blk-mq: Fix a comment in include/linux/blk-mq.h
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
75bb4625
JA
2/*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
320ae51f
JA
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/backing-dev.h>
11#include <linux/bio.h>
12#include <linux/blkdev.h>
f75782e4 13#include <linux/kmemleak.h>
320ae51f
JA
14#include <linux/mm.h>
15#include <linux/init.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18#include <linux/smp.h>
19#include <linux/llist.h>
20#include <linux/list_sort.h>
21#include <linux/cpu.h>
22#include <linux/cache.h>
23#include <linux/sched/sysctl.h>
105ab3d8 24#include <linux/sched/topology.h>
174cd4b1 25#include <linux/sched/signal.h>
320ae51f 26#include <linux/delay.h>
aedcd72f 27#include <linux/crash_dump.h>
88c7b2b7 28#include <linux/prefetch.h>
320ae51f
JA
29
30#include <trace/events/block.h>
31
32#include <linux/blk-mq.h>
54d4e6ab 33#include <linux/t10-pi.h>
320ae51f
JA
34#include "blk.h"
35#include "blk-mq.h"
9c1051aa 36#include "blk-mq-debugfs.h"
320ae51f 37#include "blk-mq-tag.h"
986d413b 38#include "blk-pm.h"
cf43e6be 39#include "blk-stat.h"
bd166ef1 40#include "blk-mq-sched.h"
c1c80384 41#include "blk-rq-qos.h"
320ae51f 42
34dbad5d
OS
43static void blk_mq_poll_stats_start(struct request_queue *q);
44static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45
720b8ccc
SB
46static int blk_mq_poll_stats_bkt(const struct request *rq)
47{
3d244306 48 int ddir, sectors, bucket;
720b8ccc 49
99c749a4 50 ddir = rq_data_dir(rq);
3d244306 51 sectors = blk_rq_stats_sectors(rq);
720b8ccc 52
3d244306 53 bucket = ddir + 2 * ilog2(sectors);
720b8ccc
SB
54
55 if (bucket < 0)
56 return -1;
57 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
58 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
59
60 return bucket;
61}
62
320ae51f 63/*
85fae294
YY
64 * Check if any of the ctx, dispatch list or elevator
65 * have pending work in this hardware queue.
320ae51f 66 */
79f720a7 67static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 68{
79f720a7
JA
69 return !list_empty_careful(&hctx->dispatch) ||
70 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 71 blk_mq_sched_has_work(hctx);
1429d7c9
JA
72}
73
320ae51f
JA
74/*
75 * Mark this ctx as having pending work in this hardware queue
76 */
77static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78 struct blk_mq_ctx *ctx)
79{
f31967f0
JA
80 const int bit = ctx->index_hw[hctx->type];
81
82 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
83 sbitmap_set_bit(&hctx->ctx_map, bit);
1429d7c9
JA
84}
85
86static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
87 struct blk_mq_ctx *ctx)
88{
f31967f0
JA
89 const int bit = ctx->index_hw[hctx->type];
90
91 sbitmap_clear_bit(&hctx->ctx_map, bit);
320ae51f
JA
92}
93
f299b7c7
JA
94struct mq_inflight {
95 struct hd_struct *part;
a2e80f6f 96 unsigned int inflight[2];
f299b7c7
JA
97};
98
7baa8572 99static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
f299b7c7
JA
100 struct request *rq, void *priv,
101 bool reserved)
102{
103 struct mq_inflight *mi = priv;
104
6131837b 105 if (rq->part == mi->part)
bb4e6b14 106 mi->inflight[rq_data_dir(rq)]++;
7baa8572
JA
107
108 return true;
f299b7c7
JA
109}
110
e016b782 111unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
f299b7c7 112{
a2e80f6f 113 struct mq_inflight mi = { .part = part };
f299b7c7 114
f299b7c7 115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
e016b782 116
a2e80f6f 117 return mi.inflight[0] + mi.inflight[1];
bf0ddaba
OS
118}
119
120void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
121 unsigned int inflight[2])
122{
a2e80f6f 123 struct mq_inflight mi = { .part = part };
bf0ddaba 124
bb4e6b14 125 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
a2e80f6f
PB
126 inflight[0] = mi.inflight[0];
127 inflight[1] = mi.inflight[1];
bf0ddaba
OS
128}
129
1671d522 130void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 131{
7996a8b5
BL
132 mutex_lock(&q->mq_freeze_lock);
133 if (++q->mq_freeze_depth == 1) {
3ef28e83 134 percpu_ref_kill(&q->q_usage_counter);
7996a8b5 135 mutex_unlock(&q->mq_freeze_lock);
344e9ffc 136 if (queue_is_mq(q))
055f6e18 137 blk_mq_run_hw_queues(q, false);
7996a8b5
BL
138 } else {
139 mutex_unlock(&q->mq_freeze_lock);
cddd5d17 140 }
f3af020b 141}
1671d522 142EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 143
6bae363e 144void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 145{
3ef28e83 146 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 147}
6bae363e 148EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 149
f91328c4
KB
150int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
151 unsigned long timeout)
152{
153 return wait_event_timeout(q->mq_freeze_wq,
154 percpu_ref_is_zero(&q->q_usage_counter),
155 timeout);
156}
157EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 158
f3af020b
TH
159/*
160 * Guarantee no request is in use, so we can change any data structure of
161 * the queue afterward.
162 */
3ef28e83 163void blk_freeze_queue(struct request_queue *q)
f3af020b 164{
3ef28e83
DW
165 /*
166 * In the !blk_mq case we are only calling this to kill the
167 * q_usage_counter, otherwise this increases the freeze depth
168 * and waits for it to return to zero. For this reason there is
169 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
170 * exported to drivers as the only user for unfreeze is blk_mq.
171 */
1671d522 172 blk_freeze_queue_start(q);
f3af020b
TH
173 blk_mq_freeze_queue_wait(q);
174}
3ef28e83
DW
175
176void blk_mq_freeze_queue(struct request_queue *q)
177{
178 /*
179 * ...just an alias to keep freeze and unfreeze actions balanced
180 * in the blk_mq_* namespace
181 */
182 blk_freeze_queue(q);
183}
c761d96b 184EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 185
b4c6a028 186void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 187{
7996a8b5
BL
188 mutex_lock(&q->mq_freeze_lock);
189 q->mq_freeze_depth--;
190 WARN_ON_ONCE(q->mq_freeze_depth < 0);
191 if (!q->mq_freeze_depth) {
bdd63160 192 percpu_ref_resurrect(&q->q_usage_counter);
320ae51f 193 wake_up_all(&q->mq_freeze_wq);
add703fd 194 }
7996a8b5 195 mutex_unlock(&q->mq_freeze_lock);
320ae51f 196}
b4c6a028 197EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 198
852ec809
BVA
199/*
200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201 * mpt3sas driver such that this function can be removed.
202 */
203void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204{
8814ce8a 205 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
852ec809
BVA
206}
207EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
208
6a83e74d 209/**
69e07c4a 210 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
211 * @q: request queue.
212 *
213 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
214 * callback function is invoked. Once this function is returned, we make
215 * sure no dispatch can happen until the queue is unquiesced via
216 * blk_mq_unquiesce_queue().
6a83e74d
BVA
217 */
218void blk_mq_quiesce_queue(struct request_queue *q)
219{
220 struct blk_mq_hw_ctx *hctx;
221 unsigned int i;
222 bool rcu = false;
223
1d9e9bc6 224 blk_mq_quiesce_queue_nowait(q);
f4560ffe 225
6a83e74d
BVA
226 queue_for_each_hw_ctx(q, hctx, i) {
227 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 228 synchronize_srcu(hctx->srcu);
6a83e74d
BVA
229 else
230 rcu = true;
231 }
232 if (rcu)
233 synchronize_rcu();
234}
235EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
236
e4e73913
ML
237/*
238 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
239 * @q: request queue.
240 *
241 * This function recovers queue into the state before quiescing
242 * which is done by blk_mq_quiesce_queue.
243 */
244void blk_mq_unquiesce_queue(struct request_queue *q)
245{
8814ce8a 246 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
f4560ffe 247
1d9e9bc6
ML
248 /* dispatch requests which are inserted during quiescing */
249 blk_mq_run_hw_queues(q, true);
e4e73913
ML
250}
251EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
252
aed3ea94
JA
253void blk_mq_wake_waiters(struct request_queue *q)
254{
255 struct blk_mq_hw_ctx *hctx;
256 unsigned int i;
257
258 queue_for_each_hw_ctx(q, hctx, i)
259 if (blk_mq_hw_queue_mapped(hctx))
260 blk_mq_tag_wakeup_all(hctx->tags, true);
261}
262
fe1f4526 263/*
9a91b05b
HT
264 * Only need start/end time stamping if we have iostat or
265 * blk stats enabled, or using an IO scheduler.
fe1f4526
JA
266 */
267static inline bool blk_mq_need_time_stamp(struct request *rq)
268{
9a91b05b 269 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
fe1f4526
JA
270}
271
e4cdf1a1 272static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
6f816b4b 273 unsigned int tag, unsigned int op, u64 alloc_time_ns)
320ae51f 274{
e4cdf1a1
CH
275 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
276 struct request *rq = tags->static_rqs[tag];
bf9ae8c5 277 req_flags_t rq_flags = 0;
c3a148d2 278
e4cdf1a1
CH
279 if (data->flags & BLK_MQ_REQ_INTERNAL) {
280 rq->tag = -1;
281 rq->internal_tag = tag;
282 } else {
d263ed99 283 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
bf9ae8c5 284 rq_flags = RQF_MQ_INFLIGHT;
e4cdf1a1
CH
285 atomic_inc(&data->hctx->nr_active);
286 }
287 rq->tag = tag;
288 rq->internal_tag = -1;
289 data->hctx->tags->rqs[rq->tag] = rq;
290 }
291
af76e555 292 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
293 rq->q = data->q;
294 rq->mq_ctx = data->ctx;
ea4f995e 295 rq->mq_hctx = data->hctx;
bf9ae8c5 296 rq->rq_flags = rq_flags;
ef295ecf 297 rq->cmd_flags = op;
1b6d65a0
BVA
298 if (data->flags & BLK_MQ_REQ_PREEMPT)
299 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 300 if (blk_queue_io_stat(data->q))
e8064021 301 rq->rq_flags |= RQF_IO_STAT;
7c3fb70f 302 INIT_LIST_HEAD(&rq->queuelist);
af76e555
CH
303 INIT_HLIST_NODE(&rq->hash);
304 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
305 rq->rq_disk = NULL;
306 rq->part = NULL;
6f816b4b
TH
307#ifdef CONFIG_BLK_RQ_ALLOC_TIME
308 rq->alloc_time_ns = alloc_time_ns;
309#endif
fe1f4526
JA
310 if (blk_mq_need_time_stamp(rq))
311 rq->start_time_ns = ktime_get_ns();
312 else
313 rq->start_time_ns = 0;
544ccc8d 314 rq->io_start_time_ns = 0;
3d244306 315 rq->stats_sectors = 0;
af76e555
CH
316 rq->nr_phys_segments = 0;
317#if defined(CONFIG_BLK_DEV_INTEGRITY)
318 rq->nr_integrity_segments = 0;
319#endif
af76e555 320 /* tag was already set */
af76e555 321 rq->extra_len = 0;
079076b3 322 WRITE_ONCE(rq->deadline, 0);
af76e555 323
f6be4fb4
JA
324 rq->timeout = 0;
325
af76e555
CH
326 rq->end_io = NULL;
327 rq->end_io_data = NULL;
af76e555 328
e4cdf1a1 329 data->ctx->rq_dispatched[op_is_sync(op)]++;
12f5b931 330 refcount_set(&rq->ref, 1);
e4cdf1a1 331 return rq;
5dee8577
CH
332}
333
d2c0d383 334static struct request *blk_mq_get_request(struct request_queue *q,
f9afca4d
JA
335 struct bio *bio,
336 struct blk_mq_alloc_data *data)
d2c0d383
CH
337{
338 struct elevator_queue *e = q->elevator;
339 struct request *rq;
e4cdf1a1 340 unsigned int tag;
c05f4220 341 bool clear_ctx_on_error = false;
6f816b4b 342 u64 alloc_time_ns = 0;
d2c0d383
CH
343
344 blk_queue_enter_live(q);
6f816b4b
TH
345
346 /* alloc_time includes depth and tag waits */
347 if (blk_queue_rq_alloc_time(q))
348 alloc_time_ns = ktime_get_ns();
349
d2c0d383 350 data->q = q;
21e768b4
BVA
351 if (likely(!data->ctx)) {
352 data->ctx = blk_mq_get_ctx(q);
c05f4220 353 clear_ctx_on_error = true;
21e768b4 354 }
d2c0d383 355 if (likely(!data->hctx))
f9afca4d 356 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
8ccdf4a3 357 data->ctx);
f9afca4d 358 if (data->cmd_flags & REQ_NOWAIT)
03a07c92 359 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
360
361 if (e) {
362 data->flags |= BLK_MQ_REQ_INTERNAL;
363
364 /*
365 * Flush requests are special and go directly to the
17a51199
JA
366 * dispatch list. Don't include reserved tags in the
367 * limiting, as it isn't useful.
d2c0d383 368 */
f9afca4d
JA
369 if (!op_is_flush(data->cmd_flags) &&
370 e->type->ops.limit_depth &&
17a51199 371 !(data->flags & BLK_MQ_REQ_RESERVED))
f9afca4d 372 e->type->ops.limit_depth(data->cmd_flags, data);
d263ed99
JW
373 } else {
374 blk_mq_tag_busy(data->hctx);
d2c0d383
CH
375 }
376
e4cdf1a1
CH
377 tag = blk_mq_get_tag(data);
378 if (tag == BLK_MQ_TAG_FAIL) {
c05f4220 379 if (clear_ctx_on_error)
1ad43c00 380 data->ctx = NULL;
037cebb8
CH
381 blk_queue_exit(q);
382 return NULL;
d2c0d383
CH
383 }
384
6f816b4b 385 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
f9afca4d 386 if (!op_is_flush(data->cmd_flags)) {
037cebb8 387 rq->elv.icq = NULL;
f9cd4bfe 388 if (e && e->type->ops.prepare_request) {
e2b3fa5a
DLM
389 if (e->type->icq_cache)
390 blk_mq_sched_assign_ioc(rq);
44e8c2bf 391
f9cd4bfe 392 e->type->ops.prepare_request(rq, bio);
5bbf4e5a 393 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 394 }
037cebb8
CH
395 }
396 data->hctx->queued++;
397 return rq;
d2c0d383
CH
398}
399
cd6ce148 400struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 401 blk_mq_req_flags_t flags)
320ae51f 402{
f9afca4d 403 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
bd166ef1 404 struct request *rq;
a492f075 405 int ret;
320ae51f 406
3a0a5299 407 ret = blk_queue_enter(q, flags);
a492f075
JL
408 if (ret)
409 return ERR_PTR(ret);
320ae51f 410
f9afca4d 411 rq = blk_mq_get_request(q, NULL, &alloc_data);
3280d66a 412 blk_queue_exit(q);
841bac2c 413
bd166ef1 414 if (!rq)
a492f075 415 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
416
417 rq->__data_len = 0;
418 rq->__sector = (sector_t) -1;
419 rq->bio = rq->biotail = NULL;
320ae51f
JA
420 return rq;
421}
4bb659b1 422EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 423
cd6ce148 424struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 425 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 426{
f9afca4d 427 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
1f5bd336 428 struct request *rq;
6d2809d5 429 unsigned int cpu;
1f5bd336
ML
430 int ret;
431
432 /*
433 * If the tag allocator sleeps we could get an allocation for a
434 * different hardware context. No need to complicate the low level
435 * allocator for this for the rare use case of a command tied to
436 * a specific queue.
437 */
438 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
439 return ERR_PTR(-EINVAL);
440
441 if (hctx_idx >= q->nr_hw_queues)
442 return ERR_PTR(-EIO);
443
3a0a5299 444 ret = blk_queue_enter(q, flags);
1f5bd336
ML
445 if (ret)
446 return ERR_PTR(ret);
447
c8712c6a
CH
448 /*
449 * Check if the hardware context is actually mapped to anything.
450 * If not tell the caller that it should skip this queue.
451 */
6d2809d5
OS
452 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
453 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
454 blk_queue_exit(q);
455 return ERR_PTR(-EXDEV);
c8712c6a 456 }
20e4d813 457 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
6d2809d5 458 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 459
f9afca4d 460 rq = blk_mq_get_request(q, NULL, &alloc_data);
3280d66a 461 blk_queue_exit(q);
c8712c6a 462
6d2809d5
OS
463 if (!rq)
464 return ERR_PTR(-EWOULDBLOCK);
465
466 return rq;
1f5bd336
ML
467}
468EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
469
12f5b931
KB
470static void __blk_mq_free_request(struct request *rq)
471{
472 struct request_queue *q = rq->q;
473 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 474 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
12f5b931
KB
475 const int sched_tag = rq->internal_tag;
476
986d413b 477 blk_pm_mark_last_busy(rq);
ea4f995e 478 rq->mq_hctx = NULL;
12f5b931 479 if (rq->tag != -1)
cae740a0 480 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
12f5b931 481 if (sched_tag != -1)
cae740a0 482 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
12f5b931
KB
483 blk_mq_sched_restart(hctx);
484 blk_queue_exit(q);
485}
486
6af54051 487void blk_mq_free_request(struct request *rq)
320ae51f 488{
320ae51f 489 struct request_queue *q = rq->q;
6af54051
CH
490 struct elevator_queue *e = q->elevator;
491 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 492 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
6af54051 493
5bbf4e5a 494 if (rq->rq_flags & RQF_ELVPRIV) {
f9cd4bfe
JA
495 if (e && e->type->ops.finish_request)
496 e->type->ops.finish_request(rq);
6af54051
CH
497 if (rq->elv.icq) {
498 put_io_context(rq->elv.icq->ioc);
499 rq->elv.icq = NULL;
500 }
501 }
320ae51f 502
6af54051 503 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 504 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 505 atomic_dec(&hctx->nr_active);
87760e5e 506
7beb2f84
JA
507 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
508 laptop_io_completion(q->backing_dev_info);
509
a7905043 510 rq_qos_done(q, rq);
0d2602ca 511
12f5b931
KB
512 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
513 if (refcount_dec_and_test(&rq->ref))
514 __blk_mq_free_request(rq);
320ae51f 515}
1a3b595a 516EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 517
2a842aca 518inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 519{
fe1f4526
JA
520 u64 now = 0;
521
522 if (blk_mq_need_time_stamp(rq))
523 now = ktime_get_ns();
522a7775 524
4bc6339a
OS
525 if (rq->rq_flags & RQF_STATS) {
526 blk_mq_poll_stats_start(rq->q);
522a7775 527 blk_stat_add(rq, now);
4bc6339a
OS
528 }
529
ed88660a
OS
530 if (rq->internal_tag != -1)
531 blk_mq_sched_completed_request(rq, now);
532
522a7775 533 blk_account_io_done(rq, now);
0d11e6ac 534
91b63639 535 if (rq->end_io) {
a7905043 536 rq_qos_done(rq->q, rq);
320ae51f 537 rq->end_io(rq, error);
91b63639 538 } else {
320ae51f 539 blk_mq_free_request(rq);
91b63639 540 }
320ae51f 541}
c8a446ad 542EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 543
2a842aca 544void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
545{
546 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
547 BUG();
c8a446ad 548 __blk_mq_end_request(rq, error);
63151a44 549}
c8a446ad 550EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 551
30a91cb4 552static void __blk_mq_complete_request_remote(void *data)
320ae51f 553{
3d6efbf6 554 struct request *rq = data;
c7bb9ad1 555 struct request_queue *q = rq->q;
320ae51f 556
c7bb9ad1 557 q->mq_ops->complete(rq);
320ae51f 558}
320ae51f 559
453f8341 560static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
561{
562 struct blk_mq_ctx *ctx = rq->mq_ctx;
c7bb9ad1 563 struct request_queue *q = rq->q;
38535201 564 bool shared = false;
320ae51f
JA
565 int cpu;
566
af78ff7c 567 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
36e76539
ML
568 /*
569 * Most of single queue controllers, there is only one irq vector
570 * for handling IO completion, and the only irq's affinity is set
571 * as all possible CPUs. On most of ARCHs, this affinity means the
572 * irq is handled on one specific CPU.
573 *
574 * So complete IO reqeust in softirq context in case of single queue
575 * for not degrading IO performance by irqsoff latency.
576 */
c7bb9ad1 577 if (q->nr_hw_queues == 1) {
36e76539
ML
578 __blk_complete_request(rq);
579 return;
580 }
581
4ab32bf3
JA
582 /*
583 * For a polled request, always complete locallly, it's pointless
584 * to redirect the completion.
585 */
586 if ((rq->cmd_flags & REQ_HIPRI) ||
587 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
c7bb9ad1 588 q->mq_ops->complete(rq);
30a91cb4
CH
589 return;
590 }
320ae51f
JA
591
592 cpu = get_cpu();
c7bb9ad1 593 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
38535201
CH
594 shared = cpus_share_cache(cpu, ctx->cpu);
595
596 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 597 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
598 rq->csd.info = rq;
599 rq->csd.flags = 0;
c46fff2a 600 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 601 } else {
c7bb9ad1 602 q->mq_ops->complete(rq);
3d6efbf6 603 }
320ae51f
JA
604 put_cpu();
605}
30a91cb4 606
04ced159 607static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
b7435db8 608 __releases(hctx->srcu)
04ced159
JA
609{
610 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
611 rcu_read_unlock();
612 else
05707b64 613 srcu_read_unlock(hctx->srcu, srcu_idx);
04ced159
JA
614}
615
616static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
b7435db8 617 __acquires(hctx->srcu)
04ced159 618{
08b5a6e2
JA
619 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
620 /* shut up gcc false positive */
621 *srcu_idx = 0;
04ced159 622 rcu_read_lock();
08b5a6e2 623 } else
05707b64 624 *srcu_idx = srcu_read_lock(hctx->srcu);
04ced159
JA
625}
626
30a91cb4
CH
627/**
628 * blk_mq_complete_request - end I/O on a request
629 * @rq: the request being processed
630 *
631 * Description:
632 * Ends all I/O on a request. It does not handle partial completions.
633 * The actual completion happens out-of-order, through a IPI handler.
634 **/
16c15eb1 635bool blk_mq_complete_request(struct request *rq)
30a91cb4 636{
12f5b931 637 if (unlikely(blk_should_fake_timeout(rq->q)))
16c15eb1 638 return false;
12f5b931 639 __blk_mq_complete_request(rq);
16c15eb1 640 return true;
30a91cb4
CH
641}
642EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 643
105663f7
AA
644/**
645 * blk_mq_start_request - Start processing a request
646 * @rq: Pointer to request to be started
647 *
648 * Function used by device drivers to notify the block layer that a request
649 * is going to be processed now, so blk layer can do proper initializations
650 * such as starting the timeout timer.
651 */
e2490073 652void blk_mq_start_request(struct request *rq)
320ae51f
JA
653{
654 struct request_queue *q = rq->q;
655
656 trace_block_rq_issue(q, rq);
657
cf43e6be 658 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
544ccc8d 659 rq->io_start_time_ns = ktime_get_ns();
3d244306 660 rq->stats_sectors = blk_rq_sectors(rq);
cf43e6be 661 rq->rq_flags |= RQF_STATS;
a7905043 662 rq_qos_issue(q, rq);
cf43e6be
JA
663 }
664
1d9bd516 665 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 666
1d9bd516 667 blk_add_timer(rq);
12f5b931 668 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
49f5baa5
CH
669
670 if (q->dma_drain_size && blk_rq_bytes(rq)) {
671 /*
672 * Make sure space for the drain appears. We know we can do
673 * this because max_hw_segments has been adjusted to be one
674 * fewer than the device can handle.
675 */
676 rq->nr_phys_segments++;
677 }
54d4e6ab
MG
678
679#ifdef CONFIG_BLK_DEV_INTEGRITY
680 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
681 q->integrity.profile->prepare_fn(rq);
682#endif
320ae51f 683}
e2490073 684EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 685
ed0791b2 686static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
687{
688 struct request_queue *q = rq->q;
689
923218f6
ML
690 blk_mq_put_driver_tag(rq);
691
320ae51f 692 trace_block_rq_requeue(q, rq);
a7905043 693 rq_qos_requeue(q, rq);
49f5baa5 694
12f5b931
KB
695 if (blk_mq_request_started(rq)) {
696 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
da661267 697 rq->rq_flags &= ~RQF_TIMED_OUT;
e2490073
CH
698 if (q->dma_drain_size && blk_rq_bytes(rq))
699 rq->nr_phys_segments--;
700 }
320ae51f
JA
701}
702
2b053aca 703void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 704{
ed0791b2 705 __blk_mq_requeue_request(rq);
ed0791b2 706
105976f5
ML
707 /* this request will be re-inserted to io scheduler queue */
708 blk_mq_sched_requeue_request(rq);
709
7d692330 710 BUG_ON(!list_empty(&rq->queuelist));
2b053aca 711 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
712}
713EXPORT_SYMBOL(blk_mq_requeue_request);
714
6fca6a61
CH
715static void blk_mq_requeue_work(struct work_struct *work)
716{
717 struct request_queue *q =
2849450a 718 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
719 LIST_HEAD(rq_list);
720 struct request *rq, *next;
6fca6a61 721
18e9781d 722 spin_lock_irq(&q->requeue_lock);
6fca6a61 723 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 724 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
725
726 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
aef1897c 727 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
6fca6a61
CH
728 continue;
729
e8064021 730 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 731 list_del_init(&rq->queuelist);
aef1897c
JW
732 /*
733 * If RQF_DONTPREP, rq has contained some driver specific
734 * data, so insert it to hctx dispatch list to avoid any
735 * merge.
736 */
737 if (rq->rq_flags & RQF_DONTPREP)
01e99aec 738 blk_mq_request_bypass_insert(rq, false, false);
aef1897c
JW
739 else
740 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
741 }
742
743 while (!list_empty(&rq_list)) {
744 rq = list_entry(rq_list.next, struct request, queuelist);
745 list_del_init(&rq->queuelist);
9e97d295 746 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
747 }
748
52d7f1b5 749 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
750}
751
2b053aca
BVA
752void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
753 bool kick_requeue_list)
6fca6a61
CH
754{
755 struct request_queue *q = rq->q;
756 unsigned long flags;
757
758 /*
759 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 760 * request head insertion from the workqueue.
6fca6a61 761 */
e8064021 762 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
763
764 spin_lock_irqsave(&q->requeue_lock, flags);
765 if (at_head) {
e8064021 766 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
767 list_add(&rq->queuelist, &q->requeue_list);
768 } else {
769 list_add_tail(&rq->queuelist, &q->requeue_list);
770 }
771 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
772
773 if (kick_requeue_list)
774 blk_mq_kick_requeue_list(q);
6fca6a61 775}
6fca6a61
CH
776
777void blk_mq_kick_requeue_list(struct request_queue *q)
778{
ae943d20 779 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
6fca6a61
CH
780}
781EXPORT_SYMBOL(blk_mq_kick_requeue_list);
782
2849450a
MS
783void blk_mq_delay_kick_requeue_list(struct request_queue *q,
784 unsigned long msecs)
785{
d4acf365
BVA
786 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
787 msecs_to_jiffies(msecs));
2849450a
MS
788}
789EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
790
0e62f51f
JA
791struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
792{
88c7b2b7
JA
793 if (tag < tags->nr_tags) {
794 prefetch(tags->rqs[tag]);
4ee86bab 795 return tags->rqs[tag];
88c7b2b7 796 }
4ee86bab
HR
797
798 return NULL;
24d2f903
CH
799}
800EXPORT_SYMBOL(blk_mq_tag_to_rq);
801
3c94d83c
JA
802static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
803 void *priv, bool reserved)
ae879912
JA
804{
805 /*
3c94d83c
JA
806 * If we find a request that is inflight and the queue matches,
807 * we know the queue is busy. Return false to stop the iteration.
ae879912 808 */
3c94d83c 809 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
ae879912
JA
810 bool *busy = priv;
811
812 *busy = true;
813 return false;
814 }
815
816 return true;
817}
818
3c94d83c 819bool blk_mq_queue_inflight(struct request_queue *q)
ae879912
JA
820{
821 bool busy = false;
822
3c94d83c 823 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
ae879912
JA
824 return busy;
825}
3c94d83c 826EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
ae879912 827
358f70da 828static void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 829{
da661267 830 req->rq_flags |= RQF_TIMED_OUT;
d1210d5a
CH
831 if (req->q->mq_ops->timeout) {
832 enum blk_eh_timer_return ret;
833
834 ret = req->q->mq_ops->timeout(req, reserved);
835 if (ret == BLK_EH_DONE)
836 return;
837 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
46f92d42 838 }
d1210d5a
CH
839
840 blk_add_timer(req);
87ee7b11 841}
5b3f25fc 842
12f5b931 843static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
81481eb4 844{
12f5b931 845 unsigned long deadline;
87ee7b11 846
12f5b931
KB
847 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
848 return false;
da661267
CH
849 if (rq->rq_flags & RQF_TIMED_OUT)
850 return false;
a7af0af3 851
079076b3 852 deadline = READ_ONCE(rq->deadline);
12f5b931
KB
853 if (time_after_eq(jiffies, deadline))
854 return true;
a7af0af3 855
12f5b931
KB
856 if (*next == 0)
857 *next = deadline;
858 else if (time_after(*next, deadline))
859 *next = deadline;
860 return false;
87ee7b11
JA
861}
862
7baa8572 863static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1d9bd516
TH
864 struct request *rq, void *priv, bool reserved)
865{
12f5b931
KB
866 unsigned long *next = priv;
867
868 /*
869 * Just do a quick check if it is expired before locking the request in
870 * so we're not unnecessarilly synchronizing across CPUs.
871 */
872 if (!blk_mq_req_expired(rq, next))
7baa8572 873 return true;
12f5b931
KB
874
875 /*
876 * We have reason to believe the request may be expired. Take a
877 * reference on the request to lock this request lifetime into its
878 * currently allocated context to prevent it from being reallocated in
879 * the event the completion by-passes this timeout handler.
880 *
881 * If the reference was already released, then the driver beat the
882 * timeout handler to posting a natural completion.
883 */
884 if (!refcount_inc_not_zero(&rq->ref))
7baa8572 885 return true;
12f5b931 886
1d9bd516 887 /*
12f5b931
KB
888 * The request is now locked and cannot be reallocated underneath the
889 * timeout handler's processing. Re-verify this exact request is truly
890 * expired; if it is not expired, then the request was completed and
891 * reallocated as a new request.
1d9bd516 892 */
12f5b931 893 if (blk_mq_req_expired(rq, next))
1d9bd516 894 blk_mq_rq_timed_out(rq, reserved);
8d699663
YY
895
896 if (is_flush_rq(rq, hctx))
897 rq->end_io(rq, 0);
898 else if (refcount_dec_and_test(&rq->ref))
12f5b931 899 __blk_mq_free_request(rq);
7baa8572
JA
900
901 return true;
1d9bd516
TH
902}
903
287922eb 904static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 905{
287922eb
CH
906 struct request_queue *q =
907 container_of(work, struct request_queue, timeout_work);
12f5b931 908 unsigned long next = 0;
1d9bd516 909 struct blk_mq_hw_ctx *hctx;
81481eb4 910 int i;
320ae51f 911
71f79fb3
GKB
912 /* A deadlock might occur if a request is stuck requiring a
913 * timeout at the same time a queue freeze is waiting
914 * completion, since the timeout code would not be able to
915 * acquire the queue reference here.
916 *
917 * That's why we don't use blk_queue_enter here; instead, we use
918 * percpu_ref_tryget directly, because we need to be able to
919 * obtain a reference even in the short window between the queue
920 * starting to freeze, by dropping the first reference in
1671d522 921 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
922 * consumed, marked by the instant q_usage_counter reaches
923 * zero.
924 */
925 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
926 return;
927
12f5b931 928 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
320ae51f 929
12f5b931
KB
930 if (next != 0) {
931 mod_timer(&q->timeout, next);
0d2602ca 932 } else {
fcd36c36
BVA
933 /*
934 * Request timeouts are handled as a forward rolling timer. If
935 * we end up here it means that no requests are pending and
936 * also that no request has been pending for a while. Mark
937 * each hctx as idle.
938 */
f054b56c
ML
939 queue_for_each_hw_ctx(q, hctx, i) {
940 /* the hctx may be unmapped, so check it here */
941 if (blk_mq_hw_queue_mapped(hctx))
942 blk_mq_tag_idle(hctx);
943 }
0d2602ca 944 }
287922eb 945 blk_queue_exit(q);
320ae51f
JA
946}
947
88459642
OS
948struct flush_busy_ctx_data {
949 struct blk_mq_hw_ctx *hctx;
950 struct list_head *list;
951};
952
953static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
954{
955 struct flush_busy_ctx_data *flush_data = data;
956 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
957 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 958 enum hctx_type type = hctx->type;
88459642 959
88459642 960 spin_lock(&ctx->lock);
c16d6b5a 961 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
e9a99a63 962 sbitmap_clear_bit(sb, bitnr);
88459642
OS
963 spin_unlock(&ctx->lock);
964 return true;
965}
966
1429d7c9
JA
967/*
968 * Process software queues that have been marked busy, splicing them
969 * to the for-dispatch
970 */
2c3ad667 971void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 972{
88459642
OS
973 struct flush_busy_ctx_data data = {
974 .hctx = hctx,
975 .list = list,
976 };
1429d7c9 977
88459642 978 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 979}
2c3ad667 980EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 981
b347689f
ML
982struct dispatch_rq_data {
983 struct blk_mq_hw_ctx *hctx;
984 struct request *rq;
985};
986
987static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
988 void *data)
989{
990 struct dispatch_rq_data *dispatch_data = data;
991 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
992 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 993 enum hctx_type type = hctx->type;
b347689f
ML
994
995 spin_lock(&ctx->lock);
c16d6b5a
ML
996 if (!list_empty(&ctx->rq_lists[type])) {
997 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
b347689f 998 list_del_init(&dispatch_data->rq->queuelist);
c16d6b5a 999 if (list_empty(&ctx->rq_lists[type]))
b347689f
ML
1000 sbitmap_clear_bit(sb, bitnr);
1001 }
1002 spin_unlock(&ctx->lock);
1003
1004 return !dispatch_data->rq;
1005}
1006
1007struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1008 struct blk_mq_ctx *start)
1009{
f31967f0 1010 unsigned off = start ? start->index_hw[hctx->type] : 0;
b347689f
ML
1011 struct dispatch_rq_data data = {
1012 .hctx = hctx,
1013 .rq = NULL,
1014 };
1015
1016 __sbitmap_for_each_set(&hctx->ctx_map, off,
1017 dispatch_rq_from_ctx, &data);
1018
1019 return data.rq;
1020}
1021
703fd1c0
JA
1022static inline unsigned int queued_to_index(unsigned int queued)
1023{
1024 if (!queued)
1025 return 0;
1429d7c9 1026
703fd1c0 1027 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
1028}
1029
8ab6bb9e 1030bool blk_mq_get_driver_tag(struct request *rq)
bd166ef1
JA
1031{
1032 struct blk_mq_alloc_data data = {
1033 .q = rq->q,
ea4f995e 1034 .hctx = rq->mq_hctx,
8ab6bb9e 1035 .flags = BLK_MQ_REQ_NOWAIT,
f9afca4d 1036 .cmd_flags = rq->cmd_flags,
bd166ef1 1037 };
d263ed99 1038 bool shared;
5feeacdd 1039
81380ca1 1040 if (rq->tag != -1)
1fead718 1041 return true;
bd166ef1 1042
415b806d
SG
1043 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1044 data.flags |= BLK_MQ_REQ_RESERVED;
1045
d263ed99 1046 shared = blk_mq_tag_busy(data.hctx);
bd166ef1
JA
1047 rq->tag = blk_mq_get_tag(&data);
1048 if (rq->tag >= 0) {
d263ed99 1049 if (shared) {
200e86b3
JA
1050 rq->rq_flags |= RQF_MQ_INFLIGHT;
1051 atomic_inc(&data.hctx->nr_active);
1052 }
bd166ef1 1053 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
1054 }
1055
81380ca1 1056 return rq->tag != -1;
bd166ef1
JA
1057}
1058
eb619fdb
JA
1059static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1060 int flags, void *key)
da55f2cc
OS
1061{
1062 struct blk_mq_hw_ctx *hctx;
1063
1064 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1065
5815839b 1066 spin_lock(&hctx->dispatch_wait_lock);
e8618575
JA
1067 if (!list_empty(&wait->entry)) {
1068 struct sbitmap_queue *sbq;
1069
1070 list_del_init(&wait->entry);
1071 sbq = &hctx->tags->bitmap_tags;
1072 atomic_dec(&sbq->ws_active);
1073 }
5815839b
ML
1074 spin_unlock(&hctx->dispatch_wait_lock);
1075
da55f2cc
OS
1076 blk_mq_run_hw_queue(hctx, true);
1077 return 1;
1078}
1079
f906a6a0
JA
1080/*
1081 * Mark us waiting for a tag. For shared tags, this involves hooking us into
ee3e4de5
BVA
1082 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1083 * restart. For both cases, take care to check the condition again after
f906a6a0
JA
1084 * marking us as waiting.
1085 */
2278d69f 1086static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
f906a6a0 1087 struct request *rq)
da55f2cc 1088{
e8618575 1089 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
5815839b 1090 struct wait_queue_head *wq;
f906a6a0
JA
1091 wait_queue_entry_t *wait;
1092 bool ret;
da55f2cc 1093
2278d69f 1094 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
684b7324 1095 blk_mq_sched_mark_restart_hctx(hctx);
f906a6a0 1096
c27d53fb
BVA
1097 /*
1098 * It's possible that a tag was freed in the window between the
1099 * allocation failure and adding the hardware queue to the wait
1100 * queue.
1101 *
1102 * Don't clear RESTART here, someone else could have set it.
1103 * At most this will cost an extra queue run.
1104 */
8ab6bb9e 1105 return blk_mq_get_driver_tag(rq);
eb619fdb 1106 }
eb619fdb 1107
2278d69f 1108 wait = &hctx->dispatch_wait;
c27d53fb
BVA
1109 if (!list_empty_careful(&wait->entry))
1110 return false;
1111
e8618575 1112 wq = &bt_wait_ptr(sbq, hctx)->wait;
5815839b
ML
1113
1114 spin_lock_irq(&wq->lock);
1115 spin_lock(&hctx->dispatch_wait_lock);
c27d53fb 1116 if (!list_empty(&wait->entry)) {
5815839b
ML
1117 spin_unlock(&hctx->dispatch_wait_lock);
1118 spin_unlock_irq(&wq->lock);
c27d53fb 1119 return false;
eb619fdb
JA
1120 }
1121
e8618575 1122 atomic_inc(&sbq->ws_active);
5815839b
ML
1123 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1124 __add_wait_queue(wq, wait);
c27d53fb 1125
da55f2cc 1126 /*
eb619fdb
JA
1127 * It's possible that a tag was freed in the window between the
1128 * allocation failure and adding the hardware queue to the wait
1129 * queue.
da55f2cc 1130 */
8ab6bb9e 1131 ret = blk_mq_get_driver_tag(rq);
c27d53fb 1132 if (!ret) {
5815839b
ML
1133 spin_unlock(&hctx->dispatch_wait_lock);
1134 spin_unlock_irq(&wq->lock);
c27d53fb 1135 return false;
eb619fdb 1136 }
c27d53fb
BVA
1137
1138 /*
1139 * We got a tag, remove ourselves from the wait queue to ensure
1140 * someone else gets the wakeup.
1141 */
c27d53fb 1142 list_del_init(&wait->entry);
e8618575 1143 atomic_dec(&sbq->ws_active);
5815839b
ML
1144 spin_unlock(&hctx->dispatch_wait_lock);
1145 spin_unlock_irq(&wq->lock);
c27d53fb
BVA
1146
1147 return true;
da55f2cc
OS
1148}
1149
6e768717
ML
1150#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1151#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1152/*
1153 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1154 * - EWMA is one simple way to compute running average value
1155 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1156 * - take 4 as factor for avoiding to get too small(0) result, and this
1157 * factor doesn't matter because EWMA decreases exponentially
1158 */
1159static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1160{
1161 unsigned int ewma;
1162
1163 if (hctx->queue->elevator)
1164 return;
1165
1166 ewma = hctx->dispatch_busy;
1167
1168 if (!ewma && !busy)
1169 return;
1170
1171 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1172 if (busy)
1173 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1174 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1175
1176 hctx->dispatch_busy = ewma;
1177}
1178
86ff7c2a
ML
1179#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1180
1f57f8d4
JA
1181/*
1182 * Returns true if we did some work AND can potentially do more.
1183 */
de148297 1184bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1185 bool got_budget)
320ae51f 1186{
81380ca1 1187 struct blk_mq_hw_ctx *hctx;
6d6f167c 1188 struct request *rq, *nxt;
eb619fdb 1189 bool no_tag = false;
fc17b653 1190 int errors, queued;
86ff7c2a 1191 blk_status_t ret = BLK_STS_OK;
320ae51f 1192
81380ca1
OS
1193 if (list_empty(list))
1194 return false;
1195
de148297
ML
1196 WARN_ON(!list_is_singular(list) && got_budget);
1197
320ae51f
JA
1198 /*
1199 * Now process all the entries, sending them to the driver.
1200 */
93efe981 1201 errors = queued = 0;
81380ca1 1202 do {
74c45052 1203 struct blk_mq_queue_data bd;
320ae51f 1204
f04c3df3 1205 rq = list_first_entry(list, struct request, queuelist);
0bca799b 1206
ea4f995e 1207 hctx = rq->mq_hctx;
0bca799b
ML
1208 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1209 break;
1210
8ab6bb9e 1211 if (!blk_mq_get_driver_tag(rq)) {
3c782d67 1212 /*
da55f2cc 1213 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1214 * rerun the hardware queue when a tag is freed. The
1215 * waitqueue takes care of that. If the queue is run
1216 * before we add this entry back on the dispatch list,
1217 * we'll re-run it below.
3c782d67 1218 */
2278d69f 1219 if (!blk_mq_mark_tag_wait(hctx, rq)) {
0bca799b 1220 blk_mq_put_dispatch_budget(hctx);
f906a6a0
JA
1221 /*
1222 * For non-shared tags, the RESTART check
1223 * will suffice.
1224 */
1225 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1226 no_tag = true;
de148297
ML
1227 break;
1228 }
1229 }
1230
320ae51f 1231 list_del_init(&rq->queuelist);
320ae51f 1232
74c45052 1233 bd.rq = rq;
113285b4
JA
1234
1235 /*
1236 * Flag last if we have no more requests, or if we have more
1237 * but can't assign a driver tag to it.
1238 */
1239 if (list_empty(list))
1240 bd.last = true;
1241 else {
113285b4 1242 nxt = list_first_entry(list, struct request, queuelist);
8ab6bb9e 1243 bd.last = !blk_mq_get_driver_tag(nxt);
113285b4 1244 }
74c45052
JA
1245
1246 ret = q->mq_ops->queue_rq(hctx, &bd);
86ff7c2a 1247 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
6d6f167c
JW
1248 /*
1249 * If an I/O scheduler has been configured and we got a
ff821d27
JA
1250 * driver tag for the next request already, free it
1251 * again.
6d6f167c
JW
1252 */
1253 if (!list_empty(list)) {
1254 nxt = list_first_entry(list, struct request, queuelist);
1255 blk_mq_put_driver_tag(nxt);
1256 }
f04c3df3 1257 list_add(&rq->queuelist, list);
ed0791b2 1258 __blk_mq_requeue_request(rq);
320ae51f 1259 break;
fc17b653
CH
1260 }
1261
1262 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1263 errors++;
2a842aca 1264 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1265 continue;
320ae51f
JA
1266 }
1267
fc17b653 1268 queued++;
81380ca1 1269 } while (!list_empty(list));
320ae51f 1270
703fd1c0 1271 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1272
1273 /*
1274 * Any items that need requeuing? Stuff them into hctx->dispatch,
1275 * that is where we will continue on next queue run.
1276 */
f04c3df3 1277 if (!list_empty(list)) {
86ff7c2a
ML
1278 bool needs_restart;
1279
d666ba98
JA
1280 /*
1281 * If we didn't flush the entire list, we could have told
1282 * the driver there was more coming, but that turned out to
1283 * be a lie.
1284 */
1285 if (q->mq_ops->commit_rqs)
1286 q->mq_ops->commit_rqs(hctx);
1287
320ae51f 1288 spin_lock(&hctx->lock);
01e99aec 1289 list_splice_tail_init(list, &hctx->dispatch);
320ae51f 1290 spin_unlock(&hctx->lock);
f04c3df3 1291
9ba52e58 1292 /*
710c785f
BVA
1293 * If SCHED_RESTART was set by the caller of this function and
1294 * it is no longer set that means that it was cleared by another
1295 * thread and hence that a queue rerun is needed.
9ba52e58 1296 *
eb619fdb
JA
1297 * If 'no_tag' is set, that means that we failed getting
1298 * a driver tag with an I/O scheduler attached. If our dispatch
1299 * waitqueue is no longer active, ensure that we run the queue
1300 * AFTER adding our entries back to the list.
bd166ef1 1301 *
710c785f
BVA
1302 * If no I/O scheduler has been configured it is possible that
1303 * the hardware queue got stopped and restarted before requests
1304 * were pushed back onto the dispatch list. Rerun the queue to
1305 * avoid starvation. Notes:
1306 * - blk_mq_run_hw_queue() checks whether or not a queue has
1307 * been stopped before rerunning a queue.
1308 * - Some but not all block drivers stop a queue before
fc17b653 1309 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1310 * and dm-rq.
86ff7c2a
ML
1311 *
1312 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1313 * bit is set, run queue after a delay to avoid IO stalls
1314 * that could otherwise occur if the queue is idle.
bd166ef1 1315 */
86ff7c2a
ML
1316 needs_restart = blk_mq_sched_needs_restart(hctx);
1317 if (!needs_restart ||
eb619fdb 1318 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1319 blk_mq_run_hw_queue(hctx, true);
86ff7c2a
ML
1320 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1321 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1f57f8d4 1322
6e768717 1323 blk_mq_update_dispatch_busy(hctx, true);
1f57f8d4 1324 return false;
6e768717
ML
1325 } else
1326 blk_mq_update_dispatch_busy(hctx, false);
f04c3df3 1327
1f57f8d4
JA
1328 /*
1329 * If the host/device is unable to accept more work, inform the
1330 * caller of that.
1331 */
1332 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1333 return false;
1334
93efe981 1335 return (queued + errors) != 0;
f04c3df3
JA
1336}
1337
105663f7
AA
1338/**
1339 * __blk_mq_run_hw_queue - Run a hardware queue.
1340 * @hctx: Pointer to the hardware queue to run.
1341 *
1342 * Send pending requests to the hardware.
1343 */
6a83e74d
BVA
1344static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1345{
1346 int srcu_idx;
1347
b7a71e66
JA
1348 /*
1349 * We should be running this queue from one of the CPUs that
1350 * are mapped to it.
7df938fb
ML
1351 *
1352 * There are at least two related races now between setting
1353 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1354 * __blk_mq_run_hw_queue():
1355 *
1356 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1357 * but later it becomes online, then this warning is harmless
1358 * at all
1359 *
1360 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1361 * but later it becomes offline, then the warning can't be
1362 * triggered, and we depend on blk-mq timeout handler to
1363 * handle dispatched requests to this hctx
b7a71e66 1364 */
7df938fb
ML
1365 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1366 cpu_online(hctx->next_cpu)) {
1367 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1368 raw_smp_processor_id(),
1369 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1370 dump_stack();
1371 }
6a83e74d 1372
b7a71e66
JA
1373 /*
1374 * We can't run the queue inline with ints disabled. Ensure that
1375 * we catch bad users of this early.
1376 */
1377 WARN_ON_ONCE(in_interrupt());
1378
04ced159 1379 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1380
04ced159
JA
1381 hctx_lock(hctx, &srcu_idx);
1382 blk_mq_sched_dispatch_requests(hctx);
1383 hctx_unlock(hctx, srcu_idx);
6a83e74d
BVA
1384}
1385
f82ddf19
ML
1386static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1387{
1388 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1389
1390 if (cpu >= nr_cpu_ids)
1391 cpu = cpumask_first(hctx->cpumask);
1392 return cpu;
1393}
1394
506e931f
JA
1395/*
1396 * It'd be great if the workqueue API had a way to pass
1397 * in a mask and had some smarts for more clever placement.
1398 * For now we just round-robin here, switching for every
1399 * BLK_MQ_CPU_WORK_BATCH queued items.
1400 */
1401static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1402{
7bed4595 1403 bool tried = false;
476f8c98 1404 int next_cpu = hctx->next_cpu;
7bed4595 1405
b657d7e6
CH
1406 if (hctx->queue->nr_hw_queues == 1)
1407 return WORK_CPU_UNBOUND;
506e931f
JA
1408
1409 if (--hctx->next_cpu_batch <= 0) {
7bed4595 1410select_cpu:
476f8c98 1411 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
20e4d813 1412 cpu_online_mask);
506e931f 1413 if (next_cpu >= nr_cpu_ids)
f82ddf19 1414 next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
1415 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1416 }
1417
7bed4595
ML
1418 /*
1419 * Do unbound schedule if we can't find a online CPU for this hctx,
1420 * and it should only happen in the path of handling CPU DEAD.
1421 */
476f8c98 1422 if (!cpu_online(next_cpu)) {
7bed4595
ML
1423 if (!tried) {
1424 tried = true;
1425 goto select_cpu;
1426 }
1427
1428 /*
1429 * Make sure to re-select CPU next time once after CPUs
1430 * in hctx->cpumask become online again.
1431 */
476f8c98 1432 hctx->next_cpu = next_cpu;
7bed4595
ML
1433 hctx->next_cpu_batch = 1;
1434 return WORK_CPU_UNBOUND;
1435 }
476f8c98
ML
1436
1437 hctx->next_cpu = next_cpu;
1438 return next_cpu;
506e931f
JA
1439}
1440
105663f7
AA
1441/**
1442 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1443 * @hctx: Pointer to the hardware queue to run.
1444 * @async: If we want to run the queue asynchronously.
1445 * @msecs: Microseconds of delay to wait before running the queue.
1446 *
1447 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1448 * with a delay of @msecs.
1449 */
7587a5ae
BVA
1450static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1451 unsigned long msecs)
320ae51f 1452{
5435c023 1453 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1454 return;
1455
1b792f2f 1456 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1457 int cpu = get_cpu();
1458 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1459 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1460 put_cpu();
398205b8
PB
1461 return;
1462 }
e4043dcf 1463
2a90d4aa 1464 put_cpu();
e4043dcf 1465 }
398205b8 1466
ae943d20
BVA
1467 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1468 msecs_to_jiffies(msecs));
7587a5ae
BVA
1469}
1470
105663f7
AA
1471/**
1472 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1473 * @hctx: Pointer to the hardware queue to run.
1474 * @msecs: Microseconds of delay to wait before running the queue.
1475 *
1476 * Run a hardware queue asynchronously with a delay of @msecs.
1477 */
7587a5ae
BVA
1478void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1479{
1480 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1481}
1482EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1483
105663f7
AA
1484/**
1485 * blk_mq_run_hw_queue - Start to run a hardware queue.
1486 * @hctx: Pointer to the hardware queue to run.
1487 * @async: If we want to run the queue asynchronously.
1488 *
1489 * Check if the request queue is not in a quiesced state and if there are
1490 * pending requests to be sent. If this is true, run the queue to send requests
1491 * to hardware.
1492 */
626fb735 1493void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1494{
24f5a90f
ML
1495 int srcu_idx;
1496 bool need_run;
1497
1498 /*
1499 * When queue is quiesced, we may be switching io scheduler, or
1500 * updating nr_hw_queues, or other things, and we can't run queue
1501 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1502 *
1503 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1504 * quiesced.
1505 */
04ced159
JA
1506 hctx_lock(hctx, &srcu_idx);
1507 need_run = !blk_queue_quiesced(hctx->queue) &&
1508 blk_mq_hctx_has_pending(hctx);
1509 hctx_unlock(hctx, srcu_idx);
24f5a90f 1510
626fb735 1511 if (need_run)
79f720a7 1512 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f 1513}
5b727272 1514EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1515
105663f7
AA
1516/**
1517 * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1518 * @q: Pointer to the request queue to run.
1519 * @async: If we want to run the queue asynchronously.
1520 */
b94ec296 1521void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1522{
1523 struct blk_mq_hw_ctx *hctx;
1524 int i;
1525
1526 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1527 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1528 continue;
1529
b94ec296 1530 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1531 }
1532}
b94ec296 1533EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1534
fd001443
BVA
1535/**
1536 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1537 * @q: request queue.
1538 *
1539 * The caller is responsible for serializing this function against
1540 * blk_mq_{start,stop}_hw_queue().
1541 */
1542bool blk_mq_queue_stopped(struct request_queue *q)
1543{
1544 struct blk_mq_hw_ctx *hctx;
1545 int i;
1546
1547 queue_for_each_hw_ctx(q, hctx, i)
1548 if (blk_mq_hctx_stopped(hctx))
1549 return true;
1550
1551 return false;
1552}
1553EXPORT_SYMBOL(blk_mq_queue_stopped);
1554
39a70c76
ML
1555/*
1556 * This function is often used for pausing .queue_rq() by driver when
1557 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1558 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1559 *
1560 * We do not guarantee that dispatch can be drained or blocked
1561 * after blk_mq_stop_hw_queue() returns. Please use
1562 * blk_mq_quiesce_queue() for that requirement.
1563 */
2719aa21
JA
1564void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1565{
641a9ed6 1566 cancel_delayed_work(&hctx->run_work);
280d45f6 1567
641a9ed6 1568 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1569}
641a9ed6 1570EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1571
39a70c76
ML
1572/*
1573 * This function is often used for pausing .queue_rq() by driver when
1574 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1575 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1576 *
1577 * We do not guarantee that dispatch can be drained or blocked
1578 * after blk_mq_stop_hw_queues() returns. Please use
1579 * blk_mq_quiesce_queue() for that requirement.
1580 */
2719aa21
JA
1581void blk_mq_stop_hw_queues(struct request_queue *q)
1582{
641a9ed6
ML
1583 struct blk_mq_hw_ctx *hctx;
1584 int i;
1585
1586 queue_for_each_hw_ctx(q, hctx, i)
1587 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1588}
1589EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1590
320ae51f
JA
1591void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1592{
1593 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1594
0ffbce80 1595 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1596}
1597EXPORT_SYMBOL(blk_mq_start_hw_queue);
1598
2f268556
CH
1599void blk_mq_start_hw_queues(struct request_queue *q)
1600{
1601 struct blk_mq_hw_ctx *hctx;
1602 int i;
1603
1604 queue_for_each_hw_ctx(q, hctx, i)
1605 blk_mq_start_hw_queue(hctx);
1606}
1607EXPORT_SYMBOL(blk_mq_start_hw_queues);
1608
ae911c5e
JA
1609void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1610{
1611 if (!blk_mq_hctx_stopped(hctx))
1612 return;
1613
1614 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1615 blk_mq_run_hw_queue(hctx, async);
1616}
1617EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1618
1b4a3258 1619void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1620{
1621 struct blk_mq_hw_ctx *hctx;
1622 int i;
1623
ae911c5e
JA
1624 queue_for_each_hw_ctx(q, hctx, i)
1625 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1626}
1627EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1628
70f4db63 1629static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1630{
1631 struct blk_mq_hw_ctx *hctx;
1632
9f993737 1633 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1634
21c6e939 1635 /*
15fe8a90 1636 * If we are stopped, don't run the queue.
21c6e939 1637 */
15fe8a90 1638 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
0196d6b4 1639 return;
7587a5ae
BVA
1640
1641 __blk_mq_run_hw_queue(hctx);
1642}
1643
cfd0c552 1644static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1645 struct request *rq,
1646 bool at_head)
320ae51f 1647{
e57690fe 1648 struct blk_mq_ctx *ctx = rq->mq_ctx;
c16d6b5a 1649 enum hctx_type type = hctx->type;
e57690fe 1650
7b607814
BVA
1651 lockdep_assert_held(&ctx->lock);
1652
01b983c9
JA
1653 trace_block_rq_insert(hctx->queue, rq);
1654
72a0a36e 1655 if (at_head)
c16d6b5a 1656 list_add(&rq->queuelist, &ctx->rq_lists[type]);
72a0a36e 1657 else
c16d6b5a 1658 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
cfd0c552 1659}
4bb659b1 1660
2c3ad667
JA
1661void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1662 bool at_head)
cfd0c552
ML
1663{
1664 struct blk_mq_ctx *ctx = rq->mq_ctx;
1665
7b607814
BVA
1666 lockdep_assert_held(&ctx->lock);
1667
e57690fe 1668 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1669 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1670}
1671
105663f7
AA
1672/**
1673 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1674 * @rq: Pointer to request to be inserted.
1675 * @run_queue: If we should run the hardware queue after inserting the request.
1676 *
157f377b
JA
1677 * Should only be used carefully, when the caller knows we want to
1678 * bypass a potential IO scheduler on the target device.
1679 */
01e99aec
ML
1680void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1681 bool run_queue)
157f377b 1682{
ea4f995e 1683 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
157f377b
JA
1684
1685 spin_lock(&hctx->lock);
01e99aec
ML
1686 if (at_head)
1687 list_add(&rq->queuelist, &hctx->dispatch);
1688 else
1689 list_add_tail(&rq->queuelist, &hctx->dispatch);
157f377b
JA
1690 spin_unlock(&hctx->lock);
1691
b0850297
ML
1692 if (run_queue)
1693 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1694}
1695
bd166ef1
JA
1696void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1697 struct list_head *list)
320ae51f
JA
1698
1699{
3f0cedc7 1700 struct request *rq;
c16d6b5a 1701 enum hctx_type type = hctx->type;
3f0cedc7 1702
320ae51f
JA
1703 /*
1704 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1705 * offline now
1706 */
3f0cedc7 1707 list_for_each_entry(rq, list, queuelist) {
e57690fe 1708 BUG_ON(rq->mq_ctx != ctx);
3f0cedc7 1709 trace_block_rq_insert(hctx->queue, rq);
320ae51f 1710 }
3f0cedc7
ML
1711
1712 spin_lock(&ctx->lock);
c16d6b5a 1713 list_splice_tail_init(list, &ctx->rq_lists[type]);
cfd0c552 1714 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1715 spin_unlock(&ctx->lock);
320ae51f
JA
1716}
1717
3110fc79 1718static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
320ae51f
JA
1719{
1720 struct request *rqa = container_of(a, struct request, queuelist);
1721 struct request *rqb = container_of(b, struct request, queuelist);
1722
7d30a621
PB
1723 if (rqa->mq_ctx != rqb->mq_ctx)
1724 return rqa->mq_ctx > rqb->mq_ctx;
1725 if (rqa->mq_hctx != rqb->mq_hctx)
1726 return rqa->mq_hctx > rqb->mq_hctx;
3110fc79
JA
1727
1728 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
320ae51f
JA
1729}
1730
1731void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1732{
320ae51f 1733 LIST_HEAD(list);
320ae51f 1734
95ed0c5b
PB
1735 if (list_empty(&plug->mq_list))
1736 return;
320ae51f
JA
1737 list_splice_init(&plug->mq_list, &list);
1738
ce5b009c
JA
1739 if (plug->rq_count > 2 && plug->multiple_queues)
1740 list_sort(NULL, &list, plug_rq_cmp);
320ae51f 1741
bcc816df
DZ
1742 plug->rq_count = 0;
1743
95ed0c5b
PB
1744 do {
1745 struct list_head rq_list;
1746 struct request *rq, *head_rq = list_entry_rq(list.next);
1747 struct list_head *pos = &head_rq->queuelist; /* skip first */
1748 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1749 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1750 unsigned int depth = 1;
1751
1752 list_for_each_continue(pos, &list) {
1753 rq = list_entry_rq(pos);
1754 BUG_ON(!rq->q);
1755 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1756 break;
1757 depth++;
320ae51f
JA
1758 }
1759
95ed0c5b
PB
1760 list_cut_before(&rq_list, &list, pos);
1761 trace_block_unplug(head_rq->q, depth, !from_schedule);
67cae4c9 1762 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
bd166ef1 1763 from_schedule);
95ed0c5b 1764 } while(!list_empty(&list));
320ae51f
JA
1765}
1766
14ccb66b
CH
1767static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1768 unsigned int nr_segs)
320ae51f 1769{
f924cdde
CH
1770 if (bio->bi_opf & REQ_RAHEAD)
1771 rq->cmd_flags |= REQ_FAILFAST_MASK;
1772
1773 rq->__sector = bio->bi_iter.bi_sector;
1774 rq->write_hint = bio->bi_write_hint;
14ccb66b 1775 blk_rq_bio_prep(rq, bio, nr_segs);
4b570521 1776
6e85eaf3 1777 blk_account_io_start(rq, true);
320ae51f
JA
1778}
1779
0f95549c
MS
1780static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1781 struct request *rq,
be94f058 1782 blk_qc_t *cookie, bool last)
f984df1f 1783{
f984df1f 1784 struct request_queue *q = rq->q;
f984df1f
SL
1785 struct blk_mq_queue_data bd = {
1786 .rq = rq,
be94f058 1787 .last = last,
f984df1f 1788 };
bd166ef1 1789 blk_qc_t new_cookie;
f06345ad 1790 blk_status_t ret;
0f95549c
MS
1791
1792 new_cookie = request_to_qc_t(hctx, rq);
1793
1794 /*
1795 * For OK queue, we are done. For error, caller may kill it.
1796 * Any other error (busy), just add it to our list as we
1797 * previously would have done.
1798 */
1799 ret = q->mq_ops->queue_rq(hctx, &bd);
1800 switch (ret) {
1801 case BLK_STS_OK:
6ce3dd6e 1802 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1803 *cookie = new_cookie;
1804 break;
1805 case BLK_STS_RESOURCE:
86ff7c2a 1806 case BLK_STS_DEV_RESOURCE:
6ce3dd6e 1807 blk_mq_update_dispatch_busy(hctx, true);
0f95549c
MS
1808 __blk_mq_requeue_request(rq);
1809 break;
1810 default:
6ce3dd6e 1811 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1812 *cookie = BLK_QC_T_NONE;
1813 break;
1814 }
1815
1816 return ret;
1817}
1818
fd9c40f6 1819static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
0f95549c 1820 struct request *rq,
396eaf21 1821 blk_qc_t *cookie,
fd9c40f6 1822 bool bypass_insert, bool last)
0f95549c
MS
1823{
1824 struct request_queue *q = rq->q;
d964f04a
ML
1825 bool run_queue = true;
1826
23d4ee19 1827 /*
fd9c40f6 1828 * RCU or SRCU read lock is needed before checking quiesced flag.
23d4ee19 1829 *
fd9c40f6
BVA
1830 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1831 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1832 * and avoid driver to try to dispatch again.
23d4ee19 1833 */
fd9c40f6 1834 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a 1835 run_queue = false;
fd9c40f6
BVA
1836 bypass_insert = false;
1837 goto insert;
d964f04a 1838 }
f984df1f 1839
fd9c40f6
BVA
1840 if (q->elevator && !bypass_insert)
1841 goto insert;
2253efc8 1842
0bca799b 1843 if (!blk_mq_get_dispatch_budget(hctx))
fd9c40f6 1844 goto insert;
bd166ef1 1845
8ab6bb9e 1846 if (!blk_mq_get_driver_tag(rq)) {
0bca799b 1847 blk_mq_put_dispatch_budget(hctx);
fd9c40f6 1848 goto insert;
88022d72 1849 }
de148297 1850
fd9c40f6
BVA
1851 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1852insert:
1853 if (bypass_insert)
1854 return BLK_STS_RESOURCE;
1855
01e99aec 1856 blk_mq_request_bypass_insert(rq, false, run_queue);
fd9c40f6
BVA
1857 return BLK_STS_OK;
1858}
1859
105663f7
AA
1860/**
1861 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
1862 * @hctx: Pointer of the associated hardware queue.
1863 * @rq: Pointer to request to be sent.
1864 * @cookie: Request queue cookie.
1865 *
1866 * If the device has enough resources to accept a new request now, send the
1867 * request directly to device driver. Else, insert at hctx->dispatch queue, so
1868 * we can try send it another time in the future. Requests inserted at this
1869 * queue have higher priority.
1870 */
fd9c40f6
BVA
1871static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1872 struct request *rq, blk_qc_t *cookie)
1873{
1874 blk_status_t ret;
1875 int srcu_idx;
1876
1877 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1878
1879 hctx_lock(hctx, &srcu_idx);
1880
1881 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1882 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
01e99aec 1883 blk_mq_request_bypass_insert(rq, false, true);
fd9c40f6
BVA
1884 else if (ret != BLK_STS_OK)
1885 blk_mq_end_request(rq, ret);
1886
1887 hctx_unlock(hctx, srcu_idx);
1888}
1889
1890blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1891{
1892 blk_status_t ret;
1893 int srcu_idx;
1894 blk_qc_t unused_cookie;
1895 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1896
1897 hctx_lock(hctx, &srcu_idx);
1898 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
04ced159 1899 hctx_unlock(hctx, srcu_idx);
7f556a44
JW
1900
1901 return ret;
5eb6126e
CH
1902}
1903
6ce3dd6e
ML
1904void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1905 struct list_head *list)
1906{
1907 while (!list_empty(list)) {
fd9c40f6 1908 blk_status_t ret;
6ce3dd6e
ML
1909 struct request *rq = list_first_entry(list, struct request,
1910 queuelist);
1911
1912 list_del_init(&rq->queuelist);
fd9c40f6
BVA
1913 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1914 if (ret != BLK_STS_OK) {
1915 if (ret == BLK_STS_RESOURCE ||
1916 ret == BLK_STS_DEV_RESOURCE) {
01e99aec 1917 blk_mq_request_bypass_insert(rq, false,
c616cbee 1918 list_empty(list));
fd9c40f6
BVA
1919 break;
1920 }
1921 blk_mq_end_request(rq, ret);
1922 }
6ce3dd6e 1923 }
d666ba98
JA
1924
1925 /*
1926 * If we didn't flush the entire list, we could have told
1927 * the driver there was more coming, but that turned out to
1928 * be a lie.
1929 */
fd9c40f6 1930 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
d666ba98 1931 hctx->queue->mq_ops->commit_rqs(hctx);
6ce3dd6e
ML
1932}
1933
ce5b009c
JA
1934static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1935{
1936 list_add_tail(&rq->queuelist, &plug->mq_list);
1937 plug->rq_count++;
1938 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1939 struct request *tmp;
1940
1941 tmp = list_first_entry(&plug->mq_list, struct request,
1942 queuelist);
1943 if (tmp->q != rq->q)
1944 plug->multiple_queues = true;
1945 }
1946}
1947
105663f7
AA
1948/**
1949 * blk_mq_make_request - Create and send a request to block device.
1950 * @q: Request queue pointer.
1951 * @bio: Bio pointer.
1952 *
1953 * Builds up a request structure from @q and @bio and send to the device. The
1954 * request may not be queued directly to hardware if:
1955 * * This request can be merged with another one
1956 * * We want to place request at plug queue for possible future merging
1957 * * There is an IO scheduler active at this queue
1958 *
1959 * It will not queue the request if there is an error with the bio, or at the
1960 * request creation.
1961 *
1962 * Returns: Request queue cookie.
1963 */
dece1635 1964static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1965{
ef295ecf 1966 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1967 const int is_flush_fua = op_is_flush(bio->bi_opf);
7809167d 1968 struct blk_mq_alloc_data data = { .flags = 0};
07068d5b 1969 struct request *rq;
f984df1f 1970 struct blk_plug *plug;
5b3f341f 1971 struct request *same_queue_rq = NULL;
14ccb66b 1972 unsigned int nr_segs;
7b371636 1973 blk_qc_t cookie;
07068d5b
JA
1974
1975 blk_queue_bounce(q, &bio);
14ccb66b 1976 __blk_queue_split(q, &bio, &nr_segs);
f36ea50c 1977
e23947bd 1978 if (!bio_integrity_prep(bio))
dece1635 1979 return BLK_QC_T_NONE;
07068d5b 1980
87c279e6 1981 if (!is_flush_fua && !blk_queue_nomerges(q) &&
14ccb66b 1982 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
87c279e6 1983 return BLK_QC_T_NONE;
f984df1f 1984
14ccb66b 1985 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
bd166ef1
JA
1986 return BLK_QC_T_NONE;
1987
d5337560 1988 rq_qos_throttle(q, bio);
87760e5e 1989
7809167d 1990 data.cmd_flags = bio->bi_opf;
f9afca4d 1991 rq = blk_mq_get_request(q, bio, &data);
87760e5e 1992 if (unlikely(!rq)) {
c1c80384 1993 rq_qos_cleanup(q, bio);
7b6620d7 1994 if (bio->bi_opf & REQ_NOWAIT)
03a07c92 1995 bio_wouldblock_error(bio);
7b6620d7 1996 return BLK_QC_T_NONE;
87760e5e
JA
1997 }
1998
d6f1dda2
XW
1999 trace_block_getrq(q, bio, bio->bi_opf);
2000
c1c80384 2001 rq_qos_track(q, rq, bio);
07068d5b 2002
fd2d3326 2003 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 2004
970d168d
BVA
2005 blk_mq_bio_to_request(rq, bio, nr_segs);
2006
b49773e7 2007 plug = blk_mq_plug(q, bio);
07068d5b 2008 if (unlikely(is_flush_fua)) {
105663f7 2009 /* Bypass scheduler for flush requests */
923218f6
ML
2010 blk_insert_flush(rq);
2011 blk_mq_run_hw_queue(data.hctx, true);
3154df26
ML
2012 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2013 !blk_queue_nonrot(q))) {
b2c5d16b
JA
2014 /*
2015 * Use plugging if we have a ->commit_rqs() hook as well, as
2016 * we know the driver uses bd->last in a smart fashion.
3154df26
ML
2017 *
2018 * Use normal plugging if this disk is slow HDD, as sequential
2019 * IO may benefit a lot from plug merging.
b2c5d16b 2020 */
5f0ed774 2021 unsigned int request_count = plug->rq_count;
600271d9
SL
2022 struct request *last = NULL;
2023
676d0607 2024 if (!request_count)
e6c4438b 2025 trace_block_plug(q);
600271d9
SL
2026 else
2027 last = list_entry_rq(plug->mq_list.prev);
b094f89c 2028
600271d9
SL
2029 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2030 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
2031 blk_flush_plug_list(plug, false);
2032 trace_block_plug(q);
320ae51f 2033 }
b094f89c 2034
ce5b009c 2035 blk_add_rq_to_plug(plug, rq);
a12de1d4 2036 } else if (q->elevator) {
105663f7 2037 /* Insert the request at the IO scheduler queue */
a12de1d4 2038 blk_mq_sched_insert_request(rq, false, true, true);
2299722c 2039 } else if (plug && !blk_queue_nomerges(q)) {
07068d5b 2040 /*
6a83e74d 2041 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
2042 * Otherwise the existing request in the plug list will be
2043 * issued. So the plug list will have one request at most
2299722c
CH
2044 * The plug list might get flushed before this. If that happens,
2045 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 2046 */
2299722c
CH
2047 if (list_empty(&plug->mq_list))
2048 same_queue_rq = NULL;
4711b573 2049 if (same_queue_rq) {
2299722c 2050 list_del_init(&same_queue_rq->queuelist);
4711b573
JA
2051 plug->rq_count--;
2052 }
ce5b009c 2053 blk_add_rq_to_plug(plug, rq);
ff3b74b8 2054 trace_block_plug(q);
2299722c 2055
dad7a3be 2056 if (same_queue_rq) {
ea4f995e 2057 data.hctx = same_queue_rq->mq_hctx;
ff3b74b8 2058 trace_block_unplug(q, 1, true);
2299722c 2059 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
fd9c40f6 2060 &cookie);
dad7a3be 2061 }
a12de1d4
ML
2062 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2063 !data.hctx->dispatch_busy) {
105663f7
AA
2064 /*
2065 * There is no scheduler and we can try to send directly
2066 * to the hardware.
2067 */
fd9c40f6 2068 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
ab42f35d 2069 } else {
105663f7 2070 /* Default case. */
8fa9f556 2071 blk_mq_sched_insert_request(rq, false, true, true);
ab42f35d 2072 }
320ae51f 2073
7b371636 2074 return cookie;
320ae51f
JA
2075}
2076
cc71a6f4
JA
2077void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2078 unsigned int hctx_idx)
95363efd 2079{
e9b267d9 2080 struct page *page;
320ae51f 2081
24d2f903 2082 if (tags->rqs && set->ops->exit_request) {
e9b267d9 2083 int i;
320ae51f 2084
24d2f903 2085 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
2086 struct request *rq = tags->static_rqs[i];
2087
2088 if (!rq)
e9b267d9 2089 continue;
d6296d39 2090 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 2091 tags->static_rqs[i] = NULL;
e9b267d9 2092 }
320ae51f 2093 }
320ae51f 2094
24d2f903
CH
2095 while (!list_empty(&tags->page_list)) {
2096 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 2097 list_del_init(&page->lru);
f75782e4
CM
2098 /*
2099 * Remove kmemleak object previously allocated in
273938bf 2100 * blk_mq_alloc_rqs().
f75782e4
CM
2101 */
2102 kmemleak_free(page_address(page));
320ae51f
JA
2103 __free_pages(page, page->private);
2104 }
cc71a6f4 2105}
320ae51f 2106
cc71a6f4
JA
2107void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2108{
24d2f903 2109 kfree(tags->rqs);
cc71a6f4 2110 tags->rqs = NULL;
2af8cbe3
JA
2111 kfree(tags->static_rqs);
2112 tags->static_rqs = NULL;
320ae51f 2113
24d2f903 2114 blk_mq_free_tags(tags);
320ae51f
JA
2115}
2116
cc71a6f4
JA
2117struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2118 unsigned int hctx_idx,
2119 unsigned int nr_tags,
2120 unsigned int reserved_tags)
320ae51f 2121{
24d2f903 2122 struct blk_mq_tags *tags;
59f082e4 2123 int node;
320ae51f 2124
7d76f856 2125 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
59f082e4
SL
2126 if (node == NUMA_NO_NODE)
2127 node = set->numa_node;
2128
2129 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 2130 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
2131 if (!tags)
2132 return NULL;
320ae51f 2133
590b5b7d 2134 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
36e1f3d1 2135 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 2136 node);
24d2f903
CH
2137 if (!tags->rqs) {
2138 blk_mq_free_tags(tags);
2139 return NULL;
2140 }
320ae51f 2141
590b5b7d
KC
2142 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2143 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2144 node);
2af8cbe3
JA
2145 if (!tags->static_rqs) {
2146 kfree(tags->rqs);
2147 blk_mq_free_tags(tags);
2148 return NULL;
2149 }
2150
cc71a6f4
JA
2151 return tags;
2152}
2153
2154static size_t order_to_size(unsigned int order)
2155{
2156 return (size_t)PAGE_SIZE << order;
2157}
2158
1d9bd516
TH
2159static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2160 unsigned int hctx_idx, int node)
2161{
2162 int ret;
2163
2164 if (set->ops->init_request) {
2165 ret = set->ops->init_request(set, rq, hctx_idx, node);
2166 if (ret)
2167 return ret;
2168 }
2169
12f5b931 2170 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1d9bd516
TH
2171 return 0;
2172}
2173
cc71a6f4
JA
2174int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2175 unsigned int hctx_idx, unsigned int depth)
2176{
2177 unsigned int i, j, entries_per_page, max_order = 4;
2178 size_t rq_size, left;
59f082e4
SL
2179 int node;
2180
7d76f856 2181 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
59f082e4
SL
2182 if (node == NUMA_NO_NODE)
2183 node = set->numa_node;
cc71a6f4
JA
2184
2185 INIT_LIST_HEAD(&tags->page_list);
2186
320ae51f
JA
2187 /*
2188 * rq_size is the size of the request plus driver payload, rounded
2189 * to the cacheline size
2190 */
24d2f903 2191 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 2192 cache_line_size());
cc71a6f4 2193 left = rq_size * depth;
320ae51f 2194
cc71a6f4 2195 for (i = 0; i < depth; ) {
320ae51f
JA
2196 int this_order = max_order;
2197 struct page *page;
2198 int to_do;
2199 void *p;
2200
b3a834b1 2201 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
2202 this_order--;
2203
2204 do {
59f082e4 2205 page = alloc_pages_node(node,
36e1f3d1 2206 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 2207 this_order);
320ae51f
JA
2208 if (page)
2209 break;
2210 if (!this_order--)
2211 break;
2212 if (order_to_size(this_order) < rq_size)
2213 break;
2214 } while (1);
2215
2216 if (!page)
24d2f903 2217 goto fail;
320ae51f
JA
2218
2219 page->private = this_order;
24d2f903 2220 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
2221
2222 p = page_address(page);
f75782e4
CM
2223 /*
2224 * Allow kmemleak to scan these pages as they contain pointers
2225 * to additional allocations like via ops->init_request().
2226 */
36e1f3d1 2227 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 2228 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 2229 to_do = min(entries_per_page, depth - i);
320ae51f
JA
2230 left -= to_do * rq_size;
2231 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
2232 struct request *rq = p;
2233
2234 tags->static_rqs[i] = rq;
1d9bd516
TH
2235 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2236 tags->static_rqs[i] = NULL;
2237 goto fail;
e9b267d9
CH
2238 }
2239
320ae51f
JA
2240 p += rq_size;
2241 i++;
2242 }
2243 }
cc71a6f4 2244 return 0;
320ae51f 2245
24d2f903 2246fail:
cc71a6f4
JA
2247 blk_mq_free_rqs(set, tags, hctx_idx);
2248 return -ENOMEM;
320ae51f
JA
2249}
2250
e57690fe
JA
2251/*
2252 * 'cpu' is going away. splice any existing rq_list entries from this
2253 * software queue to the hw queue dispatch list, and ensure that it
2254 * gets run.
2255 */
9467f859 2256static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 2257{
9467f859 2258 struct blk_mq_hw_ctx *hctx;
484b4061
JA
2259 struct blk_mq_ctx *ctx;
2260 LIST_HEAD(tmp);
c16d6b5a 2261 enum hctx_type type;
484b4061 2262
9467f859 2263 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 2264 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
c16d6b5a 2265 type = hctx->type;
484b4061
JA
2266
2267 spin_lock(&ctx->lock);
c16d6b5a
ML
2268 if (!list_empty(&ctx->rq_lists[type])) {
2269 list_splice_init(&ctx->rq_lists[type], &tmp);
484b4061
JA
2270 blk_mq_hctx_clear_pending(hctx, ctx);
2271 }
2272 spin_unlock(&ctx->lock);
2273
2274 if (list_empty(&tmp))
9467f859 2275 return 0;
484b4061 2276
e57690fe
JA
2277 spin_lock(&hctx->lock);
2278 list_splice_tail_init(&tmp, &hctx->dispatch);
2279 spin_unlock(&hctx->lock);
484b4061
JA
2280
2281 blk_mq_run_hw_queue(hctx, true);
9467f859 2282 return 0;
484b4061
JA
2283}
2284
9467f859 2285static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2286{
9467f859
TG
2287 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2288 &hctx->cpuhp_dead);
484b4061
JA
2289}
2290
c3b4afca 2291/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2292static void blk_mq_exit_hctx(struct request_queue *q,
2293 struct blk_mq_tag_set *set,
2294 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2295{
8ab0b7dc
ML
2296 if (blk_mq_hw_queue_mapped(hctx))
2297 blk_mq_tag_idle(hctx);
08e98fc6 2298
f70ced09 2299 if (set->ops->exit_request)
d6296d39 2300 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2301
08e98fc6
ML
2302 if (set->ops->exit_hctx)
2303 set->ops->exit_hctx(hctx, hctx_idx);
2304
9467f859 2305 blk_mq_remove_cpuhp(hctx);
2f8f1336
ML
2306
2307 spin_lock(&q->unused_hctx_lock);
2308 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2309 spin_unlock(&q->unused_hctx_lock);
08e98fc6
ML
2310}
2311
624dbe47
ML
2312static void blk_mq_exit_hw_queues(struct request_queue *q,
2313 struct blk_mq_tag_set *set, int nr_queue)
2314{
2315 struct blk_mq_hw_ctx *hctx;
2316 unsigned int i;
2317
2318 queue_for_each_hw_ctx(q, hctx, i) {
2319 if (i == nr_queue)
2320 break;
477e19de 2321 blk_mq_debugfs_unregister_hctx(hctx);
08e98fc6 2322 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2323 }
624dbe47
ML
2324}
2325
7c6c5b7c
ML
2326static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2327{
2328 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2329
2330 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2331 __alignof__(struct blk_mq_hw_ctx)) !=
2332 sizeof(struct blk_mq_hw_ctx));
2333
2334 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2335 hw_ctx_size += sizeof(struct srcu_struct);
2336
2337 return hw_ctx_size;
2338}
2339
08e98fc6
ML
2340static int blk_mq_init_hctx(struct request_queue *q,
2341 struct blk_mq_tag_set *set,
2342 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2343{
7c6c5b7c
ML
2344 hctx->queue_num = hctx_idx;
2345
2346 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2347
2348 hctx->tags = set->tags[hctx_idx];
2349
2350 if (set->ops->init_hctx &&
2351 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2352 goto unregister_cpu_notifier;
08e98fc6 2353
7c6c5b7c
ML
2354 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2355 hctx->numa_node))
2356 goto exit_hctx;
2357 return 0;
2358
2359 exit_hctx:
2360 if (set->ops->exit_hctx)
2361 set->ops->exit_hctx(hctx, hctx_idx);
2362 unregister_cpu_notifier:
2363 blk_mq_remove_cpuhp(hctx);
2364 return -1;
2365}
2366
2367static struct blk_mq_hw_ctx *
2368blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2369 int node)
2370{
2371 struct blk_mq_hw_ctx *hctx;
2372 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2373
2374 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2375 if (!hctx)
2376 goto fail_alloc_hctx;
2377
2378 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2379 goto free_hctx;
2380
2381 atomic_set(&hctx->nr_active, 0);
08e98fc6 2382 if (node == NUMA_NO_NODE)
7c6c5b7c
ML
2383 node = set->numa_node;
2384 hctx->numa_node = node;
08e98fc6 2385
9f993737 2386 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2387 spin_lock_init(&hctx->lock);
2388 INIT_LIST_HEAD(&hctx->dispatch);
2389 hctx->queue = q;
2404e607 2390 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2391
2f8f1336
ML
2392 INIT_LIST_HEAD(&hctx->hctx_list);
2393
320ae51f 2394 /*
08e98fc6
ML
2395 * Allocate space for all possible cpus to avoid allocation at
2396 * runtime
320ae51f 2397 */
d904bfa7 2398 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
7c6c5b7c 2399 gfp, node);
08e98fc6 2400 if (!hctx->ctxs)
7c6c5b7c 2401 goto free_cpumask;
320ae51f 2402
5b202853 2403 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
7c6c5b7c 2404 gfp, node))
08e98fc6 2405 goto free_ctxs;
08e98fc6 2406 hctx->nr_ctx = 0;
320ae51f 2407
5815839b 2408 spin_lock_init(&hctx->dispatch_wait_lock);
eb619fdb
JA
2409 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2410 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2411
5b202853 2412 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
7c6c5b7c 2413 gfp);
f70ced09 2414 if (!hctx->fq)
7c6c5b7c 2415 goto free_bitmap;
320ae51f 2416
6a83e74d 2417 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2418 init_srcu_struct(hctx->srcu);
7c6c5b7c 2419 blk_mq_hctx_kobj_init(hctx);
6a83e74d 2420
7c6c5b7c 2421 return hctx;
320ae51f 2422
08e98fc6 2423 free_bitmap:
88459642 2424 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2425 free_ctxs:
2426 kfree(hctx->ctxs);
7c6c5b7c
ML
2427 free_cpumask:
2428 free_cpumask_var(hctx->cpumask);
2429 free_hctx:
2430 kfree(hctx);
2431 fail_alloc_hctx:
2432 return NULL;
08e98fc6 2433}
320ae51f 2434
320ae51f
JA
2435static void blk_mq_init_cpu_queues(struct request_queue *q,
2436 unsigned int nr_hw_queues)
2437{
b3c661b1
JA
2438 struct blk_mq_tag_set *set = q->tag_set;
2439 unsigned int i, j;
320ae51f
JA
2440
2441 for_each_possible_cpu(i) {
2442 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2443 struct blk_mq_hw_ctx *hctx;
c16d6b5a 2444 int k;
320ae51f 2445
320ae51f
JA
2446 __ctx->cpu = i;
2447 spin_lock_init(&__ctx->lock);
c16d6b5a
ML
2448 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2449 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2450
320ae51f
JA
2451 __ctx->queue = q;
2452
320ae51f
JA
2453 /*
2454 * Set local node, IFF we have more than one hw queue. If
2455 * not, we remain on the home node of the device
2456 */
b3c661b1
JA
2457 for (j = 0; j < set->nr_maps; j++) {
2458 hctx = blk_mq_map_queue_type(q, j, i);
2459 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2460 hctx->numa_node = local_memory_node(cpu_to_node(i));
2461 }
320ae51f
JA
2462 }
2463}
2464
cc71a6f4
JA
2465static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2466{
2467 int ret = 0;
2468
2469 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2470 set->queue_depth, set->reserved_tags);
2471 if (!set->tags[hctx_idx])
2472 return false;
2473
2474 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2475 set->queue_depth);
2476 if (!ret)
2477 return true;
2478
2479 blk_mq_free_rq_map(set->tags[hctx_idx]);
2480 set->tags[hctx_idx] = NULL;
2481 return false;
2482}
2483
2484static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2485 unsigned int hctx_idx)
2486{
4e6db0f2 2487 if (set->tags && set->tags[hctx_idx]) {
bd166ef1
JA
2488 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2489 blk_mq_free_rq_map(set->tags[hctx_idx]);
2490 set->tags[hctx_idx] = NULL;
2491 }
cc71a6f4
JA
2492}
2493
4b855ad3 2494static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2495{
b3c661b1 2496 unsigned int i, j, hctx_idx;
320ae51f
JA
2497 struct blk_mq_hw_ctx *hctx;
2498 struct blk_mq_ctx *ctx;
2a34c087 2499 struct blk_mq_tag_set *set = q->tag_set;
320ae51f
JA
2500
2501 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2502 cpumask_clear(hctx->cpumask);
320ae51f 2503 hctx->nr_ctx = 0;
d416c92c 2504 hctx->dispatch_from = NULL;
320ae51f
JA
2505 }
2506
2507 /*
4b855ad3 2508 * Map software to hardware queues.
4412efec
ML
2509 *
2510 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2511 */
20e4d813 2512 for_each_possible_cpu(i) {
7d76f856 2513 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
4412efec
ML
2514 /* unmapped hw queue can be remapped after CPU topo changed */
2515 if (!set->tags[hctx_idx] &&
2516 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2517 /*
2518 * If tags initialization fail for some hctx,
2519 * that hctx won't be brought online. In this
2520 * case, remap the current ctx to hctx[0] which
2521 * is guaranteed to always have tags allocated
2522 */
7d76f856 2523 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
4412efec
ML
2524 }
2525
897bb0c7 2526 ctx = per_cpu_ptr(q->queue_ctx, i);
b3c661b1 2527 for (j = 0; j < set->nr_maps; j++) {
bb94aea1
JW
2528 if (!set->map[j].nr_queues) {
2529 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2530 HCTX_TYPE_DEFAULT, i);
e5edd5f2 2531 continue;
bb94aea1 2532 }
e5edd5f2 2533
b3c661b1 2534 hctx = blk_mq_map_queue_type(q, j, i);
8ccdf4a3 2535 ctx->hctxs[j] = hctx;
b3c661b1
JA
2536 /*
2537 * If the CPU is already set in the mask, then we've
2538 * mapped this one already. This can happen if
2539 * devices share queues across queue maps.
2540 */
2541 if (cpumask_test_cpu(i, hctx->cpumask))
2542 continue;
2543
2544 cpumask_set_cpu(i, hctx->cpumask);
2545 hctx->type = j;
2546 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2547 hctx->ctxs[hctx->nr_ctx++] = ctx;
2548
2549 /*
2550 * If the nr_ctx type overflows, we have exceeded the
2551 * amount of sw queues we can support.
2552 */
2553 BUG_ON(!hctx->nr_ctx);
2554 }
bb94aea1
JW
2555
2556 for (; j < HCTX_MAX_TYPES; j++)
2557 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2558 HCTX_TYPE_DEFAULT, i);
320ae51f 2559 }
506e931f
JA
2560
2561 queue_for_each_hw_ctx(q, hctx, i) {
4412efec
ML
2562 /*
2563 * If no software queues are mapped to this hardware queue,
2564 * disable it and free the request entries.
2565 */
2566 if (!hctx->nr_ctx) {
2567 /* Never unmap queue 0. We need it as a
2568 * fallback in case of a new remap fails
2569 * allocation
2570 */
2571 if (i && set->tags[i])
2572 blk_mq_free_map_and_requests(set, i);
2573
2574 hctx->tags = NULL;
2575 continue;
2576 }
484b4061 2577
2a34c087
ML
2578 hctx->tags = set->tags[i];
2579 WARN_ON(!hctx->tags);
2580
889fa31f
CY
2581 /*
2582 * Set the map size to the number of mapped software queues.
2583 * This is more accurate and more efficient than looping
2584 * over all possibly mapped software queues.
2585 */
88459642 2586 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2587
484b4061
JA
2588 /*
2589 * Initialize batch roundrobin counts
2590 */
f82ddf19 2591 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
2592 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2593 }
320ae51f
JA
2594}
2595
8e8320c9
JA
2596/*
2597 * Caller needs to ensure that we're either frozen/quiesced, or that
2598 * the queue isn't live yet.
2599 */
2404e607 2600static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2601{
2602 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2603 int i;
2604
2404e607 2605 queue_for_each_hw_ctx(q, hctx, i) {
97889f9a 2606 if (shared)
2404e607 2607 hctx->flags |= BLK_MQ_F_TAG_SHARED;
97889f9a 2608 else
2404e607
JM
2609 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2610 }
2611}
2612
8e8320c9
JA
2613static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2614 bool shared)
2404e607
JM
2615{
2616 struct request_queue *q;
0d2602ca 2617
705cda97
BVA
2618 lockdep_assert_held(&set->tag_list_lock);
2619
0d2602ca
JA
2620 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2621 blk_mq_freeze_queue(q);
2404e607 2622 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2623 blk_mq_unfreeze_queue(q);
2624 }
2625}
2626
2627static void blk_mq_del_queue_tag_set(struct request_queue *q)
2628{
2629 struct blk_mq_tag_set *set = q->tag_set;
2630
0d2602ca 2631 mutex_lock(&set->tag_list_lock);
705cda97 2632 list_del_rcu(&q->tag_set_list);
2404e607
JM
2633 if (list_is_singular(&set->tag_list)) {
2634 /* just transitioned to unshared */
2635 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2636 /* update existing queue */
2637 blk_mq_update_tag_set_depth(set, false);
2638 }
0d2602ca 2639 mutex_unlock(&set->tag_list_lock);
a347c7ad 2640 INIT_LIST_HEAD(&q->tag_set_list);
0d2602ca
JA
2641}
2642
2643static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2644 struct request_queue *q)
2645{
0d2602ca 2646 mutex_lock(&set->tag_list_lock);
2404e607 2647
ff821d27
JA
2648 /*
2649 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2650 */
2651 if (!list_empty(&set->tag_list) &&
2652 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404e607
JM
2653 set->flags |= BLK_MQ_F_TAG_SHARED;
2654 /* update existing queue */
2655 blk_mq_update_tag_set_depth(set, true);
2656 }
2657 if (set->flags & BLK_MQ_F_TAG_SHARED)
2658 queue_set_hctx_shared(q, true);
705cda97 2659 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2660
0d2602ca
JA
2661 mutex_unlock(&set->tag_list_lock);
2662}
2663
1db4909e
ML
2664/* All allocations will be freed in release handler of q->mq_kobj */
2665static int blk_mq_alloc_ctxs(struct request_queue *q)
2666{
2667 struct blk_mq_ctxs *ctxs;
2668 int cpu;
2669
2670 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2671 if (!ctxs)
2672 return -ENOMEM;
2673
2674 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2675 if (!ctxs->queue_ctx)
2676 goto fail;
2677
2678 for_each_possible_cpu(cpu) {
2679 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2680 ctx->ctxs = ctxs;
2681 }
2682
2683 q->mq_kobj = &ctxs->kobj;
2684 q->queue_ctx = ctxs->queue_ctx;
2685
2686 return 0;
2687 fail:
2688 kfree(ctxs);
2689 return -ENOMEM;
2690}
2691
e09aae7e
ML
2692/*
2693 * It is the actual release handler for mq, but we do it from
2694 * request queue's release handler for avoiding use-after-free
2695 * and headache because q->mq_kobj shouldn't have been introduced,
2696 * but we can't group ctx/kctx kobj without it.
2697 */
2698void blk_mq_release(struct request_queue *q)
2699{
2f8f1336
ML
2700 struct blk_mq_hw_ctx *hctx, *next;
2701 int i;
e09aae7e 2702
2f8f1336
ML
2703 queue_for_each_hw_ctx(q, hctx, i)
2704 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2705
2706 /* all hctx are in .unused_hctx_list now */
2707 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2708 list_del_init(&hctx->hctx_list);
6c8b232e 2709 kobject_put(&hctx->kobj);
c3b4afca 2710 }
e09aae7e
ML
2711
2712 kfree(q->queue_hw_ctx);
2713
7ea5fe31
ML
2714 /*
2715 * release .mq_kobj and sw queue's kobject now because
2716 * both share lifetime with request queue.
2717 */
2718 blk_mq_sysfs_deinit(q);
e09aae7e
ML
2719}
2720
24d2f903 2721struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2722{
2723 struct request_queue *uninit_q, *q;
2724
6d469642 2725 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
b62c21b7
MS
2726 if (!uninit_q)
2727 return ERR_PTR(-ENOMEM);
2728
737eb78e
DLM
2729 /*
2730 * Initialize the queue without an elevator. device_add_disk() will do
2731 * the initialization.
2732 */
2733 q = blk_mq_init_allocated_queue(set, uninit_q, false);
b62c21b7
MS
2734 if (IS_ERR(q))
2735 blk_cleanup_queue(uninit_q);
2736
2737 return q;
2738}
2739EXPORT_SYMBOL(blk_mq_init_queue);
2740
9316a9ed
JA
2741/*
2742 * Helper for setting up a queue with mq ops, given queue depth, and
2743 * the passed in mq ops flags.
2744 */
2745struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2746 const struct blk_mq_ops *ops,
2747 unsigned int queue_depth,
2748 unsigned int set_flags)
2749{
2750 struct request_queue *q;
2751 int ret;
2752
2753 memset(set, 0, sizeof(*set));
2754 set->ops = ops;
2755 set->nr_hw_queues = 1;
b3c661b1 2756 set->nr_maps = 1;
9316a9ed
JA
2757 set->queue_depth = queue_depth;
2758 set->numa_node = NUMA_NO_NODE;
2759 set->flags = set_flags;
2760
2761 ret = blk_mq_alloc_tag_set(set);
2762 if (ret)
2763 return ERR_PTR(ret);
2764
2765 q = blk_mq_init_queue(set);
2766 if (IS_ERR(q)) {
2767 blk_mq_free_tag_set(set);
2768 return q;
2769 }
2770
2771 return q;
2772}
2773EXPORT_SYMBOL(blk_mq_init_sq_queue);
2774
34d11ffa
JW
2775static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2776 struct blk_mq_tag_set *set, struct request_queue *q,
2777 int hctx_idx, int node)
2778{
2f8f1336 2779 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
34d11ffa 2780
2f8f1336
ML
2781 /* reuse dead hctx first */
2782 spin_lock(&q->unused_hctx_lock);
2783 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2784 if (tmp->numa_node == node) {
2785 hctx = tmp;
2786 break;
2787 }
2788 }
2789 if (hctx)
2790 list_del_init(&hctx->hctx_list);
2791 spin_unlock(&q->unused_hctx_lock);
2792
2793 if (!hctx)
2794 hctx = blk_mq_alloc_hctx(q, set, node);
34d11ffa 2795 if (!hctx)
7c6c5b7c 2796 goto fail;
34d11ffa 2797
7c6c5b7c
ML
2798 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2799 goto free_hctx;
34d11ffa
JW
2800
2801 return hctx;
7c6c5b7c
ML
2802
2803 free_hctx:
2804 kobject_put(&hctx->kobj);
2805 fail:
2806 return NULL;
34d11ffa
JW
2807}
2808
868f2f0b
KB
2809static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2810 struct request_queue *q)
320ae51f 2811{
e01ad46d 2812 int i, j, end;
868f2f0b 2813 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2814
ac0d6b92
BVA
2815 if (q->nr_hw_queues < set->nr_hw_queues) {
2816 struct blk_mq_hw_ctx **new_hctxs;
2817
2818 new_hctxs = kcalloc_node(set->nr_hw_queues,
2819 sizeof(*new_hctxs), GFP_KERNEL,
2820 set->numa_node);
2821 if (!new_hctxs)
2822 return;
2823 if (hctxs)
2824 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
2825 sizeof(*hctxs));
2826 q->queue_hw_ctx = new_hctxs;
2827 q->nr_hw_queues = set->nr_hw_queues;
2828 kfree(hctxs);
2829 hctxs = new_hctxs;
2830 }
2831
fb350e0a
ML
2832 /* protect against switching io scheduler */
2833 mutex_lock(&q->sysfs_lock);
24d2f903 2834 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2835 int node;
34d11ffa 2836 struct blk_mq_hw_ctx *hctx;
868f2f0b 2837
7d76f856 2838 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
34d11ffa
JW
2839 /*
2840 * If the hw queue has been mapped to another numa node,
2841 * we need to realloc the hctx. If allocation fails, fallback
2842 * to use the previous one.
2843 */
2844 if (hctxs[i] && (hctxs[i]->numa_node == node))
2845 continue;
868f2f0b 2846
34d11ffa
JW
2847 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2848 if (hctx) {
2f8f1336 2849 if (hctxs[i])
34d11ffa 2850 blk_mq_exit_hctx(q, set, hctxs[i], i);
34d11ffa
JW
2851 hctxs[i] = hctx;
2852 } else {
2853 if (hctxs[i])
2854 pr_warn("Allocate new hctx on node %d fails,\
2855 fallback to previous one on node %d\n",
2856 node, hctxs[i]->numa_node);
2857 else
2858 break;
868f2f0b 2859 }
320ae51f 2860 }
e01ad46d
JW
2861 /*
2862 * Increasing nr_hw_queues fails. Free the newly allocated
2863 * hctxs and keep the previous q->nr_hw_queues.
2864 */
2865 if (i != set->nr_hw_queues) {
2866 j = q->nr_hw_queues;
2867 end = i;
2868 } else {
2869 j = i;
2870 end = q->nr_hw_queues;
2871 q->nr_hw_queues = set->nr_hw_queues;
2872 }
34d11ffa 2873
e01ad46d 2874 for (; j < end; j++) {
868f2f0b
KB
2875 struct blk_mq_hw_ctx *hctx = hctxs[j];
2876
2877 if (hctx) {
cc71a6f4
JA
2878 if (hctx->tags)
2879 blk_mq_free_map_and_requests(set, j);
868f2f0b 2880 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2881 hctxs[j] = NULL;
868f2f0b
KB
2882 }
2883 }
fb350e0a 2884 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
2885}
2886
2887struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
737eb78e
DLM
2888 struct request_queue *q,
2889 bool elevator_init)
868f2f0b 2890{
66841672
ML
2891 /* mark the queue as mq asap */
2892 q->mq_ops = set->ops;
2893
34dbad5d 2894 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2895 blk_mq_poll_stats_bkt,
2896 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2897 if (!q->poll_cb)
2898 goto err_exit;
2899
1db4909e 2900 if (blk_mq_alloc_ctxs(q))
41de54c6 2901 goto err_poll;
868f2f0b 2902
737f98cf
ML
2903 /* init q->mq_kobj and sw queues' kobjects */
2904 blk_mq_sysfs_init(q);
2905
2f8f1336
ML
2906 INIT_LIST_HEAD(&q->unused_hctx_list);
2907 spin_lock_init(&q->unused_hctx_lock);
2908
868f2f0b
KB
2909 blk_mq_realloc_hw_ctxs(set, q);
2910 if (!q->nr_hw_queues)
2911 goto err_hctxs;
320ae51f 2912
287922eb 2913 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2914 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f 2915
a8908939 2916 q->tag_set = set;
320ae51f 2917
94eddfbe 2918 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
cd19181b
ML
2919 if (set->nr_maps > HCTX_TYPE_POLL &&
2920 set->map[HCTX_TYPE_POLL].nr_queues)
6544d229 2921 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
320ae51f 2922
1be036e9
CH
2923 q->sg_reserved_size = INT_MAX;
2924
2849450a 2925 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2926 INIT_LIST_HEAD(&q->requeue_list);
2927 spin_lock_init(&q->requeue_lock);
2928
254d259d 2929 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2930
eba71768
JA
2931 /*
2932 * Do this after blk_queue_make_request() overrides it...
2933 */
2934 q->nr_requests = set->queue_depth;
2935
64f1c21e
JA
2936 /*
2937 * Default to classic polling
2938 */
29ece8b4 2939 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
64f1c21e 2940
24d2f903 2941 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2942 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2943 blk_mq_map_swqueue(q);
4593fdbe 2944
737eb78e
DLM
2945 if (elevator_init)
2946 elevator_init_mq(q);
d3484991 2947
320ae51f 2948 return q;
18741986 2949
320ae51f 2950err_hctxs:
868f2f0b 2951 kfree(q->queue_hw_ctx);
73d9c8d4 2952 q->nr_hw_queues = 0;
1db4909e 2953 blk_mq_sysfs_deinit(q);
41de54c6
JS
2954err_poll:
2955 blk_stat_free_callback(q->poll_cb);
2956 q->poll_cb = NULL;
c7de5726
ML
2957err_exit:
2958 q->mq_ops = NULL;
320ae51f
JA
2959 return ERR_PTR(-ENOMEM);
2960}
b62c21b7 2961EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f 2962
c7e2d94b
ML
2963/* tags can _not_ be used after returning from blk_mq_exit_queue */
2964void blk_mq_exit_queue(struct request_queue *q)
320ae51f 2965{
624dbe47 2966 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2967
0d2602ca 2968 blk_mq_del_queue_tag_set(q);
624dbe47 2969 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2970}
320ae51f 2971
a5164405
JA
2972static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2973{
2974 int i;
2975
cc71a6f4
JA
2976 for (i = 0; i < set->nr_hw_queues; i++)
2977 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2978 goto out_unwind;
a5164405
JA
2979
2980 return 0;
2981
2982out_unwind:
2983 while (--i >= 0)
cc71a6f4 2984 blk_mq_free_rq_map(set->tags[i]);
a5164405 2985
a5164405
JA
2986 return -ENOMEM;
2987}
2988
2989/*
2990 * Allocate the request maps associated with this tag_set. Note that this
2991 * may reduce the depth asked for, if memory is tight. set->queue_depth
2992 * will be updated to reflect the allocated depth.
2993 */
2994static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2995{
2996 unsigned int depth;
2997 int err;
2998
2999 depth = set->queue_depth;
3000 do {
3001 err = __blk_mq_alloc_rq_maps(set);
3002 if (!err)
3003 break;
3004
3005 set->queue_depth >>= 1;
3006 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3007 err = -ENOMEM;
3008 break;
3009 }
3010 } while (set->queue_depth);
3011
3012 if (!set->queue_depth || err) {
3013 pr_err("blk-mq: failed to allocate request map\n");
3014 return -ENOMEM;
3015 }
3016
3017 if (depth != set->queue_depth)
3018 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3019 depth, set->queue_depth);
3020
3021 return 0;
3022}
3023
ebe8bddb
OS
3024static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3025{
59388702 3026 if (set->ops->map_queues && !is_kdump_kernel()) {
b3c661b1
JA
3027 int i;
3028
7d4901a9
ML
3029 /*
3030 * transport .map_queues is usually done in the following
3031 * way:
3032 *
3033 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3034 * mask = get_cpu_mask(queue)
3035 * for_each_cpu(cpu, mask)
b3c661b1 3036 * set->map[x].mq_map[cpu] = queue;
7d4901a9
ML
3037 * }
3038 *
3039 * When we need to remap, the table has to be cleared for
3040 * killing stale mapping since one CPU may not be mapped
3041 * to any hw queue.
3042 */
b3c661b1
JA
3043 for (i = 0; i < set->nr_maps; i++)
3044 blk_mq_clear_mq_map(&set->map[i]);
7d4901a9 3045
ebe8bddb 3046 return set->ops->map_queues(set);
b3c661b1
JA
3047 } else {
3048 BUG_ON(set->nr_maps > 1);
7d76f856 3049 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
b3c661b1 3050 }
ebe8bddb
OS
3051}
3052
f7e76dbc
BVA
3053static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3054 int cur_nr_hw_queues, int new_nr_hw_queues)
3055{
3056 struct blk_mq_tags **new_tags;
3057
3058 if (cur_nr_hw_queues >= new_nr_hw_queues)
3059 return 0;
3060
3061 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3062 GFP_KERNEL, set->numa_node);
3063 if (!new_tags)
3064 return -ENOMEM;
3065
3066 if (set->tags)
3067 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3068 sizeof(*set->tags));
3069 kfree(set->tags);
3070 set->tags = new_tags;
3071 set->nr_hw_queues = new_nr_hw_queues;
3072
3073 return 0;
3074}
3075
a4391c64
JA
3076/*
3077 * Alloc a tag set to be associated with one or more request queues.
3078 * May fail with EINVAL for various error conditions. May adjust the
c018c84f 3079 * requested depth down, if it's too large. In that case, the set
a4391c64
JA
3080 * value will be stored in set->queue_depth.
3081 */
24d2f903
CH
3082int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3083{
b3c661b1 3084 int i, ret;
da695ba2 3085
205fb5f5
BVA
3086 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3087
24d2f903
CH
3088 if (!set->nr_hw_queues)
3089 return -EINVAL;
a4391c64 3090 if (!set->queue_depth)
24d2f903
CH
3091 return -EINVAL;
3092 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3093 return -EINVAL;
3094
7d7e0f90 3095 if (!set->ops->queue_rq)
24d2f903
CH
3096 return -EINVAL;
3097
de148297
ML
3098 if (!set->ops->get_budget ^ !set->ops->put_budget)
3099 return -EINVAL;
3100
a4391c64
JA
3101 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3102 pr_info("blk-mq: reduced tag depth to %u\n",
3103 BLK_MQ_MAX_DEPTH);
3104 set->queue_depth = BLK_MQ_MAX_DEPTH;
3105 }
24d2f903 3106
b3c661b1
JA
3107 if (!set->nr_maps)
3108 set->nr_maps = 1;
3109 else if (set->nr_maps > HCTX_MAX_TYPES)
3110 return -EINVAL;
3111
6637fadf
SL
3112 /*
3113 * If a crashdump is active, then we are potentially in a very
3114 * memory constrained environment. Limit us to 1 queue and
3115 * 64 tags to prevent using too much memory.
3116 */
3117 if (is_kdump_kernel()) {
3118 set->nr_hw_queues = 1;
59388702 3119 set->nr_maps = 1;
6637fadf
SL
3120 set->queue_depth = min(64U, set->queue_depth);
3121 }
868f2f0b 3122 /*
392546ae
JA
3123 * There is no use for more h/w queues than cpus if we just have
3124 * a single map
868f2f0b 3125 */
392546ae 3126 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
868f2f0b 3127 set->nr_hw_queues = nr_cpu_ids;
6637fadf 3128
f7e76dbc 3129 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
a5164405 3130 return -ENOMEM;
24d2f903 3131
da695ba2 3132 ret = -ENOMEM;
b3c661b1
JA
3133 for (i = 0; i < set->nr_maps; i++) {
3134 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
07b35eb5 3135 sizeof(set->map[i].mq_map[0]),
b3c661b1
JA
3136 GFP_KERNEL, set->numa_node);
3137 if (!set->map[i].mq_map)
3138 goto out_free_mq_map;
59388702 3139 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
b3c661b1 3140 }
bdd17e75 3141
ebe8bddb 3142 ret = blk_mq_update_queue_map(set);
da695ba2
CH
3143 if (ret)
3144 goto out_free_mq_map;
3145
3146 ret = blk_mq_alloc_rq_maps(set);
3147 if (ret)
bdd17e75 3148 goto out_free_mq_map;
24d2f903 3149
0d2602ca
JA
3150 mutex_init(&set->tag_list_lock);
3151 INIT_LIST_HEAD(&set->tag_list);
3152
24d2f903 3153 return 0;
bdd17e75
CH
3154
3155out_free_mq_map:
b3c661b1
JA
3156 for (i = 0; i < set->nr_maps; i++) {
3157 kfree(set->map[i].mq_map);
3158 set->map[i].mq_map = NULL;
3159 }
5676e7b6
RE
3160 kfree(set->tags);
3161 set->tags = NULL;
da695ba2 3162 return ret;
24d2f903
CH
3163}
3164EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3165
3166void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3167{
b3c661b1 3168 int i, j;
24d2f903 3169
f7e76dbc 3170 for (i = 0; i < set->nr_hw_queues; i++)
cc71a6f4 3171 blk_mq_free_map_and_requests(set, i);
484b4061 3172
b3c661b1
JA
3173 for (j = 0; j < set->nr_maps; j++) {
3174 kfree(set->map[j].mq_map);
3175 set->map[j].mq_map = NULL;
3176 }
bdd17e75 3177
981bd189 3178 kfree(set->tags);
5676e7b6 3179 set->tags = NULL;
24d2f903
CH
3180}
3181EXPORT_SYMBOL(blk_mq_free_tag_set);
3182
e3a2b3f9
JA
3183int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3184{
3185 struct blk_mq_tag_set *set = q->tag_set;
3186 struct blk_mq_hw_ctx *hctx;
3187 int i, ret;
3188
bd166ef1 3189 if (!set)
e3a2b3f9
JA
3190 return -EINVAL;
3191
e5fa8140
AZ
3192 if (q->nr_requests == nr)
3193 return 0;
3194
70f36b60 3195 blk_mq_freeze_queue(q);
24f5a90f 3196 blk_mq_quiesce_queue(q);
70f36b60 3197
e3a2b3f9
JA
3198 ret = 0;
3199 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
3200 if (!hctx->tags)
3201 continue;
bd166ef1
JA
3202 /*
3203 * If we're using an MQ scheduler, just update the scheduler
3204 * queue depth. This is similar to what the old code would do.
3205 */
70f36b60 3206 if (!hctx->sched_tags) {
c2e82a23 3207 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
3208 false);
3209 } else {
3210 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3211 nr, true);
3212 }
e3a2b3f9
JA
3213 if (ret)
3214 break;
77f1e0a5
JA
3215 if (q->elevator && q->elevator->type->ops.depth_updated)
3216 q->elevator->type->ops.depth_updated(hctx);
e3a2b3f9
JA
3217 }
3218
3219 if (!ret)
3220 q->nr_requests = nr;
3221
24f5a90f 3222 blk_mq_unquiesce_queue(q);
70f36b60 3223 blk_mq_unfreeze_queue(q);
70f36b60 3224
e3a2b3f9
JA
3225 return ret;
3226}
3227
d48ece20
JW
3228/*
3229 * request_queue and elevator_type pair.
3230 * It is just used by __blk_mq_update_nr_hw_queues to cache
3231 * the elevator_type associated with a request_queue.
3232 */
3233struct blk_mq_qe_pair {
3234 struct list_head node;
3235 struct request_queue *q;
3236 struct elevator_type *type;
3237};
3238
3239/*
3240 * Cache the elevator_type in qe pair list and switch the
3241 * io scheduler to 'none'
3242 */
3243static bool blk_mq_elv_switch_none(struct list_head *head,
3244 struct request_queue *q)
3245{
3246 struct blk_mq_qe_pair *qe;
3247
3248 if (!q->elevator)
3249 return true;
3250
3251 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3252 if (!qe)
3253 return false;
3254
3255 INIT_LIST_HEAD(&qe->node);
3256 qe->q = q;
3257 qe->type = q->elevator->type;
3258 list_add(&qe->node, head);
3259
3260 mutex_lock(&q->sysfs_lock);
3261 /*
3262 * After elevator_switch_mq, the previous elevator_queue will be
3263 * released by elevator_release. The reference of the io scheduler
3264 * module get by elevator_get will also be put. So we need to get
3265 * a reference of the io scheduler module here to prevent it to be
3266 * removed.
3267 */
3268 __module_get(qe->type->elevator_owner);
3269 elevator_switch_mq(q, NULL);
3270 mutex_unlock(&q->sysfs_lock);
3271
3272 return true;
3273}
3274
3275static void blk_mq_elv_switch_back(struct list_head *head,
3276 struct request_queue *q)
3277{
3278 struct blk_mq_qe_pair *qe;
3279 struct elevator_type *t = NULL;
3280
3281 list_for_each_entry(qe, head, node)
3282 if (qe->q == q) {
3283 t = qe->type;
3284 break;
3285 }
3286
3287 if (!t)
3288 return;
3289
3290 list_del(&qe->node);
3291 kfree(qe);
3292
3293 mutex_lock(&q->sysfs_lock);
3294 elevator_switch_mq(q, t);
3295 mutex_unlock(&q->sysfs_lock);
3296}
3297
e4dc2b32
KB
3298static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3299 int nr_hw_queues)
868f2f0b
KB
3300{
3301 struct request_queue *q;
d48ece20 3302 LIST_HEAD(head);
e01ad46d 3303 int prev_nr_hw_queues;
868f2f0b 3304
705cda97
BVA
3305 lockdep_assert_held(&set->tag_list_lock);
3306
392546ae 3307 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
868f2f0b
KB
3308 nr_hw_queues = nr_cpu_ids;
3309 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3310 return;
3311
3312 list_for_each_entry(q, &set->tag_list, tag_set_list)
3313 blk_mq_freeze_queue(q);
d48ece20
JW
3314 /*
3315 * Switch IO scheduler to 'none', cleaning up the data associated
3316 * with the previous scheduler. We will switch back once we are done
3317 * updating the new sw to hw queue mappings.
3318 */
3319 list_for_each_entry(q, &set->tag_list, tag_set_list)
3320 if (!blk_mq_elv_switch_none(&head, q))
3321 goto switch_back;
868f2f0b 3322
477e19de
JW
3323 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3324 blk_mq_debugfs_unregister_hctxs(q);
3325 blk_mq_sysfs_unregister(q);
3326 }
3327
f7e76dbc
BVA
3328 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3329 0)
3330 goto reregister;
3331
e01ad46d 3332 prev_nr_hw_queues = set->nr_hw_queues;
868f2f0b 3333 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 3334 blk_mq_update_queue_map(set);
e01ad46d 3335fallback:
868f2f0b
KB
3336 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3337 blk_mq_realloc_hw_ctxs(set, q);
e01ad46d
JW
3338 if (q->nr_hw_queues != set->nr_hw_queues) {
3339 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3340 nr_hw_queues, prev_nr_hw_queues);
3341 set->nr_hw_queues = prev_nr_hw_queues;
7d76f856 3342 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
e01ad46d
JW
3343 goto fallback;
3344 }
477e19de
JW
3345 blk_mq_map_swqueue(q);
3346 }
3347
f7e76dbc 3348reregister:
477e19de
JW
3349 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3350 blk_mq_sysfs_register(q);
3351 blk_mq_debugfs_register_hctxs(q);
868f2f0b
KB
3352 }
3353
d48ece20
JW
3354switch_back:
3355 list_for_each_entry(q, &set->tag_list, tag_set_list)
3356 blk_mq_elv_switch_back(&head, q);
3357
868f2f0b
KB
3358 list_for_each_entry(q, &set->tag_list, tag_set_list)
3359 blk_mq_unfreeze_queue(q);
3360}
e4dc2b32
KB
3361
3362void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3363{
3364 mutex_lock(&set->tag_list_lock);
3365 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3366 mutex_unlock(&set->tag_list_lock);
3367}
868f2f0b
KB
3368EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3369
34dbad5d
OS
3370/* Enable polling stats and return whether they were already enabled. */
3371static bool blk_poll_stats_enable(struct request_queue *q)
3372{
3373 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
7dfdbc73 3374 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
34dbad5d
OS
3375 return true;
3376 blk_stat_add_callback(q, q->poll_cb);
3377 return false;
3378}
3379
3380static void blk_mq_poll_stats_start(struct request_queue *q)
3381{
3382 /*
3383 * We don't arm the callback if polling stats are not enabled or the
3384 * callback is already active.
3385 */
3386 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3387 blk_stat_is_active(q->poll_cb))
3388 return;
3389
3390 blk_stat_activate_msecs(q->poll_cb, 100);
3391}
3392
3393static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3394{
3395 struct request_queue *q = cb->data;
720b8ccc 3396 int bucket;
34dbad5d 3397
720b8ccc
SB
3398 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3399 if (cb->stat[bucket].nr_samples)
3400 q->poll_stat[bucket] = cb->stat[bucket];
3401 }
34dbad5d
OS
3402}
3403
64f1c21e 3404static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
64f1c21e
JA
3405 struct request *rq)
3406{
64f1c21e 3407 unsigned long ret = 0;
720b8ccc 3408 int bucket;
64f1c21e
JA
3409
3410 /*
3411 * If stats collection isn't on, don't sleep but turn it on for
3412 * future users
3413 */
34dbad5d 3414 if (!blk_poll_stats_enable(q))
64f1c21e
JA
3415 return 0;
3416
64f1c21e
JA
3417 /*
3418 * As an optimistic guess, use half of the mean service time
3419 * for this type of request. We can (and should) make this smarter.
3420 * For instance, if the completion latencies are tight, we can
3421 * get closer than just half the mean. This is especially
3422 * important on devices where the completion latencies are longer
720b8ccc
SB
3423 * than ~10 usec. We do use the stats for the relevant IO size
3424 * if available which does lead to better estimates.
64f1c21e 3425 */
720b8ccc
SB
3426 bucket = blk_mq_poll_stats_bkt(rq);
3427 if (bucket < 0)
3428 return ret;
3429
3430 if (q->poll_stat[bucket].nr_samples)
3431 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
3432
3433 return ret;
3434}
3435
06426adf
JA
3436static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3437 struct request *rq)
3438{
3439 struct hrtimer_sleeper hs;
3440 enum hrtimer_mode mode;
64f1c21e 3441 unsigned int nsecs;
06426adf
JA
3442 ktime_t kt;
3443
76a86f9d 3444 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
64f1c21e
JA
3445 return false;
3446
3447 /*
1052b8ac 3448 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
64f1c21e 3449 *
64f1c21e
JA
3450 * 0: use half of prev avg
3451 * >0: use this specific value
3452 */
1052b8ac 3453 if (q->poll_nsec > 0)
64f1c21e
JA
3454 nsecs = q->poll_nsec;
3455 else
cae740a0 3456 nsecs = blk_mq_poll_nsecs(q, rq);
64f1c21e
JA
3457
3458 if (!nsecs)
06426adf
JA
3459 return false;
3460
76a86f9d 3461 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
06426adf
JA
3462
3463 /*
3464 * This will be replaced with the stats tracking code, using
3465 * 'avg_completion_time / 2' as the pre-sleep target.
3466 */
8b0e1953 3467 kt = nsecs;
06426adf
JA
3468
3469 mode = HRTIMER_MODE_REL;
dbc1625f 3470 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
06426adf
JA
3471 hrtimer_set_expires(&hs.timer, kt);
3472
06426adf 3473 do {
5a61c363 3474 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
06426adf
JA
3475 break;
3476 set_current_state(TASK_UNINTERRUPTIBLE);
9dd8813e 3477 hrtimer_sleeper_start_expires(&hs, mode);
06426adf
JA
3478 if (hs.task)
3479 io_schedule();
3480 hrtimer_cancel(&hs.timer);
3481 mode = HRTIMER_MODE_ABS;
3482 } while (hs.task && !signal_pending(current));
3483
3484 __set_current_state(TASK_RUNNING);
3485 destroy_hrtimer_on_stack(&hs.timer);
3486 return true;
3487}
3488
1052b8ac
JA
3489static bool blk_mq_poll_hybrid(struct request_queue *q,
3490 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
bbd7bb70 3491{
1052b8ac
JA
3492 struct request *rq;
3493
29ece8b4 3494 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
1052b8ac
JA
3495 return false;
3496
3497 if (!blk_qc_t_is_internal(cookie))
3498 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3499 else {
3500 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3501 /*
3502 * With scheduling, if the request has completed, we'll
3503 * get a NULL return here, as we clear the sched tag when
3504 * that happens. The request still remains valid, like always,
3505 * so we should be safe with just the NULL check.
3506 */
3507 if (!rq)
3508 return false;
3509 }
3510
cae740a0 3511 return blk_mq_poll_hybrid_sleep(q, rq);
1052b8ac
JA
3512}
3513
529262d5
CH
3514/**
3515 * blk_poll - poll for IO completions
3516 * @q: the queue
3517 * @cookie: cookie passed back at IO submission time
3518 * @spin: whether to spin for completions
3519 *
3520 * Description:
3521 * Poll for completions on the passed in queue. Returns number of
3522 * completed entries found. If @spin is true, then blk_poll will continue
3523 * looping until at least one completion is found, unless the task is
3524 * otherwise marked running (or we need to reschedule).
3525 */
3526int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
1052b8ac
JA
3527{
3528 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
3529 long state;
3530
529262d5
CH
3531 if (!blk_qc_t_valid(cookie) ||
3532 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1052b8ac
JA
3533 return 0;
3534
529262d5
CH
3535 if (current->plug)
3536 blk_flush_plug_list(current->plug, false);
3537
1052b8ac
JA
3538 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3539
06426adf
JA
3540 /*
3541 * If we sleep, have the caller restart the poll loop to reset
3542 * the state. Like for the other success return cases, the
3543 * caller is responsible for checking if the IO completed. If
3544 * the IO isn't complete, we'll get called again and will go
3545 * straight to the busy poll loop.
3546 */
1052b8ac 3547 if (blk_mq_poll_hybrid(q, hctx, cookie))
85f4d4b6 3548 return 1;
06426adf 3549
bbd7bb70
JA
3550 hctx->poll_considered++;
3551
3552 state = current->state;
aa61bec3 3553 do {
bbd7bb70
JA
3554 int ret;
3555
3556 hctx->poll_invoked++;
3557
9743139c 3558 ret = q->mq_ops->poll(hctx);
bbd7bb70
JA
3559 if (ret > 0) {
3560 hctx->poll_success++;
849a3700 3561 __set_current_state(TASK_RUNNING);
85f4d4b6 3562 return ret;
bbd7bb70
JA
3563 }
3564
3565 if (signal_pending_state(state, current))
849a3700 3566 __set_current_state(TASK_RUNNING);
bbd7bb70
JA
3567
3568 if (current->state == TASK_RUNNING)
85f4d4b6 3569 return 1;
0a1b8b87 3570 if (ret < 0 || !spin)
bbd7bb70
JA
3571 break;
3572 cpu_relax();
aa61bec3 3573 } while (!need_resched());
bbd7bb70 3574
67b4110f 3575 __set_current_state(TASK_RUNNING);
85f4d4b6 3576 return 0;
bbd7bb70 3577}
529262d5 3578EXPORT_SYMBOL_GPL(blk_poll);
bbd7bb70 3579
9cf2bab6
JA
3580unsigned int blk_mq_rq_cpu(struct request *rq)
3581{
3582 return rq->mq_ctx->cpu;
3583}
3584EXPORT_SYMBOL(blk_mq_rq_cpu);
3585
320ae51f
JA
3586static int __init blk_mq_init(void)
3587{
9467f859
TG
3588 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3589 blk_mq_hctx_notify_dead);
320ae51f
JA
3590 return 0;
3591}
3592subsys_initcall(blk_mq_init);