blk-mq: use get_cpu/put_cpu instead of preempt_disable/preempt_enable
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/mm.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/workqueue.h>
16#include <linux/smp.h>
17#include <linux/llist.h>
18#include <linux/list_sort.h>
19#include <linux/cpu.h>
20#include <linux/cache.h>
21#include <linux/sched/sysctl.h>
22#include <linux/delay.h>
aedcd72f 23#include <linux/crash_dump.h>
320ae51f
JA
24
25#include <trace/events/block.h>
26
27#include <linux/blk-mq.h>
28#include "blk.h"
29#include "blk-mq.h"
30#include "blk-mq-tag.h"
31
32static DEFINE_MUTEX(all_q_mutex);
33static LIST_HEAD(all_q_list);
34
35static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
320ae51f
JA
37/*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41{
42 unsigned int i;
43
1429d7c9
JA
44 for (i = 0; i < hctx->ctx_map.map_size; i++)
45 if (hctx->ctx_map.map[i].word)
320ae51f
JA
46 return true;
47
48 return false;
49}
50
1429d7c9
JA
51static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
53{
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55}
56
57#define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
320ae51f
JA
60/*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
65{
1429d7c9
JA
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70}
71
72static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74{
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
78}
79
320ae51f
JA
80static int blk_mq_queue_enter(struct request_queue *q)
81{
add703fd
TH
82 while (true) {
83 int ret;
320ae51f 84
add703fd
TH
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
320ae51f 87
add703fd
TH
88 ret = wait_event_interruptible(q->mq_freeze_wq,
89 !q->mq_freeze_depth || blk_queue_dying(q));
90 if (blk_queue_dying(q))
91 return -ENODEV;
92 if (ret)
93 return ret;
94 }
320ae51f
JA
95}
96
97static void blk_mq_queue_exit(struct request_queue *q)
98{
add703fd
TH
99 percpu_ref_put(&q->mq_usage_counter);
100}
101
102static void blk_mq_usage_counter_release(struct percpu_ref *ref)
103{
104 struct request_queue *q =
105 container_of(ref, struct request_queue, mq_usage_counter);
106
107 wake_up_all(&q->mq_freeze_wq);
320ae51f
JA
108}
109
72d6f02a
TH
110/*
111 * Guarantee no request is in use, so we can change any data structure of
112 * the queue afterward.
113 */
114void blk_mq_freeze_queue(struct request_queue *q)
43a5e4e2 115{
cddd5d17
TH
116 bool freeze;
117
72d6f02a 118 spin_lock_irq(q->queue_lock);
cddd5d17 119 freeze = !q->mq_freeze_depth++;
72d6f02a
TH
120 spin_unlock_irq(q->queue_lock);
121
cddd5d17 122 if (freeze) {
9eca8046 123 percpu_ref_kill(&q->mq_usage_counter);
cddd5d17
TH
124 blk_mq_run_queues(q, false);
125 }
add703fd 126 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
43a5e4e2
ML
127}
128
320ae51f
JA
129static void blk_mq_unfreeze_queue(struct request_queue *q)
130{
cddd5d17 131 bool wake;
320ae51f
JA
132
133 spin_lock_irq(q->queue_lock);
780db207
TH
134 wake = !--q->mq_freeze_depth;
135 WARN_ON_ONCE(q->mq_freeze_depth < 0);
320ae51f 136 spin_unlock_irq(q->queue_lock);
add703fd
TH
137 if (wake) {
138 percpu_ref_reinit(&q->mq_usage_counter);
320ae51f 139 wake_up_all(&q->mq_freeze_wq);
add703fd 140 }
320ae51f
JA
141}
142
143bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
144{
145 return blk_mq_has_free_tags(hctx->tags);
146}
147EXPORT_SYMBOL(blk_mq_can_queue);
148
94eddfbe
JA
149static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
150 struct request *rq, unsigned int rw_flags)
320ae51f 151{
94eddfbe
JA
152 if (blk_queue_io_stat(q))
153 rw_flags |= REQ_IO_STAT;
154
af76e555
CH
155 INIT_LIST_HEAD(&rq->queuelist);
156 /* csd/requeue_work/fifo_time is initialized before use */
157 rq->q = q;
320ae51f 158 rq->mq_ctx = ctx;
0d2602ca 159 rq->cmd_flags |= rw_flags;
af76e555
CH
160 /* do not touch atomic flags, it needs atomic ops against the timer */
161 rq->cpu = -1;
af76e555
CH
162 INIT_HLIST_NODE(&rq->hash);
163 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
164 rq->rq_disk = NULL;
165 rq->part = NULL;
3ee32372 166 rq->start_time = jiffies;
af76e555
CH
167#ifdef CONFIG_BLK_CGROUP
168 rq->rl = NULL;
0fec08b4 169 set_start_time_ns(rq);
af76e555
CH
170 rq->io_start_time_ns = 0;
171#endif
172 rq->nr_phys_segments = 0;
173#if defined(CONFIG_BLK_DEV_INTEGRITY)
174 rq->nr_integrity_segments = 0;
175#endif
af76e555
CH
176 rq->special = NULL;
177 /* tag was already set */
178 rq->errors = 0;
af76e555 179
6f4a1626
TB
180 rq->cmd = rq->__cmd;
181
af76e555
CH
182 rq->extra_len = 0;
183 rq->sense_len = 0;
184 rq->resid_len = 0;
185 rq->sense = NULL;
186
af76e555 187 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
188 rq->timeout = 0;
189
af76e555
CH
190 rq->end_io = NULL;
191 rq->end_io_data = NULL;
192 rq->next_rq = NULL;
193
320ae51f
JA
194 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
195}
196
5dee8577 197static struct request *
cb96a42c 198__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
5dee8577
CH
199{
200 struct request *rq;
201 unsigned int tag;
202
cb96a42c 203 tag = blk_mq_get_tag(data);
5dee8577 204 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 205 rq = data->hctx->tags->rqs[tag];
5dee8577 206
cb96a42c 207 if (blk_mq_tag_busy(data->hctx)) {
5dee8577 208 rq->cmd_flags = REQ_MQ_INFLIGHT;
cb96a42c 209 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
210 }
211
212 rq->tag = tag;
cb96a42c 213 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
5dee8577
CH
214 return rq;
215 }
216
217 return NULL;
218}
219
4ce01dd1
CH
220struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
221 bool reserved)
320ae51f 222{
d852564f
CH
223 struct blk_mq_ctx *ctx;
224 struct blk_mq_hw_ctx *hctx;
320ae51f 225 struct request *rq;
cb96a42c 226 struct blk_mq_alloc_data alloc_data;
a492f075 227 int ret;
320ae51f 228
a492f075
JL
229 ret = blk_mq_queue_enter(q);
230 if (ret)
231 return ERR_PTR(ret);
320ae51f 232
d852564f
CH
233 ctx = blk_mq_get_ctx(q);
234 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
235 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
236 reserved, ctx, hctx);
d852564f 237
cb96a42c 238 rq = __blk_mq_alloc_request(&alloc_data, rw);
d852564f
CH
239 if (!rq && (gfp & __GFP_WAIT)) {
240 __blk_mq_run_hw_queue(hctx);
241 blk_mq_put_ctx(ctx);
242
243 ctx = blk_mq_get_ctx(q);
244 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
245 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
246 hctx);
247 rq = __blk_mq_alloc_request(&alloc_data, rw);
248 ctx = alloc_data.ctx;
d852564f
CH
249 }
250 blk_mq_put_ctx(ctx);
a492f075
JL
251 if (!rq)
252 return ERR_PTR(-EWOULDBLOCK);
320ae51f
JA
253 return rq;
254}
4bb659b1 255EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 256
320ae51f
JA
257static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
258 struct blk_mq_ctx *ctx, struct request *rq)
259{
260 const int tag = rq->tag;
261 struct request_queue *q = rq->q;
262
0d2602ca
JA
263 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
264 atomic_dec(&hctx->nr_active);
683d0e12 265 rq->cmd_flags = 0;
0d2602ca 266
af76e555 267 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 268 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
320ae51f
JA
269 blk_mq_queue_exit(q);
270}
271
272void blk_mq_free_request(struct request *rq)
273{
274 struct blk_mq_ctx *ctx = rq->mq_ctx;
275 struct blk_mq_hw_ctx *hctx;
276 struct request_queue *q = rq->q;
277
278 ctx->rq_completed[rq_is_sync(rq)]++;
279
280 hctx = q->mq_ops->map_queue(q, ctx->cpu);
281 __blk_mq_free_request(hctx, ctx, rq);
282}
283
c8a446ad 284inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 285{
0d11e6ac
ML
286 blk_account_io_done(rq);
287
91b63639 288 if (rq->end_io) {
320ae51f 289 rq->end_io(rq, error);
91b63639
CH
290 } else {
291 if (unlikely(blk_bidi_rq(rq)))
292 blk_mq_free_request(rq->next_rq);
320ae51f 293 blk_mq_free_request(rq);
91b63639 294 }
320ae51f 295}
c8a446ad 296EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 297
c8a446ad 298void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
299{
300 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
301 BUG();
c8a446ad 302 __blk_mq_end_request(rq, error);
63151a44 303}
c8a446ad 304EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 305
30a91cb4 306static void __blk_mq_complete_request_remote(void *data)
320ae51f 307{
3d6efbf6 308 struct request *rq = data;
320ae51f 309
30a91cb4 310 rq->q->softirq_done_fn(rq);
320ae51f 311}
320ae51f 312
ed851860 313static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
314{
315 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 316 bool shared = false;
320ae51f
JA
317 int cpu;
318
38535201 319 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
320 rq->q->softirq_done_fn(rq);
321 return;
322 }
320ae51f
JA
323
324 cpu = get_cpu();
38535201
CH
325 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
326 shared = cpus_share_cache(cpu, ctx->cpu);
327
328 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 329 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
330 rq->csd.info = rq;
331 rq->csd.flags = 0;
c46fff2a 332 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 333 } else {
30a91cb4 334 rq->q->softirq_done_fn(rq);
3d6efbf6 335 }
320ae51f
JA
336 put_cpu();
337}
30a91cb4 338
ed851860
JA
339void __blk_mq_complete_request(struct request *rq)
340{
341 struct request_queue *q = rq->q;
342
343 if (!q->softirq_done_fn)
c8a446ad 344 blk_mq_end_request(rq, rq->errors);
ed851860
JA
345 else
346 blk_mq_ipi_complete_request(rq);
347}
348
30a91cb4
CH
349/**
350 * blk_mq_complete_request - end I/O on a request
351 * @rq: the request being processed
352 *
353 * Description:
354 * Ends all I/O on a request. It does not handle partial completions.
355 * The actual completion happens out-of-order, through a IPI handler.
356 **/
357void blk_mq_complete_request(struct request *rq)
358{
95f09684
JA
359 struct request_queue *q = rq->q;
360
361 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 362 return;
ed851860
JA
363 if (!blk_mark_rq_complete(rq))
364 __blk_mq_complete_request(rq);
30a91cb4
CH
365}
366EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 367
e2490073 368void blk_mq_start_request(struct request *rq)
320ae51f
JA
369{
370 struct request_queue *q = rq->q;
371
372 trace_block_rq_issue(q, rq);
373
742ee69b 374 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
375 if (unlikely(blk_bidi_rq(rq)))
376 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 377
2b8393b4 378 blk_add_timer(rq);
87ee7b11 379
538b7534
JA
380 /*
381 * Ensure that ->deadline is visible before set the started
382 * flag and clear the completed flag.
383 */
384 smp_mb__before_atomic();
385
87ee7b11
JA
386 /*
387 * Mark us as started and clear complete. Complete might have been
388 * set if requeue raced with timeout, which then marked it as
389 * complete. So be sure to clear complete again when we start
390 * the request, otherwise we'll ignore the completion event.
391 */
4b570521
JA
392 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
393 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
394 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
395 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
396
397 if (q->dma_drain_size && blk_rq_bytes(rq)) {
398 /*
399 * Make sure space for the drain appears. We know we can do
400 * this because max_hw_segments has been adjusted to be one
401 * fewer than the device can handle.
402 */
403 rq->nr_phys_segments++;
404 }
320ae51f 405}
e2490073 406EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 407
ed0791b2 408static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
409{
410 struct request_queue *q = rq->q;
411
412 trace_block_rq_requeue(q, rq);
49f5baa5 413
e2490073
CH
414 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
415 if (q->dma_drain_size && blk_rq_bytes(rq))
416 rq->nr_phys_segments--;
417 }
320ae51f
JA
418}
419
ed0791b2
CH
420void blk_mq_requeue_request(struct request *rq)
421{
ed0791b2 422 __blk_mq_requeue_request(rq);
ed0791b2 423
ed0791b2 424 BUG_ON(blk_queued_rq(rq));
6fca6a61 425 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
426}
427EXPORT_SYMBOL(blk_mq_requeue_request);
428
6fca6a61
CH
429static void blk_mq_requeue_work(struct work_struct *work)
430{
431 struct request_queue *q =
432 container_of(work, struct request_queue, requeue_work);
433 LIST_HEAD(rq_list);
434 struct request *rq, *next;
435 unsigned long flags;
436
437 spin_lock_irqsave(&q->requeue_lock, flags);
438 list_splice_init(&q->requeue_list, &rq_list);
439 spin_unlock_irqrestore(&q->requeue_lock, flags);
440
441 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
442 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
443 continue;
444
445 rq->cmd_flags &= ~REQ_SOFTBARRIER;
446 list_del_init(&rq->queuelist);
447 blk_mq_insert_request(rq, true, false, false);
448 }
449
450 while (!list_empty(&rq_list)) {
451 rq = list_entry(rq_list.next, struct request, queuelist);
452 list_del_init(&rq->queuelist);
453 blk_mq_insert_request(rq, false, false, false);
454 }
455
8b957415
JA
456 /*
457 * Use the start variant of queue running here, so that running
458 * the requeue work will kick stopped queues.
459 */
460 blk_mq_start_hw_queues(q);
6fca6a61
CH
461}
462
463void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
464{
465 struct request_queue *q = rq->q;
466 unsigned long flags;
467
468 /*
469 * We abuse this flag that is otherwise used by the I/O scheduler to
470 * request head insertation from the workqueue.
471 */
472 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
473
474 spin_lock_irqsave(&q->requeue_lock, flags);
475 if (at_head) {
476 rq->cmd_flags |= REQ_SOFTBARRIER;
477 list_add(&rq->queuelist, &q->requeue_list);
478 } else {
479 list_add_tail(&rq->queuelist, &q->requeue_list);
480 }
481 spin_unlock_irqrestore(&q->requeue_lock, flags);
482}
483EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
484
485void blk_mq_kick_requeue_list(struct request_queue *q)
486{
487 kblockd_schedule_work(&q->requeue_work);
488}
489EXPORT_SYMBOL(blk_mq_kick_requeue_list);
490
7c94e1c1
ML
491static inline bool is_flush_request(struct request *rq,
492 struct blk_flush_queue *fq, unsigned int tag)
24d2f903 493{
0e62f51f 494 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
7c94e1c1 495 fq->flush_rq->tag == tag);
0e62f51f
JA
496}
497
498struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
499{
500 struct request *rq = tags->rqs[tag];
e97c293c
ML
501 /* mq_ctx of flush rq is always cloned from the corresponding req */
502 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
22302375 503
7c94e1c1 504 if (!is_flush_request(rq, fq, tag))
0e62f51f 505 return rq;
22302375 506
7c94e1c1 507 return fq->flush_rq;
24d2f903
CH
508}
509EXPORT_SYMBOL(blk_mq_tag_to_rq);
510
320ae51f 511struct blk_mq_timeout_data {
46f92d42
CH
512 unsigned long next;
513 unsigned int next_set;
320ae51f
JA
514};
515
90415837 516void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 517{
46f92d42
CH
518 struct blk_mq_ops *ops = req->q->mq_ops;
519 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
520
521 /*
522 * We know that complete is set at this point. If STARTED isn't set
523 * anymore, then the request isn't active and the "timeout" should
524 * just be ignored. This can happen due to the bitflag ordering.
525 * Timeout first checks if STARTED is set, and if it is, assumes
526 * the request is active. But if we race with completion, then
527 * we both flags will get cleared. So check here again, and ignore
528 * a timeout event with a request that isn't active.
529 */
46f92d42
CH
530 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
531 return;
87ee7b11 532
46f92d42 533 if (ops->timeout)
0152fb6b 534 ret = ops->timeout(req, reserved);
46f92d42
CH
535
536 switch (ret) {
537 case BLK_EH_HANDLED:
538 __blk_mq_complete_request(req);
539 break;
540 case BLK_EH_RESET_TIMER:
541 blk_add_timer(req);
542 blk_clear_rq_complete(req);
543 break;
544 case BLK_EH_NOT_HANDLED:
545 break;
546 default:
547 printk(KERN_ERR "block: bad eh return: %d\n", ret);
548 break;
549 }
87ee7b11 550}
81481eb4 551
81481eb4
CH
552static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
553 struct request *rq, void *priv, bool reserved)
554{
555 struct blk_mq_timeout_data *data = priv;
87ee7b11 556
46f92d42
CH
557 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
558 return;
87ee7b11 559
46f92d42
CH
560 if (time_after_eq(jiffies, rq->deadline)) {
561 if (!blk_mark_rq_complete(rq))
0152fb6b 562 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
563 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
564 data->next = rq->deadline;
565 data->next_set = 1;
566 }
87ee7b11
JA
567}
568
81481eb4 569static void blk_mq_rq_timer(unsigned long priv)
320ae51f 570{
81481eb4
CH
571 struct request_queue *q = (struct request_queue *)priv;
572 struct blk_mq_timeout_data data = {
573 .next = 0,
574 .next_set = 0,
575 };
320ae51f 576 struct blk_mq_hw_ctx *hctx;
81481eb4 577 int i;
320ae51f 578
484b4061
JA
579 queue_for_each_hw_ctx(q, hctx, i) {
580 /*
581 * If not software queues are currently mapped to this
582 * hardware queue, there's nothing to check
583 */
584 if (!hctx->nr_ctx || !hctx->tags)
585 continue;
586
81481eb4 587 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
484b4061 588 }
320ae51f 589
81481eb4
CH
590 if (data.next_set) {
591 data.next = blk_rq_timeout(round_jiffies_up(data.next));
592 mod_timer(&q->timeout, data.next);
0d2602ca
JA
593 } else {
594 queue_for_each_hw_ctx(q, hctx, i)
595 blk_mq_tag_idle(hctx);
596 }
320ae51f
JA
597}
598
599/*
600 * Reverse check our software queue for entries that we could potentially
601 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
602 * too much time checking for merges.
603 */
604static bool blk_mq_attempt_merge(struct request_queue *q,
605 struct blk_mq_ctx *ctx, struct bio *bio)
606{
607 struct request *rq;
608 int checked = 8;
609
610 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
611 int el_ret;
612
613 if (!checked--)
614 break;
615
616 if (!blk_rq_merge_ok(rq, bio))
617 continue;
618
619 el_ret = blk_try_merge(rq, bio);
620 if (el_ret == ELEVATOR_BACK_MERGE) {
621 if (bio_attempt_back_merge(q, rq, bio)) {
622 ctx->rq_merged++;
623 return true;
624 }
625 break;
626 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
627 if (bio_attempt_front_merge(q, rq, bio)) {
628 ctx->rq_merged++;
629 return true;
630 }
631 break;
632 }
633 }
634
635 return false;
636}
637
1429d7c9
JA
638/*
639 * Process software queues that have been marked busy, splicing them
640 * to the for-dispatch
641 */
642static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
643{
644 struct blk_mq_ctx *ctx;
645 int i;
646
647 for (i = 0; i < hctx->ctx_map.map_size; i++) {
648 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
649 unsigned int off, bit;
650
651 if (!bm->word)
652 continue;
653
654 bit = 0;
655 off = i * hctx->ctx_map.bits_per_word;
656 do {
657 bit = find_next_bit(&bm->word, bm->depth, bit);
658 if (bit >= bm->depth)
659 break;
660
661 ctx = hctx->ctxs[bit + off];
662 clear_bit(bit, &bm->word);
663 spin_lock(&ctx->lock);
664 list_splice_tail_init(&ctx->rq_list, list);
665 spin_unlock(&ctx->lock);
666
667 bit++;
668 } while (1);
669 }
670}
671
320ae51f
JA
672/*
673 * Run this hardware queue, pulling any software queues mapped to it in.
674 * Note that this function currently has various problems around ordering
675 * of IO. In particular, we'd like FIFO behaviour on handling existing
676 * items on the hctx->dispatch list. Ignore that for now.
677 */
678static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
679{
680 struct request_queue *q = hctx->queue;
320ae51f
JA
681 struct request *rq;
682 LIST_HEAD(rq_list);
74c45052
JA
683 LIST_HEAD(driver_list);
684 struct list_head *dptr;
1429d7c9 685 int queued;
320ae51f 686
fd1270d5 687 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 688
5d12f905 689 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
690 return;
691
692 hctx->run++;
693
694 /*
695 * Touch any software queue that has pending entries.
696 */
1429d7c9 697 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
698
699 /*
700 * If we have previous entries on our dispatch list, grab them
701 * and stuff them at the front for more fair dispatch.
702 */
703 if (!list_empty_careful(&hctx->dispatch)) {
704 spin_lock(&hctx->lock);
705 if (!list_empty(&hctx->dispatch))
706 list_splice_init(&hctx->dispatch, &rq_list);
707 spin_unlock(&hctx->lock);
708 }
709
74c45052
JA
710 /*
711 * Start off with dptr being NULL, so we start the first request
712 * immediately, even if we have more pending.
713 */
714 dptr = NULL;
715
320ae51f
JA
716 /*
717 * Now process all the entries, sending them to the driver.
718 */
1429d7c9 719 queued = 0;
320ae51f 720 while (!list_empty(&rq_list)) {
74c45052 721 struct blk_mq_queue_data bd;
320ae51f
JA
722 int ret;
723
724 rq = list_first_entry(&rq_list, struct request, queuelist);
725 list_del_init(&rq->queuelist);
320ae51f 726
74c45052
JA
727 bd.rq = rq;
728 bd.list = dptr;
729 bd.last = list_empty(&rq_list);
730
731 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
732 switch (ret) {
733 case BLK_MQ_RQ_QUEUE_OK:
734 queued++;
735 continue;
736 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 737 list_add(&rq->queuelist, &rq_list);
ed0791b2 738 __blk_mq_requeue_request(rq);
320ae51f
JA
739 break;
740 default:
741 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 742 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 743 rq->errors = -EIO;
c8a446ad 744 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
745 break;
746 }
747
748 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
749 break;
74c45052
JA
750
751 /*
752 * We've done the first request. If we have more than 1
753 * left in the list, set dptr to defer issue.
754 */
755 if (!dptr && rq_list.next != rq_list.prev)
756 dptr = &driver_list;
320ae51f
JA
757 }
758
759 if (!queued)
760 hctx->dispatched[0]++;
761 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
762 hctx->dispatched[ilog2(queued) + 1]++;
763
764 /*
765 * Any items that need requeuing? Stuff them into hctx->dispatch,
766 * that is where we will continue on next queue run.
767 */
768 if (!list_empty(&rq_list)) {
769 spin_lock(&hctx->lock);
770 list_splice(&rq_list, &hctx->dispatch);
771 spin_unlock(&hctx->lock);
772 }
773}
774
506e931f
JA
775/*
776 * It'd be great if the workqueue API had a way to pass
777 * in a mask and had some smarts for more clever placement.
778 * For now we just round-robin here, switching for every
779 * BLK_MQ_CPU_WORK_BATCH queued items.
780 */
781static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
782{
783 int cpu = hctx->next_cpu;
784
785 if (--hctx->next_cpu_batch <= 0) {
786 int next_cpu;
787
788 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
789 if (next_cpu >= nr_cpu_ids)
790 next_cpu = cpumask_first(hctx->cpumask);
791
792 hctx->next_cpu = next_cpu;
793 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
794 }
795
796 return cpu;
797}
798
320ae51f
JA
799void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
800{
5d12f905 801 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
802 return;
803
398205b8 804 if (!async) {
2a90d4aa
PB
805 int cpu = get_cpu();
806 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 807 __blk_mq_run_hw_queue(hctx);
2a90d4aa 808 put_cpu();
398205b8
PB
809 return;
810 }
811
2a90d4aa 812 put_cpu();
398205b8
PB
813 }
814
815 if (hctx->queue->nr_hw_queues == 1)
70f4db63 816 kblockd_schedule_delayed_work(&hctx->run_work, 0);
e4043dcf
JA
817 else {
818 unsigned int cpu;
819
506e931f 820 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63 821 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
e4043dcf 822 }
320ae51f
JA
823}
824
825void blk_mq_run_queues(struct request_queue *q, bool async)
826{
827 struct blk_mq_hw_ctx *hctx;
828 int i;
829
830 queue_for_each_hw_ctx(q, hctx, i) {
831 if ((!blk_mq_hctx_has_pending(hctx) &&
832 list_empty_careful(&hctx->dispatch)) ||
5d12f905 833 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
834 continue;
835
836 blk_mq_run_hw_queue(hctx, async);
837 }
838}
839EXPORT_SYMBOL(blk_mq_run_queues);
840
841void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
842{
70f4db63
CH
843 cancel_delayed_work(&hctx->run_work);
844 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
845 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
846}
847EXPORT_SYMBOL(blk_mq_stop_hw_queue);
848
280d45f6
CH
849void blk_mq_stop_hw_queues(struct request_queue *q)
850{
851 struct blk_mq_hw_ctx *hctx;
852 int i;
853
854 queue_for_each_hw_ctx(q, hctx, i)
855 blk_mq_stop_hw_queue(hctx);
856}
857EXPORT_SYMBOL(blk_mq_stop_hw_queues);
858
320ae51f
JA
859void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
860{
861 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 862
0ffbce80 863 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
864}
865EXPORT_SYMBOL(blk_mq_start_hw_queue);
866
2f268556
CH
867void blk_mq_start_hw_queues(struct request_queue *q)
868{
869 struct blk_mq_hw_ctx *hctx;
870 int i;
871
872 queue_for_each_hw_ctx(q, hctx, i)
873 blk_mq_start_hw_queue(hctx);
874}
875EXPORT_SYMBOL(blk_mq_start_hw_queues);
876
877
1b4a3258 878void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
879{
880 struct blk_mq_hw_ctx *hctx;
881 int i;
882
883 queue_for_each_hw_ctx(q, hctx, i) {
884 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
885 continue;
886
887 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1b4a3258 888 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
889 }
890}
891EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
892
70f4db63 893static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
894{
895 struct blk_mq_hw_ctx *hctx;
896
70f4db63 897 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 898
320ae51f
JA
899 __blk_mq_run_hw_queue(hctx);
900}
901
70f4db63
CH
902static void blk_mq_delay_work_fn(struct work_struct *work)
903{
904 struct blk_mq_hw_ctx *hctx;
905
906 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
907
908 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
909 __blk_mq_run_hw_queue(hctx);
910}
911
912void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
913{
914 unsigned long tmo = msecs_to_jiffies(msecs);
915
916 if (hctx->queue->nr_hw_queues == 1)
917 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
918 else {
919 unsigned int cpu;
920
506e931f 921 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63
CH
922 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
923 }
924}
925EXPORT_SYMBOL(blk_mq_delay_queue);
926
320ae51f 927static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 928 struct request *rq, bool at_head)
320ae51f
JA
929{
930 struct blk_mq_ctx *ctx = rq->mq_ctx;
931
01b983c9
JA
932 trace_block_rq_insert(hctx->queue, rq);
933
72a0a36e
CH
934 if (at_head)
935 list_add(&rq->queuelist, &ctx->rq_list);
936 else
937 list_add_tail(&rq->queuelist, &ctx->rq_list);
4bb659b1 938
320ae51f 939 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
940}
941
eeabc850
CH
942void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
943 bool async)
320ae51f 944{
eeabc850 945 struct request_queue *q = rq->q;
320ae51f 946 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
947 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
948
949 current_ctx = blk_mq_get_ctx(q);
950 if (!cpu_online(ctx->cpu))
951 rq->mq_ctx = ctx = current_ctx;
320ae51f 952
320ae51f
JA
953 hctx = q->mq_ops->map_queue(q, ctx->cpu);
954
a57a178a
CH
955 spin_lock(&ctx->lock);
956 __blk_mq_insert_request(hctx, rq, at_head);
957 spin_unlock(&ctx->lock);
320ae51f 958
320ae51f
JA
959 if (run_queue)
960 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
961
962 blk_mq_put_ctx(current_ctx);
320ae51f
JA
963}
964
965static void blk_mq_insert_requests(struct request_queue *q,
966 struct blk_mq_ctx *ctx,
967 struct list_head *list,
968 int depth,
969 bool from_schedule)
970
971{
972 struct blk_mq_hw_ctx *hctx;
973 struct blk_mq_ctx *current_ctx;
974
975 trace_block_unplug(q, depth, !from_schedule);
976
977 current_ctx = blk_mq_get_ctx(q);
978
979 if (!cpu_online(ctx->cpu))
980 ctx = current_ctx;
981 hctx = q->mq_ops->map_queue(q, ctx->cpu);
982
983 /*
984 * preemption doesn't flush plug list, so it's possible ctx->cpu is
985 * offline now
986 */
987 spin_lock(&ctx->lock);
988 while (!list_empty(list)) {
989 struct request *rq;
990
991 rq = list_first_entry(list, struct request, queuelist);
992 list_del_init(&rq->queuelist);
993 rq->mq_ctx = ctx;
72a0a36e 994 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
995 }
996 spin_unlock(&ctx->lock);
997
320ae51f 998 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 999 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1000}
1001
1002static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1003{
1004 struct request *rqa = container_of(a, struct request, queuelist);
1005 struct request *rqb = container_of(b, struct request, queuelist);
1006
1007 return !(rqa->mq_ctx < rqb->mq_ctx ||
1008 (rqa->mq_ctx == rqb->mq_ctx &&
1009 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1010}
1011
1012void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1013{
1014 struct blk_mq_ctx *this_ctx;
1015 struct request_queue *this_q;
1016 struct request *rq;
1017 LIST_HEAD(list);
1018 LIST_HEAD(ctx_list);
1019 unsigned int depth;
1020
1021 list_splice_init(&plug->mq_list, &list);
1022
1023 list_sort(NULL, &list, plug_ctx_cmp);
1024
1025 this_q = NULL;
1026 this_ctx = NULL;
1027 depth = 0;
1028
1029 while (!list_empty(&list)) {
1030 rq = list_entry_rq(list.next);
1031 list_del_init(&rq->queuelist);
1032 BUG_ON(!rq->q);
1033 if (rq->mq_ctx != this_ctx) {
1034 if (this_ctx) {
1035 blk_mq_insert_requests(this_q, this_ctx,
1036 &ctx_list, depth,
1037 from_schedule);
1038 }
1039
1040 this_ctx = rq->mq_ctx;
1041 this_q = rq->q;
1042 depth = 0;
1043 }
1044
1045 depth++;
1046 list_add_tail(&rq->queuelist, &ctx_list);
1047 }
1048
1049 /*
1050 * If 'this_ctx' is set, we know we have entries to complete
1051 * on 'ctx_list'. Do those.
1052 */
1053 if (this_ctx) {
1054 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1055 from_schedule);
1056 }
1057}
1058
1059static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1060{
1061 init_request_from_bio(rq, bio);
4b570521 1062
3ee32372 1063 if (blk_do_io_stat(rq))
4b570521 1064 blk_account_io_start(rq, 1);
320ae51f
JA
1065}
1066
274a5843
JA
1067static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1068{
1069 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1070 !blk_queue_nomerges(hctx->queue);
1071}
1072
07068d5b
JA
1073static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1074 struct blk_mq_ctx *ctx,
1075 struct request *rq, struct bio *bio)
320ae51f 1076{
274a5843 1077 if (!hctx_allow_merges(hctx)) {
07068d5b
JA
1078 blk_mq_bio_to_request(rq, bio);
1079 spin_lock(&ctx->lock);
1080insert_rq:
1081 __blk_mq_insert_request(hctx, rq, false);
1082 spin_unlock(&ctx->lock);
1083 return false;
1084 } else {
274a5843
JA
1085 struct request_queue *q = hctx->queue;
1086
07068d5b
JA
1087 spin_lock(&ctx->lock);
1088 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1089 blk_mq_bio_to_request(rq, bio);
1090 goto insert_rq;
1091 }
320ae51f 1092
07068d5b
JA
1093 spin_unlock(&ctx->lock);
1094 __blk_mq_free_request(hctx, ctx, rq);
1095 return true;
14ec77f3 1096 }
07068d5b 1097}
14ec77f3 1098
07068d5b
JA
1099struct blk_map_ctx {
1100 struct blk_mq_hw_ctx *hctx;
1101 struct blk_mq_ctx *ctx;
1102};
1103
1104static struct request *blk_mq_map_request(struct request_queue *q,
1105 struct bio *bio,
1106 struct blk_map_ctx *data)
1107{
1108 struct blk_mq_hw_ctx *hctx;
1109 struct blk_mq_ctx *ctx;
1110 struct request *rq;
1111 int rw = bio_data_dir(bio);
cb96a42c 1112 struct blk_mq_alloc_data alloc_data;
320ae51f 1113
07068d5b 1114 if (unlikely(blk_mq_queue_enter(q))) {
320ae51f 1115 bio_endio(bio, -EIO);
07068d5b 1116 return NULL;
320ae51f
JA
1117 }
1118
1119 ctx = blk_mq_get_ctx(q);
1120 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1121
07068d5b 1122 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1123 rw |= REQ_SYNC;
07068d5b 1124
320ae51f 1125 trace_block_getrq(q, bio, rw);
cb96a42c
ML
1126 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1127 hctx);
1128 rq = __blk_mq_alloc_request(&alloc_data, rw);
5dee8577 1129 if (unlikely(!rq)) {
793597a6 1130 __blk_mq_run_hw_queue(hctx);
320ae51f
JA
1131 blk_mq_put_ctx(ctx);
1132 trace_block_sleeprq(q, bio, rw);
793597a6
CH
1133
1134 ctx = blk_mq_get_ctx(q);
320ae51f 1135 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
1136 blk_mq_set_alloc_data(&alloc_data, q,
1137 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1138 rq = __blk_mq_alloc_request(&alloc_data, rw);
1139 ctx = alloc_data.ctx;
1140 hctx = alloc_data.hctx;
320ae51f
JA
1141 }
1142
1143 hctx->queued++;
07068d5b
JA
1144 data->hctx = hctx;
1145 data->ctx = ctx;
1146 return rq;
1147}
1148
1149/*
1150 * Multiple hardware queue variant. This will not use per-process plugs,
1151 * but will attempt to bypass the hctx queueing if we can go straight to
1152 * hardware for SYNC IO.
1153 */
1154static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1155{
1156 const int is_sync = rw_is_sync(bio->bi_rw);
1157 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1158 struct blk_map_ctx data;
1159 struct request *rq;
1160
1161 blk_queue_bounce(q, &bio);
1162
1163 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1164 bio_endio(bio, -EIO);
1165 return;
1166 }
1167
1168 rq = blk_mq_map_request(q, bio, &data);
1169 if (unlikely(!rq))
1170 return;
1171
1172 if (unlikely(is_flush_fua)) {
1173 blk_mq_bio_to_request(rq, bio);
1174 blk_insert_flush(rq);
1175 goto run_queue;
1176 }
1177
e167dfb5
JA
1178 /*
1179 * If the driver supports defer issued based on 'last', then
1180 * queue it up like normal since we can potentially save some
1181 * CPU this way.
1182 */
1183 if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
74c45052
JA
1184 struct blk_mq_queue_data bd = {
1185 .rq = rq,
1186 .list = NULL,
1187 .last = 1
1188 };
07068d5b
JA
1189 int ret;
1190
1191 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1192
1193 /*
1194 * For OK queue, we are done. For error, kill it. Any other
1195 * error (busy), just add it to our list as we previously
1196 * would have done
1197 */
74c45052 1198 ret = q->mq_ops->queue_rq(data.hctx, &bd);
07068d5b
JA
1199 if (ret == BLK_MQ_RQ_QUEUE_OK)
1200 goto done;
1201 else {
1202 __blk_mq_requeue_request(rq);
1203
1204 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1205 rq->errors = -EIO;
c8a446ad 1206 blk_mq_end_request(rq, rq->errors);
07068d5b
JA
1207 goto done;
1208 }
1209 }
1210 }
1211
1212 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1213 /*
1214 * For a SYNC request, send it to the hardware immediately. For
1215 * an ASYNC request, just ensure that we run it later on. The
1216 * latter allows for merging opportunities and more efficient
1217 * dispatching.
1218 */
1219run_queue:
1220 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1221 }
1222done:
1223 blk_mq_put_ctx(data.ctx);
1224}
1225
1226/*
1227 * Single hardware queue variant. This will attempt to use any per-process
1228 * plug for merging and IO deferral.
1229 */
1230static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1231{
1232 const int is_sync = rw_is_sync(bio->bi_rw);
1233 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1234 unsigned int use_plug, request_count = 0;
1235 struct blk_map_ctx data;
1236 struct request *rq;
1237
1238 /*
1239 * If we have multiple hardware queues, just go directly to
1240 * one of those for sync IO.
1241 */
1242 use_plug = !is_flush_fua && !is_sync;
1243
1244 blk_queue_bounce(q, &bio);
1245
1246 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1247 bio_endio(bio, -EIO);
1248 return;
1249 }
1250
1251 if (use_plug && !blk_queue_nomerges(q) &&
1252 blk_attempt_plug_merge(q, bio, &request_count))
1253 return;
1254
1255 rq = blk_mq_map_request(q, bio, &data);
ff87bcec
JA
1256 if (unlikely(!rq))
1257 return;
320ae51f
JA
1258
1259 if (unlikely(is_flush_fua)) {
1260 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1261 blk_insert_flush(rq);
1262 goto run_queue;
1263 }
1264
1265 /*
1266 * A task plug currently exists. Since this is completely lockless,
1267 * utilize that to temporarily store requests until the task is
1268 * either done or scheduled away.
1269 */
1270 if (use_plug) {
1271 struct blk_plug *plug = current->plug;
1272
1273 if (plug) {
1274 blk_mq_bio_to_request(rq, bio);
92f399c7 1275 if (list_empty(&plug->mq_list))
320ae51f
JA
1276 trace_block_plug(q);
1277 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1278 blk_flush_plug_list(plug, false);
1279 trace_block_plug(q);
1280 }
1281 list_add_tail(&rq->queuelist, &plug->mq_list);
07068d5b 1282 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1283 return;
1284 }
1285 }
1286
07068d5b
JA
1287 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1288 /*
1289 * For a SYNC request, send it to the hardware immediately. For
1290 * an ASYNC request, just ensure that we run it later on. The
1291 * latter allows for merging opportunities and more efficient
1292 * dispatching.
1293 */
1294run_queue:
1295 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1296 }
1297
07068d5b 1298 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1299}
1300
1301/*
1302 * Default mapping to a software queue, since we use one per CPU.
1303 */
1304struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1305{
1306 return q->queue_hw_ctx[q->mq_map[cpu]];
1307}
1308EXPORT_SYMBOL(blk_mq_map_queue);
1309
24d2f903
CH
1310static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1311 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1312{
e9b267d9 1313 struct page *page;
320ae51f 1314
24d2f903 1315 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1316 int i;
320ae51f 1317
24d2f903
CH
1318 for (i = 0; i < tags->nr_tags; i++) {
1319 if (!tags->rqs[i])
e9b267d9 1320 continue;
24d2f903
CH
1321 set->ops->exit_request(set->driver_data, tags->rqs[i],
1322 hctx_idx, i);
a5164405 1323 tags->rqs[i] = NULL;
e9b267d9 1324 }
320ae51f 1325 }
320ae51f 1326
24d2f903
CH
1327 while (!list_empty(&tags->page_list)) {
1328 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1329 list_del_init(&page->lru);
320ae51f
JA
1330 __free_pages(page, page->private);
1331 }
1332
24d2f903 1333 kfree(tags->rqs);
320ae51f 1334
24d2f903 1335 blk_mq_free_tags(tags);
320ae51f
JA
1336}
1337
1338static size_t order_to_size(unsigned int order)
1339{
4ca08500 1340 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1341}
1342
24d2f903
CH
1343static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1344 unsigned int hctx_idx)
320ae51f 1345{
24d2f903 1346 struct blk_mq_tags *tags;
320ae51f
JA
1347 unsigned int i, j, entries_per_page, max_order = 4;
1348 size_t rq_size, left;
1349
24d2f903
CH
1350 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1351 set->numa_node);
1352 if (!tags)
1353 return NULL;
320ae51f 1354
24d2f903
CH
1355 INIT_LIST_HEAD(&tags->page_list);
1356
a5164405
JA
1357 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1358 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1359 set->numa_node);
24d2f903
CH
1360 if (!tags->rqs) {
1361 blk_mq_free_tags(tags);
1362 return NULL;
1363 }
320ae51f
JA
1364
1365 /*
1366 * rq_size is the size of the request plus driver payload, rounded
1367 * to the cacheline size
1368 */
24d2f903 1369 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1370 cache_line_size());
24d2f903 1371 left = rq_size * set->queue_depth;
320ae51f 1372
24d2f903 1373 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1374 int this_order = max_order;
1375 struct page *page;
1376 int to_do;
1377 void *p;
1378
1379 while (left < order_to_size(this_order - 1) && this_order)
1380 this_order--;
1381
1382 do {
a5164405
JA
1383 page = alloc_pages_node(set->numa_node,
1384 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1385 this_order);
320ae51f
JA
1386 if (page)
1387 break;
1388 if (!this_order--)
1389 break;
1390 if (order_to_size(this_order) < rq_size)
1391 break;
1392 } while (1);
1393
1394 if (!page)
24d2f903 1395 goto fail;
320ae51f
JA
1396
1397 page->private = this_order;
24d2f903 1398 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1399
1400 p = page_address(page);
1401 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1402 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1403 left -= to_do * rq_size;
1404 for (j = 0; j < to_do; j++) {
24d2f903 1405 tags->rqs[i] = p;
683d0e12
DH
1406 tags->rqs[i]->atomic_flags = 0;
1407 tags->rqs[i]->cmd_flags = 0;
24d2f903
CH
1408 if (set->ops->init_request) {
1409 if (set->ops->init_request(set->driver_data,
1410 tags->rqs[i], hctx_idx, i,
a5164405
JA
1411 set->numa_node)) {
1412 tags->rqs[i] = NULL;
24d2f903 1413 goto fail;
a5164405 1414 }
e9b267d9
CH
1415 }
1416
320ae51f
JA
1417 p += rq_size;
1418 i++;
1419 }
1420 }
1421
24d2f903 1422 return tags;
320ae51f 1423
24d2f903 1424fail:
24d2f903
CH
1425 blk_mq_free_rq_map(set, tags, hctx_idx);
1426 return NULL;
320ae51f
JA
1427}
1428
1429d7c9
JA
1429static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1430{
1431 kfree(bitmap->map);
1432}
1433
1434static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1435{
1436 unsigned int bpw = 8, total, num_maps, i;
1437
1438 bitmap->bits_per_word = bpw;
1439
1440 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1441 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1442 GFP_KERNEL, node);
1443 if (!bitmap->map)
1444 return -ENOMEM;
1445
1446 bitmap->map_size = num_maps;
1447
1448 total = nr_cpu_ids;
1449 for (i = 0; i < num_maps; i++) {
1450 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1451 total -= bitmap->map[i].depth;
1452 }
1453
1454 return 0;
1455}
1456
484b4061
JA
1457static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1458{
1459 struct request_queue *q = hctx->queue;
1460 struct blk_mq_ctx *ctx;
1461 LIST_HEAD(tmp);
1462
1463 /*
1464 * Move ctx entries to new CPU, if this one is going away.
1465 */
1466 ctx = __blk_mq_get_ctx(q, cpu);
1467
1468 spin_lock(&ctx->lock);
1469 if (!list_empty(&ctx->rq_list)) {
1470 list_splice_init(&ctx->rq_list, &tmp);
1471 blk_mq_hctx_clear_pending(hctx, ctx);
1472 }
1473 spin_unlock(&ctx->lock);
1474
1475 if (list_empty(&tmp))
1476 return NOTIFY_OK;
1477
1478 ctx = blk_mq_get_ctx(q);
1479 spin_lock(&ctx->lock);
1480
1481 while (!list_empty(&tmp)) {
1482 struct request *rq;
1483
1484 rq = list_first_entry(&tmp, struct request, queuelist);
1485 rq->mq_ctx = ctx;
1486 list_move_tail(&rq->queuelist, &ctx->rq_list);
1487 }
1488
1489 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1490 blk_mq_hctx_mark_pending(hctx, ctx);
1491
1492 spin_unlock(&ctx->lock);
1493
1494 blk_mq_run_hw_queue(hctx, true);
1495 blk_mq_put_ctx(ctx);
1496 return NOTIFY_OK;
1497}
1498
1499static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1500{
1501 struct request_queue *q = hctx->queue;
1502 struct blk_mq_tag_set *set = q->tag_set;
1503
1504 if (set->tags[hctx->queue_num])
1505 return NOTIFY_OK;
1506
1507 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1508 if (!set->tags[hctx->queue_num])
1509 return NOTIFY_STOP;
1510
1511 hctx->tags = set->tags[hctx->queue_num];
1512 return NOTIFY_OK;
1513}
1514
1515static int blk_mq_hctx_notify(void *data, unsigned long action,
1516 unsigned int cpu)
1517{
1518 struct blk_mq_hw_ctx *hctx = data;
1519
1520 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1521 return blk_mq_hctx_cpu_offline(hctx, cpu);
1522 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1523 return blk_mq_hctx_cpu_online(hctx, cpu);
1524
1525 return NOTIFY_OK;
1526}
1527
08e98fc6
ML
1528static void blk_mq_exit_hctx(struct request_queue *q,
1529 struct blk_mq_tag_set *set,
1530 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1531{
f70ced09
ML
1532 unsigned flush_start_tag = set->queue_depth;
1533
08e98fc6
ML
1534 blk_mq_tag_idle(hctx);
1535
f70ced09
ML
1536 if (set->ops->exit_request)
1537 set->ops->exit_request(set->driver_data,
1538 hctx->fq->flush_rq, hctx_idx,
1539 flush_start_tag + hctx_idx);
1540
08e98fc6
ML
1541 if (set->ops->exit_hctx)
1542 set->ops->exit_hctx(hctx, hctx_idx);
1543
1544 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
f70ced09 1545 blk_free_flush_queue(hctx->fq);
08e98fc6
ML
1546 kfree(hctx->ctxs);
1547 blk_mq_free_bitmap(&hctx->ctx_map);
1548}
1549
624dbe47
ML
1550static void blk_mq_exit_hw_queues(struct request_queue *q,
1551 struct blk_mq_tag_set *set, int nr_queue)
1552{
1553 struct blk_mq_hw_ctx *hctx;
1554 unsigned int i;
1555
1556 queue_for_each_hw_ctx(q, hctx, i) {
1557 if (i == nr_queue)
1558 break;
08e98fc6 1559 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1560 }
624dbe47
ML
1561}
1562
1563static void blk_mq_free_hw_queues(struct request_queue *q,
1564 struct blk_mq_tag_set *set)
1565{
1566 struct blk_mq_hw_ctx *hctx;
1567 unsigned int i;
1568
1569 queue_for_each_hw_ctx(q, hctx, i) {
1570 free_cpumask_var(hctx->cpumask);
cdef54dd 1571 kfree(hctx);
624dbe47
ML
1572 }
1573}
1574
08e98fc6
ML
1575static int blk_mq_init_hctx(struct request_queue *q,
1576 struct blk_mq_tag_set *set,
1577 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1578{
08e98fc6 1579 int node;
f70ced09 1580 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1581
1582 node = hctx->numa_node;
1583 if (node == NUMA_NO_NODE)
1584 node = hctx->numa_node = set->numa_node;
1585
1586 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1587 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1588 spin_lock_init(&hctx->lock);
1589 INIT_LIST_HEAD(&hctx->dispatch);
1590 hctx->queue = q;
1591 hctx->queue_num = hctx_idx;
1592 hctx->flags = set->flags;
1593 hctx->cmd_size = set->cmd_size;
1594
1595 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1596 blk_mq_hctx_notify, hctx);
1597 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1598
1599 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1600
1601 /*
08e98fc6
ML
1602 * Allocate space for all possible cpus to avoid allocation at
1603 * runtime
320ae51f 1604 */
08e98fc6
ML
1605 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1606 GFP_KERNEL, node);
1607 if (!hctx->ctxs)
1608 goto unregister_cpu_notifier;
320ae51f 1609
08e98fc6
ML
1610 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1611 goto free_ctxs;
320ae51f 1612
08e98fc6 1613 hctx->nr_ctx = 0;
320ae51f 1614
08e98fc6
ML
1615 if (set->ops->init_hctx &&
1616 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1617 goto free_bitmap;
320ae51f 1618
f70ced09
ML
1619 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1620 if (!hctx->fq)
1621 goto exit_hctx;
320ae51f 1622
f70ced09
ML
1623 if (set->ops->init_request &&
1624 set->ops->init_request(set->driver_data,
1625 hctx->fq->flush_rq, hctx_idx,
1626 flush_start_tag + hctx_idx, node))
1627 goto free_fq;
320ae51f 1628
08e98fc6 1629 return 0;
320ae51f 1630
f70ced09
ML
1631 free_fq:
1632 kfree(hctx->fq);
1633 exit_hctx:
1634 if (set->ops->exit_hctx)
1635 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6
ML
1636 free_bitmap:
1637 blk_mq_free_bitmap(&hctx->ctx_map);
1638 free_ctxs:
1639 kfree(hctx->ctxs);
1640 unregister_cpu_notifier:
1641 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
320ae51f 1642
08e98fc6
ML
1643 return -1;
1644}
320ae51f 1645
08e98fc6
ML
1646static int blk_mq_init_hw_queues(struct request_queue *q,
1647 struct blk_mq_tag_set *set)
1648{
1649 struct blk_mq_hw_ctx *hctx;
1650 unsigned int i;
320ae51f 1651
08e98fc6
ML
1652 /*
1653 * Initialize hardware queues
1654 */
1655 queue_for_each_hw_ctx(q, hctx, i) {
1656 if (blk_mq_init_hctx(q, set, hctx, i))
320ae51f
JA
1657 break;
1658 }
1659
1660 if (i == q->nr_hw_queues)
1661 return 0;
1662
1663 /*
1664 * Init failed
1665 */
624dbe47 1666 blk_mq_exit_hw_queues(q, set, i);
320ae51f
JA
1667
1668 return 1;
1669}
1670
1671static void blk_mq_init_cpu_queues(struct request_queue *q,
1672 unsigned int nr_hw_queues)
1673{
1674 unsigned int i;
1675
1676 for_each_possible_cpu(i) {
1677 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1678 struct blk_mq_hw_ctx *hctx;
1679
1680 memset(__ctx, 0, sizeof(*__ctx));
1681 __ctx->cpu = i;
1682 spin_lock_init(&__ctx->lock);
1683 INIT_LIST_HEAD(&__ctx->rq_list);
1684 __ctx->queue = q;
1685
1686 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1687 if (!cpu_online(i))
1688 continue;
1689
e4043dcf
JA
1690 hctx = q->mq_ops->map_queue(q, i);
1691 cpumask_set_cpu(i, hctx->cpumask);
1692 hctx->nr_ctx++;
1693
320ae51f
JA
1694 /*
1695 * Set local node, IFF we have more than one hw queue. If
1696 * not, we remain on the home node of the device
1697 */
1698 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1699 hctx->numa_node = cpu_to_node(i);
1700 }
1701}
1702
1703static void blk_mq_map_swqueue(struct request_queue *q)
1704{
1705 unsigned int i;
1706 struct blk_mq_hw_ctx *hctx;
1707 struct blk_mq_ctx *ctx;
1708
1709 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1710 cpumask_clear(hctx->cpumask);
320ae51f
JA
1711 hctx->nr_ctx = 0;
1712 }
1713
1714 /*
1715 * Map software to hardware queues
1716 */
1717 queue_for_each_ctx(q, ctx, i) {
1718 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1719 if (!cpu_online(i))
1720 continue;
1721
320ae51f 1722 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1723 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1724 ctx->index_hw = hctx->nr_ctx;
1725 hctx->ctxs[hctx->nr_ctx++] = ctx;
1726 }
506e931f
JA
1727
1728 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 1729 /*
a68aafa5
JA
1730 * If no software queues are mapped to this hardware queue,
1731 * disable it and free the request entries.
484b4061
JA
1732 */
1733 if (!hctx->nr_ctx) {
1734 struct blk_mq_tag_set *set = q->tag_set;
1735
1736 if (set->tags[i]) {
1737 blk_mq_free_rq_map(set, set->tags[i], i);
1738 set->tags[i] = NULL;
1739 hctx->tags = NULL;
1740 }
1741 continue;
1742 }
1743
1744 /*
1745 * Initialize batch roundrobin counts
1746 */
506e931f
JA
1747 hctx->next_cpu = cpumask_first(hctx->cpumask);
1748 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1749 }
320ae51f
JA
1750}
1751
0d2602ca
JA
1752static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1753{
1754 struct blk_mq_hw_ctx *hctx;
1755 struct request_queue *q;
1756 bool shared;
1757 int i;
1758
1759 if (set->tag_list.next == set->tag_list.prev)
1760 shared = false;
1761 else
1762 shared = true;
1763
1764 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1765 blk_mq_freeze_queue(q);
1766
1767 queue_for_each_hw_ctx(q, hctx, i) {
1768 if (shared)
1769 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1770 else
1771 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1772 }
1773 blk_mq_unfreeze_queue(q);
1774 }
1775}
1776
1777static void blk_mq_del_queue_tag_set(struct request_queue *q)
1778{
1779 struct blk_mq_tag_set *set = q->tag_set;
1780
0d2602ca
JA
1781 mutex_lock(&set->tag_list_lock);
1782 list_del_init(&q->tag_set_list);
1783 blk_mq_update_tag_set_depth(set);
1784 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
1785}
1786
1787static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1788 struct request_queue *q)
1789{
1790 q->tag_set = set;
1791
1792 mutex_lock(&set->tag_list_lock);
1793 list_add_tail(&q->tag_set_list, &set->tag_list);
1794 blk_mq_update_tag_set_depth(set);
1795 mutex_unlock(&set->tag_list_lock);
1796}
1797
24d2f903 1798struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
320ae51f
JA
1799{
1800 struct blk_mq_hw_ctx **hctxs;
e6cdb092 1801 struct blk_mq_ctx __percpu *ctx;
320ae51f 1802 struct request_queue *q;
f14bbe77 1803 unsigned int *map;
320ae51f
JA
1804 int i;
1805
320ae51f
JA
1806 ctx = alloc_percpu(struct blk_mq_ctx);
1807 if (!ctx)
1808 return ERR_PTR(-ENOMEM);
1809
aedcd72f
JA
1810 /*
1811 * If a crashdump is active, then we are potentially in a very
1812 * memory constrained environment. Limit us to 1 queue and
1813 * 64 tags to prevent using too much memory.
1814 */
1815 if (is_kdump_kernel()) {
1816 set->nr_hw_queues = 1;
1817 set->queue_depth = min(64U, set->queue_depth);
1818 }
1819
24d2f903
CH
1820 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1821 set->numa_node);
320ae51f
JA
1822
1823 if (!hctxs)
1824 goto err_percpu;
1825
f14bbe77
JA
1826 map = blk_mq_make_queue_map(set);
1827 if (!map)
1828 goto err_map;
1829
24d2f903 1830 for (i = 0; i < set->nr_hw_queues; i++) {
f14bbe77
JA
1831 int node = blk_mq_hw_queue_to_node(map, i);
1832
cdef54dd
CH
1833 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1834 GFP_KERNEL, node);
320ae51f
JA
1835 if (!hctxs[i])
1836 goto err_hctxs;
1837
a86073e4
JA
1838 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1839 node))
e4043dcf
JA
1840 goto err_hctxs;
1841
0d2602ca 1842 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 1843 hctxs[i]->numa_node = node;
320ae51f
JA
1844 hctxs[i]->queue_num = i;
1845 }
1846
24d2f903 1847 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
320ae51f
JA
1848 if (!q)
1849 goto err_hctxs;
1850
17497acb
TH
1851 /*
1852 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1853 * See blk_register_queue() for details.
1854 */
a34375ef 1855 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
17497acb 1856 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
3d2936f4
ML
1857 goto err_map;
1858
320ae51f
JA
1859 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1860 blk_queue_rq_timeout(q, 30000);
1861
1862 q->nr_queues = nr_cpu_ids;
24d2f903 1863 q->nr_hw_queues = set->nr_hw_queues;
f14bbe77 1864 q->mq_map = map;
320ae51f
JA
1865
1866 q->queue_ctx = ctx;
1867 q->queue_hw_ctx = hctxs;
1868
24d2f903 1869 q->mq_ops = set->ops;
94eddfbe 1870 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1871
05f1dd53
JA
1872 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1873 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1874
1be036e9
CH
1875 q->sg_reserved_size = INT_MAX;
1876
6fca6a61
CH
1877 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1878 INIT_LIST_HEAD(&q->requeue_list);
1879 spin_lock_init(&q->requeue_lock);
1880
07068d5b
JA
1881 if (q->nr_hw_queues > 1)
1882 blk_queue_make_request(q, blk_mq_make_request);
1883 else
1884 blk_queue_make_request(q, blk_sq_make_request);
1885
24d2f903
CH
1886 if (set->timeout)
1887 blk_queue_rq_timeout(q, set->timeout);
320ae51f 1888
eba71768
JA
1889 /*
1890 * Do this after blk_queue_make_request() overrides it...
1891 */
1892 q->nr_requests = set->queue_depth;
1893
24d2f903
CH
1894 if (set->ops->complete)
1895 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1896
24d2f903 1897 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1898
24d2f903 1899 if (blk_mq_init_hw_queues(q, set))
1bcb1ead 1900 goto err_hw;
18741986 1901
320ae51f
JA
1902 mutex_lock(&all_q_mutex);
1903 list_add_tail(&q->all_q_node, &all_q_list);
1904 mutex_unlock(&all_q_mutex);
1905
0d2602ca
JA
1906 blk_mq_add_queue_tag_set(set, q);
1907
484b4061
JA
1908 blk_mq_map_swqueue(q);
1909
320ae51f 1910 return q;
18741986 1911
320ae51f 1912err_hw:
320ae51f
JA
1913 blk_cleanup_queue(q);
1914err_hctxs:
f14bbe77 1915 kfree(map);
24d2f903 1916 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
1917 if (!hctxs[i])
1918 break;
e4043dcf 1919 free_cpumask_var(hctxs[i]->cpumask);
cdef54dd 1920 kfree(hctxs[i]);
320ae51f 1921 }
f14bbe77 1922err_map:
320ae51f
JA
1923 kfree(hctxs);
1924err_percpu:
1925 free_percpu(ctx);
1926 return ERR_PTR(-ENOMEM);
1927}
1928EXPORT_SYMBOL(blk_mq_init_queue);
1929
1930void blk_mq_free_queue(struct request_queue *q)
1931{
624dbe47 1932 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1933
0d2602ca
JA
1934 blk_mq_del_queue_tag_set(q);
1935
624dbe47
ML
1936 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1937 blk_mq_free_hw_queues(q, set);
320ae51f 1938
add703fd 1939 percpu_ref_exit(&q->mq_usage_counter);
3d2936f4 1940
320ae51f
JA
1941 free_percpu(q->queue_ctx);
1942 kfree(q->queue_hw_ctx);
1943 kfree(q->mq_map);
1944
1945 q->queue_ctx = NULL;
1946 q->queue_hw_ctx = NULL;
1947 q->mq_map = NULL;
1948
1949 mutex_lock(&all_q_mutex);
1950 list_del_init(&q->all_q_node);
1951 mutex_unlock(&all_q_mutex);
1952}
320ae51f
JA
1953
1954/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1955static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1956{
1957 blk_mq_freeze_queue(q);
1958
67aec14c
JA
1959 blk_mq_sysfs_unregister(q);
1960
320ae51f
JA
1961 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1962
1963 /*
1964 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1965 * we should change hctx numa_node according to new topology (this
1966 * involves free and re-allocate memory, worthy doing?)
1967 */
1968
1969 blk_mq_map_swqueue(q);
1970
67aec14c
JA
1971 blk_mq_sysfs_register(q);
1972
320ae51f
JA
1973 blk_mq_unfreeze_queue(q);
1974}
1975
f618ef7c
PG
1976static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1977 unsigned long action, void *hcpu)
320ae51f
JA
1978{
1979 struct request_queue *q;
1980
1981 /*
9fccfed8
JA
1982 * Before new mappings are established, hotadded cpu might already
1983 * start handling requests. This doesn't break anything as we map
1984 * offline CPUs to first hardware queue. We will re-init the queue
1985 * below to get optimal settings.
320ae51f
JA
1986 */
1987 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1988 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1989 return NOTIFY_OK;
1990
1991 mutex_lock(&all_q_mutex);
1992 list_for_each_entry(q, &all_q_list, all_q_node)
1993 blk_mq_queue_reinit(q);
1994 mutex_unlock(&all_q_mutex);
1995 return NOTIFY_OK;
1996}
1997
a5164405
JA
1998static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1999{
2000 int i;
2001
2002 for (i = 0; i < set->nr_hw_queues; i++) {
2003 set->tags[i] = blk_mq_init_rq_map(set, i);
2004 if (!set->tags[i])
2005 goto out_unwind;
2006 }
2007
2008 return 0;
2009
2010out_unwind:
2011 while (--i >= 0)
2012 blk_mq_free_rq_map(set, set->tags[i], i);
2013
a5164405
JA
2014 return -ENOMEM;
2015}
2016
2017/*
2018 * Allocate the request maps associated with this tag_set. Note that this
2019 * may reduce the depth asked for, if memory is tight. set->queue_depth
2020 * will be updated to reflect the allocated depth.
2021 */
2022static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2023{
2024 unsigned int depth;
2025 int err;
2026
2027 depth = set->queue_depth;
2028 do {
2029 err = __blk_mq_alloc_rq_maps(set);
2030 if (!err)
2031 break;
2032
2033 set->queue_depth >>= 1;
2034 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2035 err = -ENOMEM;
2036 break;
2037 }
2038 } while (set->queue_depth);
2039
2040 if (!set->queue_depth || err) {
2041 pr_err("blk-mq: failed to allocate request map\n");
2042 return -ENOMEM;
2043 }
2044
2045 if (depth != set->queue_depth)
2046 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2047 depth, set->queue_depth);
2048
2049 return 0;
2050}
2051
a4391c64
JA
2052/*
2053 * Alloc a tag set to be associated with one or more request queues.
2054 * May fail with EINVAL for various error conditions. May adjust the
2055 * requested depth down, if if it too large. In that case, the set
2056 * value will be stored in set->queue_depth.
2057 */
24d2f903
CH
2058int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2059{
24d2f903
CH
2060 if (!set->nr_hw_queues)
2061 return -EINVAL;
a4391c64 2062 if (!set->queue_depth)
24d2f903
CH
2063 return -EINVAL;
2064 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2065 return -EINVAL;
2066
cdef54dd 2067 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
24d2f903
CH
2068 return -EINVAL;
2069
a4391c64
JA
2070 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2071 pr_info("blk-mq: reduced tag depth to %u\n",
2072 BLK_MQ_MAX_DEPTH);
2073 set->queue_depth = BLK_MQ_MAX_DEPTH;
2074 }
24d2f903 2075
48479005
ML
2076 set->tags = kmalloc_node(set->nr_hw_queues *
2077 sizeof(struct blk_mq_tags *),
24d2f903
CH
2078 GFP_KERNEL, set->numa_node);
2079 if (!set->tags)
a5164405 2080 return -ENOMEM;
24d2f903 2081
a5164405
JA
2082 if (blk_mq_alloc_rq_maps(set))
2083 goto enomem;
24d2f903 2084
0d2602ca
JA
2085 mutex_init(&set->tag_list_lock);
2086 INIT_LIST_HEAD(&set->tag_list);
2087
24d2f903 2088 return 0;
a5164405 2089enomem:
5676e7b6
RE
2090 kfree(set->tags);
2091 set->tags = NULL;
24d2f903
CH
2092 return -ENOMEM;
2093}
2094EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2095
2096void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2097{
2098 int i;
2099
484b4061
JA
2100 for (i = 0; i < set->nr_hw_queues; i++) {
2101 if (set->tags[i])
2102 blk_mq_free_rq_map(set, set->tags[i], i);
2103 }
2104
981bd189 2105 kfree(set->tags);
5676e7b6 2106 set->tags = NULL;
24d2f903
CH
2107}
2108EXPORT_SYMBOL(blk_mq_free_tag_set);
2109
e3a2b3f9
JA
2110int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2111{
2112 struct blk_mq_tag_set *set = q->tag_set;
2113 struct blk_mq_hw_ctx *hctx;
2114 int i, ret;
2115
2116 if (!set || nr > set->queue_depth)
2117 return -EINVAL;
2118
2119 ret = 0;
2120 queue_for_each_hw_ctx(q, hctx, i) {
2121 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2122 if (ret)
2123 break;
2124 }
2125
2126 if (!ret)
2127 q->nr_requests = nr;
2128
2129 return ret;
2130}
2131
676141e4
JA
2132void blk_mq_disable_hotplug(void)
2133{
2134 mutex_lock(&all_q_mutex);
2135}
2136
2137void blk_mq_enable_hotplug(void)
2138{
2139 mutex_unlock(&all_q_mutex);
2140}
2141
320ae51f
JA
2142static int __init blk_mq_init(void)
2143{
320ae51f
JA
2144 blk_mq_cpu_init();
2145
add703fd 2146 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
320ae51f
JA
2147
2148 return 0;
2149}
2150subsys_initcall(blk_mq_init);