rq(list.next);
1943 struct list_head *pos = &head_rq->queuelist; /* skip first */
1944 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1945 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1946 unsigned int depth = 1;
1947
1948 list_for_each_continue(pos, &list) {
1949 rq = list_entry_rq(pos);
1950 BUG_ON(!rq->q);
1951 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1952 break;
1953 depth++;
320ae51f
JA
1954 }
1955
95ed0c5b
PB
1956 list_cut_before(&rq_list, &list, pos);
1957 trace_block_unplug(head_rq->q, depth, !from_schedule);
67cae4c9 1958 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
bd166ef1 1959 from_schedule);
95ed0c5b 1960 } while(!list_empty(&list));
320ae51f
JA
1961}
1962
14ccb66b
CH
1963static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1964 unsigned int nr_segs)
320ae51f 1965{
93f221ae
EB
1966 int err;
1967
f924cdde
CH
1968 if (bio->bi_opf & REQ_RAHEAD)
1969 rq->cmd_flags |= REQ_FAILFAST_MASK;
1970
1971 rq->__sector = bio->bi_iter.bi_sector;
1972 rq->write_hint = bio->bi_write_hint;
14ccb66b 1973 blk_rq_bio_prep(rq, bio, nr_segs);
93f221ae
EB
1974
1975 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1976 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1977 WARN_ON_ONCE(err);
4b570521 1978
b5af37ab 1979 blk_account_io_start(rq);
320ae51f
JA
1980}
1981
0f95549c
MS
1982static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1983 struct request *rq,
be94f058 1984 blk_qc_t *cookie, bool last)
f984df1f 1985{
f984df1f 1986 struct request_queue *q = rq->q;
f984df1f
SL
1987 struct blk_mq_queue_data bd = {
1988 .rq = rq,
be94f058 1989 .last = last,
f984df1f 1990 };
bd166ef1 1991 blk_qc_t new_cookie;
f06345ad 1992 blk_status_t ret;
0f95549c
MS
1993
1994 new_cookie = request_to_qc_t(hctx, rq);
1995
1996 /*
1997 * For OK queue, we are done. For error, caller may kill it.
1998 * Any other error (busy), just add it to our list as we
1999 * previously would have done.
2000 */
2001 ret = q->mq_ops->queue_rq(hctx, &bd);
2002 switch (ret) {
2003 case BLK_STS_OK:
6ce3dd6e 2004 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
2005 *cookie = new_cookie;
2006 break;
2007 case BLK_STS_RESOURCE:
86ff7c2a 2008 case BLK_STS_DEV_RESOURCE:
6ce3dd6e 2009 blk_mq_update_dispatch_busy(hctx, true);
0f95549c
MS
2010 __blk_mq_requeue_request(rq);
2011 break;
2012 default:
6ce3dd6e 2013 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
2014 *cookie = BLK_QC_T_NONE;
2015 break;
2016 }
2017
2018 return ret;
2019}
2020
fd9c40f6 2021static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
0f95549c 2022 struct request *rq,
396eaf21 2023 blk_qc_t *cookie,
fd9c40f6 2024 bool bypass_insert, bool last)
0f95549c
MS
2025{
2026 struct request_queue *q = rq->q;
d964f04a 2027 bool run_queue = true;
2a5a24aa 2028 int budget_token;
d964f04a 2029
23d4ee19 2030 /*
fd9c40f6 2031 * RCU or SRCU read lock is needed before checking quiesced flag.
23d4ee19 2032 *
fd9c40f6
BVA
2033 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2034 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2035 * and avoid driver to try to dispatch again.
23d4ee19 2036 */
fd9c40f6 2037 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a 2038 run_queue = false;
fd9c40f6
BVA
2039 bypass_insert = false;
2040 goto insert;
d964f04a 2041 }
f984df1f 2042
fd9c40f6
BVA
2043 if (q->elevator && !bypass_insert)
2044 goto insert;
2253efc8 2045
2a5a24aa
ML
2046 budget_token = blk_mq_get_dispatch_budget(q);
2047 if (budget_token < 0)
fd9c40f6 2048 goto insert;
bd166ef1 2049
2a5a24aa
ML
2050 blk_mq_set_rq_budget_token(rq, budget_token);
2051
8ab6bb9e 2052 if (!blk_mq_get_driver_tag(rq)) {
2a5a24aa 2053 blk_mq_put_dispatch_budget(q, budget_token);
fd9c40f6 2054 goto insert;
88022d72 2055 }
de148297 2056
fd9c40f6
BVA
2057 return __blk_mq_issue_directly(hctx, rq, cookie, last);
2058insert:
2059 if (bypass_insert)
2060 return BLK_STS_RESOURCE;
2061
db03f88f
ML
2062 blk_mq_sched_insert_request(rq, false, run_queue, false);
2063
fd9c40f6
BVA
2064 return BLK_STS_OK;
2065}
2066
105663f7
AA
2067/**
2068 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2069 * @hctx: Pointer of the associated hardware queue.
2070 * @rq: Pointer to request to be sent.
2071 * @cookie: Request queue cookie.
2072 *
2073 * If the device has enough resources to accept a new request now, send the
2074 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2075 * we can try send it another time in the future. Requests inserted at this
2076 * queue have higher priority.
2077 */
fd9c40f6
BVA
2078static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2079 struct request *rq, blk_qc_t *cookie)
2080{
2081 blk_status_t ret;
2082 int srcu_idx;
2083
2084 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2085
2086 hctx_lock(hctx, &srcu_idx);
2087
2088 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2089 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
01e99aec 2090 blk_mq_request_bypass_insert(rq, false, true);
fd9c40f6
BVA
2091 else if (ret != BLK_STS_OK)
2092 blk_mq_end_request(rq, ret);
2093
2094 hctx_unlock(hctx, srcu_idx);
2095}
2096
2097blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2098{
2099 blk_status_t ret;
2100 int srcu_idx;
2101 blk_qc_t unused_cookie;
2102 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2103
2104 hctx_lock(hctx, &srcu_idx);
2105 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
04ced159 2106 hctx_unlock(hctx, srcu_idx);
7f556a44
JW
2107
2108 return ret;
5eb6126e
CH
2109}
2110
6ce3dd6e
ML
2111void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2112 struct list_head *list)
2113{
536167d4 2114 int queued = 0;
632bfb63 2115 int errors = 0;
536167d4 2116
6ce3dd6e 2117 while (!list_empty(list)) {
fd9c40f6 2118 blk_status_t ret;
6ce3dd6e
ML
2119 struct request *rq = list_first_entry(list, struct request,
2120 queuelist);
2121
2122 list_del_init(&rq->queuelist);
fd9c40f6
BVA
2123 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2124 if (ret != BLK_STS_OK) {
2125 if (ret == BLK_STS_RESOURCE ||
2126 ret == BLK_STS_DEV_RESOURCE) {
01e99aec 2127 blk_mq_request_bypass_insert(rq, false,
c616cbee 2128 list_empty(list));
fd9c40f6
BVA
2129 break;
2130 }
2131 blk_mq_end_request(rq, ret);
632bfb63 2132 errors++;
536167d4
KB
2133 } else
2134 queued++;
6ce3dd6e 2135 }
d666ba98
JA
2136
2137 /*
2138 * If we didn't flush the entire list, we could have told
2139 * the driver there was more coming, but that turned out to
2140 * be a lie.
2141 */
632bfb63 2142 if ((!list_empty(list) || errors) &&
2143 hctx->queue->mq_ops->commit_rqs && queued)
d666ba98 2144 hctx->queue->mq_ops->commit_rqs(hctx);
6ce3dd6e
ML
2145}
2146
ce5b009c
JA
2147static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2148{
2149 list_add_tail(&rq->queuelist, &plug->mq_list);
2150 plug->rq_count++;
2151 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2152 struct request *tmp;
2153
2154 tmp = list_first_entry(&plug->mq_list, struct request,
2155 queuelist);
2156 if (tmp->q != rq->q)
2157 plug->multiple_queues = true;
2158 }
2159}
2160
105663f7 2161/**
c62b37d9 2162 * blk_mq_submit_bio - Create and send a request to block device.
105663f7
AA
2163 * @bio: Bio pointer.
2164 *
2165 * Builds up a request structure from @q and @bio and send to the device. The
2166 * request may not be queued directly to hardware if:
2167 * * This request can be merged with another one
2168 * * We want to place request at plug queue for possible future merging
2169 * * There is an IO scheduler active at this queue
2170 *
2171 * It will not queue the request if there is an error with the bio, or at the
2172 * request creation.
2173 *
2174 * Returns: Request queue cookie.
2175 */
c62b37d9 2176blk_qc_t blk_mq_submit_bio(struct bio *bio)
07068d5b 2177{
309dca30 2178 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
ef295ecf 2179 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 2180 const int is_flush_fua = op_is_flush(bio->bi_opf);
e6e7abff
CH
2181 struct blk_mq_alloc_data data = {
2182 .q = q,
2183 };
07068d5b 2184 struct request *rq;
f984df1f 2185 struct blk_plug *plug;
5b3f341f 2186 struct request *same_queue_rq = NULL;
14ccb66b 2187 unsigned int nr_segs;
7b371636 2188 blk_qc_t cookie;
a892c8d5 2189 blk_status_t ret;
cc29e1bf 2190 bool hipri;
07068d5b
JA
2191
2192 blk_queue_bounce(q, &bio);
f695ca38 2193 __blk_queue_split(&bio, &nr_segs);
f36ea50c 2194
e23947bd 2195 if (!bio_integrity_prep(bio))
ac7c5675 2196 goto queue_exit;
07068d5b 2197
87c279e6 2198 if (!is_flush_fua && !blk_queue_nomerges(q) &&
14ccb66b 2199 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
ac7c5675 2200 goto queue_exit;
f984df1f 2201
14ccb66b 2202 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
ac7c5675 2203 goto queue_exit;
bd166ef1 2204
d5337560 2205 rq_qos_throttle(q, bio);
87760e5e 2206
cc29e1bf
JX
2207 hipri = bio->bi_opf & REQ_HIPRI;
2208
7809167d 2209 data.cmd_flags = bio->bi_opf;
e6e7abff 2210 rq = __blk_mq_alloc_request(&data);
87760e5e 2211 if (unlikely(!rq)) {
c1c80384 2212 rq_qos_cleanup(q, bio);
7b6620d7 2213 if (bio->bi_opf & REQ_NOWAIT)
03a07c92 2214 bio_wouldblock_error(bio);
ac7c5675 2215 goto queue_exit;
87760e5e
JA
2216 }
2217
e8a676d6 2218 trace_block_getrq(bio);
d6f1dda2 2219
c1c80384 2220 rq_qos_track(q, rq, bio);
07068d5b 2221
fd2d3326 2222 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 2223
970d168d
BVA
2224 blk_mq_bio_to_request(rq, bio, nr_segs);
2225
a892c8d5
ST
2226 ret = blk_crypto_init_request(rq);
2227 if (ret != BLK_STS_OK) {
2228 bio->bi_status = ret;
2229 bio_endio(bio);
2230 blk_mq_free_request(rq);
2231 return BLK_QC_T_NONE;
2232 }
2233
b49773e7 2234 plug = blk_mq_plug(q, bio);
07068d5b 2235 if (unlikely(is_flush_fua)) {
105663f7 2236 /* Bypass scheduler for flush requests */
923218f6
ML
2237 blk_insert_flush(rq);
2238 blk_mq_run_hw_queue(data.hctx, true);
03f26d8f
ML
2239 } else if (plug && (q->nr_hw_queues == 1 ||
2240 blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2241 q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
b2c5d16b
JA
2242 /*
2243 * Use plugging if we have a ->commit_rqs() hook as well, as
2244 * we know the driver uses bd->last in a smart fashion.
3154df26
ML
2245 *
2246 * Use normal plugging if this disk is slow HDD, as sequential
2247 * IO may benefit a lot from plug merging.
b2c5d16b 2248 */
5f0ed774 2249 unsigned int request_count = plug->rq_count;
600271d9
SL
2250 struct request *last = NULL;
2251
676d0607 2252 if (!request_count)
e6c4438b 2253 trace_block_plug(q);
600271d9
SL
2254 else
2255 last = list_entry_rq(plug->mq_list.prev);
b094f89c 2256
600271d9
SL
2257 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2258 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
2259 blk_flush_plug_list(plug, false);
2260 trace_block_plug(q);
320ae51f 2261 }
b094f89c 2262
ce5b009c 2263 blk_add_rq_to_plug(plug, rq);
a12de1d4 2264 } else if (q->elevator) {
105663f7 2265 /* Insert the request at the IO scheduler queue */
a12de1d4 2266 blk_mq_sched_insert_request(rq, false, true, true);
2299722c 2267 } else if (plug && !blk_queue_nomerges(q)) {
07068d5b 2268 /*
6a83e74d 2269 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
2270 * Otherwise the existing request in the plug list will be
2271 * issued. So the plug list will have one request at most
2299722c
CH
2272 * The plug list might get flushed before this. If that happens,
2273 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 2274 */
2299722c
CH
2275 if (list_empty(&plug->mq_list))
2276 same_queue_rq = NULL;
4711b573 2277 if (same_queue_rq) {
2299722c 2278 list_del_init(&same_queue_rq->queuelist);
4711b573
JA
2279 plug->rq_count--;
2280 }
ce5b009c 2281 blk_add_rq_to_plug(plug, rq);
ff3b74b8 2282 trace_block_plug(q);
2299722c 2283
dad7a3be 2284 if (same_queue_rq) {
ea4f995e 2285 data.hctx = same_queue_rq->mq_hctx;
ff3b74b8 2286 trace_block_unplug(q, 1, true);
2299722c 2287 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
fd9c40f6 2288 &cookie);
dad7a3be 2289 }
a12de1d4
ML
2290 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2291 !data.hctx->dispatch_busy) {
105663f7
AA
2292 /*
2293 * There is no scheduler and we can try to send directly
2294 * to the hardware.
2295 */
fd9c40f6 2296 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
ab42f35d 2297 } else {
105663f7 2298 /* Default case. */
8fa9f556 2299 blk_mq_sched_insert_request(rq, false, true, true);
ab42f35d 2300 }
320ae51f 2301
cc29e1bf
JX
2302 if (!hipri)
2303 return BLK_QC_T_NONE;
7b371636 2304 return cookie;
ac7c5675
CH
2305queue_exit:
2306 blk_queue_exit(q);
2307 return BLK_QC_T_NONE;
320ae51f
JA
2308}
2309
cc71a6f4
JA
2310void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2311 unsigned int hctx_idx)
95363efd 2312{
e9b267d9 2313 struct page *page;
320ae51f 2314
24d2f903 2315 if (tags->rqs && set->ops->exit_request) {
e9b267d9 2316 int i;
320ae51f 2317
24d2f903 2318 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
2319 struct request *rq = tags->static_rqs[i];
2320
2321 if (!rq)
e9b267d9 2322 continue;
d6296d39 2323 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 2324 tags->static_rqs[i] = NULL;
e9b267d9 2325 }
320ae51f 2326 }
320ae51f 2327
24d2f903
CH
2328 while (!list_empty(&tags->page_list)) {
2329 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 2330 list_del_init(&page->lru);
f75782e4
CM
2331 /*
2332 * Remove kmemleak object previously allocated in
273938bf 2333 * blk_mq_alloc_rqs().
f75782e4
CM
2334 */
2335 kmemleak_free(page_address(page));
320ae51f
JA
2336 __free_pages(page, page->private);
2337 }
cc71a6f4 2338}
320ae51f 2339
1c0706a7 2340void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
cc71a6f4 2341{
24d2f903 2342 kfree(tags->rqs);
cc71a6f4 2343 tags->rqs = NULL;
2af8cbe3
JA
2344 kfree(tags->static_rqs);
2345 tags->static_rqs = NULL;
320ae51f 2346
1c0706a7 2347 blk_mq_free_tags(tags, flags);
320ae51f
JA
2348}
2349
cc71a6f4
JA
2350struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2351 unsigned int hctx_idx,
2352 unsigned int nr_tags,
1c0706a7
JG
2353 unsigned int reserved_tags,
2354 unsigned int flags)
320ae51f 2355{
24d2f903 2356 struct blk_mq_tags *tags;
59f082e4 2357 int node;
320ae51f 2358
7d76f856 2359 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
59f082e4
SL
2360 if (node == NUMA_NO_NODE)
2361 node = set->numa_node;
2362
1c0706a7 2363 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
24d2f903
CH
2364 if (!tags)
2365 return NULL;
320ae51f 2366
590b5b7d 2367 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
36e1f3d1 2368 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 2369 node);
24d2f903 2370 if (!tags->rqs) {
1c0706a7 2371 blk_mq_free_tags(tags, flags);
24d2f903
CH
2372 return NULL;
2373 }
320ae51f 2374
590b5b7d
KC
2375 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2376 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2377 node);
2af8cbe3
JA
2378 if (!tags->static_rqs) {
2379 kfree(tags->rqs);
1c0706a7 2380 blk_mq_free_tags(tags, flags);
2af8cbe3
JA
2381 return NULL;
2382 }
2383
cc71a6f4
JA
2384 return tags;
2385}
2386
2387static size_t order_to_size(unsigned int order)
2388{
2389 return (size_t)PAGE_SIZE << order;
2390}
2391
1d9bd516
TH
2392static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2393 unsigned int hctx_idx, int node)
2394{
2395 int ret;
2396
2397 if (set->ops->init_request) {
2398 ret = set->ops->init_request(set, rq, hctx_idx, node);
2399 if (ret)
2400 return ret;
2401 }
2402
12f5b931 2403 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1d9bd516
TH
2404 return 0;
2405}
2406
cc71a6f4
JA
2407int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2408 unsigned int hctx_idx, unsigned int depth)
2409{
2410 unsigned int i, j, entries_per_page, max_order = 4;
2411 size_t rq_size, left;
59f082e4
SL
2412 int node;
2413
7d76f856 2414 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
59f082e4
SL
2415 if (node == NUMA_NO_NODE)
2416 node = set->numa_node;
cc71a6f4
JA
2417
2418 INIT_LIST_HEAD(&tags->page_list);
2419
320ae51f
JA
2420 /*
2421 * rq_size is the size of the request plus driver payload, rounded
2422 * to the cacheline size
2423 */
24d2f903 2424 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 2425 cache_line_size());
cc71a6f4 2426 left = rq_size * depth;
320ae51f 2427
cc71a6f4 2428 for (i = 0; i < depth; ) {
320ae51f
JA
2429 int this_order = max_order;
2430 struct page *page;
2431 int to_do;
2432 void *p;
2433
b3a834b1 2434 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
2435 this_order--;
2436
2437 do {
59f082e4 2438 page = alloc_pages_node(node,
36e1f3d1 2439 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 2440 this_order);
320ae51f
JA
2441 if (page)
2442 break;
2443 if (!this_order--)
2444 break;
2445 if (order_to_size(this_order) < rq_size)
2446 break;
2447 } while (1);
2448
2449 if (!page)
24d2f903 2450 goto fail;
320ae51f
JA
2451
2452 page->private = this_order;
24d2f903 2453 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
2454
2455 p = page_address(page);
f75782e4
CM
2456 /*
2457 * Allow kmemleak to scan these pages as they contain pointers
2458 * to additional allocations like via ops->init_request().
2459 */
36e1f3d1 2460 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 2461 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 2462 to_do = min(entries_per_page, depth - i);
320ae51f
JA
2463 left -= to_do * rq_size;
2464 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
2465 struct request *rq = p;
2466
2467 tags->static_rqs[i] = rq;
1d9bd516
TH
2468 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2469 tags->static_rqs[i] = NULL;
2470 goto fail;
e9b267d9
CH
2471 }
2472
320ae51f
JA
2473 p += rq_size;
2474 i++;
2475 }
2476 }
cc71a6f4 2477 return 0;
320ae51f 2478
24d2f903 2479fail:
cc71a6f4
JA
2480 blk_mq_free_rqs(set, tags, hctx_idx);
2481 return -ENOMEM;
320ae51f
JA
2482}
2483
bf0beec0
ML
2484struct rq_iter_data {
2485 struct blk_mq_hw_ctx *hctx;
2486 bool has_rq;
2487};
2488
2489static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2490{
2491 struct rq_iter_data *iter_data = data;
2492
2493 if (rq->mq_hctx != iter_data->hctx)
2494 return true;
2495 iter_data->has_rq = true;
2496 return false;
2497}
2498
2499static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2500{
2501 struct blk_mq_tags *tags = hctx->sched_tags ?
2502 hctx->sched_tags : hctx->tags;
2503 struct rq_iter_data data = {
2504 .hctx = hctx,
2505 };
2506
2507 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2508 return data.has_rq;
2509}
2510
2511static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2512 struct blk_mq_hw_ctx *hctx)
2513{
2514 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2515 return false;
2516 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2517 return false;
2518 return true;
2519}
2520
2521static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2522{
2523 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2524 struct blk_mq_hw_ctx, cpuhp_online);
2525
2526 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2527 !blk_mq_last_cpu_in_hctx(cpu, hctx))
2528 return 0;
2529
2530 /*
2531 * Prevent new request from being allocated on the current hctx.
2532 *
2533 * The smp_mb__after_atomic() Pairs with the implied barrier in
2534 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
2535 * seen once we return from the tag allocator.
2536 */
2537 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2538 smp_mb__after_atomic();
2539
2540 /*
2541 * Try to grab a reference to the queue and wait for any outstanding
2542 * requests. If we could not grab a reference the queue has been
2543 * frozen and there are no requests.
2544 */
2545 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2546 while (blk_mq_hctx_has_requests(hctx))
2547 msleep(5);
2548 percpu_ref_put(&hctx->queue->q_usage_counter);
2549 }
2550
2551 return 0;
2552}
2553
2554static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2555{
2556 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2557 struct blk_mq_hw_ctx, cpuhp_online);
2558
2559 if (cpumask_test_cpu(cpu, hctx->cpumask))
2560 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2561 return 0;
2562}
2563
e57690fe
JA
2564/*
2565 * 'cpu' is going away. splice any existing rq_list entries from this
2566 * software queue to the hw queue dispatch list, and ensure that it
2567 * gets run.
2568 */
9467f859 2569static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 2570{
9467f859 2571 struct blk_mq_hw_ctx *hctx;
484b4061
JA
2572 struct blk_mq_ctx *ctx;
2573 LIST_HEAD(tmp);
c16d6b5a 2574 enum hctx_type type;
484b4061 2575
9467f859 2576 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
bf0beec0
ML
2577 if (!cpumask_test_cpu(cpu, hctx->cpumask))
2578 return 0;
2579
e57690fe 2580 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
c16d6b5a 2581 type = hctx->type;
484b4061
JA
2582
2583 spin_lock(&ctx->lock);
c16d6b5a
ML
2584 if (!list_empty(&ctx->rq_lists[type])) {
2585 list_splice_init(&ctx->rq_lists[type], &tmp);
484b4061
JA
2586 blk_mq_hctx_clear_pending(hctx, ctx);
2587 }
2588 spin_unlock(&ctx->lock);
2589
2590 if (list_empty(&tmp))
9467f859 2591 return 0;
484b4061 2592
e57690fe
JA
2593 spin_lock(&hctx->lock);
2594 list_splice_tail_init(&tmp, &hctx->dispatch);
2595 spin_unlock(&hctx->lock);
484b4061
JA
2596
2597 blk_mq_run_hw_queue(hctx, true);
9467f859 2598 return 0;
484b4061
JA
2599}
2600
9467f859 2601static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2602{
bf0beec0
ML
2603 if (!(hctx->flags & BLK_MQ_F_STACKING))
2604 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2605 &hctx->cpuhp_online);
9467f859
TG
2606 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2607 &hctx->cpuhp_dead);
484b4061
JA
2608}
2609
c3b4afca 2610/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2611static void blk_mq_exit_hctx(struct request_queue *q,
2612 struct blk_mq_tag_set *set,
2613 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2614{
8ab0b7dc
ML
2615 if (blk_mq_hw_queue_mapped(hctx))
2616 blk_mq_tag_idle(hctx);
08e98fc6 2617
f70ced09 2618 if (set->ops->exit_request)
d6296d39 2619 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2620
08e98fc6
ML
2621 if (set->ops->exit_hctx)
2622 set->ops->exit_hctx(hctx, hctx_idx);
2623
9467f859 2624 blk_mq_remove_cpuhp(hctx);
2f8f1336
ML
2625
2626 spin_lock(&q->unused_hctx_lock);
2627 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2628 spin_unlock(&q->unused_hctx_lock);
08e98fc6
ML
2629}
2630
624dbe47
ML
2631static void blk_mq_exit_hw_queues(struct request_queue *q,
2632 struct blk_mq_tag_set *set, int nr_queue)
2633{
2634 struct blk_mq_hw_ctx *hctx;
2635 unsigned int i;
2636
2637 queue_for_each_hw_ctx(q, hctx, i) {
2638 if (i == nr_queue)
2639 break;
477e19de 2640 blk_mq_debugfs_unregister_hctx(hctx);
08e98fc6 2641 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2642 }
624dbe47
ML
2643}
2644
7c6c5b7c
ML
2645static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2646{
2647 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2648
2649 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2650 __alignof__(struct blk_mq_hw_ctx)) !=
2651 sizeof(struct blk_mq_hw_ctx));
2652
2653 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2654 hw_ctx_size += sizeof(struct srcu_struct);
2655
2656 return hw_ctx_size;
2657}
2658
08e98fc6
ML
2659static int blk_mq_init_hctx(struct request_queue *q,
2660 struct blk_mq_tag_set *set,
2661 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2662{
7c6c5b7c
ML
2663 hctx->queue_num = hctx_idx;
2664
bf0beec0
ML
2665 if (!(hctx->flags & BLK_MQ_F_STACKING))
2666 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2667 &hctx->cpuhp_online);
7c6c5b7c
ML
2668 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2669
2670 hctx->tags = set->tags[hctx_idx];
2671
2672 if (set->ops->init_hctx &&
2673 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2674 goto unregister_cpu_notifier;
08e98fc6 2675
7c6c5b7c
ML
2676 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2677 hctx->numa_node))
2678 goto exit_hctx;
2679 return 0;
2680
2681 exit_hctx:
2682 if (set->ops->exit_hctx)
2683 set->ops->exit_hctx(hctx, hctx_idx);
2684 unregister_cpu_notifier:
2685 blk_mq_remove_cpuhp(hctx);
2686 return -1;
2687}
2688
2689static struct blk_mq_hw_ctx *
2690blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2691 int node)
2692{
2693 struct blk_mq_hw_ctx *hctx;
2694 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2695
2696 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2697 if (!hctx)
2698 goto fail_alloc_hctx;
2699
2700 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2701 goto free_hctx;
2702
2703 atomic_set(&hctx->nr_active, 0);
08e98fc6 2704 if (node == NUMA_NO_NODE)
7c6c5b7c
ML
2705 node = set->numa_node;
2706 hctx->numa_node = node;
08e98fc6 2707
9f993737 2708 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2709 spin_lock_init(&hctx->lock);
2710 INIT_LIST_HEAD(&hctx->dispatch);
2711 hctx->queue = q;
51db1c37 2712 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
08e98fc6 2713
2f8f1336
ML
2714 INIT_LIST_HEAD(&hctx->hctx_list);
2715
320ae51f 2716 /*
08e98fc6
ML
2717 * Allocate space for all possible cpus to avoid allocation at
2718 * runtime
320ae51f 2719 */
d904bfa7 2720 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
7c6c5b7c 2721 gfp, node);
08e98fc6 2722 if (!hctx->ctxs)
7c6c5b7c 2723 goto free_cpumask;
320ae51f 2724
5b202853 2725 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
c548e62b 2726 gfp, node, false, false))
08e98fc6 2727 goto free_ctxs;
08e98fc6 2728 hctx->nr_ctx = 0;
320ae51f 2729
5815839b 2730 spin_lock_init(&hctx->dispatch_wait_lock);
eb619fdb
JA
2731 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2732 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2733
754a1572 2734 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
f70ced09 2735 if (!hctx->fq)
7c6c5b7c 2736 goto free_bitmap;
320ae51f 2737
6a83e74d 2738 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2739 init_srcu_struct(hctx->srcu);
7c6c5b7c 2740 blk_mq_hctx_kobj_init(hctx);
6a83e74d 2741
7c6c5b7c 2742 return hctx;
320ae51f 2743
08e98fc6 2744 free_bitmap:
88459642 2745 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2746 free_ctxs:
2747 kfree(hctx->ctxs);
7c6c5b7c
ML
2748 free_cpumask:
2749 free_cpumask_var(hctx->cpumask);
2750 free_hctx:
2751 kfree(hctx);
2752 fail_alloc_hctx:
2753 return NULL;
08e98fc6 2754}
320ae51f 2755
320ae51f
JA
2756static void blk_mq_init_cpu_queues(struct request_queue *q,
2757 unsigned int nr_hw_queues)
2758{
b3c661b1
JA
2759 struct blk_mq_tag_set *set = q->tag_set;
2760 unsigned int i, j;
320ae51f
JA
2761
2762 for_each_possible_cpu(i) {
2763 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2764 struct blk_mq_hw_ctx *hctx;
c16d6b5a 2765 int k;
320ae51f 2766
320ae51f
JA
2767 __ctx->cpu = i;
2768 spin_lock_init(&__ctx->lock);
c16d6b5a
ML
2769 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2770 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2771
320ae51f
JA
2772 __ctx->queue = q;
2773
320ae51f
JA
2774 /*
2775 * Set local node, IFF we have more than one hw queue. If
2776 * not, we remain on the home node of the device
2777 */
b3c661b1
JA
2778 for (j = 0; j < set->nr_maps; j++) {
2779 hctx = blk_mq_map_queue_type(q, j, i);
2780 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
576e85c5 2781 hctx->numa_node = cpu_to_node(i);
b3c661b1 2782 }
320ae51f
JA
2783 }
2784}
2785
03b63b02
WZ
2786static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2787 int hctx_idx)
cc71a6f4 2788{
1c0706a7 2789 unsigned int flags = set->flags;
cc71a6f4
JA
2790 int ret = 0;
2791
2792 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1c0706a7 2793 set->queue_depth, set->reserved_tags, flags);
cc71a6f4
JA
2794 if (!set->tags[hctx_idx])
2795 return false;
2796
2797 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2798 set->queue_depth);
2799 if (!ret)
2800 return true;
2801
1c0706a7 2802 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
cc71a6f4
JA
2803 set->tags[hctx_idx] = NULL;
2804 return false;
2805}
2806
2807static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2808 unsigned int hctx_idx)
2809{
1c0706a7
JG
2810 unsigned int flags = set->flags;
2811
4e6db0f2 2812 if (set->tags && set->tags[hctx_idx]) {
bd166ef1 2813 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1c0706a7 2814 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
bd166ef1
JA
2815 set->tags[hctx_idx] = NULL;
2816 }
cc71a6f4
JA
2817}
2818
4b855ad3 2819static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2820{
b3c661b1 2821 unsigned int i, j, hctx_idx;
320ae51f
JA
2822 struct blk_mq_hw_ctx *hctx;
2823 struct blk_mq_ctx *ctx;
2a34c087 2824 struct blk_mq_tag_set *set = q->tag_set;
320ae51f
JA
2825
2826 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2827 cpumask_clear(hctx->cpumask);
320ae51f 2828 hctx->nr_ctx = 0;
d416c92c 2829 hctx->dispatch_from = NULL;
320ae51f
JA
2830 }
2831
2832 /*
4b855ad3 2833 * Map software to hardware queues.
4412efec
ML
2834 *
2835 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2836 */
20e4d813 2837 for_each_possible_cpu(i) {
4412efec 2838
897bb0c7 2839 ctx = per_cpu_ptr(q->queue_ctx, i);
b3c661b1 2840 for (j = 0; j < set->nr_maps; j++) {
bb94aea1
JW
2841 if (!set->map[j].nr_queues) {
2842 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2843 HCTX_TYPE_DEFAULT, i);
e5edd5f2 2844 continue;
bb94aea1 2845 }
fd689871
ML
2846 hctx_idx = set->map[j].mq_map[i];
2847 /* unmapped hw queue can be remapped after CPU topo changed */
2848 if (!set->tags[hctx_idx] &&
03b63b02 2849 !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
fd689871
ML
2850 /*
2851 * If tags initialization fail for some hctx,
2852 * that hctx won't be brought online. In this
2853 * case, remap the current ctx to hctx[0] which
2854 * is guaranteed to always have tags allocated
2855 */
2856 set->map[j].mq_map[i] = 0;
2857 }
e5edd5f2 2858
b3c661b1 2859 hctx = blk_mq_map_queue_type(q, j, i);
8ccdf4a3 2860 ctx->hctxs[j] = hctx;
b3c661b1
JA
2861 /*
2862 * If the CPU is already set in the mask, then we've
2863 * mapped this one already. This can happen if
2864 * devices share queues across queue maps.
2865 */
2866 if (cpumask_test_cpu(i, hctx->cpumask))
2867 continue;
2868
2869 cpumask_set_cpu(i, hctx->cpumask);
2870 hctx->type = j;
2871 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2872 hctx->ctxs[hctx->nr_ctx++] = ctx;
2873
2874 /*
2875 * If the nr_ctx type overflows, we have exceeded the
2876 * amount of sw queues we can support.
2877 */
2878 BUG_ON(!hctx->nr_ctx);
2879 }
bb94aea1
JW
2880
2881 for (; j < HCTX_MAX_TYPES; j++)
2882 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2883 HCTX_TYPE_DEFAULT, i);
320ae51f 2884 }
506e931f
JA
2885
2886 queue_for_each_hw_ctx(q, hctx, i) {
4412efec
ML
2887 /*
2888 * If no software queues are mapped to this hardware queue,
2889 * disable it and free the request entries.
2890 */
2891 if (!hctx->nr_ctx) {
2892 /* Never unmap queue 0. We need it as a
2893 * fallback in case of a new remap fails
2894 * allocation
2895 */
2896 if (i && set->tags[i])
2897 blk_mq_free_map_and_requests(set, i);
2898
2899 hctx->tags = NULL;
2900 continue;
2901 }
484b4061 2902
2a34c087
ML
2903 hctx->tags = set->tags[i];
2904 WARN_ON(!hctx->tags);
2905
889fa31f
CY
2906 /*
2907 * Set the map size to the number of mapped software queues.
2908 * This is more accurate and more efficient than looping
2909 * over all possibly mapped software queues.
2910 */
88459642 2911 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2912
484b4061
JA
2913 /*
2914 * Initialize batch roundrobin counts
2915 */
f82ddf19 2916 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
2917 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2918 }
320ae51f
JA
2919}
2920
8e8320c9
JA
2921/*
2922 * Caller needs to ensure that we're either frozen/quiesced, or that
2923 * the queue isn't live yet.
2924 */
2404e607 2925static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2926{
2927 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2928 int i;
2929
2404e607 2930 queue_for_each_hw_ctx(q, hctx, i) {
97889f9a 2931 if (shared)
51db1c37 2932 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
97889f9a 2933 else
51db1c37 2934 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2404e607
JM
2935 }
2936}
2937
655ac300
HR
2938static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2939 bool shared)
2404e607
JM
2940{
2941 struct request_queue *q;
0d2602ca 2942
705cda97
BVA
2943 lockdep_assert_held(&set->tag_list_lock);
2944
0d2602ca
JA
2945 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2946 blk_mq_freeze_queue(q);
2404e607 2947 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2948 blk_mq_unfreeze_queue(q);
2949 }
2950}
2951
2952static void blk_mq_del_queue_tag_set(struct request_queue *q)
2953{
2954 struct blk_mq_tag_set *set = q->tag_set;
2955
0d2602ca 2956 mutex_lock(&set->tag_list_lock);
08c875cb 2957 list_del(&q->tag_set_list);
2404e607
JM
2958 if (list_is_singular(&set->tag_list)) {
2959 /* just transitioned to unshared */
51db1c37 2960 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2404e607 2961 /* update existing queue */
655ac300 2962 blk_mq_update_tag_set_shared(set, false);
2404e607 2963 }
0d2602ca 2964 mutex_unlock(&set->tag_list_lock);
a347c7ad 2965 INIT_LIST_HEAD(&q->tag_set_list);
0d2602ca
JA
2966}
2967
2968static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2969 struct request_queue *q)
2970{
0d2602ca 2971 mutex_lock(&set->tag_list_lock);
2404e607 2972
ff821d27
JA
2973 /*
2974 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2975 */
2976 if (!list_empty(&set->tag_list) &&
51db1c37
ML
2977 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2978 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2404e607 2979 /* update existing queue */
655ac300 2980 blk_mq_update_tag_set_shared(set, true);
2404e607 2981 }
51db1c37 2982 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2404e607 2983 queue_set_hctx_shared(q, true);
08c875cb 2984 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 2985
0d2602ca
JA
2986 mutex_unlock(&set->tag_list_lock);
2987}
2988
1db4909e
ML
2989/* All allocations will be freed in release handler of q->mq_kobj */
2990static int blk_mq_alloc_ctxs(struct request_queue *q)
2991{
2992 struct blk_mq_ctxs *ctxs;
2993 int cpu;
2994
2995 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2996 if (!ctxs)
2997 return -ENOMEM;
2998
2999 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3000 if (!ctxs->queue_ctx)
3001 goto fail;
3002
3003 for_each_possible_cpu(cpu) {
3004 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3005 ctx->ctxs = ctxs;
3006 }
3007
3008 q->mq_kobj = &ctxs->kobj;
3009 q->queue_ctx = ctxs->queue_ctx;
3010
3011 return 0;
3012 fail:
3013 kfree(ctxs);
3014 return -ENOMEM;
3015}
3016
e09aae7e
ML
3017/*
3018 * It is the actual release handler for mq, but we do it from
3019 * request queue's release handler for avoiding use-after-free
3020 * and headache because q->mq_kobj shouldn't have been introduced,
3021 * but we can't group ctx/kctx kobj without it.
3022 */
3023void blk_mq_release(struct request_queue *q)
3024{
2f8f1336
ML
3025 struct blk_mq_hw_ctx *hctx, *next;
3026 int i;
e09aae7e 3027
2f8f1336
ML
3028 queue_for_each_hw_ctx(q, hctx, i)
3029 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3030
3031 /* all hctx are in .unused_hctx_list now */
3032 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3033 list_del_init(&hctx->hctx_list);
6c8b232e 3034 kobject_put(&hctx->kobj);
c3b4afca 3035 }
e09aae7e
ML
3036
3037 kfree(q->queue_hw_ctx);
3038
7ea5fe31
ML
3039 /*
3040 * release .mq_kobj and sw queue's kobject now because
3041 * both share lifetime with request queue.
3042 */
3043 blk_mq_sysfs_deinit(q);
e09aae7e
ML
3044}
3045
2f227bb9
CH
3046struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3047 void *queuedata)
b62c21b7
MS
3048{
3049 struct request_queue *uninit_q, *q;
3050
c62b37d9 3051 uninit_q = blk_alloc_queue(set->numa_node);
b62c21b7
MS
3052 if (!uninit_q)
3053 return ERR_PTR(-ENOMEM);
2f227bb9 3054 uninit_q->queuedata = queuedata;
b62c21b7 3055
737eb78e
DLM
3056 /*
3057 * Initialize the queue without an elevator. device_add_disk() will do
3058 * the initialization.
3059 */
3060 q = blk_mq_init_allocated_queue(set, uninit_q, false);
b62c21b7
MS
3061 if (IS_ERR(q))
3062 blk_cleanup_queue(uninit_q);
3063
3064 return q;
3065}
2f227bb9
CH
3066EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3067
3068struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3069{
3070 return blk_mq_init_queue_data(set, NULL);
3071}
b62c21b7
MS
3072EXPORT_SYMBOL(blk_mq_init_queue);
3073
9316a9ed
JA
3074/*
3075 * Helper for setting up a queue with mq ops, given queue depth, and
3076 * the passed in mq ops flags.
3077 */
3078struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3079 const struct blk_mq_ops *ops,
3080 unsigned int queue_depth,
3081 unsigned int set_flags)
3082{
3083 struct request_queue *q;
3084 int ret;
3085
3086 memset(set, 0, sizeof(*set));
3087 set->ops = ops;
3088 set->nr_hw_queues = 1;
b3c661b1 3089 set->nr_maps = 1;
9316a9ed
JA
3090 set->queue_depth = queue_depth;
3091 set->numa_node = NUMA_NO_NODE;
3092 set->flags = set_flags;
3093
3094 ret = blk_mq_alloc_tag_set(set);
3095 if (ret)
3096 return ERR_PTR(ret);
3097
3098 q = blk_mq_init_queue(set);
3099 if (IS_ERR(q)) {
3100 blk_mq_free_tag_set(set);
3101 return q;
3102 }
3103
3104 return q;
3105}
3106EXPORT_SYMBOL(blk_mq_init_sq_queue);
3107
34d11ffa
JW
3108static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3109 struct blk_mq_tag_set *set, struct request_queue *q,
3110 int hctx_idx, int node)
3111{
2f8f1336 3112 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
34d11ffa 3113
2f8f1336
ML
3114 /* reuse dead hctx first */
3115 spin_lock(&q->unused_hctx_lock);
3116 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3117 if (tmp->numa_node == node) {
3118 hctx = tmp;
3119 break;
3120 }
3121 }
3122 if (hctx)
3123 list_del_init(&hctx->hctx_list);
3124 spin_unlock(&q->unused_hctx_lock);
3125
3126 if (!hctx)
3127 hctx = blk_mq_alloc_hctx(q, set, node);
34d11ffa 3128 if (!hctx)
7c6c5b7c 3129 goto fail;
34d11ffa 3130
7c6c5b7c
ML
3131 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3132 goto free_hctx;
34d11ffa
JW
3133
3134 return hctx;
7c6c5b7c
ML
3135
3136 free_hctx:
3137 kobject_put(&hctx->kobj);
3138 fail:
3139 return NULL;
34d11ffa
JW
3140}
3141
868f2f0b
KB
3142static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3143 struct request_queue *q)
320ae51f 3144{
e01ad46d 3145 int i, j, end;
868f2f0b 3146 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 3147
ac0d6b92
BVA
3148 if (q->nr_hw_queues < set->nr_hw_queues) {
3149 struct blk_mq_hw_ctx **new_hctxs;
3150
3151 new_hctxs = kcalloc_node(set->nr_hw_queues,
3152 sizeof(*new_hctxs), GFP_KERNEL,
3153 set->numa_node);
3154 if (!new_hctxs)
3155 return;
3156 if (hctxs)
3157 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3158 sizeof(*hctxs));
3159 q->queue_hw_ctx = new_hctxs;
ac0d6b92
BVA
3160 kfree(hctxs);
3161 hctxs = new_hctxs;
3162 }
3163
fb350e0a
ML
3164 /* protect against switching io scheduler */
3165 mutex_lock(&q->sysfs_lock);
24d2f903 3166 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 3167 int node;
34d11ffa 3168 struct blk_mq_hw_ctx *hctx;
868f2f0b 3169
7d76f856 3170 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
34d11ffa
JW
3171 /*
3172 * If the hw queue has been mapped to another numa node,
3173 * we need to realloc the hctx. If allocation fails, fallback
3174 * to use the previous one.
3175 */
3176 if (hctxs[i] && (hctxs[i]->numa_node == node))
3177 continue;
868f2f0b 3178
34d11ffa
JW
3179 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3180 if (hctx) {
2f8f1336 3181 if (hctxs[i])
34d11ffa 3182 blk_mq_exit_hctx(q, set, hctxs[i], i);
34d11ffa
JW
3183 hctxs[i] = hctx;
3184 } else {
3185 if (hctxs[i])
3186 pr_warn("Allocate new hctx on node %d fails,\
3187 fallback to previous one on node %d\n",
3188 node, hctxs[i]->numa_node);
3189 else
3190 break;
868f2f0b 3191 }
320ae51f 3192 }
e01ad46d
JW
3193 /*
3194 * Increasing nr_hw_queues fails. Free the newly allocated
3195 * hctxs and keep the previous q->nr_hw_queues.
3196 */
3197 if (i != set->nr_hw_queues) {
3198 j = q->nr_hw_queues;
3199 end = i;
3200 } else {
3201 j = i;
3202 end = q->nr_hw_queues;
3203 q->nr_hw_queues = set->nr_hw_queues;
3204 }
34d11ffa 3205
e01ad46d 3206 for (; j < end; j++) {
868f2f0b
KB
3207 struct blk_mq_hw_ctx *hctx = hctxs[j];
3208
3209 if (hctx) {
cc71a6f4
JA
3210 if (hctx->tags)
3211 blk_mq_free_map_and_requests(set, j);
868f2f0b 3212 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 3213 hctxs[j] = NULL;
868f2f0b
KB
3214 }
3215 }
fb350e0a 3216 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
3217}
3218
3219struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
737eb78e
DLM
3220 struct request_queue *q,
3221 bool elevator_init)
868f2f0b 3222{
66841672
ML
3223 /* mark the queue as mq asap */
3224 q->mq_ops = set->ops;
3225
34dbad5d 3226 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
3227 blk_mq_poll_stats_bkt,
3228 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
3229 if (!q->poll_cb)
3230 goto err_exit;
3231
1db4909e 3232 if (blk_mq_alloc_ctxs(q))
41de54c6 3233 goto err_poll;
868f2f0b 3234
737f98cf
ML
3235 /* init q->mq_kobj and sw queues' kobjects */
3236 blk_mq_sysfs_init(q);
3237
2f8f1336
ML
3238 INIT_LIST_HEAD(&q->unused_hctx_list);
3239 spin_lock_init(&q->unused_hctx_lock);
3240
868f2f0b
KB
3241 blk_mq_realloc_hw_ctxs(set, q);
3242 if (!q->nr_hw_queues)
3243 goto err_hctxs;
320ae51f 3244
287922eb 3245 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 3246 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f 3247
a8908939 3248 q->tag_set = set;
320ae51f 3249
94eddfbe 3250 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
cd19181b
ML
3251 if (set->nr_maps > HCTX_TYPE_POLL &&
3252 set->map[HCTX_TYPE_POLL].nr_queues)
6544d229 3253 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
320ae51f 3254
1be036e9
CH
3255 q->sg_reserved_size = INT_MAX;
3256
2849450a 3257 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
3258 INIT_LIST_HEAD(&q->requeue_list);
3259 spin_lock_init(&q->requeue_lock);
3260
eba71768
JA
3261 q->nr_requests = set->queue_depth;
3262
64f1c21e
JA
3263 /*
3264 * Default to classic polling
3265 */
29ece8b4 3266 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
64f1c21e 3267
24d2f903 3268 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 3269 blk_mq_add_queue_tag_set(set, q);
4b855ad3 3270 blk_mq_map_swqueue(q);
4593fdbe 3271
737eb78e
DLM
3272 if (elevator_init)
3273 elevator_init_mq(q);
d3484991 3274
320ae51f 3275 return q;
18741986 3276
320ae51f 3277err_hctxs:
868f2f0b 3278 kfree(q->queue_hw_ctx);
73d9c8d4 3279 q->nr_hw_queues = 0;
1db4909e 3280 blk_mq_sysfs_deinit(q);
41de54c6
JS
3281err_poll:
3282 blk_stat_free_callback(q->poll_cb);
3283 q->poll_cb = NULL;
c7de5726
ML
3284err_exit:
3285 q->mq_ops = NULL;
320ae51f
JA
3286 return ERR_PTR(-ENOMEM);
3287}
b62c21b7 3288EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f 3289
c7e2d94b
ML
3290/* tags can _not_ be used after returning from blk_mq_exit_queue */
3291void blk_mq_exit_queue(struct request_queue *q)
320ae51f 3292{
630ef623 3293 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 3294
630ef623 3295 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
624dbe47 3296 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
630ef623
BVA
3297 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3298 blk_mq_del_queue_tag_set(q);
320ae51f 3299}
320ae51f 3300
a5164405
JA
3301static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3302{
3303 int i;
3304
8229cca8 3305 for (i = 0; i < set->nr_hw_queues; i++) {
03b63b02 3306 if (!__blk_mq_alloc_map_and_request(set, i))
a5164405 3307 goto out_unwind;
8229cca8
XT
3308 cond_resched();
3309 }
a5164405
JA
3310
3311 return 0;
3312
3313out_unwind:
3314 while (--i >= 0)
2e194422 3315 blk_mq_free_map_and_requests(set, i);
a5164405 3316
a5164405
JA
3317 return -ENOMEM;
3318}
3319
3320/*
3321 * Allocate the request maps associated with this tag_set. Note that this
3322 * may reduce the depth asked for, if memory is tight. set->queue_depth
3323 * will be updated to reflect the allocated depth.
3324 */
79fab528 3325static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
a5164405
JA
3326{
3327 unsigned int depth;
3328 int err;
3329
3330 depth = set->queue_depth;
3331 do {
3332 err = __blk_mq_alloc_rq_maps(set);
3333 if (!err)
3334 break;
3335
3336 set->queue_depth >>= 1;
3337 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3338 err = -ENOMEM;
3339 break;
3340 }
3341 } while (set->queue_depth);
3342
3343 if (!set->queue_depth || err) {
3344 pr_err("blk-mq: failed to allocate request map\n");
3345 return -ENOMEM;
3346 }
3347
3348 if (depth != set->queue_depth)
3349 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3350 depth, set->queue_depth);
3351
3352 return 0;
3353}
3354
ebe8bddb
OS
3355static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3356{
6e66b493
BVA
3357 /*
3358 * blk_mq_map_queues() and multiple .map_queues() implementations
3359 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3360 * number of hardware queues.
3361 */
3362 if (set->nr_maps == 1)
3363 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3364
59388702 3365 if (set->ops->map_queues && !is_kdump_kernel()) {
b3c661b1
JA
3366 int i;
3367
7d4901a9
ML
3368 /*
3369 * transport .map_queues is usually done in the following
3370 * way:
3371 *
3372 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3373 * mask = get_cpu_mask(queue)
3374 * for_each_cpu(cpu, mask)
b3c661b1 3375 * set->map[x].mq_map[cpu] = queue;
7d4901a9
ML
3376 * }
3377 *
3378 * When we need to remap, the table has to be cleared for
3379 * killing stale mapping since one CPU may not be mapped
3380 * to any hw queue.
3381 */
b3c661b1
JA
3382 for (i = 0; i < set->nr_maps; i++)
3383 blk_mq_clear_mq_map(&set->map[i]);
7d4901a9 3384
ebe8bddb 3385 return set->ops->map_queues(set);
b3c661b1
JA
3386 } else {
3387 BUG_ON(set->nr_maps > 1);
7d76f856 3388 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
b3c661b1 3389 }
ebe8bddb
OS
3390}
3391
f7e76dbc
BVA
3392static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3393 int cur_nr_hw_queues, int new_nr_hw_queues)
3394{
3395 struct blk_mq_tags **new_tags;
3396
3397 if (cur_nr_hw_queues >= new_nr_hw_queues)
3398 return 0;
3399
3400 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3401 GFP_KERNEL, set->numa_node);
3402 if (!new_tags)
3403 return -ENOMEM;
3404
3405 if (set->tags)
3406 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3407 sizeof(*set->tags));
3408 kfree(set->tags);
3409 set->tags = new_tags;
3410 set->nr_hw_queues = new_nr_hw_queues;
3411
3412 return 0;
3413}
3414
91cdf265
MI
3415static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3416 int new_nr_hw_queues)
3417{
3418 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3419}
3420
a4391c64
JA
3421/*
3422 * Alloc a tag set to be associated with one or more request queues.
3423 * May fail with EINVAL for various error conditions. May adjust the
c018c84f 3424 * requested depth down, if it's too large. In that case, the set
a4391c64
JA
3425 * value will be stored in set->queue_depth.
3426 */
24d2f903
CH
3427int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3428{
b3c661b1 3429 int i, ret;
da695ba2 3430
205fb5f5
BVA
3431 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3432
24d2f903
CH
3433 if (!set->nr_hw_queues)
3434 return -EINVAL;
a4391c64 3435 if (!set->queue_depth)
24d2f903
CH
3436 return -EINVAL;
3437 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3438 return -EINVAL;
3439
7d7e0f90 3440 if (!set->ops->queue_rq)
24d2f903
CH
3441 return -EINVAL;
3442
de148297
ML
3443 if (!set->ops->get_budget ^ !set->ops->put_budget)
3444 return -EINVAL;
3445
a4391c64
JA
3446 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3447 pr_info("blk-mq: reduced tag depth to %u\n",
3448 BLK_MQ_MAX_DEPTH);
3449 set->queue_depth = BLK_MQ_MAX_DEPTH;
3450 }
24d2f903 3451
b3c661b1
JA
3452 if (!set->nr_maps)
3453 set->nr_maps = 1;
3454 else if (set->nr_maps > HCTX_MAX_TYPES)
3455 return -EINVAL;
3456
6637fadf
SL
3457 /*
3458 * If a crashdump is active, then we are potentially in a very
3459 * memory constrained environment. Limit us to 1 queue and
3460 * 64 tags to prevent using too much memory.
3461 */
3462 if (is_kdump_kernel()) {
3463 set->nr_hw_queues = 1;
59388702 3464 set->nr_maps = 1;
6637fadf
SL
3465 set->queue_depth = min(64U, set->queue_depth);
3466 }
868f2f0b 3467 /*
392546ae
JA
3468 * There is no use for more h/w queues than cpus if we just have
3469 * a single map
868f2f0b 3470 */
392546ae 3471 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
868f2f0b 3472 set->nr_hw_queues = nr_cpu_ids;
6637fadf 3473
91cdf265 3474 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
a5164405 3475 return -ENOMEM;
24d2f903 3476
da695ba2 3477 ret = -ENOMEM;
b3c661b1
JA
3478 for (i = 0; i < set->nr_maps; i++) {
3479 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
07b35eb5 3480 sizeof(set->map[i].mq_map[0]),
b3c661b1
JA
3481 GFP_KERNEL, set->numa_node);
3482 if (!set->map[i].mq_map)
3483 goto out_free_mq_map;
59388702 3484 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
b3c661b1 3485 }
bdd17e75 3486
ebe8bddb 3487 ret = blk_mq_update_queue_map(set);
da695ba2
CH
3488 if (ret)
3489 goto out_free_mq_map;
3490
79fab528 3491 ret = blk_mq_alloc_map_and_requests(set);
da695ba2 3492 if (ret)
bdd17e75 3493 goto out_free_mq_map;
24d2f903 3494
32bc15af 3495 if (blk_mq_is_sbitmap_shared(set->flags)) {
f1b49fdc
JG
3496 atomic_set(&set->active_queues_shared_sbitmap, 0);
3497
32bc15af
JG
3498 if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3499 ret = -ENOMEM;
3500 goto out_free_mq_rq_maps;
3501 }
3502 }
3503
0d2602ca
JA
3504 mutex_init(&set->tag_list_lock);
3505 INIT_LIST_HEAD(&set->tag_list);
3506
24d2f903 3507 return 0;
bdd17e75 3508
32bc15af
JG
3509out_free_mq_rq_maps:
3510 for (i = 0; i < set->nr_hw_queues; i++)
3511 blk_mq_free_map_and_requests(set, i);
bdd17e75 3512out_free_mq_map:
b3c661b1
JA
3513 for (i = 0; i < set->nr_maps; i++) {
3514 kfree(set->map[i].mq_map);
3515 set->map[i].mq_map = NULL;
3516 }
5676e7b6
RE
3517 kfree(set->tags);
3518 set->tags = NULL;
da695ba2 3519 return ret;
24d2f903
CH
3520}
3521EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3522
3523void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3524{
b3c661b1 3525 int i, j;
24d2f903 3526
f7e76dbc 3527 for (i = 0; i < set->nr_hw_queues; i++)
cc71a6f4 3528 blk_mq_free_map_and_requests(set, i);
484b4061 3529
32bc15af
JG
3530 if (blk_mq_is_sbitmap_shared(set->flags))
3531 blk_mq_exit_shared_sbitmap(set);
3532
b3c661b1
JA
3533 for (j = 0; j < set->nr_maps; j++) {
3534 kfree(set->map[j].mq_map);
3535 set->map[j].mq_map = NULL;
3536 }
bdd17e75 3537
981bd189 3538 kfree(set->tags);
5676e7b6 3539 set->tags = NULL;
24d2f903
CH
3540}
3541EXPORT_SYMBOL(blk_mq_free_tag_set);
3542
e3a2b3f9
JA
3543int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3544{
3545 struct blk_mq_tag_set *set = q->tag_set;
3546 struct blk_mq_hw_ctx *hctx;
3547 int i, ret;
3548
bd166ef1 3549 if (!set)
e3a2b3f9
JA
3550 return -EINVAL;
3551
e5fa8140
AZ
3552 if (q->nr_requests == nr)
3553 return 0;
3554
70f36b60 3555 blk_mq_freeze_queue(q);
24f5a90f 3556 blk_mq_quiesce_queue(q);
70f36b60 3557
e3a2b3f9
JA
3558 ret = 0;
3559 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
3560 if (!hctx->tags)
3561 continue;
bd166ef1
JA
3562 /*
3563 * If we're using an MQ scheduler, just update the scheduler
3564 * queue depth. This is similar to what the old code would do.
3565 */
70f36b60 3566 if (!hctx->sched_tags) {
c2e82a23 3567 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60 3568 false);
32bc15af
JG
3569 if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3570 blk_mq_tag_resize_shared_sbitmap(set, nr);
70f36b60
JA
3571 } else {
3572 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3573 nr, true);
3574 }
e3a2b3f9
JA
3575 if (ret)
3576 break;
77f1e0a5
JA
3577 if (q->elevator && q->elevator->type->ops.depth_updated)
3578 q->elevator->type->ops.depth_updated(hctx);
e3a2b3f9
JA
3579 }
3580
3581 if (!ret)
3582 q->nr_requests = nr;
3583
24f5a90f 3584 blk_mq_unquiesce_queue(q);
70f36b60 3585 blk_mq_unfreeze_queue(q);
70f36b60 3586
e3a2b3f9
JA
3587 return ret;
3588}
3589
d48ece20
JW
3590/*
3591 * request_queue and elevator_type pair.
3592 * It is just used by __blk_mq_update_nr_hw_queues to cache
3593 * the elevator_type associated with a request_queue.
3594 */
3595struct blk_mq_qe_pair {
3596 struct list_head node;
3597 struct request_queue *q;
3598 struct elevator_type *type;
3599};
3600
3601/*
3602 * Cache the elevator_type in qe pair list and switch the
3603 * io scheduler to 'none'
3604 */
3605static bool blk_mq_elv_switch_none(struct list_head *head,
3606 struct request_queue *q)
3607{
3608 struct blk_mq_qe_pair *qe;
3609
3610 if (!q->elevator)
3611 return true;
3612
3613 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3614 if (!qe)
3615 return false;
3616
3617 INIT_LIST_HEAD(&qe->node);
3618 qe->q = q;
3619 qe->type = q->elevator->type;
3620 list_add(&qe->node, head);
3621
3622 mutex_lock(&q->sysfs_lock);
3623 /*
3624 * After elevator_switch_mq, the previous elevator_queue will be
3625 * released by elevator_release. The reference of the io scheduler
3626 * module get by elevator_get will also be put. So we need to get
3627 * a reference of the io scheduler module here to prevent it to be
3628 * removed.
3629 */
3630 __module_get(qe->type->elevator_owner);
3631 elevator_switch_mq(q, NULL);
3632 mutex_unlock(&q->sysfs_lock);
3633
3634 return true;
3635}
3636
3637static void blk_mq_elv_switch_back(struct list_head *head,
3638 struct request_queue *q)
3639{
3640 struct blk_mq_qe_pair *qe;
3641 struct elevator_type *t = NULL;
3642
3643 list_for_each_entry(qe, head, node)
3644 if (qe->q == q) {
3645 t = qe->type;
3646 break;
3647 }
3648
3649 if (!t)
3650 return;
3651
3652 list_del(&qe->node);
3653 kfree(qe);
3654
3655 mutex_lock(&q->sysfs_lock);
3656 elevator_switch_mq(q, t);
3657 mutex_unlock(&q->sysfs_lock);
3658}
3659
e4dc2b32
KB
3660static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3661 int nr_hw_queues)
868f2f0b
KB
3662{
3663 struct request_queue *q;
d48ece20 3664 LIST_HEAD(head);
e01ad46d 3665 int prev_nr_hw_queues;
868f2f0b 3666
705cda97
BVA
3667 lockdep_assert_held(&set->tag_list_lock);
3668
392546ae 3669 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
868f2f0b 3670 nr_hw_queues = nr_cpu_ids;
fe35ec58
WZ
3671 if (nr_hw_queues < 1)
3672 return;
3673 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
868f2f0b
KB
3674 return;
3675
3676 list_for_each_entry(q, &set->tag_list, tag_set_list)
3677 blk_mq_freeze_queue(q);
d48ece20
JW
3678 /*
3679 * Switch IO scheduler to 'none', cleaning up the data associated
3680 * with the previous scheduler. We will switch back once we are done
3681 * updating the new sw to hw queue mappings.
3682 */
3683 list_for_each_entry(q, &set->tag_list, tag_set_list)
3684 if (!blk_mq_elv_switch_none(&head, q))
3685 goto switch_back;
868f2f0b 3686
477e19de
JW
3687 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3688 blk_mq_debugfs_unregister_hctxs(q);
3689 blk_mq_sysfs_unregister(q);
3690 }
3691
a2584e43 3692 prev_nr_hw_queues = set->nr_hw_queues;
f7e76dbc
BVA
3693 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3694 0)
3695 goto reregister;
3696
868f2f0b 3697 set->nr_hw_queues = nr_hw_queues;
e01ad46d 3698fallback:
aa880ad6 3699 blk_mq_update_queue_map(set);
868f2f0b
KB
3700 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3701 blk_mq_realloc_hw_ctxs(set, q);
e01ad46d
JW
3702 if (q->nr_hw_queues != set->nr_hw_queues) {
3703 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3704 nr_hw_queues, prev_nr_hw_queues);
3705 set->nr_hw_queues = prev_nr_hw_queues;
7d76f856 3706 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
e01ad46d
JW
3707 goto fallback;
3708 }
477e19de
JW
3709 blk_mq_map_swqueue(q);
3710 }
3711
f7e76dbc 3712reregister:
477e19de
JW
3713 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3714 blk_mq_sysfs_register(q);
3715 blk_mq_debugfs_register_hctxs(q);
868f2f0b
KB
3716 }
3717
d48ece20
JW
3718switch_back:
3719 list_for_each_entry(q, &set->tag_list, tag_set_list)
3720 blk_mq_elv_switch_back(&head, q);
3721
868f2f0b
KB
3722 list_for_each_entry(q, &set->tag_list, tag_set_list)
3723 blk_mq_unfreeze_queue(q);
3724}
e4dc2b32
KB
3725
3726void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3727{
3728 mutex_lock(&set->tag_list_lock);
3729 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3730 mutex_unlock(&set->tag_list_lock);
3731}
868f2f0b
KB
3732EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3733
34dbad5d
OS
3734/* Enable polling stats and return whether they were already enabled. */
3735static bool blk_poll_stats_enable(struct request_queue *q)
3736{
3737 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
7dfdbc73 3738 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
34dbad5d
OS
3739 return true;
3740 blk_stat_add_callback(q, q->poll_cb);
3741 return false;
3742}
3743
3744static void blk_mq_poll_stats_start(struct request_queue *q)
3745{
3746 /*
3747 * We don't arm the callback if polling stats are not enabled or the
3748 * callback is already active.
3749 */
3750 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3751 blk_stat_is_active(q->poll_cb))
3752 return;
3753
3754 blk_stat_activate_msecs(q->poll_cb, 100);
3755}
3756
3757static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3758{
3759 struct request_queue *q = cb->data;
720b8ccc 3760 int bucket;
34dbad5d 3761
720b8ccc
SB
3762 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3763 if (cb->stat[bucket].nr_samples)
3764 q->poll_stat[bucket] = cb->stat[bucket];
3765 }
34dbad5d
OS
3766}
3767
64f1c21e 3768static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
64f1c21e
JA
3769 struct request *rq)
3770{
64f1c21e 3771 unsigned long ret = 0;
720b8ccc 3772 int bucket;
64f1c21e
JA
3773
3774 /*
3775 * If stats collection isn't on, don't sleep but turn it on for
3776 * future users
3777 */
34dbad5d 3778 if (!blk_poll_stats_enable(q))
64f1c21e
JA
3779 return 0;
3780
64f1c21e
JA
3781 /*
3782 * As an optimistic guess, use half of the mean service time
3783 * for this type of request. We can (and should) make this smarter.
3784 * For instance, if the completion latencies are tight, we can
3785 * get closer than just half the mean. This is especially
3786 * important on devices where the completion latencies are longer
720b8ccc
SB
3787 * than ~10 usec. We do use the stats for the relevant IO size
3788 * if available which does lead to better estimates.
64f1c21e 3789 */
720b8ccc
SB
3790 bucket = blk_mq_poll_stats_bkt(rq);
3791 if (bucket < 0)
3792 return ret;
3793
3794 if (q->poll_stat[bucket].nr_samples)
3795 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
3796
3797 return ret;
3798}
3799
06426adf
JA
3800static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3801 struct request *rq)
3802{
3803 struct hrtimer_sleeper hs;
3804 enum hrtimer_mode mode;
64f1c21e 3805 unsigned int nsecs;
06426adf
JA
3806 ktime_t kt;
3807
76a86f9d 3808 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
64f1c21e
JA
3809 return false;
3810
3811 /*
1052b8ac 3812 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
64f1c21e 3813 *
64f1c21e
JA
3814 * 0: use half of prev avg
3815 * >0: use this specific value
3816 */
1052b8ac 3817 if (q->poll_nsec > 0)
64f1c21e
JA
3818 nsecs = q->poll_nsec;
3819 else
cae740a0 3820 nsecs = blk_mq_poll_nsecs(q, rq);
64f1c21e
JA
3821
3822 if (!nsecs)
06426adf
JA
3823 return false;
3824
76a86f9d 3825 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
06426adf
JA
3826
3827 /*
3828 * This will be replaced with the stats tracking code, using
3829 * 'avg_completion_time / 2' as the pre-sleep target.
3830 */
8b0e1953 3831 kt = nsecs;
06426adf
JA
3832
3833 mode = HRTIMER_MODE_REL;
dbc1625f 3834 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
06426adf
JA
3835 hrtimer_set_expires(&hs.timer, kt);
3836
06426adf 3837 do {
5a61c363 3838 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
06426adf
JA
3839 break;
3840 set_current_state(TASK_UNINTERRUPTIBLE);
9dd8813e 3841 hrtimer_sleeper_start_expires(&hs, mode);
06426adf
JA
3842 if (hs.task)
3843 io_schedule();
3844 hrtimer_cancel(&hs.timer);
3845 mode = HRTIMER_MODE_ABS;
3846 } while (hs.task && !signal_pending(current));
3847
3848 __set_current_state(TASK_RUNNING);
3849 destroy_hrtimer_on_stack(&hs.timer);
3850 return true;
3851}
3852
1052b8ac
JA
3853static bool blk_mq_poll_hybrid(struct request_queue *q,
3854 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
bbd7bb70 3855{
1052b8ac
JA
3856 struct request *rq;
3857
29ece8b4 3858 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
1052b8ac
JA
3859 return false;
3860
3861 if (!blk_qc_t_is_internal(cookie))
3862 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3863 else {
3864 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3865 /*
3866 * With scheduling, if the request has completed, we'll
3867 * get a NULL return here, as we clear the sched tag when
3868 * that happens. The request still remains valid, like always,
3869 * so we should be safe with just the NULL check.
3870 */
3871 if (!rq)
3872 return false;
3873 }
3874
cae740a0 3875 return blk_mq_poll_hybrid_sleep(q, rq);
1052b8ac
JA
3876}
3877
529262d5
CH
3878/**
3879 * blk_poll - poll for IO completions
3880 * @q: the queue
3881 * @cookie: cookie passed back at IO submission time
3882 * @spin: whether to spin for completions
3883 *
3884 * Description:
3885 * Poll for completions on the passed in queue. Returns number of
3886 * completed entries found. If @spin is true, then blk_poll will continue
3887 * looping until at least one completion is found, unless the task is
3888 * otherwise marked running (or we need to reschedule).
3889 */
3890int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
1052b8ac
JA
3891{
3892 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
3893 long state;
3894
529262d5
CH
3895 if (!blk_qc_t_valid(cookie) ||
3896 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1052b8ac
JA
3897 return 0;
3898
529262d5
CH
3899 if (current->plug)
3900 blk_flush_plug_list(current->plug, false);
3901
1052b8ac
JA
3902 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3903
06426adf
JA
3904 /*
3905 * If we sleep, have the caller restart the poll loop to reset
3906 * the state. Like for the other success return cases, the
3907 * caller is responsible for checking if the IO completed. If
3908 * the IO isn't complete, we'll get called again and will go
f6f371f7
PB
3909 * straight to the busy poll loop. If specified not to spin,
3910 * we also should not sleep.
06426adf 3911 */
f6f371f7 3912 if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
85f4d4b6 3913 return 1;
06426adf 3914
bbd7bb70
JA
3915 hctx->poll_considered++;
3916
3917 state = current->state;
aa61bec3 3918 do {
bbd7bb70
JA
3919 int ret;
3920
3921 hctx->poll_invoked++;
3922
9743139c 3923 ret = q->mq_ops->poll(hctx);
bbd7bb70
JA
3924 if (ret > 0) {
3925 hctx->poll_success++;
849a3700 3926 __set_current_state(TASK_RUNNING);
85f4d4b6 3927 return ret;
bbd7bb70
JA
3928 }
3929
3930 if (signal_pending_state(state, current))
849a3700 3931 __set_current_state(TASK_RUNNING);
bbd7bb70
JA
3932
3933 if (current->state == TASK_RUNNING)
85f4d4b6 3934 return 1;
0a1b8b87 3935 if (ret < 0 || !spin)
bbd7bb70
JA
3936 break;
3937 cpu_relax();
aa61bec3 3938 } while (!need_resched());
bbd7bb70 3939
67b4110f 3940 __set_current_state(TASK_RUNNING);
85f4d4b6 3941 return 0;
bbd7bb70 3942}
529262d5 3943EXPORT_SYMBOL_GPL(blk_poll);
bbd7bb70 3944
9cf2bab6
JA
3945unsigned int blk_mq_rq_cpu(struct request *rq)
3946{
3947 return rq->mq_ctx->cpu;
3948}
3949EXPORT_SYMBOL(blk_mq_rq_cpu);
3950
320ae51f
JA
3951static int __init blk_mq_init(void)
3952{
c3077b5d
CH
3953 int i;
3954
3955 for_each_possible_cpu(i)
f9ab4918 3956 init_llist_head(&per_cpu(blk_cpu_done, i));
c3077b5d
CH
3957 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3958
3959 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3960 "block/softirq:dead", NULL,
3961 blk_softirq_cpu_dead);
9467f859
TG
3962 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3963 blk_mq_hctx_notify_dead);
bf0beec0
ML
3964 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3965 blk_mq_hctx_notify_online,
3966 blk_mq_hctx_notify_offline);
320ae51f
JA
3967 return 0;
3968}
3969subsys_initcall(blk_mq_init);