blk-mq: silence false positive warnings in hctx_unlock()
[linux-block.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
cf43e6be 36#include "blk-stat.h"
87760e5e 37#include "blk-wbt.h"
bd166ef1 38#include "blk-mq-sched.h"
320ae51f 39
ea435e1b 40static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
34dbad5d
OS
41static void blk_mq_poll_stats_start(struct request_queue *q);
42static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
720b8ccc
SB
44static int blk_mq_poll_stats_bkt(const struct request *rq)
45{
46 int ddir, bytes, bucket;
47
99c749a4 48 ddir = rq_data_dir(rq);
720b8ccc
SB
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59}
60
320ae51f
JA
61/*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
79f720a7 64static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 65{
79f720a7
JA
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 68 blk_mq_sched_has_work(hctx);
1429d7c9
JA
69}
70
320ae51f
JA
71/*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76{
88459642
OS
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
79}
80
81static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83{
88459642 84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
85}
86
f299b7c7
JA
87struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90};
91
92static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95{
96 struct mq_inflight *mi = priv;
97
67818d25 98 if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
f299b7c7 99 /*
b8d62b3a
JA
100 * index[0] counts the specific partition that was asked
101 * for. index[1] counts the ones that are active on the
102 * whole device, so increment that if mi->part is indeed
103 * a partition, and not a whole device.
f299b7c7 104 */
b8d62b3a 105 if (rq->part == mi->part)
f299b7c7 106 mi->inflight[0]++;
b8d62b3a
JA
107 if (mi->part->partno)
108 mi->inflight[1]++;
f299b7c7
JA
109 }
110}
111
112void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113 unsigned int inflight[2])
114{
115 struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
b8d62b3a 117 inflight[0] = inflight[1] = 0;
f299b7c7
JA
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119}
120
1671d522 121void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 122{
4ecd4fef 123 int freeze_depth;
cddd5d17 124
4ecd4fef
CH
125 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126 if (freeze_depth == 1) {
3ef28e83 127 percpu_ref_kill(&q->q_usage_counter);
055f6e18
ML
128 if (q->mq_ops)
129 blk_mq_run_hw_queues(q, false);
cddd5d17 130 }
f3af020b 131}
1671d522 132EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 133
6bae363e 134void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 135{
3ef28e83 136 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 137}
6bae363e 138EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 139
f91328c4
KB
140int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141 unsigned long timeout)
142{
143 return wait_event_timeout(q->mq_freeze_wq,
144 percpu_ref_is_zero(&q->q_usage_counter),
145 timeout);
146}
147EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 148
f3af020b
TH
149/*
150 * Guarantee no request is in use, so we can change any data structure of
151 * the queue afterward.
152 */
3ef28e83 153void blk_freeze_queue(struct request_queue *q)
f3af020b 154{
3ef28e83
DW
155 /*
156 * In the !blk_mq case we are only calling this to kill the
157 * q_usage_counter, otherwise this increases the freeze depth
158 * and waits for it to return to zero. For this reason there is
159 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160 * exported to drivers as the only user for unfreeze is blk_mq.
161 */
1671d522 162 blk_freeze_queue_start(q);
f3af020b
TH
163 blk_mq_freeze_queue_wait(q);
164}
3ef28e83
DW
165
166void blk_mq_freeze_queue(struct request_queue *q)
167{
168 /*
169 * ...just an alias to keep freeze and unfreeze actions balanced
170 * in the blk_mq_* namespace
171 */
172 blk_freeze_queue(q);
173}
c761d96b 174EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 175
b4c6a028 176void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 177{
4ecd4fef 178 int freeze_depth;
320ae51f 179
4ecd4fef
CH
180 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
181 WARN_ON_ONCE(freeze_depth < 0);
182 if (!freeze_depth) {
3ef28e83 183 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 184 wake_up_all(&q->mq_freeze_wq);
add703fd 185 }
320ae51f 186}
b4c6a028 187EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 188
852ec809
BVA
189/*
190 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
191 * mpt3sas driver such that this function can be removed.
192 */
193void blk_mq_quiesce_queue_nowait(struct request_queue *q)
194{
195 unsigned long flags;
196
197 spin_lock_irqsave(q->queue_lock, flags);
198 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
199 spin_unlock_irqrestore(q->queue_lock, flags);
200}
201EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
202
6a83e74d 203/**
69e07c4a 204 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
205 * @q: request queue.
206 *
207 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
208 * callback function is invoked. Once this function is returned, we make
209 * sure no dispatch can happen until the queue is unquiesced via
210 * blk_mq_unquiesce_queue().
6a83e74d
BVA
211 */
212void blk_mq_quiesce_queue(struct request_queue *q)
213{
214 struct blk_mq_hw_ctx *hctx;
215 unsigned int i;
216 bool rcu = false;
217
1d9e9bc6 218 blk_mq_quiesce_queue_nowait(q);
f4560ffe 219
6a83e74d
BVA
220 queue_for_each_hw_ctx(q, hctx, i) {
221 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 222 synchronize_srcu(hctx->srcu);
6a83e74d
BVA
223 else
224 rcu = true;
225 }
226 if (rcu)
227 synchronize_rcu();
228}
229EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
230
e4e73913
ML
231/*
232 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
233 * @q: request queue.
234 *
235 * This function recovers queue into the state before quiescing
236 * which is done by blk_mq_quiesce_queue.
237 */
238void blk_mq_unquiesce_queue(struct request_queue *q)
239{
852ec809
BVA
240 unsigned long flags;
241
242 spin_lock_irqsave(q->queue_lock, flags);
f4560ffe 243 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
852ec809 244 spin_unlock_irqrestore(q->queue_lock, flags);
f4560ffe 245
1d9e9bc6
ML
246 /* dispatch requests which are inserted during quiescing */
247 blk_mq_run_hw_queues(q, true);
e4e73913
ML
248}
249EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
250
aed3ea94
JA
251void blk_mq_wake_waiters(struct request_queue *q)
252{
253 struct blk_mq_hw_ctx *hctx;
254 unsigned int i;
255
256 queue_for_each_hw_ctx(q, hctx, i)
257 if (blk_mq_hw_queue_mapped(hctx))
258 blk_mq_tag_wakeup_all(hctx->tags, true);
259}
260
320ae51f
JA
261bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
262{
263 return blk_mq_has_free_tags(hctx->tags);
264}
265EXPORT_SYMBOL(blk_mq_can_queue);
266
e4cdf1a1
CH
267static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
268 unsigned int tag, unsigned int op)
320ae51f 269{
e4cdf1a1
CH
270 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
271 struct request *rq = tags->static_rqs[tag];
272
c3a148d2
BVA
273 rq->rq_flags = 0;
274
e4cdf1a1
CH
275 if (data->flags & BLK_MQ_REQ_INTERNAL) {
276 rq->tag = -1;
277 rq->internal_tag = tag;
278 } else {
279 if (blk_mq_tag_busy(data->hctx)) {
280 rq->rq_flags = RQF_MQ_INFLIGHT;
281 atomic_inc(&data->hctx->nr_active);
282 }
283 rq->tag = tag;
284 rq->internal_tag = -1;
285 data->hctx->tags->rqs[rq->tag] = rq;
286 }
287
af76e555
CH
288 INIT_LIST_HEAD(&rq->queuelist);
289 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
290 rq->q = data->q;
291 rq->mq_ctx = data->ctx;
ef295ecf 292 rq->cmd_flags = op;
1b6d65a0
BVA
293 if (data->flags & BLK_MQ_REQ_PREEMPT)
294 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 295 if (blk_queue_io_stat(data->q))
e8064021 296 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
297 /* do not touch atomic flags, it needs atomic ops against the timer */
298 rq->cpu = -1;
af76e555
CH
299 INIT_HLIST_NODE(&rq->hash);
300 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
301 rq->rq_disk = NULL;
302 rq->part = NULL;
3ee32372 303 rq->start_time = jiffies;
af76e555
CH
304#ifdef CONFIG_BLK_CGROUP
305 rq->rl = NULL;
0fec08b4 306 set_start_time_ns(rq);
af76e555
CH
307 rq->io_start_time_ns = 0;
308#endif
309 rq->nr_phys_segments = 0;
310#if defined(CONFIG_BLK_DEV_INTEGRITY)
311 rq->nr_integrity_segments = 0;
312#endif
af76e555
CH
313 rq->special = NULL;
314 /* tag was already set */
af76e555 315 rq->extra_len = 0;
af76e555 316
af76e555 317 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
318 rq->timeout = 0;
319
af76e555
CH
320 rq->end_io = NULL;
321 rq->end_io_data = NULL;
322 rq->next_rq = NULL;
323
e4cdf1a1
CH
324 data->ctx->rq_dispatched[op_is_sync(op)]++;
325 return rq;
5dee8577
CH
326}
327
d2c0d383
CH
328static struct request *blk_mq_get_request(struct request_queue *q,
329 struct bio *bio, unsigned int op,
330 struct blk_mq_alloc_data *data)
331{
332 struct elevator_queue *e = q->elevator;
333 struct request *rq;
e4cdf1a1 334 unsigned int tag;
21e768b4 335 bool put_ctx_on_error = false;
d2c0d383
CH
336
337 blk_queue_enter_live(q);
338 data->q = q;
21e768b4
BVA
339 if (likely(!data->ctx)) {
340 data->ctx = blk_mq_get_ctx(q);
341 put_ctx_on_error = true;
342 }
d2c0d383
CH
343 if (likely(!data->hctx))
344 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
03a07c92
GR
345 if (op & REQ_NOWAIT)
346 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
347
348 if (e) {
349 data->flags |= BLK_MQ_REQ_INTERNAL;
350
351 /*
352 * Flush requests are special and go directly to the
353 * dispatch list.
354 */
5bbf4e5a
CH
355 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
356 e->type->ops.mq.limit_depth(op, data);
d2c0d383
CH
357 }
358
e4cdf1a1
CH
359 tag = blk_mq_get_tag(data);
360 if (tag == BLK_MQ_TAG_FAIL) {
21e768b4
BVA
361 if (put_ctx_on_error) {
362 blk_mq_put_ctx(data->ctx);
1ad43c00
ML
363 data->ctx = NULL;
364 }
037cebb8
CH
365 blk_queue_exit(q);
366 return NULL;
d2c0d383
CH
367 }
368
e4cdf1a1 369 rq = blk_mq_rq_ctx_init(data, tag, op);
037cebb8
CH
370 if (!op_is_flush(op)) {
371 rq->elv.icq = NULL;
5bbf4e5a 372 if (e && e->type->ops.mq.prepare_request) {
44e8c2bf
CH
373 if (e->type->icq_cache && rq_ioc(bio))
374 blk_mq_sched_assign_ioc(rq, bio);
375
5bbf4e5a
CH
376 e->type->ops.mq.prepare_request(rq, bio);
377 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 378 }
037cebb8
CH
379 }
380 data->hctx->queued++;
381 return rq;
d2c0d383
CH
382}
383
cd6ce148 384struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 385 blk_mq_req_flags_t flags)
320ae51f 386{
5a797e00 387 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 388 struct request *rq;
a492f075 389 int ret;
320ae51f 390
3a0a5299 391 ret = blk_queue_enter(q, flags);
a492f075
JL
392 if (ret)
393 return ERR_PTR(ret);
320ae51f 394
cd6ce148 395 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 396 blk_queue_exit(q);
841bac2c 397
bd166ef1 398 if (!rq)
a492f075 399 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3 400
1ad43c00 401 blk_mq_put_ctx(alloc_data.ctx);
1ad43c00 402
0c4de0f3
CH
403 rq->__data_len = 0;
404 rq->__sector = (sector_t) -1;
405 rq->bio = rq->biotail = NULL;
320ae51f
JA
406 return rq;
407}
4bb659b1 408EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 409
cd6ce148 410struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 411 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 412{
6d2809d5 413 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 414 struct request *rq;
6d2809d5 415 unsigned int cpu;
1f5bd336
ML
416 int ret;
417
418 /*
419 * If the tag allocator sleeps we could get an allocation for a
420 * different hardware context. No need to complicate the low level
421 * allocator for this for the rare use case of a command tied to
422 * a specific queue.
423 */
424 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
425 return ERR_PTR(-EINVAL);
426
427 if (hctx_idx >= q->nr_hw_queues)
428 return ERR_PTR(-EIO);
429
3a0a5299 430 ret = blk_queue_enter(q, flags);
1f5bd336
ML
431 if (ret)
432 return ERR_PTR(ret);
433
c8712c6a
CH
434 /*
435 * Check if the hardware context is actually mapped to anything.
436 * If not tell the caller that it should skip this queue.
437 */
6d2809d5
OS
438 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
439 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
440 blk_queue_exit(q);
441 return ERR_PTR(-EXDEV);
c8712c6a 442 }
6d2809d5
OS
443 cpu = cpumask_first(alloc_data.hctx->cpumask);
444 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 445
cd6ce148 446 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 447 blk_queue_exit(q);
c8712c6a 448
6d2809d5
OS
449 if (!rq)
450 return ERR_PTR(-EWOULDBLOCK);
451
452 return rq;
1f5bd336
ML
453}
454EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
455
6af54051 456void blk_mq_free_request(struct request *rq)
320ae51f 457{
320ae51f 458 struct request_queue *q = rq->q;
6af54051
CH
459 struct elevator_queue *e = q->elevator;
460 struct blk_mq_ctx *ctx = rq->mq_ctx;
461 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
462 const int sched_tag = rq->internal_tag;
463
5bbf4e5a 464 if (rq->rq_flags & RQF_ELVPRIV) {
6af54051
CH
465 if (e && e->type->ops.mq.finish_request)
466 e->type->ops.mq.finish_request(rq);
467 if (rq->elv.icq) {
468 put_io_context(rq->elv.icq->ioc);
469 rq->elv.icq = NULL;
470 }
471 }
320ae51f 472
6af54051 473 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 474 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 475 atomic_dec(&hctx->nr_active);
87760e5e 476
7beb2f84
JA
477 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
478 laptop_io_completion(q->backing_dev_info);
479
87760e5e 480 wbt_done(q->rq_wb, &rq->issue_stat);
0d2602ca 481
85acb3ba
SL
482 if (blk_rq_rl(rq))
483 blk_put_rl(blk_rq_rl(rq));
484
1d9bd516 485 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
06426adf 486 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
487 if (rq->tag != -1)
488 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
489 if (sched_tag != -1)
c05f8525 490 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
6d8c6c0f 491 blk_mq_sched_restart(hctx);
3ef28e83 492 blk_queue_exit(q);
320ae51f 493}
1a3b595a 494EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 495
2a842aca 496inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 497{
0d11e6ac
ML
498 blk_account_io_done(rq);
499
91b63639 500 if (rq->end_io) {
87760e5e 501 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 502 rq->end_io(rq, error);
91b63639
CH
503 } else {
504 if (unlikely(blk_bidi_rq(rq)))
505 blk_mq_free_request(rq->next_rq);
320ae51f 506 blk_mq_free_request(rq);
91b63639 507 }
320ae51f 508}
c8a446ad 509EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 510
2a842aca 511void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
512{
513 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
514 BUG();
c8a446ad 515 __blk_mq_end_request(rq, error);
63151a44 516}
c8a446ad 517EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 518
30a91cb4 519static void __blk_mq_complete_request_remote(void *data)
320ae51f 520{
3d6efbf6 521 struct request *rq = data;
320ae51f 522
30a91cb4 523 rq->q->softirq_done_fn(rq);
320ae51f 524}
320ae51f 525
453f8341 526static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
527{
528 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 529 bool shared = false;
320ae51f
JA
530 int cpu;
531
1d9bd516 532 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
5a61c363 533 blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
1d9bd516 534
453f8341
CH
535 if (rq->internal_tag != -1)
536 blk_mq_sched_completed_request(rq);
537 if (rq->rq_flags & RQF_STATS) {
538 blk_mq_poll_stats_start(rq->q);
539 blk_stat_add(rq);
540 }
541
38535201 542 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
543 rq->q->softirq_done_fn(rq);
544 return;
545 }
320ae51f
JA
546
547 cpu = get_cpu();
38535201
CH
548 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
549 shared = cpus_share_cache(cpu, ctx->cpu);
550
551 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 552 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
553 rq->csd.info = rq;
554 rq->csd.flags = 0;
c46fff2a 555 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 556 } else {
30a91cb4 557 rq->q->softirq_done_fn(rq);
3d6efbf6 558 }
320ae51f
JA
559 put_cpu();
560}
30a91cb4 561
04ced159
JA
562static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
563{
564 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
565 rcu_read_unlock();
566 else
05707b64 567 srcu_read_unlock(hctx->srcu, srcu_idx);
04ced159
JA
568}
569
570static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
571{
08b5a6e2
JA
572 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
573 /* shut up gcc false positive */
574 *srcu_idx = 0;
04ced159 575 rcu_read_lock();
08b5a6e2 576 } else
05707b64 577 *srcu_idx = srcu_read_lock(hctx->srcu);
04ced159
JA
578}
579
1d9bd516
TH
580static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
581{
582 unsigned long flags;
583
584 /*
585 * blk_mq_rq_aborted_gstate() is used from the completion path and
586 * can thus be called from irq context. u64_stats_fetch in the
587 * middle of update on the same CPU leads to lockup. Disable irq
588 * while updating.
589 */
590 local_irq_save(flags);
591 u64_stats_update_begin(&rq->aborted_gstate_sync);
592 rq->aborted_gstate = gstate;
593 u64_stats_update_end(&rq->aborted_gstate_sync);
594 local_irq_restore(flags);
595}
596
597static u64 blk_mq_rq_aborted_gstate(struct request *rq)
598{
599 unsigned int start;
600 u64 aborted_gstate;
601
602 do {
603 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
604 aborted_gstate = rq->aborted_gstate;
605 } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
606
607 return aborted_gstate;
608}
609
30a91cb4
CH
610/**
611 * blk_mq_complete_request - end I/O on a request
612 * @rq: the request being processed
613 *
614 * Description:
615 * Ends all I/O on a request. It does not handle partial completions.
616 * The actual completion happens out-of-order, through a IPI handler.
617 **/
08e0029a 618void blk_mq_complete_request(struct request *rq)
30a91cb4 619{
95f09684 620 struct request_queue *q = rq->q;
5197c05e
TH
621 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
622 int srcu_idx;
95f09684
JA
623
624 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 625 return;
5197c05e 626
1d9bd516
TH
627 /*
628 * If @rq->aborted_gstate equals the current instance, timeout is
629 * claiming @rq and we lost. This is synchronized through
630 * hctx_lock(). See blk_mq_timeout_work() for details.
631 *
632 * Completion path never blocks and we can directly use RCU here
633 * instead of hctx_lock() which can be either RCU or SRCU.
634 * However, that would complicate paths which want to synchronize
635 * against us. Let stay in sync with the issue path so that
636 * hctx_lock() covers both issue and completion paths.
637 */
5197c05e 638 hctx_lock(hctx, &srcu_idx);
634f9e46 639 if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
ed851860 640 __blk_mq_complete_request(rq);
5197c05e 641 hctx_unlock(hctx, srcu_idx);
30a91cb4
CH
642}
643EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 644
973c0191
KB
645int blk_mq_request_started(struct request *rq)
646{
5a61c363 647 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
973c0191
KB
648}
649EXPORT_SYMBOL_GPL(blk_mq_request_started);
650
e2490073 651void blk_mq_start_request(struct request *rq)
320ae51f
JA
652{
653 struct request_queue *q = rq->q;
654
bd166ef1
JA
655 blk_mq_sched_started_request(rq);
656
320ae51f
JA
657 trace_block_rq_issue(q, rq);
658
cf43e6be 659 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 660 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 661 rq->rq_flags |= RQF_STATS;
87760e5e 662 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
663 }
664
1d9bd516 665 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 666
87ee7b11 667 /*
1d9bd516
TH
668 * Mark @rq in-flight which also advances the generation number,
669 * and register for timeout. Protect with a seqcount to allow the
670 * timeout path to read both @rq->gstate and @rq->deadline
671 * coherently.
a7af0af3 672 *
1d9bd516
TH
673 * This is the only place where a request is marked in-flight. If
674 * the timeout path reads an in-flight @rq->gstate, the
675 * @rq->deadline it reads together under @rq->gstate_seq is
676 * guaranteed to be the matching one.
87ee7b11 677 */
1d9bd516
TH
678 preempt_disable();
679 write_seqcount_begin(&rq->gstate_seq);
680
681 blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
682 blk_add_timer(rq);
683
684 write_seqcount_end(&rq->gstate_seq);
685 preempt_enable();
686
49f5baa5
CH
687 if (q->dma_drain_size && blk_rq_bytes(rq)) {
688 /*
689 * Make sure space for the drain appears. We know we can do
690 * this because max_hw_segments has been adjusted to be one
691 * fewer than the device can handle.
692 */
693 rq->nr_phys_segments++;
694 }
320ae51f 695}
e2490073 696EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 697
d9d149a3 698/*
5a61c363
TH
699 * When we reach here because queue is busy, it's safe to change the state
700 * to IDLE without checking @rq->aborted_gstate because we should still be
701 * holding the RCU read lock and thus protected against timeout.
d9d149a3 702 */
ed0791b2 703static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
704{
705 struct request_queue *q = rq->q;
706
923218f6
ML
707 blk_mq_put_driver_tag(rq);
708
320ae51f 709 trace_block_rq_requeue(q, rq);
87760e5e 710 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 711 blk_mq_sched_requeue_request(rq);
49f5baa5 712
5a61c363 713 if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
1d9bd516 714 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
e2490073
CH
715 if (q->dma_drain_size && blk_rq_bytes(rq))
716 rq->nr_phys_segments--;
717 }
320ae51f
JA
718}
719
2b053aca 720void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 721{
ed0791b2 722 __blk_mq_requeue_request(rq);
ed0791b2 723
ed0791b2 724 BUG_ON(blk_queued_rq(rq));
2b053aca 725 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
726}
727EXPORT_SYMBOL(blk_mq_requeue_request);
728
6fca6a61
CH
729static void blk_mq_requeue_work(struct work_struct *work)
730{
731 struct request_queue *q =
2849450a 732 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
733 LIST_HEAD(rq_list);
734 struct request *rq, *next;
6fca6a61 735
18e9781d 736 spin_lock_irq(&q->requeue_lock);
6fca6a61 737 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 738 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
739
740 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 741 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
742 continue;
743
e8064021 744 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 745 list_del_init(&rq->queuelist);
bd6737f1 746 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
747 }
748
749 while (!list_empty(&rq_list)) {
750 rq = list_entry(rq_list.next, struct request, queuelist);
751 list_del_init(&rq->queuelist);
bd6737f1 752 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
753 }
754
52d7f1b5 755 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
756}
757
2b053aca
BVA
758void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
759 bool kick_requeue_list)
6fca6a61
CH
760{
761 struct request_queue *q = rq->q;
762 unsigned long flags;
763
764 /*
765 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 766 * request head insertion from the workqueue.
6fca6a61 767 */
e8064021 768 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
769
770 spin_lock_irqsave(&q->requeue_lock, flags);
771 if (at_head) {
e8064021 772 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
773 list_add(&rq->queuelist, &q->requeue_list);
774 } else {
775 list_add_tail(&rq->queuelist, &q->requeue_list);
776 }
777 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
778
779 if (kick_requeue_list)
780 blk_mq_kick_requeue_list(q);
6fca6a61
CH
781}
782EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
783
784void blk_mq_kick_requeue_list(struct request_queue *q)
785{
2849450a 786 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
787}
788EXPORT_SYMBOL(blk_mq_kick_requeue_list);
789
2849450a
MS
790void blk_mq_delay_kick_requeue_list(struct request_queue *q,
791 unsigned long msecs)
792{
d4acf365
BVA
793 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
794 msecs_to_jiffies(msecs));
2849450a
MS
795}
796EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
797
0e62f51f
JA
798struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
799{
88c7b2b7
JA
800 if (tag < tags->nr_tags) {
801 prefetch(tags->rqs[tag]);
4ee86bab 802 return tags->rqs[tag];
88c7b2b7 803 }
4ee86bab
HR
804
805 return NULL;
24d2f903
CH
806}
807EXPORT_SYMBOL(blk_mq_tag_to_rq);
808
320ae51f 809struct blk_mq_timeout_data {
46f92d42
CH
810 unsigned long next;
811 unsigned int next_set;
1d9bd516 812 unsigned int nr_expired;
320ae51f
JA
813};
814
358f70da 815static void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 816{
f8a5b122 817 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 818 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11 819
634f9e46
TH
820 req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
821
46f92d42 822 if (ops->timeout)
0152fb6b 823 ret = ops->timeout(req, reserved);
46f92d42
CH
824
825 switch (ret) {
826 case BLK_EH_HANDLED:
827 __blk_mq_complete_request(req);
828 break;
829 case BLK_EH_RESET_TIMER:
1d9bd516
TH
830 /*
831 * As nothing prevents from completion happening while
832 * ->aborted_gstate is set, this may lead to ignored
833 * completions and further spurious timeouts.
834 */
835 blk_mq_rq_update_aborted_gstate(req, 0);
46f92d42 836 blk_add_timer(req);
46f92d42
CH
837 break;
838 case BLK_EH_NOT_HANDLED:
839 break;
840 default:
841 printk(KERN_ERR "block: bad eh return: %d\n", ret);
842 break;
843 }
87ee7b11 844}
5b3f25fc 845
81481eb4
CH
846static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
847 struct request *rq, void *priv, bool reserved)
848{
849 struct blk_mq_timeout_data *data = priv;
1d9bd516
TH
850 unsigned long gstate, deadline;
851 int start;
852
853 might_sleep();
87ee7b11 854
5a61c363 855 if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
46f92d42 856 return;
87ee7b11 857
1d9bd516
TH
858 /* read coherent snapshots of @rq->state_gen and @rq->deadline */
859 while (true) {
860 start = read_seqcount_begin(&rq->gstate_seq);
861 gstate = READ_ONCE(rq->gstate);
862 deadline = rq->deadline;
863 if (!read_seqcount_retry(&rq->gstate_seq, start))
864 break;
865 cond_resched();
866 }
a7af0af3 867
1d9bd516
TH
868 /* if in-flight && overdue, mark for abortion */
869 if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
870 time_after_eq(jiffies, deadline)) {
871 blk_mq_rq_update_aborted_gstate(rq, gstate);
872 data->nr_expired++;
873 hctx->nr_expired++;
a7af0af3
PZ
874 } else if (!data->next_set || time_after(data->next, deadline)) {
875 data->next = deadline;
46f92d42
CH
876 data->next_set = 1;
877 }
87ee7b11
JA
878}
879
1d9bd516
TH
880static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
881 struct request *rq, void *priv, bool reserved)
882{
883 /*
884 * We marked @rq->aborted_gstate and waited for RCU. If there were
885 * completions that we lost to, they would have finished and
886 * updated @rq->gstate by now; otherwise, the completion path is
887 * now guaranteed to see @rq->aborted_gstate and yield. If
888 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
889 */
634f9e46
TH
890 if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
891 READ_ONCE(rq->gstate) == rq->aborted_gstate)
1d9bd516
TH
892 blk_mq_rq_timed_out(rq, reserved);
893}
894
287922eb 895static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 896{
287922eb
CH
897 struct request_queue *q =
898 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
899 struct blk_mq_timeout_data data = {
900 .next = 0,
901 .next_set = 0,
1d9bd516 902 .nr_expired = 0,
81481eb4 903 };
1d9bd516 904 struct blk_mq_hw_ctx *hctx;
81481eb4 905 int i;
320ae51f 906
71f79fb3
GKB
907 /* A deadlock might occur if a request is stuck requiring a
908 * timeout at the same time a queue freeze is waiting
909 * completion, since the timeout code would not be able to
910 * acquire the queue reference here.
911 *
912 * That's why we don't use blk_queue_enter here; instead, we use
913 * percpu_ref_tryget directly, because we need to be able to
914 * obtain a reference even in the short window between the queue
915 * starting to freeze, by dropping the first reference in
1671d522 916 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
917 * consumed, marked by the instant q_usage_counter reaches
918 * zero.
919 */
920 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
921 return;
922
1d9bd516 923 /* scan for the expired ones and set their ->aborted_gstate */
0bf6cd5b 924 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 925
1d9bd516
TH
926 if (data.nr_expired) {
927 bool has_rcu = false;
928
929 /*
930 * Wait till everyone sees ->aborted_gstate. The
931 * sequential waits for SRCUs aren't ideal. If this ever
932 * becomes a problem, we can add per-hw_ctx rcu_head and
933 * wait in parallel.
934 */
935 queue_for_each_hw_ctx(q, hctx, i) {
936 if (!hctx->nr_expired)
937 continue;
938
939 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
940 has_rcu = true;
941 else
05707b64 942 synchronize_srcu(hctx->srcu);
1d9bd516
TH
943
944 hctx->nr_expired = 0;
945 }
946 if (has_rcu)
947 synchronize_rcu();
948
949 /* terminate the ones we won */
950 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
951 }
952
81481eb4
CH
953 if (data.next_set) {
954 data.next = blk_rq_timeout(round_jiffies_up(data.next));
955 mod_timer(&q->timeout, data.next);
0d2602ca 956 } else {
f054b56c
ML
957 queue_for_each_hw_ctx(q, hctx, i) {
958 /* the hctx may be unmapped, so check it here */
959 if (blk_mq_hw_queue_mapped(hctx))
960 blk_mq_tag_idle(hctx);
961 }
0d2602ca 962 }
287922eb 963 blk_queue_exit(q);
320ae51f
JA
964}
965
88459642
OS
966struct flush_busy_ctx_data {
967 struct blk_mq_hw_ctx *hctx;
968 struct list_head *list;
969};
970
971static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
972{
973 struct flush_busy_ctx_data *flush_data = data;
974 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
975 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
976
977 sbitmap_clear_bit(sb, bitnr);
978 spin_lock(&ctx->lock);
979 list_splice_tail_init(&ctx->rq_list, flush_data->list);
980 spin_unlock(&ctx->lock);
981 return true;
982}
983
1429d7c9
JA
984/*
985 * Process software queues that have been marked busy, splicing them
986 * to the for-dispatch
987 */
2c3ad667 988void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 989{
88459642
OS
990 struct flush_busy_ctx_data data = {
991 .hctx = hctx,
992 .list = list,
993 };
1429d7c9 994
88459642 995 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 996}
2c3ad667 997EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 998
b347689f
ML
999struct dispatch_rq_data {
1000 struct blk_mq_hw_ctx *hctx;
1001 struct request *rq;
1002};
1003
1004static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1005 void *data)
1006{
1007 struct dispatch_rq_data *dispatch_data = data;
1008 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1009 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1010
1011 spin_lock(&ctx->lock);
1012 if (unlikely(!list_empty(&ctx->rq_list))) {
1013 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1014 list_del_init(&dispatch_data->rq->queuelist);
1015 if (list_empty(&ctx->rq_list))
1016 sbitmap_clear_bit(sb, bitnr);
1017 }
1018 spin_unlock(&ctx->lock);
1019
1020 return !dispatch_data->rq;
1021}
1022
1023struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1024 struct blk_mq_ctx *start)
1025{
1026 unsigned off = start ? start->index_hw : 0;
1027 struct dispatch_rq_data data = {
1028 .hctx = hctx,
1029 .rq = NULL,
1030 };
1031
1032 __sbitmap_for_each_set(&hctx->ctx_map, off,
1033 dispatch_rq_from_ctx, &data);
1034
1035 return data.rq;
1036}
1037
703fd1c0
JA
1038static inline unsigned int queued_to_index(unsigned int queued)
1039{
1040 if (!queued)
1041 return 0;
1429d7c9 1042
703fd1c0 1043 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
1044}
1045
bd6737f1
JA
1046bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1047 bool wait)
bd166ef1
JA
1048{
1049 struct blk_mq_alloc_data data = {
1050 .q = rq->q,
bd166ef1
JA
1051 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1052 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1053 };
1054
5feeacdd
JA
1055 might_sleep_if(wait);
1056
81380ca1
OS
1057 if (rq->tag != -1)
1058 goto done;
bd166ef1 1059
415b806d
SG
1060 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1061 data.flags |= BLK_MQ_REQ_RESERVED;
1062
bd166ef1
JA
1063 rq->tag = blk_mq_get_tag(&data);
1064 if (rq->tag >= 0) {
200e86b3
JA
1065 if (blk_mq_tag_busy(data.hctx)) {
1066 rq->rq_flags |= RQF_MQ_INFLIGHT;
1067 atomic_inc(&data.hctx->nr_active);
1068 }
bd166ef1 1069 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
1070 }
1071
81380ca1
OS
1072done:
1073 if (hctx)
1074 *hctx = data.hctx;
1075 return rq->tag != -1;
bd166ef1
JA
1076}
1077
eb619fdb
JA
1078static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1079 int flags, void *key)
da55f2cc
OS
1080{
1081 struct blk_mq_hw_ctx *hctx;
1082
1083 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1084
eb619fdb 1085 list_del_init(&wait->entry);
da55f2cc
OS
1086 blk_mq_run_hw_queue(hctx, true);
1087 return 1;
1088}
1089
f906a6a0
JA
1090/*
1091 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1092 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1093 * restart. For both caes, take care to check the condition again after
1094 * marking us as waiting.
1095 */
1096static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1097 struct request *rq)
da55f2cc 1098{
eb619fdb 1099 struct blk_mq_hw_ctx *this_hctx = *hctx;
f906a6a0 1100 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
da55f2cc 1101 struct sbq_wait_state *ws;
f906a6a0
JA
1102 wait_queue_entry_t *wait;
1103 bool ret;
da55f2cc 1104
f906a6a0
JA
1105 if (!shared_tags) {
1106 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1107 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1108 } else {
1109 wait = &this_hctx->dispatch_wait;
1110 if (!list_empty_careful(&wait->entry))
1111 return false;
1112
1113 spin_lock(&this_hctx->lock);
1114 if (!list_empty(&wait->entry)) {
1115 spin_unlock(&this_hctx->lock);
1116 return false;
1117 }
eb619fdb 1118
f906a6a0
JA
1119 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1120 add_wait_queue(&ws->wait, wait);
eb619fdb
JA
1121 }
1122
da55f2cc 1123 /*
eb619fdb
JA
1124 * It's possible that a tag was freed in the window between the
1125 * allocation failure and adding the hardware queue to the wait
1126 * queue.
da55f2cc 1127 */
f906a6a0
JA
1128 ret = blk_mq_get_driver_tag(rq, hctx, false);
1129
1130 if (!shared_tags) {
1131 /*
1132 * Don't clear RESTART here, someone else could have set it.
1133 * At most this will cost an extra queue run.
1134 */
1135 return ret;
1136 } else {
1137 if (!ret) {
1138 spin_unlock(&this_hctx->lock);
1139 return false;
1140 }
1141
1142 /*
1143 * We got a tag, remove ourselves from the wait queue to ensure
1144 * someone else gets the wakeup.
1145 */
1146 spin_lock_irq(&ws->wait.lock);
1147 list_del_init(&wait->entry);
1148 spin_unlock_irq(&ws->wait.lock);
eb619fdb 1149 spin_unlock(&this_hctx->lock);
f906a6a0 1150 return true;
eb619fdb 1151 }
da55f2cc
OS
1152}
1153
de148297 1154bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1155 bool got_budget)
320ae51f 1156{
81380ca1 1157 struct blk_mq_hw_ctx *hctx;
6d6f167c 1158 struct request *rq, *nxt;
eb619fdb 1159 bool no_tag = false;
fc17b653 1160 int errors, queued;
320ae51f 1161
81380ca1
OS
1162 if (list_empty(list))
1163 return false;
1164
de148297
ML
1165 WARN_ON(!list_is_singular(list) && got_budget);
1166
320ae51f
JA
1167 /*
1168 * Now process all the entries, sending them to the driver.
1169 */
93efe981 1170 errors = queued = 0;
81380ca1 1171 do {
74c45052 1172 struct blk_mq_queue_data bd;
fc17b653 1173 blk_status_t ret;
320ae51f 1174
f04c3df3 1175 rq = list_first_entry(list, struct request, queuelist);
bd166ef1 1176 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
3c782d67 1177 /*
da55f2cc 1178 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1179 * rerun the hardware queue when a tag is freed. The
1180 * waitqueue takes care of that. If the queue is run
1181 * before we add this entry back on the dispatch list,
1182 * we'll re-run it below.
3c782d67 1183 */
f906a6a0 1184 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
de148297
ML
1185 if (got_budget)
1186 blk_mq_put_dispatch_budget(hctx);
f906a6a0
JA
1187 /*
1188 * For non-shared tags, the RESTART check
1189 * will suffice.
1190 */
1191 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1192 no_tag = true;
de148297
ML
1193 break;
1194 }
1195 }
1196
0c6af1cc
ML
1197 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1198 blk_mq_put_driver_tag(rq);
88022d72 1199 break;
0c6af1cc 1200 }
da55f2cc 1201
320ae51f 1202 list_del_init(&rq->queuelist);
320ae51f 1203
74c45052 1204 bd.rq = rq;
113285b4
JA
1205
1206 /*
1207 * Flag last if we have no more requests, or if we have more
1208 * but can't assign a driver tag to it.
1209 */
1210 if (list_empty(list))
1211 bd.last = true;
1212 else {
113285b4
JA
1213 nxt = list_first_entry(list, struct request, queuelist);
1214 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1215 }
74c45052
JA
1216
1217 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653 1218 if (ret == BLK_STS_RESOURCE) {
6d6f167c
JW
1219 /*
1220 * If an I/O scheduler has been configured and we got a
ff821d27
JA
1221 * driver tag for the next request already, free it
1222 * again.
6d6f167c
JW
1223 */
1224 if (!list_empty(list)) {
1225 nxt = list_first_entry(list, struct request, queuelist);
1226 blk_mq_put_driver_tag(nxt);
1227 }
f04c3df3 1228 list_add(&rq->queuelist, list);
ed0791b2 1229 __blk_mq_requeue_request(rq);
320ae51f 1230 break;
fc17b653
CH
1231 }
1232
1233 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1234 errors++;
2a842aca 1235 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1236 continue;
320ae51f
JA
1237 }
1238
fc17b653 1239 queued++;
81380ca1 1240 } while (!list_empty(list));
320ae51f 1241
703fd1c0 1242 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1243
1244 /*
1245 * Any items that need requeuing? Stuff them into hctx->dispatch,
1246 * that is where we will continue on next queue run.
1247 */
f04c3df3 1248 if (!list_empty(list)) {
320ae51f 1249 spin_lock(&hctx->lock);
c13660a0 1250 list_splice_init(list, &hctx->dispatch);
320ae51f 1251 spin_unlock(&hctx->lock);
f04c3df3 1252
9ba52e58 1253 /*
710c785f
BVA
1254 * If SCHED_RESTART was set by the caller of this function and
1255 * it is no longer set that means that it was cleared by another
1256 * thread and hence that a queue rerun is needed.
9ba52e58 1257 *
eb619fdb
JA
1258 * If 'no_tag' is set, that means that we failed getting
1259 * a driver tag with an I/O scheduler attached. If our dispatch
1260 * waitqueue is no longer active, ensure that we run the queue
1261 * AFTER adding our entries back to the list.
bd166ef1 1262 *
710c785f
BVA
1263 * If no I/O scheduler has been configured it is possible that
1264 * the hardware queue got stopped and restarted before requests
1265 * were pushed back onto the dispatch list. Rerun the queue to
1266 * avoid starvation. Notes:
1267 * - blk_mq_run_hw_queue() checks whether or not a queue has
1268 * been stopped before rerunning a queue.
1269 * - Some but not all block drivers stop a queue before
fc17b653 1270 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1271 * and dm-rq.
bd166ef1 1272 */
eb619fdb
JA
1273 if (!blk_mq_sched_needs_restart(hctx) ||
1274 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1275 blk_mq_run_hw_queue(hctx, true);
320ae51f 1276 }
f04c3df3 1277
93efe981 1278 return (queued + errors) != 0;
f04c3df3
JA
1279}
1280
6a83e74d
BVA
1281static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1282{
1283 int srcu_idx;
1284
b7a71e66
JA
1285 /*
1286 * We should be running this queue from one of the CPUs that
1287 * are mapped to it.
1288 */
6a83e74d
BVA
1289 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1290 cpu_online(hctx->next_cpu));
1291
b7a71e66
JA
1292 /*
1293 * We can't run the queue inline with ints disabled. Ensure that
1294 * we catch bad users of this early.
1295 */
1296 WARN_ON_ONCE(in_interrupt());
1297
04ced159 1298 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1299
04ced159
JA
1300 hctx_lock(hctx, &srcu_idx);
1301 blk_mq_sched_dispatch_requests(hctx);
1302 hctx_unlock(hctx, srcu_idx);
6a83e74d
BVA
1303}
1304
506e931f
JA
1305/*
1306 * It'd be great if the workqueue API had a way to pass
1307 * in a mask and had some smarts for more clever placement.
1308 * For now we just round-robin here, switching for every
1309 * BLK_MQ_CPU_WORK_BATCH queued items.
1310 */
1311static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1312{
b657d7e6
CH
1313 if (hctx->queue->nr_hw_queues == 1)
1314 return WORK_CPU_UNBOUND;
506e931f
JA
1315
1316 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1317 int next_cpu;
506e931f
JA
1318
1319 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1320 if (next_cpu >= nr_cpu_ids)
1321 next_cpu = cpumask_first(hctx->cpumask);
1322
1323 hctx->next_cpu = next_cpu;
1324 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1325 }
1326
b657d7e6 1327 return hctx->next_cpu;
506e931f
JA
1328}
1329
7587a5ae
BVA
1330static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1331 unsigned long msecs)
320ae51f 1332{
5435c023
BVA
1333 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1334 return;
1335
1336 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1337 return;
1338
1b792f2f 1339 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1340 int cpu = get_cpu();
1341 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1342 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1343 put_cpu();
398205b8
PB
1344 return;
1345 }
e4043dcf 1346
2a90d4aa 1347 put_cpu();
e4043dcf 1348 }
398205b8 1349
9f993737
JA
1350 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1351 &hctx->run_work,
1352 msecs_to_jiffies(msecs));
7587a5ae
BVA
1353}
1354
1355void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1356{
1357 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1358}
1359EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1360
79f720a7 1361bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1362{
24f5a90f
ML
1363 int srcu_idx;
1364 bool need_run;
1365
1366 /*
1367 * When queue is quiesced, we may be switching io scheduler, or
1368 * updating nr_hw_queues, or other things, and we can't run queue
1369 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1370 *
1371 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1372 * quiesced.
1373 */
04ced159
JA
1374 hctx_lock(hctx, &srcu_idx);
1375 need_run = !blk_queue_quiesced(hctx->queue) &&
1376 blk_mq_hctx_has_pending(hctx);
1377 hctx_unlock(hctx, srcu_idx);
24f5a90f
ML
1378
1379 if (need_run) {
79f720a7
JA
1380 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1381 return true;
1382 }
1383
1384 return false;
320ae51f 1385}
5b727272 1386EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1387
b94ec296 1388void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1389{
1390 struct blk_mq_hw_ctx *hctx;
1391 int i;
1392
1393 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1394 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1395 continue;
1396
b94ec296 1397 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1398 }
1399}
b94ec296 1400EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1401
fd001443
BVA
1402/**
1403 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1404 * @q: request queue.
1405 *
1406 * The caller is responsible for serializing this function against
1407 * blk_mq_{start,stop}_hw_queue().
1408 */
1409bool blk_mq_queue_stopped(struct request_queue *q)
1410{
1411 struct blk_mq_hw_ctx *hctx;
1412 int i;
1413
1414 queue_for_each_hw_ctx(q, hctx, i)
1415 if (blk_mq_hctx_stopped(hctx))
1416 return true;
1417
1418 return false;
1419}
1420EXPORT_SYMBOL(blk_mq_queue_stopped);
1421
39a70c76
ML
1422/*
1423 * This function is often used for pausing .queue_rq() by driver when
1424 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1425 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1426 *
1427 * We do not guarantee that dispatch can be drained or blocked
1428 * after blk_mq_stop_hw_queue() returns. Please use
1429 * blk_mq_quiesce_queue() for that requirement.
1430 */
2719aa21
JA
1431void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1432{
641a9ed6 1433 cancel_delayed_work(&hctx->run_work);
280d45f6 1434
641a9ed6 1435 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1436}
641a9ed6 1437EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1438
39a70c76
ML
1439/*
1440 * This function is often used for pausing .queue_rq() by driver when
1441 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1442 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1443 *
1444 * We do not guarantee that dispatch can be drained or blocked
1445 * after blk_mq_stop_hw_queues() returns. Please use
1446 * blk_mq_quiesce_queue() for that requirement.
1447 */
2719aa21
JA
1448void blk_mq_stop_hw_queues(struct request_queue *q)
1449{
641a9ed6
ML
1450 struct blk_mq_hw_ctx *hctx;
1451 int i;
1452
1453 queue_for_each_hw_ctx(q, hctx, i)
1454 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1455}
1456EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1457
320ae51f
JA
1458void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1459{
1460 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1461
0ffbce80 1462 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1463}
1464EXPORT_SYMBOL(blk_mq_start_hw_queue);
1465
2f268556
CH
1466void blk_mq_start_hw_queues(struct request_queue *q)
1467{
1468 struct blk_mq_hw_ctx *hctx;
1469 int i;
1470
1471 queue_for_each_hw_ctx(q, hctx, i)
1472 blk_mq_start_hw_queue(hctx);
1473}
1474EXPORT_SYMBOL(blk_mq_start_hw_queues);
1475
ae911c5e
JA
1476void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1477{
1478 if (!blk_mq_hctx_stopped(hctx))
1479 return;
1480
1481 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1482 blk_mq_run_hw_queue(hctx, async);
1483}
1484EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1485
1b4a3258 1486void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1487{
1488 struct blk_mq_hw_ctx *hctx;
1489 int i;
1490
ae911c5e
JA
1491 queue_for_each_hw_ctx(q, hctx, i)
1492 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1493}
1494EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1495
70f4db63 1496static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1497{
1498 struct blk_mq_hw_ctx *hctx;
1499
9f993737 1500 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1501
21c6e939
JA
1502 /*
1503 * If we are stopped, don't run the queue. The exception is if
1504 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1505 * the STOPPED bit and run it.
1506 */
1507 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1508 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1509 return;
7587a5ae 1510
21c6e939
JA
1511 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1512 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1513 }
7587a5ae
BVA
1514
1515 __blk_mq_run_hw_queue(hctx);
1516}
1517
70f4db63
CH
1518
1519void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1520{
5435c023 1521 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
19c66e59 1522 return;
70f4db63 1523
21c6e939
JA
1524 /*
1525 * Stop the hw queue, then modify currently delayed work.
1526 * This should prevent us from running the queue prematurely.
1527 * Mark the queue as auto-clearing STOPPED when it runs.
1528 */
7e79dadc 1529 blk_mq_stop_hw_queue(hctx);
21c6e939
JA
1530 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1531 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1532 &hctx->run_work,
1533 msecs_to_jiffies(msecs));
70f4db63
CH
1534}
1535EXPORT_SYMBOL(blk_mq_delay_queue);
1536
cfd0c552 1537static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1538 struct request *rq,
1539 bool at_head)
320ae51f 1540{
e57690fe
JA
1541 struct blk_mq_ctx *ctx = rq->mq_ctx;
1542
7b607814
BVA
1543 lockdep_assert_held(&ctx->lock);
1544
01b983c9
JA
1545 trace_block_rq_insert(hctx->queue, rq);
1546
72a0a36e
CH
1547 if (at_head)
1548 list_add(&rq->queuelist, &ctx->rq_list);
1549 else
1550 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1551}
4bb659b1 1552
2c3ad667
JA
1553void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1554 bool at_head)
cfd0c552
ML
1555{
1556 struct blk_mq_ctx *ctx = rq->mq_ctx;
1557
7b607814
BVA
1558 lockdep_assert_held(&ctx->lock);
1559
e57690fe 1560 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1561 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1562}
1563
157f377b
JA
1564/*
1565 * Should only be used carefully, when the caller knows we want to
1566 * bypass a potential IO scheduler on the target device.
1567 */
b0850297 1568void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
157f377b
JA
1569{
1570 struct blk_mq_ctx *ctx = rq->mq_ctx;
1571 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1572
1573 spin_lock(&hctx->lock);
1574 list_add_tail(&rq->queuelist, &hctx->dispatch);
1575 spin_unlock(&hctx->lock);
1576
b0850297
ML
1577 if (run_queue)
1578 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1579}
1580
bd166ef1
JA
1581void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1582 struct list_head *list)
320ae51f
JA
1583
1584{
320ae51f
JA
1585 /*
1586 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1587 * offline now
1588 */
1589 spin_lock(&ctx->lock);
1590 while (!list_empty(list)) {
1591 struct request *rq;
1592
1593 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1594 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1595 list_del_init(&rq->queuelist);
e57690fe 1596 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1597 }
cfd0c552 1598 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1599 spin_unlock(&ctx->lock);
320ae51f
JA
1600}
1601
1602static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1603{
1604 struct request *rqa = container_of(a, struct request, queuelist);
1605 struct request *rqb = container_of(b, struct request, queuelist);
1606
1607 return !(rqa->mq_ctx < rqb->mq_ctx ||
1608 (rqa->mq_ctx == rqb->mq_ctx &&
1609 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1610}
1611
1612void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1613{
1614 struct blk_mq_ctx *this_ctx;
1615 struct request_queue *this_q;
1616 struct request *rq;
1617 LIST_HEAD(list);
1618 LIST_HEAD(ctx_list);
1619 unsigned int depth;
1620
1621 list_splice_init(&plug->mq_list, &list);
1622
1623 list_sort(NULL, &list, plug_ctx_cmp);
1624
1625 this_q = NULL;
1626 this_ctx = NULL;
1627 depth = 0;
1628
1629 while (!list_empty(&list)) {
1630 rq = list_entry_rq(list.next);
1631 list_del_init(&rq->queuelist);
1632 BUG_ON(!rq->q);
1633 if (rq->mq_ctx != this_ctx) {
1634 if (this_ctx) {
bd166ef1
JA
1635 trace_block_unplug(this_q, depth, from_schedule);
1636 blk_mq_sched_insert_requests(this_q, this_ctx,
1637 &ctx_list,
1638 from_schedule);
320ae51f
JA
1639 }
1640
1641 this_ctx = rq->mq_ctx;
1642 this_q = rq->q;
1643 depth = 0;
1644 }
1645
1646 depth++;
1647 list_add_tail(&rq->queuelist, &ctx_list);
1648 }
1649
1650 /*
1651 * If 'this_ctx' is set, we know we have entries to complete
1652 * on 'ctx_list'. Do those.
1653 */
1654 if (this_ctx) {
bd166ef1
JA
1655 trace_block_unplug(this_q, depth, from_schedule);
1656 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1657 from_schedule);
320ae51f
JA
1658 }
1659}
1660
1661static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1662{
da8d7f07 1663 blk_init_request_from_bio(rq, bio);
4b570521 1664
85acb3ba
SL
1665 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1666
6e85eaf3 1667 blk_account_io_start(rq, true);
320ae51f
JA
1668}
1669
ab42f35d
ML
1670static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1671 struct blk_mq_ctx *ctx,
1672 struct request *rq)
1673{
1674 spin_lock(&ctx->lock);
1675 __blk_mq_insert_request(hctx, rq, false);
1676 spin_unlock(&ctx->lock);
07068d5b 1677}
14ec77f3 1678
fd2d3326
JA
1679static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1680{
bd166ef1
JA
1681 if (rq->tag != -1)
1682 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1683
1684 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1685}
1686
d964f04a
ML
1687static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1688 struct request *rq,
04ced159 1689 blk_qc_t *cookie)
f984df1f 1690{
f984df1f 1691 struct request_queue *q = rq->q;
f984df1f
SL
1692 struct blk_mq_queue_data bd = {
1693 .rq = rq,
d945a365 1694 .last = true,
f984df1f 1695 };
bd166ef1 1696 blk_qc_t new_cookie;
f06345ad 1697 blk_status_t ret;
d964f04a
ML
1698 bool run_queue = true;
1699
f4560ffe
ML
1700 /* RCU or SRCU read lock is needed before checking quiesced flag */
1701 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a
ML
1702 run_queue = false;
1703 goto insert;
1704 }
f984df1f 1705
bd166ef1 1706 if (q->elevator)
2253efc8
BVA
1707 goto insert;
1708
d964f04a 1709 if (!blk_mq_get_driver_tag(rq, NULL, false))
bd166ef1
JA
1710 goto insert;
1711
88022d72 1712 if (!blk_mq_get_dispatch_budget(hctx)) {
de148297
ML
1713 blk_mq_put_driver_tag(rq);
1714 goto insert;
88022d72 1715 }
de148297 1716
bd166ef1
JA
1717 new_cookie = request_to_qc_t(hctx, rq);
1718
f984df1f
SL
1719 /*
1720 * For OK queue, we are done. For error, kill it. Any other
1721 * error (busy), just add it to our list as we previously
1722 * would have done
1723 */
1724 ret = q->mq_ops->queue_rq(hctx, &bd);
fc17b653
CH
1725 switch (ret) {
1726 case BLK_STS_OK:
7b371636 1727 *cookie = new_cookie;
2253efc8 1728 return;
fc17b653
CH
1729 case BLK_STS_RESOURCE:
1730 __blk_mq_requeue_request(rq);
1731 goto insert;
1732 default:
7b371636 1733 *cookie = BLK_QC_T_NONE;
fc17b653 1734 blk_mq_end_request(rq, ret);
2253efc8 1735 return;
f984df1f 1736 }
7b371636 1737
2253efc8 1738insert:
04ced159
JA
1739 blk_mq_sched_insert_request(rq, false, run_queue, false,
1740 hctx->flags & BLK_MQ_F_BLOCKING);
f984df1f
SL
1741}
1742
5eb6126e
CH
1743static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1744 struct request *rq, blk_qc_t *cookie)
1745{
04ced159 1746 int srcu_idx;
bf4907c0 1747
04ced159 1748 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1749
04ced159
JA
1750 hctx_lock(hctx, &srcu_idx);
1751 __blk_mq_try_issue_directly(hctx, rq, cookie);
1752 hctx_unlock(hctx, srcu_idx);
5eb6126e
CH
1753}
1754
dece1635 1755static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1756{
ef295ecf 1757 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1758 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1759 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1760 struct request *rq;
5eb6126e 1761 unsigned int request_count = 0;
f984df1f 1762 struct blk_plug *plug;
5b3f341f 1763 struct request *same_queue_rq = NULL;
7b371636 1764 blk_qc_t cookie;
87760e5e 1765 unsigned int wb_acct;
07068d5b
JA
1766
1767 blk_queue_bounce(q, &bio);
1768
af67c31f 1769 blk_queue_split(q, &bio);
f36ea50c 1770
e23947bd 1771 if (!bio_integrity_prep(bio))
dece1635 1772 return BLK_QC_T_NONE;
07068d5b 1773
87c279e6
OS
1774 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1775 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1776 return BLK_QC_T_NONE;
f984df1f 1777
bd166ef1
JA
1778 if (blk_mq_sched_bio_merge(q, bio))
1779 return BLK_QC_T_NONE;
1780
87760e5e
JA
1781 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1782
bd166ef1
JA
1783 trace_block_getrq(q, bio, bio->bi_opf);
1784
d2c0d383 1785 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1786 if (unlikely(!rq)) {
1787 __wbt_done(q->rq_wb, wb_acct);
03a07c92
GR
1788 if (bio->bi_opf & REQ_NOWAIT)
1789 bio_wouldblock_error(bio);
dece1635 1790 return BLK_QC_T_NONE;
87760e5e
JA
1791 }
1792
1793 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1794
fd2d3326 1795 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1796
f984df1f 1797 plug = current->plug;
07068d5b 1798 if (unlikely(is_flush_fua)) {
f984df1f 1799 blk_mq_put_ctx(data.ctx);
07068d5b 1800 blk_mq_bio_to_request(rq, bio);
923218f6
ML
1801
1802 /* bypass scheduler for flush rq */
1803 blk_insert_flush(rq);
1804 blk_mq_run_hw_queue(data.hctx, true);
a4d907b6 1805 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1806 struct request *last = NULL;
1807
b00c53e8 1808 blk_mq_put_ctx(data.ctx);
e6c4438b 1809 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1810
1811 /*
1812 * @request_count may become stale because of schedule
1813 * out, so check the list again.
1814 */
1815 if (list_empty(&plug->mq_list))
1816 request_count = 0;
254d259d
CH
1817 else if (blk_queue_nomerges(q))
1818 request_count = blk_plug_queued_count(q);
1819
676d0607 1820 if (!request_count)
e6c4438b 1821 trace_block_plug(q);
600271d9
SL
1822 else
1823 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1824
600271d9
SL
1825 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1826 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1827 blk_flush_plug_list(plug, false);
1828 trace_block_plug(q);
320ae51f 1829 }
b094f89c 1830
e6c4438b 1831 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1832 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1833 blk_mq_bio_to_request(rq, bio);
07068d5b 1834
07068d5b 1835 /*
6a83e74d 1836 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1837 * Otherwise the existing request in the plug list will be
1838 * issued. So the plug list will have one request at most
2299722c
CH
1839 * The plug list might get flushed before this. If that happens,
1840 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1841 */
2299722c
CH
1842 if (list_empty(&plug->mq_list))
1843 same_queue_rq = NULL;
1844 if (same_queue_rq)
1845 list_del_init(&same_queue_rq->queuelist);
1846 list_add_tail(&rq->queuelist, &plug->mq_list);
1847
bf4907c0
JA
1848 blk_mq_put_ctx(data.ctx);
1849
dad7a3be
ML
1850 if (same_queue_rq) {
1851 data.hctx = blk_mq_map_queue(q,
1852 same_queue_rq->mq_ctx->cpu);
2299722c
CH
1853 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1854 &cookie);
dad7a3be 1855 }
a4d907b6 1856 } else if (q->nr_hw_queues > 1 && is_sync) {
bf4907c0 1857 blk_mq_put_ctx(data.ctx);
2299722c 1858 blk_mq_bio_to_request(rq, bio);
2299722c 1859 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1860 } else if (q->elevator) {
b00c53e8 1861 blk_mq_put_ctx(data.ctx);
bd166ef1 1862 blk_mq_bio_to_request(rq, bio);
a4d907b6 1863 blk_mq_sched_insert_request(rq, false, true, true, true);
ab42f35d 1864 } else {
b00c53e8 1865 blk_mq_put_ctx(data.ctx);
ab42f35d
ML
1866 blk_mq_bio_to_request(rq, bio);
1867 blk_mq_queue_io(data.hctx, data.ctx, rq);
a4d907b6 1868 blk_mq_run_hw_queue(data.hctx, true);
ab42f35d 1869 }
320ae51f 1870
7b371636 1871 return cookie;
320ae51f
JA
1872}
1873
cc71a6f4
JA
1874void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1875 unsigned int hctx_idx)
95363efd 1876{
e9b267d9 1877 struct page *page;
320ae51f 1878
24d2f903 1879 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1880 int i;
320ae51f 1881
24d2f903 1882 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1883 struct request *rq = tags->static_rqs[i];
1884
1885 if (!rq)
e9b267d9 1886 continue;
d6296d39 1887 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1888 tags->static_rqs[i] = NULL;
e9b267d9 1889 }
320ae51f 1890 }
320ae51f 1891
24d2f903
CH
1892 while (!list_empty(&tags->page_list)) {
1893 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1894 list_del_init(&page->lru);
f75782e4
CM
1895 /*
1896 * Remove kmemleak object previously allocated in
1897 * blk_mq_init_rq_map().
1898 */
1899 kmemleak_free(page_address(page));
320ae51f
JA
1900 __free_pages(page, page->private);
1901 }
cc71a6f4 1902}
320ae51f 1903
cc71a6f4
JA
1904void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1905{
24d2f903 1906 kfree(tags->rqs);
cc71a6f4 1907 tags->rqs = NULL;
2af8cbe3
JA
1908 kfree(tags->static_rqs);
1909 tags->static_rqs = NULL;
320ae51f 1910
24d2f903 1911 blk_mq_free_tags(tags);
320ae51f
JA
1912}
1913
cc71a6f4
JA
1914struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1915 unsigned int hctx_idx,
1916 unsigned int nr_tags,
1917 unsigned int reserved_tags)
320ae51f 1918{
24d2f903 1919 struct blk_mq_tags *tags;
59f082e4 1920 int node;
320ae51f 1921
59f082e4
SL
1922 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1923 if (node == NUMA_NO_NODE)
1924 node = set->numa_node;
1925
1926 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1927 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1928 if (!tags)
1929 return NULL;
320ae51f 1930
cc71a6f4 1931 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1932 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1933 node);
24d2f903
CH
1934 if (!tags->rqs) {
1935 blk_mq_free_tags(tags);
1936 return NULL;
1937 }
320ae51f 1938
2af8cbe3
JA
1939 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1940 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1941 node);
2af8cbe3
JA
1942 if (!tags->static_rqs) {
1943 kfree(tags->rqs);
1944 blk_mq_free_tags(tags);
1945 return NULL;
1946 }
1947
cc71a6f4
JA
1948 return tags;
1949}
1950
1951static size_t order_to_size(unsigned int order)
1952{
1953 return (size_t)PAGE_SIZE << order;
1954}
1955
1d9bd516
TH
1956static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1957 unsigned int hctx_idx, int node)
1958{
1959 int ret;
1960
1961 if (set->ops->init_request) {
1962 ret = set->ops->init_request(set, rq, hctx_idx, node);
1963 if (ret)
1964 return ret;
1965 }
1966
1967 seqcount_init(&rq->gstate_seq);
1968 u64_stats_init(&rq->aborted_gstate_sync);
1969 return 0;
1970}
1971
cc71a6f4
JA
1972int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1973 unsigned int hctx_idx, unsigned int depth)
1974{
1975 unsigned int i, j, entries_per_page, max_order = 4;
1976 size_t rq_size, left;
59f082e4
SL
1977 int node;
1978
1979 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1980 if (node == NUMA_NO_NODE)
1981 node = set->numa_node;
cc71a6f4
JA
1982
1983 INIT_LIST_HEAD(&tags->page_list);
1984
320ae51f
JA
1985 /*
1986 * rq_size is the size of the request plus driver payload, rounded
1987 * to the cacheline size
1988 */
24d2f903 1989 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1990 cache_line_size());
cc71a6f4 1991 left = rq_size * depth;
320ae51f 1992
cc71a6f4 1993 for (i = 0; i < depth; ) {
320ae51f
JA
1994 int this_order = max_order;
1995 struct page *page;
1996 int to_do;
1997 void *p;
1998
b3a834b1 1999 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
2000 this_order--;
2001
2002 do {
59f082e4 2003 page = alloc_pages_node(node,
36e1f3d1 2004 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 2005 this_order);
320ae51f
JA
2006 if (page)
2007 break;
2008 if (!this_order--)
2009 break;
2010 if (order_to_size(this_order) < rq_size)
2011 break;
2012 } while (1);
2013
2014 if (!page)
24d2f903 2015 goto fail;
320ae51f
JA
2016
2017 page->private = this_order;
24d2f903 2018 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
2019
2020 p = page_address(page);
f75782e4
CM
2021 /*
2022 * Allow kmemleak to scan these pages as they contain pointers
2023 * to additional allocations like via ops->init_request().
2024 */
36e1f3d1 2025 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 2026 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 2027 to_do = min(entries_per_page, depth - i);
320ae51f
JA
2028 left -= to_do * rq_size;
2029 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
2030 struct request *rq = p;
2031
2032 tags->static_rqs[i] = rq;
1d9bd516
TH
2033 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2034 tags->static_rqs[i] = NULL;
2035 goto fail;
e9b267d9
CH
2036 }
2037
320ae51f
JA
2038 p += rq_size;
2039 i++;
2040 }
2041 }
cc71a6f4 2042 return 0;
320ae51f 2043
24d2f903 2044fail:
cc71a6f4
JA
2045 blk_mq_free_rqs(set, tags, hctx_idx);
2046 return -ENOMEM;
320ae51f
JA
2047}
2048
e57690fe
JA
2049/*
2050 * 'cpu' is going away. splice any existing rq_list entries from this
2051 * software queue to the hw queue dispatch list, and ensure that it
2052 * gets run.
2053 */
9467f859 2054static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 2055{
9467f859 2056 struct blk_mq_hw_ctx *hctx;
484b4061
JA
2057 struct blk_mq_ctx *ctx;
2058 LIST_HEAD(tmp);
2059
9467f859 2060 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 2061 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
2062
2063 spin_lock(&ctx->lock);
2064 if (!list_empty(&ctx->rq_list)) {
2065 list_splice_init(&ctx->rq_list, &tmp);
2066 blk_mq_hctx_clear_pending(hctx, ctx);
2067 }
2068 spin_unlock(&ctx->lock);
2069
2070 if (list_empty(&tmp))
9467f859 2071 return 0;
484b4061 2072
e57690fe
JA
2073 spin_lock(&hctx->lock);
2074 list_splice_tail_init(&tmp, &hctx->dispatch);
2075 spin_unlock(&hctx->lock);
484b4061
JA
2076
2077 blk_mq_run_hw_queue(hctx, true);
9467f859 2078 return 0;
484b4061
JA
2079}
2080
9467f859 2081static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2082{
9467f859
TG
2083 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2084 &hctx->cpuhp_dead);
484b4061
JA
2085}
2086
c3b4afca 2087/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2088static void blk_mq_exit_hctx(struct request_queue *q,
2089 struct blk_mq_tag_set *set,
2090 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2091{
9c1051aa
OS
2092 blk_mq_debugfs_unregister_hctx(hctx);
2093
8ab0b7dc
ML
2094 if (blk_mq_hw_queue_mapped(hctx))
2095 blk_mq_tag_idle(hctx);
08e98fc6 2096
f70ced09 2097 if (set->ops->exit_request)
d6296d39 2098 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2099
93252632
OS
2100 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2101
08e98fc6
ML
2102 if (set->ops->exit_hctx)
2103 set->ops->exit_hctx(hctx, hctx_idx);
2104
6a83e74d 2105 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2106 cleanup_srcu_struct(hctx->srcu);
6a83e74d 2107
9467f859 2108 blk_mq_remove_cpuhp(hctx);
f70ced09 2109 blk_free_flush_queue(hctx->fq);
88459642 2110 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2111}
2112
624dbe47
ML
2113static void blk_mq_exit_hw_queues(struct request_queue *q,
2114 struct blk_mq_tag_set *set, int nr_queue)
2115{
2116 struct blk_mq_hw_ctx *hctx;
2117 unsigned int i;
2118
2119 queue_for_each_hw_ctx(q, hctx, i) {
2120 if (i == nr_queue)
2121 break;
08e98fc6 2122 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2123 }
624dbe47
ML
2124}
2125
08e98fc6
ML
2126static int blk_mq_init_hctx(struct request_queue *q,
2127 struct blk_mq_tag_set *set,
2128 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2129{
08e98fc6
ML
2130 int node;
2131
2132 node = hctx->numa_node;
2133 if (node == NUMA_NO_NODE)
2134 node = hctx->numa_node = set->numa_node;
2135
9f993737 2136 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2137 spin_lock_init(&hctx->lock);
2138 INIT_LIST_HEAD(&hctx->dispatch);
2139 hctx->queue = q;
2404e607 2140 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2141
9467f859 2142 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
2143
2144 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
2145
2146 /*
08e98fc6
ML
2147 * Allocate space for all possible cpus to avoid allocation at
2148 * runtime
320ae51f 2149 */
d904bfa7 2150 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
08e98fc6
ML
2151 GFP_KERNEL, node);
2152 if (!hctx->ctxs)
2153 goto unregister_cpu_notifier;
320ae51f 2154
88459642
OS
2155 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2156 node))
08e98fc6 2157 goto free_ctxs;
320ae51f 2158
08e98fc6 2159 hctx->nr_ctx = 0;
320ae51f 2160
eb619fdb
JA
2161 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2162 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2163
08e98fc6
ML
2164 if (set->ops->init_hctx &&
2165 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2166 goto free_bitmap;
320ae51f 2167
93252632
OS
2168 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2169 goto exit_hctx;
2170
f70ced09
ML
2171 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2172 if (!hctx->fq)
93252632 2173 goto sched_exit_hctx;
320ae51f 2174
1d9bd516 2175 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
f70ced09 2176 goto free_fq;
320ae51f 2177
6a83e74d 2178 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2179 init_srcu_struct(hctx->srcu);
6a83e74d 2180
9c1051aa
OS
2181 blk_mq_debugfs_register_hctx(q, hctx);
2182
08e98fc6 2183 return 0;
320ae51f 2184
f70ced09
ML
2185 free_fq:
2186 kfree(hctx->fq);
93252632
OS
2187 sched_exit_hctx:
2188 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
2189 exit_hctx:
2190 if (set->ops->exit_hctx)
2191 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 2192 free_bitmap:
88459642 2193 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2194 free_ctxs:
2195 kfree(hctx->ctxs);
2196 unregister_cpu_notifier:
9467f859 2197 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2198 return -1;
2199}
320ae51f 2200
320ae51f
JA
2201static void blk_mq_init_cpu_queues(struct request_queue *q,
2202 unsigned int nr_hw_queues)
2203{
2204 unsigned int i;
2205
2206 for_each_possible_cpu(i) {
2207 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2208 struct blk_mq_hw_ctx *hctx;
2209
320ae51f
JA
2210 __ctx->cpu = i;
2211 spin_lock_init(&__ctx->lock);
2212 INIT_LIST_HEAD(&__ctx->rq_list);
2213 __ctx->queue = q;
2214
4b855ad3
CH
2215 /* If the cpu isn't present, the cpu is mapped to first hctx */
2216 if (!cpu_present(i))
320ae51f
JA
2217 continue;
2218
7d7e0f90 2219 hctx = blk_mq_map_queue(q, i);
e4043dcf 2220
320ae51f
JA
2221 /*
2222 * Set local node, IFF we have more than one hw queue. If
2223 * not, we remain on the home node of the device
2224 */
2225 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 2226 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
2227 }
2228}
2229
cc71a6f4
JA
2230static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2231{
2232 int ret = 0;
2233
2234 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2235 set->queue_depth, set->reserved_tags);
2236 if (!set->tags[hctx_idx])
2237 return false;
2238
2239 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2240 set->queue_depth);
2241 if (!ret)
2242 return true;
2243
2244 blk_mq_free_rq_map(set->tags[hctx_idx]);
2245 set->tags[hctx_idx] = NULL;
2246 return false;
2247}
2248
2249static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2250 unsigned int hctx_idx)
2251{
bd166ef1
JA
2252 if (set->tags[hctx_idx]) {
2253 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2254 blk_mq_free_rq_map(set->tags[hctx_idx]);
2255 set->tags[hctx_idx] = NULL;
2256 }
cc71a6f4
JA
2257}
2258
4b855ad3 2259static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2260{
d1b1cea1 2261 unsigned int i, hctx_idx;
320ae51f
JA
2262 struct blk_mq_hw_ctx *hctx;
2263 struct blk_mq_ctx *ctx;
2a34c087 2264 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2265
60de074b
AM
2266 /*
2267 * Avoid others reading imcomplete hctx->cpumask through sysfs
2268 */
2269 mutex_lock(&q->sysfs_lock);
2270
320ae51f 2271 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2272 cpumask_clear(hctx->cpumask);
320ae51f
JA
2273 hctx->nr_ctx = 0;
2274 }
2275
2276 /*
4b855ad3
CH
2277 * Map software to hardware queues.
2278 *
2279 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2280 */
4b855ad3 2281 for_each_present_cpu(i) {
d1b1cea1
GKB
2282 hctx_idx = q->mq_map[i];
2283 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2284 if (!set->tags[hctx_idx] &&
2285 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2286 /*
2287 * If tags initialization fail for some hctx,
2288 * that hctx won't be brought online. In this
2289 * case, remap the current ctx to hctx[0] which
2290 * is guaranteed to always have tags allocated
2291 */
cc71a6f4 2292 q->mq_map[i] = 0;
d1b1cea1
GKB
2293 }
2294
897bb0c7 2295 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2296 hctx = blk_mq_map_queue(q, i);
868f2f0b 2297
e4043dcf 2298 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2299 ctx->index_hw = hctx->nr_ctx;
2300 hctx->ctxs[hctx->nr_ctx++] = ctx;
2301 }
506e931f 2302
60de074b
AM
2303 mutex_unlock(&q->sysfs_lock);
2304
506e931f 2305 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2306 /*
a68aafa5
JA
2307 * If no software queues are mapped to this hardware queue,
2308 * disable it and free the request entries.
484b4061
JA
2309 */
2310 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2311 /* Never unmap queue 0. We need it as a
2312 * fallback in case of a new remap fails
2313 * allocation
2314 */
cc71a6f4
JA
2315 if (i && set->tags[i])
2316 blk_mq_free_map_and_requests(set, i);
2317
2a34c087 2318 hctx->tags = NULL;
484b4061
JA
2319 continue;
2320 }
2321
2a34c087
ML
2322 hctx->tags = set->tags[i];
2323 WARN_ON(!hctx->tags);
2324
889fa31f
CY
2325 /*
2326 * Set the map size to the number of mapped software queues.
2327 * This is more accurate and more efficient than looping
2328 * over all possibly mapped software queues.
2329 */
88459642 2330 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2331
484b4061
JA
2332 /*
2333 * Initialize batch roundrobin counts
2334 */
506e931f
JA
2335 hctx->next_cpu = cpumask_first(hctx->cpumask);
2336 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2337 }
320ae51f
JA
2338}
2339
8e8320c9
JA
2340/*
2341 * Caller needs to ensure that we're either frozen/quiesced, or that
2342 * the queue isn't live yet.
2343 */
2404e607 2344static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2345{
2346 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2347 int i;
2348
2404e607 2349 queue_for_each_hw_ctx(q, hctx, i) {
8e8320c9
JA
2350 if (shared) {
2351 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2352 atomic_inc(&q->shared_hctx_restart);
2404e607 2353 hctx->flags |= BLK_MQ_F_TAG_SHARED;
8e8320c9
JA
2354 } else {
2355 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2356 atomic_dec(&q->shared_hctx_restart);
2404e607 2357 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
8e8320c9 2358 }
2404e607
JM
2359 }
2360}
2361
8e8320c9
JA
2362static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2363 bool shared)
2404e607
JM
2364{
2365 struct request_queue *q;
0d2602ca 2366
705cda97
BVA
2367 lockdep_assert_held(&set->tag_list_lock);
2368
0d2602ca
JA
2369 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2370 blk_mq_freeze_queue(q);
2404e607 2371 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2372 blk_mq_unfreeze_queue(q);
2373 }
2374}
2375
2376static void blk_mq_del_queue_tag_set(struct request_queue *q)
2377{
2378 struct blk_mq_tag_set *set = q->tag_set;
2379
0d2602ca 2380 mutex_lock(&set->tag_list_lock);
705cda97
BVA
2381 list_del_rcu(&q->tag_set_list);
2382 INIT_LIST_HEAD(&q->tag_set_list);
2404e607
JM
2383 if (list_is_singular(&set->tag_list)) {
2384 /* just transitioned to unshared */
2385 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2386 /* update existing queue */
2387 blk_mq_update_tag_set_depth(set, false);
2388 }
0d2602ca 2389 mutex_unlock(&set->tag_list_lock);
705cda97
BVA
2390
2391 synchronize_rcu();
0d2602ca
JA
2392}
2393
2394static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2395 struct request_queue *q)
2396{
2397 q->tag_set = set;
2398
2399 mutex_lock(&set->tag_list_lock);
2404e607 2400
ff821d27
JA
2401 /*
2402 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2403 */
2404 if (!list_empty(&set->tag_list) &&
2405 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404e607
JM
2406 set->flags |= BLK_MQ_F_TAG_SHARED;
2407 /* update existing queue */
2408 blk_mq_update_tag_set_depth(set, true);
2409 }
2410 if (set->flags & BLK_MQ_F_TAG_SHARED)
2411 queue_set_hctx_shared(q, true);
705cda97 2412 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2413
0d2602ca
JA
2414 mutex_unlock(&set->tag_list_lock);
2415}
2416
e09aae7e
ML
2417/*
2418 * It is the actual release handler for mq, but we do it from
2419 * request queue's release handler for avoiding use-after-free
2420 * and headache because q->mq_kobj shouldn't have been introduced,
2421 * but we can't group ctx/kctx kobj without it.
2422 */
2423void blk_mq_release(struct request_queue *q)
2424{
2425 struct blk_mq_hw_ctx *hctx;
2426 unsigned int i;
2427
2428 /* hctx kobj stays in hctx */
c3b4afca
ML
2429 queue_for_each_hw_ctx(q, hctx, i) {
2430 if (!hctx)
2431 continue;
6c8b232e 2432 kobject_put(&hctx->kobj);
c3b4afca 2433 }
e09aae7e 2434
a723bab3
AM
2435 q->mq_map = NULL;
2436
e09aae7e
ML
2437 kfree(q->queue_hw_ctx);
2438
7ea5fe31
ML
2439 /*
2440 * release .mq_kobj and sw queue's kobject now because
2441 * both share lifetime with request queue.
2442 */
2443 blk_mq_sysfs_deinit(q);
2444
e09aae7e
ML
2445 free_percpu(q->queue_ctx);
2446}
2447
24d2f903 2448struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2449{
2450 struct request_queue *uninit_q, *q;
2451
2452 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2453 if (!uninit_q)
2454 return ERR_PTR(-ENOMEM);
2455
2456 q = blk_mq_init_allocated_queue(set, uninit_q);
2457 if (IS_ERR(q))
2458 blk_cleanup_queue(uninit_q);
2459
2460 return q;
2461}
2462EXPORT_SYMBOL(blk_mq_init_queue);
2463
07319678
BVA
2464static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2465{
2466 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2467
05707b64 2468 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
07319678
BVA
2469 __alignof__(struct blk_mq_hw_ctx)) !=
2470 sizeof(struct blk_mq_hw_ctx));
2471
2472 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2473 hw_ctx_size += sizeof(struct srcu_struct);
2474
2475 return hw_ctx_size;
2476}
2477
868f2f0b
KB
2478static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2479 struct request_queue *q)
320ae51f 2480{
868f2f0b
KB
2481 int i, j;
2482 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2483
868f2f0b 2484 blk_mq_sysfs_unregister(q);
fb350e0a
ML
2485
2486 /* protect against switching io scheduler */
2487 mutex_lock(&q->sysfs_lock);
24d2f903 2488 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2489 int node;
f14bbe77 2490
868f2f0b
KB
2491 if (hctxs[i])
2492 continue;
2493
2494 node = blk_mq_hw_queue_to_node(q->mq_map, i);
07319678 2495 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
cdef54dd 2496 GFP_KERNEL, node);
320ae51f 2497 if (!hctxs[i])
868f2f0b 2498 break;
320ae51f 2499
a86073e4 2500 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2501 node)) {
2502 kfree(hctxs[i]);
2503 hctxs[i] = NULL;
2504 break;
2505 }
e4043dcf 2506
0d2602ca 2507 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2508 hctxs[i]->numa_node = node;
320ae51f 2509 hctxs[i]->queue_num = i;
868f2f0b
KB
2510
2511 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2512 free_cpumask_var(hctxs[i]->cpumask);
2513 kfree(hctxs[i]);
2514 hctxs[i] = NULL;
2515 break;
2516 }
2517 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2518 }
868f2f0b
KB
2519 for (j = i; j < q->nr_hw_queues; j++) {
2520 struct blk_mq_hw_ctx *hctx = hctxs[j];
2521
2522 if (hctx) {
cc71a6f4
JA
2523 if (hctx->tags)
2524 blk_mq_free_map_and_requests(set, j);
868f2f0b 2525 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2526 kobject_put(&hctx->kobj);
868f2f0b
KB
2527 hctxs[j] = NULL;
2528
2529 }
2530 }
2531 q->nr_hw_queues = i;
fb350e0a 2532 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
2533 blk_mq_sysfs_register(q);
2534}
2535
2536struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2537 struct request_queue *q)
2538{
66841672
ML
2539 /* mark the queue as mq asap */
2540 q->mq_ops = set->ops;
2541
34dbad5d 2542 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2543 blk_mq_poll_stats_bkt,
2544 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2545 if (!q->poll_cb)
2546 goto err_exit;
2547
868f2f0b
KB
2548 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2549 if (!q->queue_ctx)
c7de5726 2550 goto err_exit;
868f2f0b 2551
737f98cf
ML
2552 /* init q->mq_kobj and sw queues' kobjects */
2553 blk_mq_sysfs_init(q);
2554
868f2f0b
KB
2555 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2556 GFP_KERNEL, set->numa_node);
2557 if (!q->queue_hw_ctx)
2558 goto err_percpu;
2559
bdd17e75 2560 q->mq_map = set->mq_map;
868f2f0b
KB
2561
2562 blk_mq_realloc_hw_ctxs(set, q);
2563 if (!q->nr_hw_queues)
2564 goto err_hctxs;
320ae51f 2565
287922eb 2566 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2567 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2568
2569 q->nr_queues = nr_cpu_ids;
320ae51f 2570
94eddfbe 2571 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2572
05f1dd53
JA
2573 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2574 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2575
1be036e9
CH
2576 q->sg_reserved_size = INT_MAX;
2577
2849450a 2578 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2579 INIT_LIST_HEAD(&q->requeue_list);
2580 spin_lock_init(&q->requeue_lock);
2581
254d259d 2582 blk_queue_make_request(q, blk_mq_make_request);
ea435e1b
CH
2583 if (q->mq_ops->poll)
2584 q->poll_fn = blk_mq_poll;
07068d5b 2585
eba71768
JA
2586 /*
2587 * Do this after blk_queue_make_request() overrides it...
2588 */
2589 q->nr_requests = set->queue_depth;
2590
64f1c21e
JA
2591 /*
2592 * Default to classic polling
2593 */
2594 q->poll_nsec = -1;
2595
24d2f903
CH
2596 if (set->ops->complete)
2597 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2598
24d2f903 2599 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2600 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2601 blk_mq_map_swqueue(q);
4593fdbe 2602
d3484991
JA
2603 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2604 int ret;
2605
2606 ret = blk_mq_sched_init(q);
2607 if (ret)
2608 return ERR_PTR(ret);
2609 }
2610
320ae51f 2611 return q;
18741986 2612
320ae51f 2613err_hctxs:
868f2f0b 2614 kfree(q->queue_hw_ctx);
320ae51f 2615err_percpu:
868f2f0b 2616 free_percpu(q->queue_ctx);
c7de5726
ML
2617err_exit:
2618 q->mq_ops = NULL;
320ae51f
JA
2619 return ERR_PTR(-ENOMEM);
2620}
b62c21b7 2621EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2622
2623void blk_mq_free_queue(struct request_queue *q)
2624{
624dbe47 2625 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2626
0d2602ca 2627 blk_mq_del_queue_tag_set(q);
624dbe47 2628 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2629}
320ae51f
JA
2630
2631/* Basically redo blk_mq_init_queue with queue frozen */
4b855ad3 2632static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f 2633{
4ecd4fef 2634 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2635
9c1051aa 2636 blk_mq_debugfs_unregister_hctxs(q);
67aec14c
JA
2637 blk_mq_sysfs_unregister(q);
2638
320ae51f
JA
2639 /*
2640 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
ff821d27
JA
2641 * we should change hctx numa_node according to the new topology (this
2642 * involves freeing and re-allocating memory, worth doing?)
320ae51f 2643 */
4b855ad3 2644 blk_mq_map_swqueue(q);
320ae51f 2645
67aec14c 2646 blk_mq_sysfs_register(q);
9c1051aa 2647 blk_mq_debugfs_register_hctxs(q);
320ae51f
JA
2648}
2649
a5164405
JA
2650static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2651{
2652 int i;
2653
cc71a6f4
JA
2654 for (i = 0; i < set->nr_hw_queues; i++)
2655 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2656 goto out_unwind;
a5164405
JA
2657
2658 return 0;
2659
2660out_unwind:
2661 while (--i >= 0)
cc71a6f4 2662 blk_mq_free_rq_map(set->tags[i]);
a5164405 2663
a5164405
JA
2664 return -ENOMEM;
2665}
2666
2667/*
2668 * Allocate the request maps associated with this tag_set. Note that this
2669 * may reduce the depth asked for, if memory is tight. set->queue_depth
2670 * will be updated to reflect the allocated depth.
2671 */
2672static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2673{
2674 unsigned int depth;
2675 int err;
2676
2677 depth = set->queue_depth;
2678 do {
2679 err = __blk_mq_alloc_rq_maps(set);
2680 if (!err)
2681 break;
2682
2683 set->queue_depth >>= 1;
2684 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2685 err = -ENOMEM;
2686 break;
2687 }
2688 } while (set->queue_depth);
2689
2690 if (!set->queue_depth || err) {
2691 pr_err("blk-mq: failed to allocate request map\n");
2692 return -ENOMEM;
2693 }
2694
2695 if (depth != set->queue_depth)
2696 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2697 depth, set->queue_depth);
2698
2699 return 0;
2700}
2701
ebe8bddb
OS
2702static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2703{
7d4901a9
ML
2704 if (set->ops->map_queues) {
2705 int cpu;
2706 /*
2707 * transport .map_queues is usually done in the following
2708 * way:
2709 *
2710 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2711 * mask = get_cpu_mask(queue)
2712 * for_each_cpu(cpu, mask)
2713 * set->mq_map[cpu] = queue;
2714 * }
2715 *
2716 * When we need to remap, the table has to be cleared for
2717 * killing stale mapping since one CPU may not be mapped
2718 * to any hw queue.
2719 */
2720 for_each_possible_cpu(cpu)
2721 set->mq_map[cpu] = 0;
2722
ebe8bddb 2723 return set->ops->map_queues(set);
7d4901a9 2724 } else
ebe8bddb
OS
2725 return blk_mq_map_queues(set);
2726}
2727
a4391c64
JA
2728/*
2729 * Alloc a tag set to be associated with one or more request queues.
2730 * May fail with EINVAL for various error conditions. May adjust the
2731 * requested depth down, if if it too large. In that case, the set
2732 * value will be stored in set->queue_depth.
2733 */
24d2f903
CH
2734int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2735{
da695ba2
CH
2736 int ret;
2737
205fb5f5
BVA
2738 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2739
24d2f903
CH
2740 if (!set->nr_hw_queues)
2741 return -EINVAL;
a4391c64 2742 if (!set->queue_depth)
24d2f903
CH
2743 return -EINVAL;
2744 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2745 return -EINVAL;
2746
7d7e0f90 2747 if (!set->ops->queue_rq)
24d2f903
CH
2748 return -EINVAL;
2749
de148297
ML
2750 if (!set->ops->get_budget ^ !set->ops->put_budget)
2751 return -EINVAL;
2752
a4391c64
JA
2753 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2754 pr_info("blk-mq: reduced tag depth to %u\n",
2755 BLK_MQ_MAX_DEPTH);
2756 set->queue_depth = BLK_MQ_MAX_DEPTH;
2757 }
24d2f903 2758
6637fadf
SL
2759 /*
2760 * If a crashdump is active, then we are potentially in a very
2761 * memory constrained environment. Limit us to 1 queue and
2762 * 64 tags to prevent using too much memory.
2763 */
2764 if (is_kdump_kernel()) {
2765 set->nr_hw_queues = 1;
2766 set->queue_depth = min(64U, set->queue_depth);
2767 }
868f2f0b
KB
2768 /*
2769 * There is no use for more h/w queues than cpus.
2770 */
2771 if (set->nr_hw_queues > nr_cpu_ids)
2772 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2773
868f2f0b 2774 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2775 GFP_KERNEL, set->numa_node);
2776 if (!set->tags)
a5164405 2777 return -ENOMEM;
24d2f903 2778
da695ba2
CH
2779 ret = -ENOMEM;
2780 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2781 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2782 if (!set->mq_map)
2783 goto out_free_tags;
2784
ebe8bddb 2785 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2786 if (ret)
2787 goto out_free_mq_map;
2788
2789 ret = blk_mq_alloc_rq_maps(set);
2790 if (ret)
bdd17e75 2791 goto out_free_mq_map;
24d2f903 2792
0d2602ca
JA
2793 mutex_init(&set->tag_list_lock);
2794 INIT_LIST_HEAD(&set->tag_list);
2795
24d2f903 2796 return 0;
bdd17e75
CH
2797
2798out_free_mq_map:
2799 kfree(set->mq_map);
2800 set->mq_map = NULL;
2801out_free_tags:
5676e7b6
RE
2802 kfree(set->tags);
2803 set->tags = NULL;
da695ba2 2804 return ret;
24d2f903
CH
2805}
2806EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2807
2808void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2809{
2810 int i;
2811
cc71a6f4
JA
2812 for (i = 0; i < nr_cpu_ids; i++)
2813 blk_mq_free_map_and_requests(set, i);
484b4061 2814
bdd17e75
CH
2815 kfree(set->mq_map);
2816 set->mq_map = NULL;
2817
981bd189 2818 kfree(set->tags);
5676e7b6 2819 set->tags = NULL;
24d2f903
CH
2820}
2821EXPORT_SYMBOL(blk_mq_free_tag_set);
2822
e3a2b3f9
JA
2823int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2824{
2825 struct blk_mq_tag_set *set = q->tag_set;
2826 struct blk_mq_hw_ctx *hctx;
2827 int i, ret;
2828
bd166ef1 2829 if (!set)
e3a2b3f9
JA
2830 return -EINVAL;
2831
70f36b60 2832 blk_mq_freeze_queue(q);
24f5a90f 2833 blk_mq_quiesce_queue(q);
70f36b60 2834
e3a2b3f9
JA
2835 ret = 0;
2836 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2837 if (!hctx->tags)
2838 continue;
bd166ef1
JA
2839 /*
2840 * If we're using an MQ scheduler, just update the scheduler
2841 * queue depth. This is similar to what the old code would do.
2842 */
70f36b60 2843 if (!hctx->sched_tags) {
c2e82a23 2844 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
2845 false);
2846 } else {
2847 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2848 nr, true);
2849 }
e3a2b3f9
JA
2850 if (ret)
2851 break;
2852 }
2853
2854 if (!ret)
2855 q->nr_requests = nr;
2856
24f5a90f 2857 blk_mq_unquiesce_queue(q);
70f36b60 2858 blk_mq_unfreeze_queue(q);
70f36b60 2859
e3a2b3f9
JA
2860 return ret;
2861}
2862
e4dc2b32
KB
2863static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2864 int nr_hw_queues)
868f2f0b
KB
2865{
2866 struct request_queue *q;
2867
705cda97
BVA
2868 lockdep_assert_held(&set->tag_list_lock);
2869
868f2f0b
KB
2870 if (nr_hw_queues > nr_cpu_ids)
2871 nr_hw_queues = nr_cpu_ids;
2872 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2873 return;
2874
2875 list_for_each_entry(q, &set->tag_list, tag_set_list)
2876 blk_mq_freeze_queue(q);
2877
2878 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2879 blk_mq_update_queue_map(set);
868f2f0b
KB
2880 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2881 blk_mq_realloc_hw_ctxs(set, q);
4b855ad3 2882 blk_mq_queue_reinit(q);
868f2f0b
KB
2883 }
2884
2885 list_for_each_entry(q, &set->tag_list, tag_set_list)
2886 blk_mq_unfreeze_queue(q);
2887}
e4dc2b32
KB
2888
2889void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2890{
2891 mutex_lock(&set->tag_list_lock);
2892 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2893 mutex_unlock(&set->tag_list_lock);
2894}
868f2f0b
KB
2895EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2896
34dbad5d
OS
2897/* Enable polling stats and return whether they were already enabled. */
2898static bool blk_poll_stats_enable(struct request_queue *q)
2899{
2900 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2901 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2902 return true;
2903 blk_stat_add_callback(q, q->poll_cb);
2904 return false;
2905}
2906
2907static void blk_mq_poll_stats_start(struct request_queue *q)
2908{
2909 /*
2910 * We don't arm the callback if polling stats are not enabled or the
2911 * callback is already active.
2912 */
2913 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2914 blk_stat_is_active(q->poll_cb))
2915 return;
2916
2917 blk_stat_activate_msecs(q->poll_cb, 100);
2918}
2919
2920static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2921{
2922 struct request_queue *q = cb->data;
720b8ccc 2923 int bucket;
34dbad5d 2924
720b8ccc
SB
2925 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2926 if (cb->stat[bucket].nr_samples)
2927 q->poll_stat[bucket] = cb->stat[bucket];
2928 }
34dbad5d
OS
2929}
2930
64f1c21e
JA
2931static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2932 struct blk_mq_hw_ctx *hctx,
2933 struct request *rq)
2934{
64f1c21e 2935 unsigned long ret = 0;
720b8ccc 2936 int bucket;
64f1c21e
JA
2937
2938 /*
2939 * If stats collection isn't on, don't sleep but turn it on for
2940 * future users
2941 */
34dbad5d 2942 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2943 return 0;
2944
64f1c21e
JA
2945 /*
2946 * As an optimistic guess, use half of the mean service time
2947 * for this type of request. We can (and should) make this smarter.
2948 * For instance, if the completion latencies are tight, we can
2949 * get closer than just half the mean. This is especially
2950 * important on devices where the completion latencies are longer
720b8ccc
SB
2951 * than ~10 usec. We do use the stats for the relevant IO size
2952 * if available which does lead to better estimates.
64f1c21e 2953 */
720b8ccc
SB
2954 bucket = blk_mq_poll_stats_bkt(rq);
2955 if (bucket < 0)
2956 return ret;
2957
2958 if (q->poll_stat[bucket].nr_samples)
2959 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
2960
2961 return ret;
2962}
2963
06426adf 2964static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2965 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2966 struct request *rq)
2967{
2968 struct hrtimer_sleeper hs;
2969 enum hrtimer_mode mode;
64f1c21e 2970 unsigned int nsecs;
06426adf
JA
2971 ktime_t kt;
2972
64f1c21e
JA
2973 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2974 return false;
2975
2976 /*
2977 * poll_nsec can be:
2978 *
2979 * -1: don't ever hybrid sleep
2980 * 0: use half of prev avg
2981 * >0: use this specific value
2982 */
2983 if (q->poll_nsec == -1)
2984 return false;
2985 else if (q->poll_nsec > 0)
2986 nsecs = q->poll_nsec;
2987 else
2988 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2989
2990 if (!nsecs)
06426adf
JA
2991 return false;
2992
2993 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2994
2995 /*
2996 * This will be replaced with the stats tracking code, using
2997 * 'avg_completion_time / 2' as the pre-sleep target.
2998 */
8b0e1953 2999 kt = nsecs;
06426adf
JA
3000
3001 mode = HRTIMER_MODE_REL;
3002 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3003 hrtimer_set_expires(&hs.timer, kt);
3004
3005 hrtimer_init_sleeper(&hs, current);
3006 do {
5a61c363 3007 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
06426adf
JA
3008 break;
3009 set_current_state(TASK_UNINTERRUPTIBLE);
3010 hrtimer_start_expires(&hs.timer, mode);
3011 if (hs.task)
3012 io_schedule();
3013 hrtimer_cancel(&hs.timer);
3014 mode = HRTIMER_MODE_ABS;
3015 } while (hs.task && !signal_pending(current));
3016
3017 __set_current_state(TASK_RUNNING);
3018 destroy_hrtimer_on_stack(&hs.timer);
3019 return true;
3020}
3021
bbd7bb70
JA
3022static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3023{
3024 struct request_queue *q = hctx->queue;
3025 long state;
3026
06426adf
JA
3027 /*
3028 * If we sleep, have the caller restart the poll loop to reset
3029 * the state. Like for the other success return cases, the
3030 * caller is responsible for checking if the IO completed. If
3031 * the IO isn't complete, we'll get called again and will go
3032 * straight to the busy poll loop.
3033 */
64f1c21e 3034 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
3035 return true;
3036
bbd7bb70
JA
3037 hctx->poll_considered++;
3038
3039 state = current->state;
3040 while (!need_resched()) {
3041 int ret;
3042
3043 hctx->poll_invoked++;
3044
3045 ret = q->mq_ops->poll(hctx, rq->tag);
3046 if (ret > 0) {
3047 hctx->poll_success++;
3048 set_current_state(TASK_RUNNING);
3049 return true;
3050 }
3051
3052 if (signal_pending_state(state, current))
3053 set_current_state(TASK_RUNNING);
3054
3055 if (current->state == TASK_RUNNING)
3056 return true;
3057 if (ret < 0)
3058 break;
3059 cpu_relax();
3060 }
3061
3062 return false;
3063}
3064
ea435e1b 3065static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
bbd7bb70
JA
3066{
3067 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
3068 struct request *rq;
3069
ea435e1b 3070 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
bbd7bb70
JA
3071 return false;
3072
bbd7bb70 3073 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
3074 if (!blk_qc_t_is_internal(cookie))
3075 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 3076 else {
bd166ef1 3077 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
3078 /*
3079 * With scheduling, if the request has completed, we'll
3080 * get a NULL return here, as we clear the sched tag when
3081 * that happens. The request still remains valid, like always,
3082 * so we should be safe with just the NULL check.
3083 */
3084 if (!rq)
3085 return false;
3086 }
bbd7bb70
JA
3087
3088 return __blk_mq_poll(hctx, rq);
3089}
bbd7bb70 3090
320ae51f
JA
3091static int __init blk_mq_init(void)
3092{
9467f859
TG
3093 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3094 blk_mq_hctx_notify_dead);
320ae51f
JA
3095 return 0;
3096}
3097subsys_initcall(blk_mq_init);