Merge tag 'for-linus-5.4-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
75bb4625
JA
2/*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
320ae51f
JA
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/backing-dev.h>
11#include <linux/bio.h>
12#include <linux/blkdev.h>
f75782e4 13#include <linux/kmemleak.h>
320ae51f
JA
14#include <linux/mm.h>
15#include <linux/init.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18#include <linux/smp.h>
19#include <linux/llist.h>
20#include <linux/list_sort.h>
21#include <linux/cpu.h>
22#include <linux/cache.h>
23#include <linux/sched/sysctl.h>
105ab3d8 24#include <linux/sched/topology.h>
174cd4b1 25#include <linux/sched/signal.h>
320ae51f 26#include <linux/delay.h>
aedcd72f 27#include <linux/crash_dump.h>
88c7b2b7 28#include <linux/prefetch.h>
320ae51f
JA
29
30#include <trace/events/block.h>
31
32#include <linux/blk-mq.h>
54d4e6ab 33#include <linux/t10-pi.h>
320ae51f
JA
34#include "blk.h"
35#include "blk-mq.h"
9c1051aa 36#include "blk-mq-debugfs.h"
320ae51f 37#include "blk-mq-tag.h"
986d413b 38#include "blk-pm.h"
cf43e6be 39#include "blk-stat.h"
bd166ef1 40#include "blk-mq-sched.h"
c1c80384 41#include "blk-rq-qos.h"
320ae51f 42
34dbad5d
OS
43static void blk_mq_poll_stats_start(struct request_queue *q);
44static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45
720b8ccc
SB
46static int blk_mq_poll_stats_bkt(const struct request *rq)
47{
3d244306 48 int ddir, sectors, bucket;
720b8ccc 49
99c749a4 50 ddir = rq_data_dir(rq);
3d244306 51 sectors = blk_rq_stats_sectors(rq);
720b8ccc 52
3d244306 53 bucket = ddir + 2 * ilog2(sectors);
720b8ccc
SB
54
55 if (bucket < 0)
56 return -1;
57 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
58 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
59
60 return bucket;
61}
62
320ae51f 63/*
85fae294
YY
64 * Check if any of the ctx, dispatch list or elevator
65 * have pending work in this hardware queue.
320ae51f 66 */
79f720a7 67static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 68{
79f720a7
JA
69 return !list_empty_careful(&hctx->dispatch) ||
70 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 71 blk_mq_sched_has_work(hctx);
1429d7c9
JA
72}
73
320ae51f
JA
74/*
75 * Mark this ctx as having pending work in this hardware queue
76 */
77static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78 struct blk_mq_ctx *ctx)
79{
f31967f0
JA
80 const int bit = ctx->index_hw[hctx->type];
81
82 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
83 sbitmap_set_bit(&hctx->ctx_map, bit);
1429d7c9
JA
84}
85
86static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
87 struct blk_mq_ctx *ctx)
88{
f31967f0
JA
89 const int bit = ctx->index_hw[hctx->type];
90
91 sbitmap_clear_bit(&hctx->ctx_map, bit);
320ae51f
JA
92}
93
f299b7c7
JA
94struct mq_inflight {
95 struct hd_struct *part;
96 unsigned int *inflight;
97};
98
7baa8572 99static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
f299b7c7
JA
100 struct request *rq, void *priv,
101 bool reserved)
102{
103 struct mq_inflight *mi = priv;
104
6131837b 105 /*
e016b782 106 * index[0] counts the specific partition that was asked for.
6131837b
OS
107 */
108 if (rq->part == mi->part)
109 mi->inflight[0]++;
7baa8572
JA
110
111 return true;
f299b7c7
JA
112}
113
e016b782 114unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
f299b7c7 115{
e016b782 116 unsigned inflight[2];
f299b7c7
JA
117 struct mq_inflight mi = { .part = part, .inflight = inflight, };
118
b8d62b3a 119 inflight[0] = inflight[1] = 0;
f299b7c7 120 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
e016b782
MP
121
122 return inflight[0];
f299b7c7
JA
123}
124
7baa8572 125static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
bf0ddaba
OS
126 struct request *rq, void *priv,
127 bool reserved)
128{
129 struct mq_inflight *mi = priv;
130
131 if (rq->part == mi->part)
132 mi->inflight[rq_data_dir(rq)]++;
7baa8572
JA
133
134 return true;
bf0ddaba
OS
135}
136
137void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
138 unsigned int inflight[2])
139{
140 struct mq_inflight mi = { .part = part, .inflight = inflight, };
141
142 inflight[0] = inflight[1] = 0;
143 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
144}
145
1671d522 146void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 147{
7996a8b5
BL
148 mutex_lock(&q->mq_freeze_lock);
149 if (++q->mq_freeze_depth == 1) {
3ef28e83 150 percpu_ref_kill(&q->q_usage_counter);
7996a8b5 151 mutex_unlock(&q->mq_freeze_lock);
344e9ffc 152 if (queue_is_mq(q))
055f6e18 153 blk_mq_run_hw_queues(q, false);
7996a8b5
BL
154 } else {
155 mutex_unlock(&q->mq_freeze_lock);
cddd5d17 156 }
f3af020b 157}
1671d522 158EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 159
6bae363e 160void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 161{
3ef28e83 162 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 163}
6bae363e 164EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 165
f91328c4
KB
166int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
167 unsigned long timeout)
168{
169 return wait_event_timeout(q->mq_freeze_wq,
170 percpu_ref_is_zero(&q->q_usage_counter),
171 timeout);
172}
173EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 174
f3af020b
TH
175/*
176 * Guarantee no request is in use, so we can change any data structure of
177 * the queue afterward.
178 */
3ef28e83 179void blk_freeze_queue(struct request_queue *q)
f3af020b 180{
3ef28e83
DW
181 /*
182 * In the !blk_mq case we are only calling this to kill the
183 * q_usage_counter, otherwise this increases the freeze depth
184 * and waits for it to return to zero. For this reason there is
185 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
186 * exported to drivers as the only user for unfreeze is blk_mq.
187 */
1671d522 188 blk_freeze_queue_start(q);
f3af020b
TH
189 blk_mq_freeze_queue_wait(q);
190}
3ef28e83
DW
191
192void blk_mq_freeze_queue(struct request_queue *q)
193{
194 /*
195 * ...just an alias to keep freeze and unfreeze actions balanced
196 * in the blk_mq_* namespace
197 */
198 blk_freeze_queue(q);
199}
c761d96b 200EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 201
b4c6a028 202void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 203{
7996a8b5
BL
204 mutex_lock(&q->mq_freeze_lock);
205 q->mq_freeze_depth--;
206 WARN_ON_ONCE(q->mq_freeze_depth < 0);
207 if (!q->mq_freeze_depth) {
bdd63160 208 percpu_ref_resurrect(&q->q_usage_counter);
320ae51f 209 wake_up_all(&q->mq_freeze_wq);
add703fd 210 }
7996a8b5 211 mutex_unlock(&q->mq_freeze_lock);
320ae51f 212}
b4c6a028 213EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 214
852ec809
BVA
215/*
216 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
217 * mpt3sas driver such that this function can be removed.
218 */
219void blk_mq_quiesce_queue_nowait(struct request_queue *q)
220{
8814ce8a 221 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
852ec809
BVA
222}
223EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
224
6a83e74d 225/**
69e07c4a 226 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
227 * @q: request queue.
228 *
229 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
230 * callback function is invoked. Once this function is returned, we make
231 * sure no dispatch can happen until the queue is unquiesced via
232 * blk_mq_unquiesce_queue().
6a83e74d
BVA
233 */
234void blk_mq_quiesce_queue(struct request_queue *q)
235{
236 struct blk_mq_hw_ctx *hctx;
237 unsigned int i;
238 bool rcu = false;
239
1d9e9bc6 240 blk_mq_quiesce_queue_nowait(q);
f4560ffe 241
6a83e74d
BVA
242 queue_for_each_hw_ctx(q, hctx, i) {
243 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 244 synchronize_srcu(hctx->srcu);
6a83e74d
BVA
245 else
246 rcu = true;
247 }
248 if (rcu)
249 synchronize_rcu();
250}
251EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
252
e4e73913
ML
253/*
254 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
255 * @q: request queue.
256 *
257 * This function recovers queue into the state before quiescing
258 * which is done by blk_mq_quiesce_queue.
259 */
260void blk_mq_unquiesce_queue(struct request_queue *q)
261{
8814ce8a 262 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
f4560ffe 263
1d9e9bc6
ML
264 /* dispatch requests which are inserted during quiescing */
265 blk_mq_run_hw_queues(q, true);
e4e73913
ML
266}
267EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
268
aed3ea94
JA
269void blk_mq_wake_waiters(struct request_queue *q)
270{
271 struct blk_mq_hw_ctx *hctx;
272 unsigned int i;
273
274 queue_for_each_hw_ctx(q, hctx, i)
275 if (blk_mq_hw_queue_mapped(hctx))
276 blk_mq_tag_wakeup_all(hctx->tags, true);
277}
278
320ae51f
JA
279bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
280{
281 return blk_mq_has_free_tags(hctx->tags);
282}
283EXPORT_SYMBOL(blk_mq_can_queue);
284
fe1f4526 285/*
9a91b05b
HT
286 * Only need start/end time stamping if we have iostat or
287 * blk stats enabled, or using an IO scheduler.
fe1f4526
JA
288 */
289static inline bool blk_mq_need_time_stamp(struct request *rq)
290{
9a91b05b 291 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
fe1f4526
JA
292}
293
e4cdf1a1 294static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
6f816b4b 295 unsigned int tag, unsigned int op, u64 alloc_time_ns)
320ae51f 296{
e4cdf1a1
CH
297 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
298 struct request *rq = tags->static_rqs[tag];
bf9ae8c5 299 req_flags_t rq_flags = 0;
c3a148d2 300
e4cdf1a1
CH
301 if (data->flags & BLK_MQ_REQ_INTERNAL) {
302 rq->tag = -1;
303 rq->internal_tag = tag;
304 } else {
d263ed99 305 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
bf9ae8c5 306 rq_flags = RQF_MQ_INFLIGHT;
e4cdf1a1
CH
307 atomic_inc(&data->hctx->nr_active);
308 }
309 rq->tag = tag;
310 rq->internal_tag = -1;
311 data->hctx->tags->rqs[rq->tag] = rq;
312 }
313
af76e555 314 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
315 rq->q = data->q;
316 rq->mq_ctx = data->ctx;
ea4f995e 317 rq->mq_hctx = data->hctx;
bf9ae8c5 318 rq->rq_flags = rq_flags;
ef295ecf 319 rq->cmd_flags = op;
1b6d65a0
BVA
320 if (data->flags & BLK_MQ_REQ_PREEMPT)
321 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 322 if (blk_queue_io_stat(data->q))
e8064021 323 rq->rq_flags |= RQF_IO_STAT;
7c3fb70f 324 INIT_LIST_HEAD(&rq->queuelist);
af76e555
CH
325 INIT_HLIST_NODE(&rq->hash);
326 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
327 rq->rq_disk = NULL;
328 rq->part = NULL;
6f816b4b
TH
329#ifdef CONFIG_BLK_RQ_ALLOC_TIME
330 rq->alloc_time_ns = alloc_time_ns;
331#endif
fe1f4526
JA
332 if (blk_mq_need_time_stamp(rq))
333 rq->start_time_ns = ktime_get_ns();
334 else
335 rq->start_time_ns = 0;
544ccc8d 336 rq->io_start_time_ns = 0;
3d244306 337 rq->stats_sectors = 0;
af76e555
CH
338 rq->nr_phys_segments = 0;
339#if defined(CONFIG_BLK_DEV_INTEGRITY)
340 rq->nr_integrity_segments = 0;
341#endif
af76e555 342 /* tag was already set */
af76e555 343 rq->extra_len = 0;
079076b3 344 WRITE_ONCE(rq->deadline, 0);
af76e555 345
f6be4fb4
JA
346 rq->timeout = 0;
347
af76e555
CH
348 rq->end_io = NULL;
349 rq->end_io_data = NULL;
af76e555 350
e4cdf1a1 351 data->ctx->rq_dispatched[op_is_sync(op)]++;
12f5b931 352 refcount_set(&rq->ref, 1);
e4cdf1a1 353 return rq;
5dee8577
CH
354}
355
d2c0d383 356static struct request *blk_mq_get_request(struct request_queue *q,
f9afca4d
JA
357 struct bio *bio,
358 struct blk_mq_alloc_data *data)
d2c0d383
CH
359{
360 struct elevator_queue *e = q->elevator;
361 struct request *rq;
e4cdf1a1 362 unsigned int tag;
c05f4220 363 bool clear_ctx_on_error = false;
6f816b4b 364 u64 alloc_time_ns = 0;
d2c0d383
CH
365
366 blk_queue_enter_live(q);
6f816b4b
TH
367
368 /* alloc_time includes depth and tag waits */
369 if (blk_queue_rq_alloc_time(q))
370 alloc_time_ns = ktime_get_ns();
371
d2c0d383 372 data->q = q;
21e768b4
BVA
373 if (likely(!data->ctx)) {
374 data->ctx = blk_mq_get_ctx(q);
c05f4220 375 clear_ctx_on_error = true;
21e768b4 376 }
d2c0d383 377 if (likely(!data->hctx))
f9afca4d 378 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
8ccdf4a3 379 data->ctx);
f9afca4d 380 if (data->cmd_flags & REQ_NOWAIT)
03a07c92 381 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
382
383 if (e) {
384 data->flags |= BLK_MQ_REQ_INTERNAL;
385
386 /*
387 * Flush requests are special and go directly to the
17a51199
JA
388 * dispatch list. Don't include reserved tags in the
389 * limiting, as it isn't useful.
d2c0d383 390 */
f9afca4d
JA
391 if (!op_is_flush(data->cmd_flags) &&
392 e->type->ops.limit_depth &&
17a51199 393 !(data->flags & BLK_MQ_REQ_RESERVED))
f9afca4d 394 e->type->ops.limit_depth(data->cmd_flags, data);
d263ed99
JW
395 } else {
396 blk_mq_tag_busy(data->hctx);
d2c0d383
CH
397 }
398
e4cdf1a1
CH
399 tag = blk_mq_get_tag(data);
400 if (tag == BLK_MQ_TAG_FAIL) {
c05f4220 401 if (clear_ctx_on_error)
1ad43c00 402 data->ctx = NULL;
037cebb8
CH
403 blk_queue_exit(q);
404 return NULL;
d2c0d383
CH
405 }
406
6f816b4b 407 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
f9afca4d 408 if (!op_is_flush(data->cmd_flags)) {
037cebb8 409 rq->elv.icq = NULL;
f9cd4bfe 410 if (e && e->type->ops.prepare_request) {
e2b3fa5a
DLM
411 if (e->type->icq_cache)
412 blk_mq_sched_assign_ioc(rq);
44e8c2bf 413
f9cd4bfe 414 e->type->ops.prepare_request(rq, bio);
5bbf4e5a 415 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 416 }
037cebb8
CH
417 }
418 data->hctx->queued++;
419 return rq;
d2c0d383
CH
420}
421
cd6ce148 422struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 423 blk_mq_req_flags_t flags)
320ae51f 424{
f9afca4d 425 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
bd166ef1 426 struct request *rq;
a492f075 427 int ret;
320ae51f 428
3a0a5299 429 ret = blk_queue_enter(q, flags);
a492f075
JL
430 if (ret)
431 return ERR_PTR(ret);
320ae51f 432
f9afca4d 433 rq = blk_mq_get_request(q, NULL, &alloc_data);
3280d66a 434 blk_queue_exit(q);
841bac2c 435
bd166ef1 436 if (!rq)
a492f075 437 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
438
439 rq->__data_len = 0;
440 rq->__sector = (sector_t) -1;
441 rq->bio = rq->biotail = NULL;
320ae51f
JA
442 return rq;
443}
4bb659b1 444EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 445
cd6ce148 446struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 447 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 448{
f9afca4d 449 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
1f5bd336 450 struct request *rq;
6d2809d5 451 unsigned int cpu;
1f5bd336
ML
452 int ret;
453
454 /*
455 * If the tag allocator sleeps we could get an allocation for a
456 * different hardware context. No need to complicate the low level
457 * allocator for this for the rare use case of a command tied to
458 * a specific queue.
459 */
460 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
461 return ERR_PTR(-EINVAL);
462
463 if (hctx_idx >= q->nr_hw_queues)
464 return ERR_PTR(-EIO);
465
3a0a5299 466 ret = blk_queue_enter(q, flags);
1f5bd336
ML
467 if (ret)
468 return ERR_PTR(ret);
469
c8712c6a
CH
470 /*
471 * Check if the hardware context is actually mapped to anything.
472 * If not tell the caller that it should skip this queue.
473 */
6d2809d5
OS
474 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
475 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
476 blk_queue_exit(q);
477 return ERR_PTR(-EXDEV);
c8712c6a 478 }
20e4d813 479 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
6d2809d5 480 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 481
f9afca4d 482 rq = blk_mq_get_request(q, NULL, &alloc_data);
3280d66a 483 blk_queue_exit(q);
c8712c6a 484
6d2809d5
OS
485 if (!rq)
486 return ERR_PTR(-EWOULDBLOCK);
487
488 return rq;
1f5bd336
ML
489}
490EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
491
12f5b931
KB
492static void __blk_mq_free_request(struct request *rq)
493{
494 struct request_queue *q = rq->q;
495 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 496 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
12f5b931
KB
497 const int sched_tag = rq->internal_tag;
498
986d413b 499 blk_pm_mark_last_busy(rq);
ea4f995e 500 rq->mq_hctx = NULL;
12f5b931
KB
501 if (rq->tag != -1)
502 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
503 if (sched_tag != -1)
504 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
505 blk_mq_sched_restart(hctx);
506 blk_queue_exit(q);
507}
508
6af54051 509void blk_mq_free_request(struct request *rq)
320ae51f 510{
320ae51f 511 struct request_queue *q = rq->q;
6af54051
CH
512 struct elevator_queue *e = q->elevator;
513 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 514 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
6af54051 515
5bbf4e5a 516 if (rq->rq_flags & RQF_ELVPRIV) {
f9cd4bfe
JA
517 if (e && e->type->ops.finish_request)
518 e->type->ops.finish_request(rq);
6af54051
CH
519 if (rq->elv.icq) {
520 put_io_context(rq->elv.icq->ioc);
521 rq->elv.icq = NULL;
522 }
523 }
320ae51f 524
6af54051 525 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 526 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 527 atomic_dec(&hctx->nr_active);
87760e5e 528
7beb2f84
JA
529 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
530 laptop_io_completion(q->backing_dev_info);
531
a7905043 532 rq_qos_done(q, rq);
0d2602ca 533
12f5b931
KB
534 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
535 if (refcount_dec_and_test(&rq->ref))
536 __blk_mq_free_request(rq);
320ae51f 537}
1a3b595a 538EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 539
2a842aca 540inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 541{
fe1f4526
JA
542 u64 now = 0;
543
544 if (blk_mq_need_time_stamp(rq))
545 now = ktime_get_ns();
522a7775 546
4bc6339a
OS
547 if (rq->rq_flags & RQF_STATS) {
548 blk_mq_poll_stats_start(rq->q);
522a7775 549 blk_stat_add(rq, now);
4bc6339a
OS
550 }
551
ed88660a
OS
552 if (rq->internal_tag != -1)
553 blk_mq_sched_completed_request(rq, now);
554
522a7775 555 blk_account_io_done(rq, now);
0d11e6ac 556
91b63639 557 if (rq->end_io) {
a7905043 558 rq_qos_done(rq->q, rq);
320ae51f 559 rq->end_io(rq, error);
91b63639 560 } else {
320ae51f 561 blk_mq_free_request(rq);
91b63639 562 }
320ae51f 563}
c8a446ad 564EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 565
2a842aca 566void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
567{
568 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
569 BUG();
c8a446ad 570 __blk_mq_end_request(rq, error);
63151a44 571}
c8a446ad 572EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 573
30a91cb4 574static void __blk_mq_complete_request_remote(void *data)
320ae51f 575{
3d6efbf6 576 struct request *rq = data;
c7bb9ad1 577 struct request_queue *q = rq->q;
320ae51f 578
c7bb9ad1 579 q->mq_ops->complete(rq);
320ae51f 580}
320ae51f 581
453f8341 582static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
583{
584 struct blk_mq_ctx *ctx = rq->mq_ctx;
c7bb9ad1 585 struct request_queue *q = rq->q;
38535201 586 bool shared = false;
320ae51f
JA
587 int cpu;
588
af78ff7c 589 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
36e76539
ML
590 /*
591 * Most of single queue controllers, there is only one irq vector
592 * for handling IO completion, and the only irq's affinity is set
593 * as all possible CPUs. On most of ARCHs, this affinity means the
594 * irq is handled on one specific CPU.
595 *
596 * So complete IO reqeust in softirq context in case of single queue
597 * for not degrading IO performance by irqsoff latency.
598 */
c7bb9ad1 599 if (q->nr_hw_queues == 1) {
36e76539
ML
600 __blk_complete_request(rq);
601 return;
602 }
603
4ab32bf3
JA
604 /*
605 * For a polled request, always complete locallly, it's pointless
606 * to redirect the completion.
607 */
608 if ((rq->cmd_flags & REQ_HIPRI) ||
609 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
c7bb9ad1 610 q->mq_ops->complete(rq);
30a91cb4
CH
611 return;
612 }
320ae51f
JA
613
614 cpu = get_cpu();
c7bb9ad1 615 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
38535201
CH
616 shared = cpus_share_cache(cpu, ctx->cpu);
617
618 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 619 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
620 rq->csd.info = rq;
621 rq->csd.flags = 0;
c46fff2a 622 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 623 } else {
c7bb9ad1 624 q->mq_ops->complete(rq);
3d6efbf6 625 }
320ae51f
JA
626 put_cpu();
627}
30a91cb4 628
04ced159 629static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
b7435db8 630 __releases(hctx->srcu)
04ced159
JA
631{
632 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
633 rcu_read_unlock();
634 else
05707b64 635 srcu_read_unlock(hctx->srcu, srcu_idx);
04ced159
JA
636}
637
638static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
b7435db8 639 __acquires(hctx->srcu)
04ced159 640{
08b5a6e2
JA
641 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
642 /* shut up gcc false positive */
643 *srcu_idx = 0;
04ced159 644 rcu_read_lock();
08b5a6e2 645 } else
05707b64 646 *srcu_idx = srcu_read_lock(hctx->srcu);
04ced159
JA
647}
648
30a91cb4
CH
649/**
650 * blk_mq_complete_request - end I/O on a request
651 * @rq: the request being processed
652 *
653 * Description:
654 * Ends all I/O on a request. It does not handle partial completions.
655 * The actual completion happens out-of-order, through a IPI handler.
656 **/
16c15eb1 657bool blk_mq_complete_request(struct request *rq)
30a91cb4 658{
12f5b931 659 if (unlikely(blk_should_fake_timeout(rq->q)))
16c15eb1 660 return false;
12f5b931 661 __blk_mq_complete_request(rq);
16c15eb1 662 return true;
30a91cb4
CH
663}
664EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 665
973c0191
KB
666int blk_mq_request_started(struct request *rq)
667{
5a61c363 668 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
973c0191
KB
669}
670EXPORT_SYMBOL_GPL(blk_mq_request_started);
671
aa306ab7
ML
672int blk_mq_request_completed(struct request *rq)
673{
674 return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
675}
676EXPORT_SYMBOL_GPL(blk_mq_request_completed);
677
e2490073 678void blk_mq_start_request(struct request *rq)
320ae51f
JA
679{
680 struct request_queue *q = rq->q;
681
682 trace_block_rq_issue(q, rq);
683
cf43e6be 684 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
544ccc8d 685 rq->io_start_time_ns = ktime_get_ns();
3d244306 686 rq->stats_sectors = blk_rq_sectors(rq);
cf43e6be 687 rq->rq_flags |= RQF_STATS;
a7905043 688 rq_qos_issue(q, rq);
cf43e6be
JA
689 }
690
1d9bd516 691 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 692
1d9bd516 693 blk_add_timer(rq);
12f5b931 694 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
49f5baa5
CH
695
696 if (q->dma_drain_size && blk_rq_bytes(rq)) {
697 /*
698 * Make sure space for the drain appears. We know we can do
699 * this because max_hw_segments has been adjusted to be one
700 * fewer than the device can handle.
701 */
702 rq->nr_phys_segments++;
703 }
54d4e6ab
MG
704
705#ifdef CONFIG_BLK_DEV_INTEGRITY
706 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
707 q->integrity.profile->prepare_fn(rq);
708#endif
320ae51f 709}
e2490073 710EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 711
ed0791b2 712static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
713{
714 struct request_queue *q = rq->q;
715
923218f6
ML
716 blk_mq_put_driver_tag(rq);
717
320ae51f 718 trace_block_rq_requeue(q, rq);
a7905043 719 rq_qos_requeue(q, rq);
49f5baa5 720
12f5b931
KB
721 if (blk_mq_request_started(rq)) {
722 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
da661267 723 rq->rq_flags &= ~RQF_TIMED_OUT;
e2490073
CH
724 if (q->dma_drain_size && blk_rq_bytes(rq))
725 rq->nr_phys_segments--;
726 }
320ae51f
JA
727}
728
2b053aca 729void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 730{
ed0791b2 731 __blk_mq_requeue_request(rq);
ed0791b2 732
105976f5
ML
733 /* this request will be re-inserted to io scheduler queue */
734 blk_mq_sched_requeue_request(rq);
735
7d692330 736 BUG_ON(!list_empty(&rq->queuelist));
2b053aca 737 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
738}
739EXPORT_SYMBOL(blk_mq_requeue_request);
740
6fca6a61
CH
741static void blk_mq_requeue_work(struct work_struct *work)
742{
743 struct request_queue *q =
2849450a 744 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
745 LIST_HEAD(rq_list);
746 struct request *rq, *next;
6fca6a61 747
18e9781d 748 spin_lock_irq(&q->requeue_lock);
6fca6a61 749 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 750 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
751
752 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
aef1897c 753 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
6fca6a61
CH
754 continue;
755
e8064021 756 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 757 list_del_init(&rq->queuelist);
aef1897c
JW
758 /*
759 * If RQF_DONTPREP, rq has contained some driver specific
760 * data, so insert it to hctx dispatch list to avoid any
761 * merge.
762 */
763 if (rq->rq_flags & RQF_DONTPREP)
764 blk_mq_request_bypass_insert(rq, false);
765 else
766 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
767 }
768
769 while (!list_empty(&rq_list)) {
770 rq = list_entry(rq_list.next, struct request, queuelist);
771 list_del_init(&rq->queuelist);
9e97d295 772 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
773 }
774
52d7f1b5 775 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
776}
777
2b053aca
BVA
778void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
779 bool kick_requeue_list)
6fca6a61
CH
780{
781 struct request_queue *q = rq->q;
782 unsigned long flags;
783
784 /*
785 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 786 * request head insertion from the workqueue.
6fca6a61 787 */
e8064021 788 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
789
790 spin_lock_irqsave(&q->requeue_lock, flags);
791 if (at_head) {
e8064021 792 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
793 list_add(&rq->queuelist, &q->requeue_list);
794 } else {
795 list_add_tail(&rq->queuelist, &q->requeue_list);
796 }
797 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
798
799 if (kick_requeue_list)
800 blk_mq_kick_requeue_list(q);
6fca6a61 801}
6fca6a61
CH
802
803void blk_mq_kick_requeue_list(struct request_queue *q)
804{
ae943d20 805 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
6fca6a61
CH
806}
807EXPORT_SYMBOL(blk_mq_kick_requeue_list);
808
2849450a
MS
809void blk_mq_delay_kick_requeue_list(struct request_queue *q,
810 unsigned long msecs)
811{
d4acf365
BVA
812 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
813 msecs_to_jiffies(msecs));
2849450a
MS
814}
815EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
816
0e62f51f
JA
817struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
818{
88c7b2b7
JA
819 if (tag < tags->nr_tags) {
820 prefetch(tags->rqs[tag]);
4ee86bab 821 return tags->rqs[tag];
88c7b2b7 822 }
4ee86bab
HR
823
824 return NULL;
24d2f903
CH
825}
826EXPORT_SYMBOL(blk_mq_tag_to_rq);
827
3c94d83c
JA
828static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
829 void *priv, bool reserved)
ae879912
JA
830{
831 /*
3c94d83c
JA
832 * If we find a request that is inflight and the queue matches,
833 * we know the queue is busy. Return false to stop the iteration.
ae879912 834 */
3c94d83c 835 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
ae879912
JA
836 bool *busy = priv;
837
838 *busy = true;
839 return false;
840 }
841
842 return true;
843}
844
3c94d83c 845bool blk_mq_queue_inflight(struct request_queue *q)
ae879912
JA
846{
847 bool busy = false;
848
3c94d83c 849 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
ae879912
JA
850 return busy;
851}
3c94d83c 852EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
ae879912 853
358f70da 854static void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 855{
da661267 856 req->rq_flags |= RQF_TIMED_OUT;
d1210d5a
CH
857 if (req->q->mq_ops->timeout) {
858 enum blk_eh_timer_return ret;
859
860 ret = req->q->mq_ops->timeout(req, reserved);
861 if (ret == BLK_EH_DONE)
862 return;
863 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
46f92d42 864 }
d1210d5a
CH
865
866 blk_add_timer(req);
87ee7b11 867}
5b3f25fc 868
12f5b931 869static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
81481eb4 870{
12f5b931 871 unsigned long deadline;
87ee7b11 872
12f5b931
KB
873 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
874 return false;
da661267
CH
875 if (rq->rq_flags & RQF_TIMED_OUT)
876 return false;
a7af0af3 877
079076b3 878 deadline = READ_ONCE(rq->deadline);
12f5b931
KB
879 if (time_after_eq(jiffies, deadline))
880 return true;
a7af0af3 881
12f5b931
KB
882 if (*next == 0)
883 *next = deadline;
884 else if (time_after(*next, deadline))
885 *next = deadline;
886 return false;
87ee7b11
JA
887}
888
7baa8572 889static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1d9bd516
TH
890 struct request *rq, void *priv, bool reserved)
891{
12f5b931
KB
892 unsigned long *next = priv;
893
894 /*
895 * Just do a quick check if it is expired before locking the request in
896 * so we're not unnecessarilly synchronizing across CPUs.
897 */
898 if (!blk_mq_req_expired(rq, next))
7baa8572 899 return true;
12f5b931
KB
900
901 /*
902 * We have reason to believe the request may be expired. Take a
903 * reference on the request to lock this request lifetime into its
904 * currently allocated context to prevent it from being reallocated in
905 * the event the completion by-passes this timeout handler.
906 *
907 * If the reference was already released, then the driver beat the
908 * timeout handler to posting a natural completion.
909 */
910 if (!refcount_inc_not_zero(&rq->ref))
7baa8572 911 return true;
12f5b931 912
1d9bd516 913 /*
12f5b931
KB
914 * The request is now locked and cannot be reallocated underneath the
915 * timeout handler's processing. Re-verify this exact request is truly
916 * expired; if it is not expired, then the request was completed and
917 * reallocated as a new request.
1d9bd516 918 */
12f5b931 919 if (blk_mq_req_expired(rq, next))
1d9bd516 920 blk_mq_rq_timed_out(rq, reserved);
12f5b931
KB
921 if (refcount_dec_and_test(&rq->ref))
922 __blk_mq_free_request(rq);
7baa8572
JA
923
924 return true;
1d9bd516
TH
925}
926
287922eb 927static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 928{
287922eb
CH
929 struct request_queue *q =
930 container_of(work, struct request_queue, timeout_work);
12f5b931 931 unsigned long next = 0;
1d9bd516 932 struct blk_mq_hw_ctx *hctx;
81481eb4 933 int i;
320ae51f 934
71f79fb3
GKB
935 /* A deadlock might occur if a request is stuck requiring a
936 * timeout at the same time a queue freeze is waiting
937 * completion, since the timeout code would not be able to
938 * acquire the queue reference here.
939 *
940 * That's why we don't use blk_queue_enter here; instead, we use
941 * percpu_ref_tryget directly, because we need to be able to
942 * obtain a reference even in the short window between the queue
943 * starting to freeze, by dropping the first reference in
1671d522 944 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
945 * consumed, marked by the instant q_usage_counter reaches
946 * zero.
947 */
948 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
949 return;
950
12f5b931 951 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
320ae51f 952
12f5b931
KB
953 if (next != 0) {
954 mod_timer(&q->timeout, next);
0d2602ca 955 } else {
fcd36c36
BVA
956 /*
957 * Request timeouts are handled as a forward rolling timer. If
958 * we end up here it means that no requests are pending and
959 * also that no request has been pending for a while. Mark
960 * each hctx as idle.
961 */
f054b56c
ML
962 queue_for_each_hw_ctx(q, hctx, i) {
963 /* the hctx may be unmapped, so check it here */
964 if (blk_mq_hw_queue_mapped(hctx))
965 blk_mq_tag_idle(hctx);
966 }
0d2602ca 967 }
287922eb 968 blk_queue_exit(q);
320ae51f
JA
969}
970
88459642
OS
971struct flush_busy_ctx_data {
972 struct blk_mq_hw_ctx *hctx;
973 struct list_head *list;
974};
975
976static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
977{
978 struct flush_busy_ctx_data *flush_data = data;
979 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
980 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 981 enum hctx_type type = hctx->type;
88459642 982
88459642 983 spin_lock(&ctx->lock);
c16d6b5a 984 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
e9a99a63 985 sbitmap_clear_bit(sb, bitnr);
88459642
OS
986 spin_unlock(&ctx->lock);
987 return true;
988}
989
1429d7c9
JA
990/*
991 * Process software queues that have been marked busy, splicing them
992 * to the for-dispatch
993 */
2c3ad667 994void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 995{
88459642
OS
996 struct flush_busy_ctx_data data = {
997 .hctx = hctx,
998 .list = list,
999 };
1429d7c9 1000
88459642 1001 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 1002}
2c3ad667 1003EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 1004
b347689f
ML
1005struct dispatch_rq_data {
1006 struct blk_mq_hw_ctx *hctx;
1007 struct request *rq;
1008};
1009
1010static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1011 void *data)
1012{
1013 struct dispatch_rq_data *dispatch_data = data;
1014 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1015 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 1016 enum hctx_type type = hctx->type;
b347689f
ML
1017
1018 spin_lock(&ctx->lock);
c16d6b5a
ML
1019 if (!list_empty(&ctx->rq_lists[type])) {
1020 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
b347689f 1021 list_del_init(&dispatch_data->rq->queuelist);
c16d6b5a 1022 if (list_empty(&ctx->rq_lists[type]))
b347689f
ML
1023 sbitmap_clear_bit(sb, bitnr);
1024 }
1025 spin_unlock(&ctx->lock);
1026
1027 return !dispatch_data->rq;
1028}
1029
1030struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1031 struct blk_mq_ctx *start)
1032{
f31967f0 1033 unsigned off = start ? start->index_hw[hctx->type] : 0;
b347689f
ML
1034 struct dispatch_rq_data data = {
1035 .hctx = hctx,
1036 .rq = NULL,
1037 };
1038
1039 __sbitmap_for_each_set(&hctx->ctx_map, off,
1040 dispatch_rq_from_ctx, &data);
1041
1042 return data.rq;
1043}
1044
703fd1c0
JA
1045static inline unsigned int queued_to_index(unsigned int queued)
1046{
1047 if (!queued)
1048 return 0;
1429d7c9 1049
703fd1c0 1050 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
1051}
1052
8ab6bb9e 1053bool blk_mq_get_driver_tag(struct request *rq)
bd166ef1
JA
1054{
1055 struct blk_mq_alloc_data data = {
1056 .q = rq->q,
ea4f995e 1057 .hctx = rq->mq_hctx,
8ab6bb9e 1058 .flags = BLK_MQ_REQ_NOWAIT,
f9afca4d 1059 .cmd_flags = rq->cmd_flags,
bd166ef1 1060 };
d263ed99 1061 bool shared;
5feeacdd 1062
81380ca1
OS
1063 if (rq->tag != -1)
1064 goto done;
bd166ef1 1065
415b806d
SG
1066 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1067 data.flags |= BLK_MQ_REQ_RESERVED;
1068
d263ed99 1069 shared = blk_mq_tag_busy(data.hctx);
bd166ef1
JA
1070 rq->tag = blk_mq_get_tag(&data);
1071 if (rq->tag >= 0) {
d263ed99 1072 if (shared) {
200e86b3
JA
1073 rq->rq_flags |= RQF_MQ_INFLIGHT;
1074 atomic_inc(&data.hctx->nr_active);
1075 }
bd166ef1 1076 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
1077 }
1078
81380ca1 1079done:
81380ca1 1080 return rq->tag != -1;
bd166ef1
JA
1081}
1082
eb619fdb
JA
1083static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1084 int flags, void *key)
da55f2cc
OS
1085{
1086 struct blk_mq_hw_ctx *hctx;
1087
1088 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1089
5815839b 1090 spin_lock(&hctx->dispatch_wait_lock);
e8618575
JA
1091 if (!list_empty(&wait->entry)) {
1092 struct sbitmap_queue *sbq;
1093
1094 list_del_init(&wait->entry);
1095 sbq = &hctx->tags->bitmap_tags;
1096 atomic_dec(&sbq->ws_active);
1097 }
5815839b
ML
1098 spin_unlock(&hctx->dispatch_wait_lock);
1099
da55f2cc
OS
1100 blk_mq_run_hw_queue(hctx, true);
1101 return 1;
1102}
1103
f906a6a0
JA
1104/*
1105 * Mark us waiting for a tag. For shared tags, this involves hooking us into
ee3e4de5
BVA
1106 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1107 * restart. For both cases, take care to check the condition again after
f906a6a0
JA
1108 * marking us as waiting.
1109 */
2278d69f 1110static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
f906a6a0 1111 struct request *rq)
da55f2cc 1112{
e8618575 1113 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
5815839b 1114 struct wait_queue_head *wq;
f906a6a0
JA
1115 wait_queue_entry_t *wait;
1116 bool ret;
da55f2cc 1117
2278d69f 1118 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
684b7324 1119 blk_mq_sched_mark_restart_hctx(hctx);
f906a6a0 1120
c27d53fb
BVA
1121 /*
1122 * It's possible that a tag was freed in the window between the
1123 * allocation failure and adding the hardware queue to the wait
1124 * queue.
1125 *
1126 * Don't clear RESTART here, someone else could have set it.
1127 * At most this will cost an extra queue run.
1128 */
8ab6bb9e 1129 return blk_mq_get_driver_tag(rq);
eb619fdb 1130 }
eb619fdb 1131
2278d69f 1132 wait = &hctx->dispatch_wait;
c27d53fb
BVA
1133 if (!list_empty_careful(&wait->entry))
1134 return false;
1135
e8618575 1136 wq = &bt_wait_ptr(sbq, hctx)->wait;
5815839b
ML
1137
1138 spin_lock_irq(&wq->lock);
1139 spin_lock(&hctx->dispatch_wait_lock);
c27d53fb 1140 if (!list_empty(&wait->entry)) {
5815839b
ML
1141 spin_unlock(&hctx->dispatch_wait_lock);
1142 spin_unlock_irq(&wq->lock);
c27d53fb 1143 return false;
eb619fdb
JA
1144 }
1145
e8618575 1146 atomic_inc(&sbq->ws_active);
5815839b
ML
1147 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1148 __add_wait_queue(wq, wait);
c27d53fb 1149
da55f2cc 1150 /*
eb619fdb
JA
1151 * It's possible that a tag was freed in the window between the
1152 * allocation failure and adding the hardware queue to the wait
1153 * queue.
da55f2cc 1154 */
8ab6bb9e 1155 ret = blk_mq_get_driver_tag(rq);
c27d53fb 1156 if (!ret) {
5815839b
ML
1157 spin_unlock(&hctx->dispatch_wait_lock);
1158 spin_unlock_irq(&wq->lock);
c27d53fb 1159 return false;
eb619fdb 1160 }
c27d53fb
BVA
1161
1162 /*
1163 * We got a tag, remove ourselves from the wait queue to ensure
1164 * someone else gets the wakeup.
1165 */
c27d53fb 1166 list_del_init(&wait->entry);
e8618575 1167 atomic_dec(&sbq->ws_active);
5815839b
ML
1168 spin_unlock(&hctx->dispatch_wait_lock);
1169 spin_unlock_irq(&wq->lock);
c27d53fb
BVA
1170
1171 return true;
da55f2cc
OS
1172}
1173
6e768717
ML
1174#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1175#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1176/*
1177 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1178 * - EWMA is one simple way to compute running average value
1179 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1180 * - take 4 as factor for avoiding to get too small(0) result, and this
1181 * factor doesn't matter because EWMA decreases exponentially
1182 */
1183static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1184{
1185 unsigned int ewma;
1186
1187 if (hctx->queue->elevator)
1188 return;
1189
1190 ewma = hctx->dispatch_busy;
1191
1192 if (!ewma && !busy)
1193 return;
1194
1195 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1196 if (busy)
1197 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1198 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1199
1200 hctx->dispatch_busy = ewma;
1201}
1202
86ff7c2a
ML
1203#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1204
1f57f8d4
JA
1205/*
1206 * Returns true if we did some work AND can potentially do more.
1207 */
de148297 1208bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1209 bool got_budget)
320ae51f 1210{
81380ca1 1211 struct blk_mq_hw_ctx *hctx;
6d6f167c 1212 struct request *rq, *nxt;
eb619fdb 1213 bool no_tag = false;
fc17b653 1214 int errors, queued;
86ff7c2a 1215 blk_status_t ret = BLK_STS_OK;
320ae51f 1216
81380ca1
OS
1217 if (list_empty(list))
1218 return false;
1219
de148297
ML
1220 WARN_ON(!list_is_singular(list) && got_budget);
1221
320ae51f
JA
1222 /*
1223 * Now process all the entries, sending them to the driver.
1224 */
93efe981 1225 errors = queued = 0;
81380ca1 1226 do {
74c45052 1227 struct blk_mq_queue_data bd;
320ae51f 1228
f04c3df3 1229 rq = list_first_entry(list, struct request, queuelist);
0bca799b 1230
ea4f995e 1231 hctx = rq->mq_hctx;
0bca799b
ML
1232 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1233 break;
1234
8ab6bb9e 1235 if (!blk_mq_get_driver_tag(rq)) {
3c782d67 1236 /*
da55f2cc 1237 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1238 * rerun the hardware queue when a tag is freed. The
1239 * waitqueue takes care of that. If the queue is run
1240 * before we add this entry back on the dispatch list,
1241 * we'll re-run it below.
3c782d67 1242 */
2278d69f 1243 if (!blk_mq_mark_tag_wait(hctx, rq)) {
0bca799b 1244 blk_mq_put_dispatch_budget(hctx);
f906a6a0
JA
1245 /*
1246 * For non-shared tags, the RESTART check
1247 * will suffice.
1248 */
1249 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1250 no_tag = true;
de148297
ML
1251 break;
1252 }
1253 }
1254
320ae51f 1255 list_del_init(&rq->queuelist);
320ae51f 1256
74c45052 1257 bd.rq = rq;
113285b4
JA
1258
1259 /*
1260 * Flag last if we have no more requests, or if we have more
1261 * but can't assign a driver tag to it.
1262 */
1263 if (list_empty(list))
1264 bd.last = true;
1265 else {
113285b4 1266 nxt = list_first_entry(list, struct request, queuelist);
8ab6bb9e 1267 bd.last = !blk_mq_get_driver_tag(nxt);
113285b4 1268 }
74c45052
JA
1269
1270 ret = q->mq_ops->queue_rq(hctx, &bd);
86ff7c2a 1271 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
6d6f167c
JW
1272 /*
1273 * If an I/O scheduler has been configured and we got a
ff821d27
JA
1274 * driver tag for the next request already, free it
1275 * again.
6d6f167c
JW
1276 */
1277 if (!list_empty(list)) {
1278 nxt = list_first_entry(list, struct request, queuelist);
1279 blk_mq_put_driver_tag(nxt);
1280 }
f04c3df3 1281 list_add(&rq->queuelist, list);
ed0791b2 1282 __blk_mq_requeue_request(rq);
320ae51f 1283 break;
fc17b653
CH
1284 }
1285
1286 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1287 errors++;
2a842aca 1288 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1289 continue;
320ae51f
JA
1290 }
1291
fc17b653 1292 queued++;
81380ca1 1293 } while (!list_empty(list));
320ae51f 1294
703fd1c0 1295 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1296
1297 /*
1298 * Any items that need requeuing? Stuff them into hctx->dispatch,
1299 * that is where we will continue on next queue run.
1300 */
f04c3df3 1301 if (!list_empty(list)) {
86ff7c2a
ML
1302 bool needs_restart;
1303
d666ba98
JA
1304 /*
1305 * If we didn't flush the entire list, we could have told
1306 * the driver there was more coming, but that turned out to
1307 * be a lie.
1308 */
1309 if (q->mq_ops->commit_rqs)
1310 q->mq_ops->commit_rqs(hctx);
1311
320ae51f 1312 spin_lock(&hctx->lock);
c13660a0 1313 list_splice_init(list, &hctx->dispatch);
320ae51f 1314 spin_unlock(&hctx->lock);
f04c3df3 1315
9ba52e58 1316 /*
710c785f
BVA
1317 * If SCHED_RESTART was set by the caller of this function and
1318 * it is no longer set that means that it was cleared by another
1319 * thread and hence that a queue rerun is needed.
9ba52e58 1320 *
eb619fdb
JA
1321 * If 'no_tag' is set, that means that we failed getting
1322 * a driver tag with an I/O scheduler attached. If our dispatch
1323 * waitqueue is no longer active, ensure that we run the queue
1324 * AFTER adding our entries back to the list.
bd166ef1 1325 *
710c785f
BVA
1326 * If no I/O scheduler has been configured it is possible that
1327 * the hardware queue got stopped and restarted before requests
1328 * were pushed back onto the dispatch list. Rerun the queue to
1329 * avoid starvation. Notes:
1330 * - blk_mq_run_hw_queue() checks whether or not a queue has
1331 * been stopped before rerunning a queue.
1332 * - Some but not all block drivers stop a queue before
fc17b653 1333 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1334 * and dm-rq.
86ff7c2a
ML
1335 *
1336 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1337 * bit is set, run queue after a delay to avoid IO stalls
1338 * that could otherwise occur if the queue is idle.
bd166ef1 1339 */
86ff7c2a
ML
1340 needs_restart = blk_mq_sched_needs_restart(hctx);
1341 if (!needs_restart ||
eb619fdb 1342 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1343 blk_mq_run_hw_queue(hctx, true);
86ff7c2a
ML
1344 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1345 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1f57f8d4 1346
6e768717 1347 blk_mq_update_dispatch_busy(hctx, true);
1f57f8d4 1348 return false;
6e768717
ML
1349 } else
1350 blk_mq_update_dispatch_busy(hctx, false);
f04c3df3 1351
1f57f8d4
JA
1352 /*
1353 * If the host/device is unable to accept more work, inform the
1354 * caller of that.
1355 */
1356 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1357 return false;
1358
93efe981 1359 return (queued + errors) != 0;
f04c3df3
JA
1360}
1361
6a83e74d
BVA
1362static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1363{
1364 int srcu_idx;
1365
b7a71e66
JA
1366 /*
1367 * We should be running this queue from one of the CPUs that
1368 * are mapped to it.
7df938fb
ML
1369 *
1370 * There are at least two related races now between setting
1371 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1372 * __blk_mq_run_hw_queue():
1373 *
1374 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1375 * but later it becomes online, then this warning is harmless
1376 * at all
1377 *
1378 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1379 * but later it becomes offline, then the warning can't be
1380 * triggered, and we depend on blk-mq timeout handler to
1381 * handle dispatched requests to this hctx
b7a71e66 1382 */
7df938fb
ML
1383 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1384 cpu_online(hctx->next_cpu)) {
1385 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1386 raw_smp_processor_id(),
1387 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1388 dump_stack();
1389 }
6a83e74d 1390
b7a71e66
JA
1391 /*
1392 * We can't run the queue inline with ints disabled. Ensure that
1393 * we catch bad users of this early.
1394 */
1395 WARN_ON_ONCE(in_interrupt());
1396
04ced159 1397 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1398
04ced159
JA
1399 hctx_lock(hctx, &srcu_idx);
1400 blk_mq_sched_dispatch_requests(hctx);
1401 hctx_unlock(hctx, srcu_idx);
6a83e74d
BVA
1402}
1403
f82ddf19
ML
1404static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1405{
1406 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1407
1408 if (cpu >= nr_cpu_ids)
1409 cpu = cpumask_first(hctx->cpumask);
1410 return cpu;
1411}
1412
506e931f
JA
1413/*
1414 * It'd be great if the workqueue API had a way to pass
1415 * in a mask and had some smarts for more clever placement.
1416 * For now we just round-robin here, switching for every
1417 * BLK_MQ_CPU_WORK_BATCH queued items.
1418 */
1419static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1420{
7bed4595 1421 bool tried = false;
476f8c98 1422 int next_cpu = hctx->next_cpu;
7bed4595 1423
b657d7e6
CH
1424 if (hctx->queue->nr_hw_queues == 1)
1425 return WORK_CPU_UNBOUND;
506e931f
JA
1426
1427 if (--hctx->next_cpu_batch <= 0) {
7bed4595 1428select_cpu:
476f8c98 1429 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
20e4d813 1430 cpu_online_mask);
506e931f 1431 if (next_cpu >= nr_cpu_ids)
f82ddf19 1432 next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
1433 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1434 }
1435
7bed4595
ML
1436 /*
1437 * Do unbound schedule if we can't find a online CPU for this hctx,
1438 * and it should only happen in the path of handling CPU DEAD.
1439 */
476f8c98 1440 if (!cpu_online(next_cpu)) {
7bed4595
ML
1441 if (!tried) {
1442 tried = true;
1443 goto select_cpu;
1444 }
1445
1446 /*
1447 * Make sure to re-select CPU next time once after CPUs
1448 * in hctx->cpumask become online again.
1449 */
476f8c98 1450 hctx->next_cpu = next_cpu;
7bed4595
ML
1451 hctx->next_cpu_batch = 1;
1452 return WORK_CPU_UNBOUND;
1453 }
476f8c98
ML
1454
1455 hctx->next_cpu = next_cpu;
1456 return next_cpu;
506e931f
JA
1457}
1458
7587a5ae
BVA
1459static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1460 unsigned long msecs)
320ae51f 1461{
5435c023 1462 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1463 return;
1464
1b792f2f 1465 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1466 int cpu = get_cpu();
1467 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1468 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1469 put_cpu();
398205b8
PB
1470 return;
1471 }
e4043dcf 1472
2a90d4aa 1473 put_cpu();
e4043dcf 1474 }
398205b8 1475
ae943d20
BVA
1476 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1477 msecs_to_jiffies(msecs));
7587a5ae
BVA
1478}
1479
1480void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1481{
1482 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1483}
1484EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1485
79f720a7 1486bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1487{
24f5a90f
ML
1488 int srcu_idx;
1489 bool need_run;
1490
1491 /*
1492 * When queue is quiesced, we may be switching io scheduler, or
1493 * updating nr_hw_queues, or other things, and we can't run queue
1494 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1495 *
1496 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1497 * quiesced.
1498 */
04ced159
JA
1499 hctx_lock(hctx, &srcu_idx);
1500 need_run = !blk_queue_quiesced(hctx->queue) &&
1501 blk_mq_hctx_has_pending(hctx);
1502 hctx_unlock(hctx, srcu_idx);
24f5a90f
ML
1503
1504 if (need_run) {
79f720a7
JA
1505 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1506 return true;
1507 }
1508
1509 return false;
320ae51f 1510}
5b727272 1511EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1512
b94ec296 1513void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1514{
1515 struct blk_mq_hw_ctx *hctx;
1516 int i;
1517
1518 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1519 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1520 continue;
1521
b94ec296 1522 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1523 }
1524}
b94ec296 1525EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1526
fd001443
BVA
1527/**
1528 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1529 * @q: request queue.
1530 *
1531 * The caller is responsible for serializing this function against
1532 * blk_mq_{start,stop}_hw_queue().
1533 */
1534bool blk_mq_queue_stopped(struct request_queue *q)
1535{
1536 struct blk_mq_hw_ctx *hctx;
1537 int i;
1538
1539 queue_for_each_hw_ctx(q, hctx, i)
1540 if (blk_mq_hctx_stopped(hctx))
1541 return true;
1542
1543 return false;
1544}
1545EXPORT_SYMBOL(blk_mq_queue_stopped);
1546
39a70c76
ML
1547/*
1548 * This function is often used for pausing .queue_rq() by driver when
1549 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1550 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1551 *
1552 * We do not guarantee that dispatch can be drained or blocked
1553 * after blk_mq_stop_hw_queue() returns. Please use
1554 * blk_mq_quiesce_queue() for that requirement.
1555 */
2719aa21
JA
1556void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1557{
641a9ed6 1558 cancel_delayed_work(&hctx->run_work);
280d45f6 1559
641a9ed6 1560 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1561}
641a9ed6 1562EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1563
39a70c76
ML
1564/*
1565 * This function is often used for pausing .queue_rq() by driver when
1566 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1567 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1568 *
1569 * We do not guarantee that dispatch can be drained or blocked
1570 * after blk_mq_stop_hw_queues() returns. Please use
1571 * blk_mq_quiesce_queue() for that requirement.
1572 */
2719aa21
JA
1573void blk_mq_stop_hw_queues(struct request_queue *q)
1574{
641a9ed6
ML
1575 struct blk_mq_hw_ctx *hctx;
1576 int i;
1577
1578 queue_for_each_hw_ctx(q, hctx, i)
1579 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1580}
1581EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1582
320ae51f
JA
1583void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1584{
1585 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1586
0ffbce80 1587 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1588}
1589EXPORT_SYMBOL(blk_mq_start_hw_queue);
1590
2f268556
CH
1591void blk_mq_start_hw_queues(struct request_queue *q)
1592{
1593 struct blk_mq_hw_ctx *hctx;
1594 int i;
1595
1596 queue_for_each_hw_ctx(q, hctx, i)
1597 blk_mq_start_hw_queue(hctx);
1598}
1599EXPORT_SYMBOL(blk_mq_start_hw_queues);
1600
ae911c5e
JA
1601void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1602{
1603 if (!blk_mq_hctx_stopped(hctx))
1604 return;
1605
1606 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1607 blk_mq_run_hw_queue(hctx, async);
1608}
1609EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1610
1b4a3258 1611void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1612{
1613 struct blk_mq_hw_ctx *hctx;
1614 int i;
1615
ae911c5e
JA
1616 queue_for_each_hw_ctx(q, hctx, i)
1617 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1618}
1619EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1620
70f4db63 1621static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1622{
1623 struct blk_mq_hw_ctx *hctx;
1624
9f993737 1625 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1626
21c6e939 1627 /*
15fe8a90 1628 * If we are stopped, don't run the queue.
21c6e939 1629 */
15fe8a90 1630 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
0196d6b4 1631 return;
7587a5ae
BVA
1632
1633 __blk_mq_run_hw_queue(hctx);
1634}
1635
cfd0c552 1636static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1637 struct request *rq,
1638 bool at_head)
320ae51f 1639{
e57690fe 1640 struct blk_mq_ctx *ctx = rq->mq_ctx;
c16d6b5a 1641 enum hctx_type type = hctx->type;
e57690fe 1642
7b607814
BVA
1643 lockdep_assert_held(&ctx->lock);
1644
01b983c9
JA
1645 trace_block_rq_insert(hctx->queue, rq);
1646
72a0a36e 1647 if (at_head)
c16d6b5a 1648 list_add(&rq->queuelist, &ctx->rq_lists[type]);
72a0a36e 1649 else
c16d6b5a 1650 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
cfd0c552 1651}
4bb659b1 1652
2c3ad667
JA
1653void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1654 bool at_head)
cfd0c552
ML
1655{
1656 struct blk_mq_ctx *ctx = rq->mq_ctx;
1657
7b607814
BVA
1658 lockdep_assert_held(&ctx->lock);
1659
e57690fe 1660 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1661 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1662}
1663
157f377b
JA
1664/*
1665 * Should only be used carefully, when the caller knows we want to
1666 * bypass a potential IO scheduler on the target device.
1667 */
b0850297 1668void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
157f377b 1669{
ea4f995e 1670 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
157f377b
JA
1671
1672 spin_lock(&hctx->lock);
1673 list_add_tail(&rq->queuelist, &hctx->dispatch);
1674 spin_unlock(&hctx->lock);
1675
b0850297
ML
1676 if (run_queue)
1677 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1678}
1679
bd166ef1
JA
1680void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1681 struct list_head *list)
320ae51f
JA
1682
1683{
3f0cedc7 1684 struct request *rq;
c16d6b5a 1685 enum hctx_type type = hctx->type;
3f0cedc7 1686
320ae51f
JA
1687 /*
1688 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1689 * offline now
1690 */
3f0cedc7 1691 list_for_each_entry(rq, list, queuelist) {
e57690fe 1692 BUG_ON(rq->mq_ctx != ctx);
3f0cedc7 1693 trace_block_rq_insert(hctx->queue, rq);
320ae51f 1694 }
3f0cedc7
ML
1695
1696 spin_lock(&ctx->lock);
c16d6b5a 1697 list_splice_tail_init(list, &ctx->rq_lists[type]);
cfd0c552 1698 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1699 spin_unlock(&ctx->lock);
320ae51f
JA
1700}
1701
3110fc79 1702static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
320ae51f
JA
1703{
1704 struct request *rqa = container_of(a, struct request, queuelist);
1705 struct request *rqb = container_of(b, struct request, queuelist);
1706
3110fc79
JA
1707 if (rqa->mq_ctx < rqb->mq_ctx)
1708 return -1;
1709 else if (rqa->mq_ctx > rqb->mq_ctx)
1710 return 1;
1711 else if (rqa->mq_hctx < rqb->mq_hctx)
1712 return -1;
1713 else if (rqa->mq_hctx > rqb->mq_hctx)
1714 return 1;
1715
1716 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
320ae51f
JA
1717}
1718
1719void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1720{
67cae4c9 1721 struct blk_mq_hw_ctx *this_hctx;
320ae51f
JA
1722 struct blk_mq_ctx *this_ctx;
1723 struct request_queue *this_q;
1724 struct request *rq;
1725 LIST_HEAD(list);
67cae4c9 1726 LIST_HEAD(rq_list);
320ae51f
JA
1727 unsigned int depth;
1728
1729 list_splice_init(&plug->mq_list, &list);
1730
ce5b009c
JA
1731 if (plug->rq_count > 2 && plug->multiple_queues)
1732 list_sort(NULL, &list, plug_rq_cmp);
320ae51f 1733
bcc816df
DZ
1734 plug->rq_count = 0;
1735
320ae51f 1736 this_q = NULL;
67cae4c9 1737 this_hctx = NULL;
320ae51f
JA
1738 this_ctx = NULL;
1739 depth = 0;
1740
1741 while (!list_empty(&list)) {
1742 rq = list_entry_rq(list.next);
1743 list_del_init(&rq->queuelist);
1744 BUG_ON(!rq->q);
67cae4c9
JA
1745 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1746 if (this_hctx) {
587562d0 1747 trace_block_unplug(this_q, depth, !from_schedule);
67cae4c9
JA
1748 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1749 &rq_list,
bd166ef1 1750 from_schedule);
320ae51f
JA
1751 }
1752
320ae51f 1753 this_q = rq->q;
67cae4c9
JA
1754 this_ctx = rq->mq_ctx;
1755 this_hctx = rq->mq_hctx;
320ae51f
JA
1756 depth = 0;
1757 }
1758
1759 depth++;
67cae4c9 1760 list_add_tail(&rq->queuelist, &rq_list);
320ae51f
JA
1761 }
1762
1763 /*
67cae4c9
JA
1764 * If 'this_hctx' is set, we know we have entries to complete
1765 * on 'rq_list'. Do those.
320ae51f 1766 */
67cae4c9 1767 if (this_hctx) {
587562d0 1768 trace_block_unplug(this_q, depth, !from_schedule);
67cae4c9 1769 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
bd166ef1 1770 from_schedule);
320ae51f
JA
1771 }
1772}
1773
14ccb66b
CH
1774static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1775 unsigned int nr_segs)
320ae51f 1776{
f924cdde
CH
1777 if (bio->bi_opf & REQ_RAHEAD)
1778 rq->cmd_flags |= REQ_FAILFAST_MASK;
1779
1780 rq->__sector = bio->bi_iter.bi_sector;
1781 rq->write_hint = bio->bi_write_hint;
14ccb66b 1782 blk_rq_bio_prep(rq, bio, nr_segs);
4b570521 1783
6e85eaf3 1784 blk_account_io_start(rq, true);
320ae51f
JA
1785}
1786
0f95549c
MS
1787static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1788 struct request *rq,
be94f058 1789 blk_qc_t *cookie, bool last)
f984df1f 1790{
f984df1f 1791 struct request_queue *q = rq->q;
f984df1f
SL
1792 struct blk_mq_queue_data bd = {
1793 .rq = rq,
be94f058 1794 .last = last,
f984df1f 1795 };
bd166ef1 1796 blk_qc_t new_cookie;
f06345ad 1797 blk_status_t ret;
0f95549c
MS
1798
1799 new_cookie = request_to_qc_t(hctx, rq);
1800
1801 /*
1802 * For OK queue, we are done. For error, caller may kill it.
1803 * Any other error (busy), just add it to our list as we
1804 * previously would have done.
1805 */
1806 ret = q->mq_ops->queue_rq(hctx, &bd);
1807 switch (ret) {
1808 case BLK_STS_OK:
6ce3dd6e 1809 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1810 *cookie = new_cookie;
1811 break;
1812 case BLK_STS_RESOURCE:
86ff7c2a 1813 case BLK_STS_DEV_RESOURCE:
6ce3dd6e 1814 blk_mq_update_dispatch_busy(hctx, true);
0f95549c
MS
1815 __blk_mq_requeue_request(rq);
1816 break;
1817 default:
6ce3dd6e 1818 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1819 *cookie = BLK_QC_T_NONE;
1820 break;
1821 }
1822
1823 return ret;
1824}
1825
fd9c40f6 1826static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
0f95549c 1827 struct request *rq,
396eaf21 1828 blk_qc_t *cookie,
fd9c40f6 1829 bool bypass_insert, bool last)
0f95549c
MS
1830{
1831 struct request_queue *q = rq->q;
d964f04a
ML
1832 bool run_queue = true;
1833
23d4ee19 1834 /*
fd9c40f6 1835 * RCU or SRCU read lock is needed before checking quiesced flag.
23d4ee19 1836 *
fd9c40f6
BVA
1837 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1838 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1839 * and avoid driver to try to dispatch again.
23d4ee19 1840 */
fd9c40f6 1841 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a 1842 run_queue = false;
fd9c40f6
BVA
1843 bypass_insert = false;
1844 goto insert;
d964f04a 1845 }
f984df1f 1846
fd9c40f6
BVA
1847 if (q->elevator && !bypass_insert)
1848 goto insert;
2253efc8 1849
0bca799b 1850 if (!blk_mq_get_dispatch_budget(hctx))
fd9c40f6 1851 goto insert;
bd166ef1 1852
8ab6bb9e 1853 if (!blk_mq_get_driver_tag(rq)) {
0bca799b 1854 blk_mq_put_dispatch_budget(hctx);
fd9c40f6 1855 goto insert;
88022d72 1856 }
de148297 1857
fd9c40f6
BVA
1858 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1859insert:
1860 if (bypass_insert)
1861 return BLK_STS_RESOURCE;
1862
1863 blk_mq_request_bypass_insert(rq, run_queue);
1864 return BLK_STS_OK;
1865}
1866
1867static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1868 struct request *rq, blk_qc_t *cookie)
1869{
1870 blk_status_t ret;
1871 int srcu_idx;
1872
1873 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1874
1875 hctx_lock(hctx, &srcu_idx);
1876
1877 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1878 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1879 blk_mq_request_bypass_insert(rq, true);
1880 else if (ret != BLK_STS_OK)
1881 blk_mq_end_request(rq, ret);
1882
1883 hctx_unlock(hctx, srcu_idx);
1884}
1885
1886blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1887{
1888 blk_status_t ret;
1889 int srcu_idx;
1890 blk_qc_t unused_cookie;
1891 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1892
1893 hctx_lock(hctx, &srcu_idx);
1894 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
04ced159 1895 hctx_unlock(hctx, srcu_idx);
7f556a44
JW
1896
1897 return ret;
5eb6126e
CH
1898}
1899
6ce3dd6e
ML
1900void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1901 struct list_head *list)
1902{
1903 while (!list_empty(list)) {
fd9c40f6 1904 blk_status_t ret;
6ce3dd6e
ML
1905 struct request *rq = list_first_entry(list, struct request,
1906 queuelist);
1907
1908 list_del_init(&rq->queuelist);
fd9c40f6
BVA
1909 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1910 if (ret != BLK_STS_OK) {
1911 if (ret == BLK_STS_RESOURCE ||
1912 ret == BLK_STS_DEV_RESOURCE) {
1913 blk_mq_request_bypass_insert(rq,
c616cbee 1914 list_empty(list));
fd9c40f6
BVA
1915 break;
1916 }
1917 blk_mq_end_request(rq, ret);
1918 }
6ce3dd6e 1919 }
d666ba98
JA
1920
1921 /*
1922 * If we didn't flush the entire list, we could have told
1923 * the driver there was more coming, but that turned out to
1924 * be a lie.
1925 */
fd9c40f6 1926 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
d666ba98 1927 hctx->queue->mq_ops->commit_rqs(hctx);
6ce3dd6e
ML
1928}
1929
ce5b009c
JA
1930static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1931{
1932 list_add_tail(&rq->queuelist, &plug->mq_list);
1933 plug->rq_count++;
1934 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1935 struct request *tmp;
1936
1937 tmp = list_first_entry(&plug->mq_list, struct request,
1938 queuelist);
1939 if (tmp->q != rq->q)
1940 plug->multiple_queues = true;
1941 }
1942}
1943
dece1635 1944static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1945{
ef295ecf 1946 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1947 const int is_flush_fua = op_is_flush(bio->bi_opf);
7809167d 1948 struct blk_mq_alloc_data data = { .flags = 0};
07068d5b 1949 struct request *rq;
f984df1f 1950 struct blk_plug *plug;
5b3f341f 1951 struct request *same_queue_rq = NULL;
14ccb66b 1952 unsigned int nr_segs;
7b371636 1953 blk_qc_t cookie;
07068d5b
JA
1954
1955 blk_queue_bounce(q, &bio);
14ccb66b 1956 __blk_queue_split(q, &bio, &nr_segs);
f36ea50c 1957
e23947bd 1958 if (!bio_integrity_prep(bio))
dece1635 1959 return BLK_QC_T_NONE;
07068d5b 1960
87c279e6 1961 if (!is_flush_fua && !blk_queue_nomerges(q) &&
14ccb66b 1962 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
87c279e6 1963 return BLK_QC_T_NONE;
f984df1f 1964
14ccb66b 1965 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
bd166ef1
JA
1966 return BLK_QC_T_NONE;
1967
d5337560 1968 rq_qos_throttle(q, bio);
87760e5e 1969
7809167d 1970 data.cmd_flags = bio->bi_opf;
f9afca4d 1971 rq = blk_mq_get_request(q, bio, &data);
87760e5e 1972 if (unlikely(!rq)) {
c1c80384 1973 rq_qos_cleanup(q, bio);
7b6620d7 1974 if (bio->bi_opf & REQ_NOWAIT)
03a07c92 1975 bio_wouldblock_error(bio);
7b6620d7 1976 return BLK_QC_T_NONE;
87760e5e
JA
1977 }
1978
d6f1dda2
XW
1979 trace_block_getrq(q, bio, bio->bi_opf);
1980
c1c80384 1981 rq_qos_track(q, rq, bio);
07068d5b 1982
fd2d3326 1983 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1984
970d168d
BVA
1985 blk_mq_bio_to_request(rq, bio, nr_segs);
1986
b49773e7 1987 plug = blk_mq_plug(q, bio);
07068d5b 1988 if (unlikely(is_flush_fua)) {
923218f6
ML
1989 /* bypass scheduler for flush rq */
1990 blk_insert_flush(rq);
1991 blk_mq_run_hw_queue(data.hctx, true);
b2c5d16b
JA
1992 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1993 /*
1994 * Use plugging if we have a ->commit_rqs() hook as well, as
1995 * we know the driver uses bd->last in a smart fashion.
1996 */
5f0ed774 1997 unsigned int request_count = plug->rq_count;
600271d9
SL
1998 struct request *last = NULL;
1999
676d0607 2000 if (!request_count)
e6c4438b 2001 trace_block_plug(q);
600271d9
SL
2002 else
2003 last = list_entry_rq(plug->mq_list.prev);
b094f89c 2004
600271d9
SL
2005 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2006 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
2007 blk_flush_plug_list(plug, false);
2008 trace_block_plug(q);
320ae51f 2009 }
b094f89c 2010
ce5b009c 2011 blk_add_rq_to_plug(plug, rq);
2299722c 2012 } else if (plug && !blk_queue_nomerges(q)) {
07068d5b 2013 /*
6a83e74d 2014 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
2015 * Otherwise the existing request in the plug list will be
2016 * issued. So the plug list will have one request at most
2299722c
CH
2017 * The plug list might get flushed before this. If that happens,
2018 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 2019 */
2299722c
CH
2020 if (list_empty(&plug->mq_list))
2021 same_queue_rq = NULL;
4711b573 2022 if (same_queue_rq) {
2299722c 2023 list_del_init(&same_queue_rq->queuelist);
4711b573
JA
2024 plug->rq_count--;
2025 }
ce5b009c 2026 blk_add_rq_to_plug(plug, rq);
ff3b74b8 2027 trace_block_plug(q);
2299722c 2028
dad7a3be 2029 if (same_queue_rq) {
ea4f995e 2030 data.hctx = same_queue_rq->mq_hctx;
ff3b74b8 2031 trace_block_unplug(q, 1, true);
2299722c 2032 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
fd9c40f6 2033 &cookie);
dad7a3be 2034 }
6ce3dd6e
ML
2035 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2036 !data.hctx->dispatch_busy)) {
fd9c40f6 2037 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
ab42f35d 2038 } else {
8fa9f556 2039 blk_mq_sched_insert_request(rq, false, true, true);
ab42f35d 2040 }
320ae51f 2041
7b371636 2042 return cookie;
320ae51f
JA
2043}
2044
cc71a6f4
JA
2045void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2046 unsigned int hctx_idx)
95363efd 2047{
e9b267d9 2048 struct page *page;
320ae51f 2049
24d2f903 2050 if (tags->rqs && set->ops->exit_request) {
e9b267d9 2051 int i;
320ae51f 2052
24d2f903 2053 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
2054 struct request *rq = tags->static_rqs[i];
2055
2056 if (!rq)
e9b267d9 2057 continue;
d6296d39 2058 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 2059 tags->static_rqs[i] = NULL;
e9b267d9 2060 }
320ae51f 2061 }
320ae51f 2062
24d2f903
CH
2063 while (!list_empty(&tags->page_list)) {
2064 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 2065 list_del_init(&page->lru);
f75782e4
CM
2066 /*
2067 * Remove kmemleak object previously allocated in
273938bf 2068 * blk_mq_alloc_rqs().
f75782e4
CM
2069 */
2070 kmemleak_free(page_address(page));
320ae51f
JA
2071 __free_pages(page, page->private);
2072 }
cc71a6f4 2073}
320ae51f 2074
cc71a6f4
JA
2075void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2076{
24d2f903 2077 kfree(tags->rqs);
cc71a6f4 2078 tags->rqs = NULL;
2af8cbe3
JA
2079 kfree(tags->static_rqs);
2080 tags->static_rqs = NULL;
320ae51f 2081
24d2f903 2082 blk_mq_free_tags(tags);
320ae51f
JA
2083}
2084
cc71a6f4
JA
2085struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2086 unsigned int hctx_idx,
2087 unsigned int nr_tags,
2088 unsigned int reserved_tags)
320ae51f 2089{
24d2f903 2090 struct blk_mq_tags *tags;
59f082e4 2091 int node;
320ae51f 2092
7d76f856 2093 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
59f082e4
SL
2094 if (node == NUMA_NO_NODE)
2095 node = set->numa_node;
2096
2097 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 2098 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
2099 if (!tags)
2100 return NULL;
320ae51f 2101
590b5b7d 2102 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
36e1f3d1 2103 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 2104 node);
24d2f903
CH
2105 if (!tags->rqs) {
2106 blk_mq_free_tags(tags);
2107 return NULL;
2108 }
320ae51f 2109
590b5b7d
KC
2110 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2111 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2112 node);
2af8cbe3
JA
2113 if (!tags->static_rqs) {
2114 kfree(tags->rqs);
2115 blk_mq_free_tags(tags);
2116 return NULL;
2117 }
2118
cc71a6f4
JA
2119 return tags;
2120}
2121
2122static size_t order_to_size(unsigned int order)
2123{
2124 return (size_t)PAGE_SIZE << order;
2125}
2126
1d9bd516
TH
2127static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2128 unsigned int hctx_idx, int node)
2129{
2130 int ret;
2131
2132 if (set->ops->init_request) {
2133 ret = set->ops->init_request(set, rq, hctx_idx, node);
2134 if (ret)
2135 return ret;
2136 }
2137
12f5b931 2138 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1d9bd516
TH
2139 return 0;
2140}
2141
cc71a6f4
JA
2142int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2143 unsigned int hctx_idx, unsigned int depth)
2144{
2145 unsigned int i, j, entries_per_page, max_order = 4;
2146 size_t rq_size, left;
59f082e4
SL
2147 int node;
2148
7d76f856 2149 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
59f082e4
SL
2150 if (node == NUMA_NO_NODE)
2151 node = set->numa_node;
cc71a6f4
JA
2152
2153 INIT_LIST_HEAD(&tags->page_list);
2154
320ae51f
JA
2155 /*
2156 * rq_size is the size of the request plus driver payload, rounded
2157 * to the cacheline size
2158 */
24d2f903 2159 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 2160 cache_line_size());
cc71a6f4 2161 left = rq_size * depth;
320ae51f 2162
cc71a6f4 2163 for (i = 0; i < depth; ) {
320ae51f
JA
2164 int this_order = max_order;
2165 struct page *page;
2166 int to_do;
2167 void *p;
2168
b3a834b1 2169 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
2170 this_order--;
2171
2172 do {
59f082e4 2173 page = alloc_pages_node(node,
36e1f3d1 2174 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 2175 this_order);
320ae51f
JA
2176 if (page)
2177 break;
2178 if (!this_order--)
2179 break;
2180 if (order_to_size(this_order) < rq_size)
2181 break;
2182 } while (1);
2183
2184 if (!page)
24d2f903 2185 goto fail;
320ae51f
JA
2186
2187 page->private = this_order;
24d2f903 2188 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
2189
2190 p = page_address(page);
f75782e4
CM
2191 /*
2192 * Allow kmemleak to scan these pages as they contain pointers
2193 * to additional allocations like via ops->init_request().
2194 */
36e1f3d1 2195 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 2196 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 2197 to_do = min(entries_per_page, depth - i);
320ae51f
JA
2198 left -= to_do * rq_size;
2199 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
2200 struct request *rq = p;
2201
2202 tags->static_rqs[i] = rq;
1d9bd516
TH
2203 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2204 tags->static_rqs[i] = NULL;
2205 goto fail;
e9b267d9
CH
2206 }
2207
320ae51f
JA
2208 p += rq_size;
2209 i++;
2210 }
2211 }
cc71a6f4 2212 return 0;
320ae51f 2213
24d2f903 2214fail:
cc71a6f4
JA
2215 blk_mq_free_rqs(set, tags, hctx_idx);
2216 return -ENOMEM;
320ae51f
JA
2217}
2218
e57690fe
JA
2219/*
2220 * 'cpu' is going away. splice any existing rq_list entries from this
2221 * software queue to the hw queue dispatch list, and ensure that it
2222 * gets run.
2223 */
9467f859 2224static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 2225{
9467f859 2226 struct blk_mq_hw_ctx *hctx;
484b4061
JA
2227 struct blk_mq_ctx *ctx;
2228 LIST_HEAD(tmp);
c16d6b5a 2229 enum hctx_type type;
484b4061 2230
9467f859 2231 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 2232 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
c16d6b5a 2233 type = hctx->type;
484b4061
JA
2234
2235 spin_lock(&ctx->lock);
c16d6b5a
ML
2236 if (!list_empty(&ctx->rq_lists[type])) {
2237 list_splice_init(&ctx->rq_lists[type], &tmp);
484b4061
JA
2238 blk_mq_hctx_clear_pending(hctx, ctx);
2239 }
2240 spin_unlock(&ctx->lock);
2241
2242 if (list_empty(&tmp))
9467f859 2243 return 0;
484b4061 2244
e57690fe
JA
2245 spin_lock(&hctx->lock);
2246 list_splice_tail_init(&tmp, &hctx->dispatch);
2247 spin_unlock(&hctx->lock);
484b4061
JA
2248
2249 blk_mq_run_hw_queue(hctx, true);
9467f859 2250 return 0;
484b4061
JA
2251}
2252
9467f859 2253static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2254{
9467f859
TG
2255 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2256 &hctx->cpuhp_dead);
484b4061
JA
2257}
2258
c3b4afca 2259/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2260static void blk_mq_exit_hctx(struct request_queue *q,
2261 struct blk_mq_tag_set *set,
2262 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2263{
8ab0b7dc
ML
2264 if (blk_mq_hw_queue_mapped(hctx))
2265 blk_mq_tag_idle(hctx);
08e98fc6 2266
f70ced09 2267 if (set->ops->exit_request)
d6296d39 2268 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2269
08e98fc6
ML
2270 if (set->ops->exit_hctx)
2271 set->ops->exit_hctx(hctx, hctx_idx);
2272
9467f859 2273 blk_mq_remove_cpuhp(hctx);
2f8f1336
ML
2274
2275 spin_lock(&q->unused_hctx_lock);
2276 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2277 spin_unlock(&q->unused_hctx_lock);
08e98fc6
ML
2278}
2279
624dbe47
ML
2280static void blk_mq_exit_hw_queues(struct request_queue *q,
2281 struct blk_mq_tag_set *set, int nr_queue)
2282{
2283 struct blk_mq_hw_ctx *hctx;
2284 unsigned int i;
2285
2286 queue_for_each_hw_ctx(q, hctx, i) {
2287 if (i == nr_queue)
2288 break;
477e19de 2289 blk_mq_debugfs_unregister_hctx(hctx);
08e98fc6 2290 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2291 }
624dbe47
ML
2292}
2293
7c6c5b7c
ML
2294static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2295{
2296 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2297
2298 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2299 __alignof__(struct blk_mq_hw_ctx)) !=
2300 sizeof(struct blk_mq_hw_ctx));
2301
2302 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2303 hw_ctx_size += sizeof(struct srcu_struct);
2304
2305 return hw_ctx_size;
2306}
2307
08e98fc6
ML
2308static int blk_mq_init_hctx(struct request_queue *q,
2309 struct blk_mq_tag_set *set,
2310 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2311{
7c6c5b7c
ML
2312 hctx->queue_num = hctx_idx;
2313
2314 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2315
2316 hctx->tags = set->tags[hctx_idx];
2317
2318 if (set->ops->init_hctx &&
2319 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2320 goto unregister_cpu_notifier;
08e98fc6 2321
7c6c5b7c
ML
2322 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2323 hctx->numa_node))
2324 goto exit_hctx;
2325 return 0;
2326
2327 exit_hctx:
2328 if (set->ops->exit_hctx)
2329 set->ops->exit_hctx(hctx, hctx_idx);
2330 unregister_cpu_notifier:
2331 blk_mq_remove_cpuhp(hctx);
2332 return -1;
2333}
2334
2335static struct blk_mq_hw_ctx *
2336blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2337 int node)
2338{
2339 struct blk_mq_hw_ctx *hctx;
2340 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2341
2342 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2343 if (!hctx)
2344 goto fail_alloc_hctx;
2345
2346 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2347 goto free_hctx;
2348
2349 atomic_set(&hctx->nr_active, 0);
08e98fc6 2350 if (node == NUMA_NO_NODE)
7c6c5b7c
ML
2351 node = set->numa_node;
2352 hctx->numa_node = node;
08e98fc6 2353
9f993737 2354 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2355 spin_lock_init(&hctx->lock);
2356 INIT_LIST_HEAD(&hctx->dispatch);
2357 hctx->queue = q;
2404e607 2358 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2359
2f8f1336
ML
2360 INIT_LIST_HEAD(&hctx->hctx_list);
2361
320ae51f 2362 /*
08e98fc6
ML
2363 * Allocate space for all possible cpus to avoid allocation at
2364 * runtime
320ae51f 2365 */
d904bfa7 2366 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
7c6c5b7c 2367 gfp, node);
08e98fc6 2368 if (!hctx->ctxs)
7c6c5b7c 2369 goto free_cpumask;
320ae51f 2370
5b202853 2371 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
7c6c5b7c 2372 gfp, node))
08e98fc6 2373 goto free_ctxs;
08e98fc6 2374 hctx->nr_ctx = 0;
320ae51f 2375
5815839b 2376 spin_lock_init(&hctx->dispatch_wait_lock);
eb619fdb
JA
2377 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2378 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2379
5b202853 2380 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
7c6c5b7c 2381 gfp);
f70ced09 2382 if (!hctx->fq)
7c6c5b7c 2383 goto free_bitmap;
320ae51f 2384
6a83e74d 2385 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2386 init_srcu_struct(hctx->srcu);
7c6c5b7c 2387 blk_mq_hctx_kobj_init(hctx);
6a83e74d 2388
7c6c5b7c 2389 return hctx;
320ae51f 2390
08e98fc6 2391 free_bitmap:
88459642 2392 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2393 free_ctxs:
2394 kfree(hctx->ctxs);
7c6c5b7c
ML
2395 free_cpumask:
2396 free_cpumask_var(hctx->cpumask);
2397 free_hctx:
2398 kfree(hctx);
2399 fail_alloc_hctx:
2400 return NULL;
08e98fc6 2401}
320ae51f 2402
320ae51f
JA
2403static void blk_mq_init_cpu_queues(struct request_queue *q,
2404 unsigned int nr_hw_queues)
2405{
b3c661b1
JA
2406 struct blk_mq_tag_set *set = q->tag_set;
2407 unsigned int i, j;
320ae51f
JA
2408
2409 for_each_possible_cpu(i) {
2410 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2411 struct blk_mq_hw_ctx *hctx;
c16d6b5a 2412 int k;
320ae51f 2413
320ae51f
JA
2414 __ctx->cpu = i;
2415 spin_lock_init(&__ctx->lock);
c16d6b5a
ML
2416 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2417 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2418
320ae51f
JA
2419 __ctx->queue = q;
2420
320ae51f
JA
2421 /*
2422 * Set local node, IFF we have more than one hw queue. If
2423 * not, we remain on the home node of the device
2424 */
b3c661b1
JA
2425 for (j = 0; j < set->nr_maps; j++) {
2426 hctx = blk_mq_map_queue_type(q, j, i);
2427 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2428 hctx->numa_node = local_memory_node(cpu_to_node(i));
2429 }
320ae51f
JA
2430 }
2431}
2432
cc71a6f4
JA
2433static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2434{
2435 int ret = 0;
2436
2437 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2438 set->queue_depth, set->reserved_tags);
2439 if (!set->tags[hctx_idx])
2440 return false;
2441
2442 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2443 set->queue_depth);
2444 if (!ret)
2445 return true;
2446
2447 blk_mq_free_rq_map(set->tags[hctx_idx]);
2448 set->tags[hctx_idx] = NULL;
2449 return false;
2450}
2451
2452static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2453 unsigned int hctx_idx)
2454{
4e6db0f2 2455 if (set->tags && set->tags[hctx_idx]) {
bd166ef1
JA
2456 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2457 blk_mq_free_rq_map(set->tags[hctx_idx]);
2458 set->tags[hctx_idx] = NULL;
2459 }
cc71a6f4
JA
2460}
2461
4b855ad3 2462static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2463{
b3c661b1 2464 unsigned int i, j, hctx_idx;
320ae51f
JA
2465 struct blk_mq_hw_ctx *hctx;
2466 struct blk_mq_ctx *ctx;
2a34c087 2467 struct blk_mq_tag_set *set = q->tag_set;
320ae51f
JA
2468
2469 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2470 cpumask_clear(hctx->cpumask);
320ae51f 2471 hctx->nr_ctx = 0;
d416c92c 2472 hctx->dispatch_from = NULL;
320ae51f
JA
2473 }
2474
2475 /*
4b855ad3 2476 * Map software to hardware queues.
4412efec
ML
2477 *
2478 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2479 */
20e4d813 2480 for_each_possible_cpu(i) {
7d76f856 2481 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
4412efec
ML
2482 /* unmapped hw queue can be remapped after CPU topo changed */
2483 if (!set->tags[hctx_idx] &&
2484 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2485 /*
2486 * If tags initialization fail for some hctx,
2487 * that hctx won't be brought online. In this
2488 * case, remap the current ctx to hctx[0] which
2489 * is guaranteed to always have tags allocated
2490 */
7d76f856 2491 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
4412efec
ML
2492 }
2493
897bb0c7 2494 ctx = per_cpu_ptr(q->queue_ctx, i);
b3c661b1 2495 for (j = 0; j < set->nr_maps; j++) {
bb94aea1
JW
2496 if (!set->map[j].nr_queues) {
2497 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2498 HCTX_TYPE_DEFAULT, i);
e5edd5f2 2499 continue;
bb94aea1 2500 }
e5edd5f2 2501
b3c661b1 2502 hctx = blk_mq_map_queue_type(q, j, i);
8ccdf4a3 2503 ctx->hctxs[j] = hctx;
b3c661b1
JA
2504 /*
2505 * If the CPU is already set in the mask, then we've
2506 * mapped this one already. This can happen if
2507 * devices share queues across queue maps.
2508 */
2509 if (cpumask_test_cpu(i, hctx->cpumask))
2510 continue;
2511
2512 cpumask_set_cpu(i, hctx->cpumask);
2513 hctx->type = j;
2514 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2515 hctx->ctxs[hctx->nr_ctx++] = ctx;
2516
2517 /*
2518 * If the nr_ctx type overflows, we have exceeded the
2519 * amount of sw queues we can support.
2520 */
2521 BUG_ON(!hctx->nr_ctx);
2522 }
bb94aea1
JW
2523
2524 for (; j < HCTX_MAX_TYPES; j++)
2525 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2526 HCTX_TYPE_DEFAULT, i);
320ae51f 2527 }
506e931f
JA
2528
2529 queue_for_each_hw_ctx(q, hctx, i) {
4412efec
ML
2530 /*
2531 * If no software queues are mapped to this hardware queue,
2532 * disable it and free the request entries.
2533 */
2534 if (!hctx->nr_ctx) {
2535 /* Never unmap queue 0. We need it as a
2536 * fallback in case of a new remap fails
2537 * allocation
2538 */
2539 if (i && set->tags[i])
2540 blk_mq_free_map_and_requests(set, i);
2541
2542 hctx->tags = NULL;
2543 continue;
2544 }
484b4061 2545
2a34c087
ML
2546 hctx->tags = set->tags[i];
2547 WARN_ON(!hctx->tags);
2548
889fa31f
CY
2549 /*
2550 * Set the map size to the number of mapped software queues.
2551 * This is more accurate and more efficient than looping
2552 * over all possibly mapped software queues.
2553 */
88459642 2554 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2555
484b4061
JA
2556 /*
2557 * Initialize batch roundrobin counts
2558 */
f82ddf19 2559 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
2560 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2561 }
320ae51f
JA
2562}
2563
8e8320c9
JA
2564/*
2565 * Caller needs to ensure that we're either frozen/quiesced, or that
2566 * the queue isn't live yet.
2567 */
2404e607 2568static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2569{
2570 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2571 int i;
2572
2404e607 2573 queue_for_each_hw_ctx(q, hctx, i) {
97889f9a 2574 if (shared)
2404e607 2575 hctx->flags |= BLK_MQ_F_TAG_SHARED;
97889f9a 2576 else
2404e607
JM
2577 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2578 }
2579}
2580
8e8320c9
JA
2581static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2582 bool shared)
2404e607
JM
2583{
2584 struct request_queue *q;
0d2602ca 2585
705cda97
BVA
2586 lockdep_assert_held(&set->tag_list_lock);
2587
0d2602ca
JA
2588 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2589 blk_mq_freeze_queue(q);
2404e607 2590 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2591 blk_mq_unfreeze_queue(q);
2592 }
2593}
2594
2595static void blk_mq_del_queue_tag_set(struct request_queue *q)
2596{
2597 struct blk_mq_tag_set *set = q->tag_set;
2598
0d2602ca 2599 mutex_lock(&set->tag_list_lock);
705cda97 2600 list_del_rcu(&q->tag_set_list);
2404e607
JM
2601 if (list_is_singular(&set->tag_list)) {
2602 /* just transitioned to unshared */
2603 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2604 /* update existing queue */
2605 blk_mq_update_tag_set_depth(set, false);
2606 }
0d2602ca 2607 mutex_unlock(&set->tag_list_lock);
a347c7ad 2608 INIT_LIST_HEAD(&q->tag_set_list);
0d2602ca
JA
2609}
2610
2611static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2612 struct request_queue *q)
2613{
0d2602ca 2614 mutex_lock(&set->tag_list_lock);
2404e607 2615
ff821d27
JA
2616 /*
2617 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2618 */
2619 if (!list_empty(&set->tag_list) &&
2620 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404e607
JM
2621 set->flags |= BLK_MQ_F_TAG_SHARED;
2622 /* update existing queue */
2623 blk_mq_update_tag_set_depth(set, true);
2624 }
2625 if (set->flags & BLK_MQ_F_TAG_SHARED)
2626 queue_set_hctx_shared(q, true);
705cda97 2627 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2628
0d2602ca
JA
2629 mutex_unlock(&set->tag_list_lock);
2630}
2631
1db4909e
ML
2632/* All allocations will be freed in release handler of q->mq_kobj */
2633static int blk_mq_alloc_ctxs(struct request_queue *q)
2634{
2635 struct blk_mq_ctxs *ctxs;
2636 int cpu;
2637
2638 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2639 if (!ctxs)
2640 return -ENOMEM;
2641
2642 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2643 if (!ctxs->queue_ctx)
2644 goto fail;
2645
2646 for_each_possible_cpu(cpu) {
2647 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2648 ctx->ctxs = ctxs;
2649 }
2650
2651 q->mq_kobj = &ctxs->kobj;
2652 q->queue_ctx = ctxs->queue_ctx;
2653
2654 return 0;
2655 fail:
2656 kfree(ctxs);
2657 return -ENOMEM;
2658}
2659
e09aae7e
ML
2660/*
2661 * It is the actual release handler for mq, but we do it from
2662 * request queue's release handler for avoiding use-after-free
2663 * and headache because q->mq_kobj shouldn't have been introduced,
2664 * but we can't group ctx/kctx kobj without it.
2665 */
2666void blk_mq_release(struct request_queue *q)
2667{
2f8f1336
ML
2668 struct blk_mq_hw_ctx *hctx, *next;
2669 int i;
e09aae7e 2670
2f8f1336
ML
2671 queue_for_each_hw_ctx(q, hctx, i)
2672 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2673
2674 /* all hctx are in .unused_hctx_list now */
2675 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2676 list_del_init(&hctx->hctx_list);
6c8b232e 2677 kobject_put(&hctx->kobj);
c3b4afca 2678 }
e09aae7e
ML
2679
2680 kfree(q->queue_hw_ctx);
2681
7ea5fe31
ML
2682 /*
2683 * release .mq_kobj and sw queue's kobject now because
2684 * both share lifetime with request queue.
2685 */
2686 blk_mq_sysfs_deinit(q);
e09aae7e
ML
2687}
2688
24d2f903 2689struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2690{
2691 struct request_queue *uninit_q, *q;
2692
6d469642 2693 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
b62c21b7
MS
2694 if (!uninit_q)
2695 return ERR_PTR(-ENOMEM);
2696
737eb78e
DLM
2697 /*
2698 * Initialize the queue without an elevator. device_add_disk() will do
2699 * the initialization.
2700 */
2701 q = blk_mq_init_allocated_queue(set, uninit_q, false);
b62c21b7
MS
2702 if (IS_ERR(q))
2703 blk_cleanup_queue(uninit_q);
2704
2705 return q;
2706}
2707EXPORT_SYMBOL(blk_mq_init_queue);
2708
9316a9ed
JA
2709/*
2710 * Helper for setting up a queue with mq ops, given queue depth, and
2711 * the passed in mq ops flags.
2712 */
2713struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2714 const struct blk_mq_ops *ops,
2715 unsigned int queue_depth,
2716 unsigned int set_flags)
2717{
2718 struct request_queue *q;
2719 int ret;
2720
2721 memset(set, 0, sizeof(*set));
2722 set->ops = ops;
2723 set->nr_hw_queues = 1;
b3c661b1 2724 set->nr_maps = 1;
9316a9ed
JA
2725 set->queue_depth = queue_depth;
2726 set->numa_node = NUMA_NO_NODE;
2727 set->flags = set_flags;
2728
2729 ret = blk_mq_alloc_tag_set(set);
2730 if (ret)
2731 return ERR_PTR(ret);
2732
2733 q = blk_mq_init_queue(set);
2734 if (IS_ERR(q)) {
2735 blk_mq_free_tag_set(set);
2736 return q;
2737 }
2738
2739 return q;
2740}
2741EXPORT_SYMBOL(blk_mq_init_sq_queue);
2742
34d11ffa
JW
2743static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2744 struct blk_mq_tag_set *set, struct request_queue *q,
2745 int hctx_idx, int node)
2746{
2f8f1336 2747 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
34d11ffa 2748
2f8f1336
ML
2749 /* reuse dead hctx first */
2750 spin_lock(&q->unused_hctx_lock);
2751 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2752 if (tmp->numa_node == node) {
2753 hctx = tmp;
2754 break;
2755 }
2756 }
2757 if (hctx)
2758 list_del_init(&hctx->hctx_list);
2759 spin_unlock(&q->unused_hctx_lock);
2760
2761 if (!hctx)
2762 hctx = blk_mq_alloc_hctx(q, set, node);
34d11ffa 2763 if (!hctx)
7c6c5b7c 2764 goto fail;
34d11ffa 2765
7c6c5b7c
ML
2766 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2767 goto free_hctx;
34d11ffa
JW
2768
2769 return hctx;
7c6c5b7c
ML
2770
2771 free_hctx:
2772 kobject_put(&hctx->kobj);
2773 fail:
2774 return NULL;
34d11ffa
JW
2775}
2776
868f2f0b
KB
2777static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2778 struct request_queue *q)
320ae51f 2779{
e01ad46d 2780 int i, j, end;
868f2f0b 2781 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2782
fb350e0a
ML
2783 /* protect against switching io scheduler */
2784 mutex_lock(&q->sysfs_lock);
24d2f903 2785 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2786 int node;
34d11ffa 2787 struct blk_mq_hw_ctx *hctx;
868f2f0b 2788
7d76f856 2789 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
34d11ffa
JW
2790 /*
2791 * If the hw queue has been mapped to another numa node,
2792 * we need to realloc the hctx. If allocation fails, fallback
2793 * to use the previous one.
2794 */
2795 if (hctxs[i] && (hctxs[i]->numa_node == node))
2796 continue;
868f2f0b 2797
34d11ffa
JW
2798 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2799 if (hctx) {
2f8f1336 2800 if (hctxs[i])
34d11ffa 2801 blk_mq_exit_hctx(q, set, hctxs[i], i);
34d11ffa
JW
2802 hctxs[i] = hctx;
2803 } else {
2804 if (hctxs[i])
2805 pr_warn("Allocate new hctx on node %d fails,\
2806 fallback to previous one on node %d\n",
2807 node, hctxs[i]->numa_node);
2808 else
2809 break;
868f2f0b 2810 }
320ae51f 2811 }
e01ad46d
JW
2812 /*
2813 * Increasing nr_hw_queues fails. Free the newly allocated
2814 * hctxs and keep the previous q->nr_hw_queues.
2815 */
2816 if (i != set->nr_hw_queues) {
2817 j = q->nr_hw_queues;
2818 end = i;
2819 } else {
2820 j = i;
2821 end = q->nr_hw_queues;
2822 q->nr_hw_queues = set->nr_hw_queues;
2823 }
34d11ffa 2824
e01ad46d 2825 for (; j < end; j++) {
868f2f0b
KB
2826 struct blk_mq_hw_ctx *hctx = hctxs[j];
2827
2828 if (hctx) {
cc71a6f4
JA
2829 if (hctx->tags)
2830 blk_mq_free_map_and_requests(set, j);
868f2f0b 2831 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2832 hctxs[j] = NULL;
868f2f0b
KB
2833 }
2834 }
fb350e0a 2835 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
2836}
2837
392546ae
JA
2838/*
2839 * Maximum number of hardware queues we support. For single sets, we'll never
2840 * have more than the CPUs (software queues). For multiple sets, the tag_set
2841 * user may have set ->nr_hw_queues larger.
2842 */
2843static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2844{
2845 if (set->nr_maps == 1)
2846 return nr_cpu_ids;
2847
2848 return max(set->nr_hw_queues, nr_cpu_ids);
2849}
2850
868f2f0b 2851struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
737eb78e
DLM
2852 struct request_queue *q,
2853 bool elevator_init)
868f2f0b 2854{
66841672
ML
2855 /* mark the queue as mq asap */
2856 q->mq_ops = set->ops;
2857
34dbad5d 2858 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2859 blk_mq_poll_stats_bkt,
2860 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2861 if (!q->poll_cb)
2862 goto err_exit;
2863
1db4909e 2864 if (blk_mq_alloc_ctxs(q))
41de54c6 2865 goto err_poll;
868f2f0b 2866
737f98cf
ML
2867 /* init q->mq_kobj and sw queues' kobjects */
2868 blk_mq_sysfs_init(q);
2869
392546ae
JA
2870 q->nr_queues = nr_hw_queues(set);
2871 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
868f2f0b
KB
2872 GFP_KERNEL, set->numa_node);
2873 if (!q->queue_hw_ctx)
1db4909e 2874 goto err_sys_init;
868f2f0b 2875
2f8f1336
ML
2876 INIT_LIST_HEAD(&q->unused_hctx_list);
2877 spin_lock_init(&q->unused_hctx_lock);
2878
868f2f0b
KB
2879 blk_mq_realloc_hw_ctxs(set, q);
2880 if (!q->nr_hw_queues)
2881 goto err_hctxs;
320ae51f 2882
287922eb 2883 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2884 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f 2885
a8908939 2886 q->tag_set = set;
320ae51f 2887
94eddfbe 2888 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
cd19181b
ML
2889 if (set->nr_maps > HCTX_TYPE_POLL &&
2890 set->map[HCTX_TYPE_POLL].nr_queues)
6544d229 2891 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
320ae51f 2892
1be036e9
CH
2893 q->sg_reserved_size = INT_MAX;
2894
2849450a 2895 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2896 INIT_LIST_HEAD(&q->requeue_list);
2897 spin_lock_init(&q->requeue_lock);
2898
254d259d 2899 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2900
eba71768
JA
2901 /*
2902 * Do this after blk_queue_make_request() overrides it...
2903 */
2904 q->nr_requests = set->queue_depth;
2905
64f1c21e
JA
2906 /*
2907 * Default to classic polling
2908 */
29ece8b4 2909 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
64f1c21e 2910
24d2f903 2911 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2912 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2913 blk_mq_map_swqueue(q);
4593fdbe 2914
737eb78e
DLM
2915 if (elevator_init)
2916 elevator_init_mq(q);
d3484991 2917
320ae51f 2918 return q;
18741986 2919
320ae51f 2920err_hctxs:
868f2f0b 2921 kfree(q->queue_hw_ctx);
73d9c8d4 2922 q->nr_hw_queues = 0;
1db4909e
ML
2923err_sys_init:
2924 blk_mq_sysfs_deinit(q);
41de54c6
JS
2925err_poll:
2926 blk_stat_free_callback(q->poll_cb);
2927 q->poll_cb = NULL;
c7de5726
ML
2928err_exit:
2929 q->mq_ops = NULL;
320ae51f
JA
2930 return ERR_PTR(-ENOMEM);
2931}
b62c21b7 2932EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f 2933
c7e2d94b
ML
2934/* tags can _not_ be used after returning from blk_mq_exit_queue */
2935void blk_mq_exit_queue(struct request_queue *q)
320ae51f 2936{
624dbe47 2937 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2938
0d2602ca 2939 blk_mq_del_queue_tag_set(q);
624dbe47 2940 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2941}
320ae51f 2942
a5164405
JA
2943static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2944{
2945 int i;
2946
cc71a6f4
JA
2947 for (i = 0; i < set->nr_hw_queues; i++)
2948 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2949 goto out_unwind;
a5164405
JA
2950
2951 return 0;
2952
2953out_unwind:
2954 while (--i >= 0)
cc71a6f4 2955 blk_mq_free_rq_map(set->tags[i]);
a5164405 2956
a5164405
JA
2957 return -ENOMEM;
2958}
2959
2960/*
2961 * Allocate the request maps associated with this tag_set. Note that this
2962 * may reduce the depth asked for, if memory is tight. set->queue_depth
2963 * will be updated to reflect the allocated depth.
2964 */
2965static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2966{
2967 unsigned int depth;
2968 int err;
2969
2970 depth = set->queue_depth;
2971 do {
2972 err = __blk_mq_alloc_rq_maps(set);
2973 if (!err)
2974 break;
2975
2976 set->queue_depth >>= 1;
2977 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2978 err = -ENOMEM;
2979 break;
2980 }
2981 } while (set->queue_depth);
2982
2983 if (!set->queue_depth || err) {
2984 pr_err("blk-mq: failed to allocate request map\n");
2985 return -ENOMEM;
2986 }
2987
2988 if (depth != set->queue_depth)
2989 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2990 depth, set->queue_depth);
2991
2992 return 0;
2993}
2994
ebe8bddb
OS
2995static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2996{
59388702 2997 if (set->ops->map_queues && !is_kdump_kernel()) {
b3c661b1
JA
2998 int i;
2999
7d4901a9
ML
3000 /*
3001 * transport .map_queues is usually done in the following
3002 * way:
3003 *
3004 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3005 * mask = get_cpu_mask(queue)
3006 * for_each_cpu(cpu, mask)
b3c661b1 3007 * set->map[x].mq_map[cpu] = queue;
7d4901a9
ML
3008 * }
3009 *
3010 * When we need to remap, the table has to be cleared for
3011 * killing stale mapping since one CPU may not be mapped
3012 * to any hw queue.
3013 */
b3c661b1
JA
3014 for (i = 0; i < set->nr_maps; i++)
3015 blk_mq_clear_mq_map(&set->map[i]);
7d4901a9 3016
ebe8bddb 3017 return set->ops->map_queues(set);
b3c661b1
JA
3018 } else {
3019 BUG_ON(set->nr_maps > 1);
7d76f856 3020 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
b3c661b1 3021 }
ebe8bddb
OS
3022}
3023
a4391c64
JA
3024/*
3025 * Alloc a tag set to be associated with one or more request queues.
3026 * May fail with EINVAL for various error conditions. May adjust the
c018c84f 3027 * requested depth down, if it's too large. In that case, the set
a4391c64
JA
3028 * value will be stored in set->queue_depth.
3029 */
24d2f903
CH
3030int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3031{
b3c661b1 3032 int i, ret;
da695ba2 3033
205fb5f5
BVA
3034 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3035
24d2f903
CH
3036 if (!set->nr_hw_queues)
3037 return -EINVAL;
a4391c64 3038 if (!set->queue_depth)
24d2f903
CH
3039 return -EINVAL;
3040 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3041 return -EINVAL;
3042
7d7e0f90 3043 if (!set->ops->queue_rq)
24d2f903
CH
3044 return -EINVAL;
3045
de148297
ML
3046 if (!set->ops->get_budget ^ !set->ops->put_budget)
3047 return -EINVAL;
3048
a4391c64
JA
3049 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3050 pr_info("blk-mq: reduced tag depth to %u\n",
3051 BLK_MQ_MAX_DEPTH);
3052 set->queue_depth = BLK_MQ_MAX_DEPTH;
3053 }
24d2f903 3054
b3c661b1
JA
3055 if (!set->nr_maps)
3056 set->nr_maps = 1;
3057 else if (set->nr_maps > HCTX_MAX_TYPES)
3058 return -EINVAL;
3059
6637fadf
SL
3060 /*
3061 * If a crashdump is active, then we are potentially in a very
3062 * memory constrained environment. Limit us to 1 queue and
3063 * 64 tags to prevent using too much memory.
3064 */
3065 if (is_kdump_kernel()) {
3066 set->nr_hw_queues = 1;
59388702 3067 set->nr_maps = 1;
6637fadf
SL
3068 set->queue_depth = min(64U, set->queue_depth);
3069 }
868f2f0b 3070 /*
392546ae
JA
3071 * There is no use for more h/w queues than cpus if we just have
3072 * a single map
868f2f0b 3073 */
392546ae 3074 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
868f2f0b 3075 set->nr_hw_queues = nr_cpu_ids;
6637fadf 3076
392546ae 3077 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
24d2f903
CH
3078 GFP_KERNEL, set->numa_node);
3079 if (!set->tags)
a5164405 3080 return -ENOMEM;
24d2f903 3081
da695ba2 3082 ret = -ENOMEM;
b3c661b1
JA
3083 for (i = 0; i < set->nr_maps; i++) {
3084 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
07b35eb5 3085 sizeof(set->map[i].mq_map[0]),
b3c661b1
JA
3086 GFP_KERNEL, set->numa_node);
3087 if (!set->map[i].mq_map)
3088 goto out_free_mq_map;
59388702 3089 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
b3c661b1 3090 }
bdd17e75 3091
ebe8bddb 3092 ret = blk_mq_update_queue_map(set);
da695ba2
CH
3093 if (ret)
3094 goto out_free_mq_map;
3095
3096 ret = blk_mq_alloc_rq_maps(set);
3097 if (ret)
bdd17e75 3098 goto out_free_mq_map;
24d2f903 3099
0d2602ca
JA
3100 mutex_init(&set->tag_list_lock);
3101 INIT_LIST_HEAD(&set->tag_list);
3102
24d2f903 3103 return 0;
bdd17e75
CH
3104
3105out_free_mq_map:
b3c661b1
JA
3106 for (i = 0; i < set->nr_maps; i++) {
3107 kfree(set->map[i].mq_map);
3108 set->map[i].mq_map = NULL;
3109 }
5676e7b6
RE
3110 kfree(set->tags);
3111 set->tags = NULL;
da695ba2 3112 return ret;
24d2f903
CH
3113}
3114EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3115
3116void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3117{
b3c661b1 3118 int i, j;
24d2f903 3119
392546ae 3120 for (i = 0; i < nr_hw_queues(set); i++)
cc71a6f4 3121 blk_mq_free_map_and_requests(set, i);
484b4061 3122
b3c661b1
JA
3123 for (j = 0; j < set->nr_maps; j++) {
3124 kfree(set->map[j].mq_map);
3125 set->map[j].mq_map = NULL;
3126 }
bdd17e75 3127
981bd189 3128 kfree(set->tags);
5676e7b6 3129 set->tags = NULL;
24d2f903
CH
3130}
3131EXPORT_SYMBOL(blk_mq_free_tag_set);
3132
e3a2b3f9
JA
3133int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3134{
3135 struct blk_mq_tag_set *set = q->tag_set;
3136 struct blk_mq_hw_ctx *hctx;
3137 int i, ret;
3138
bd166ef1 3139 if (!set)
e3a2b3f9
JA
3140 return -EINVAL;
3141
e5fa8140
AZ
3142 if (q->nr_requests == nr)
3143 return 0;
3144
70f36b60 3145 blk_mq_freeze_queue(q);
24f5a90f 3146 blk_mq_quiesce_queue(q);
70f36b60 3147
e3a2b3f9
JA
3148 ret = 0;
3149 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
3150 if (!hctx->tags)
3151 continue;
bd166ef1
JA
3152 /*
3153 * If we're using an MQ scheduler, just update the scheduler
3154 * queue depth. This is similar to what the old code would do.
3155 */
70f36b60 3156 if (!hctx->sched_tags) {
c2e82a23 3157 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
3158 false);
3159 } else {
3160 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3161 nr, true);
3162 }
e3a2b3f9
JA
3163 if (ret)
3164 break;
77f1e0a5
JA
3165 if (q->elevator && q->elevator->type->ops.depth_updated)
3166 q->elevator->type->ops.depth_updated(hctx);
e3a2b3f9
JA
3167 }
3168
3169 if (!ret)
3170 q->nr_requests = nr;
3171
24f5a90f 3172 blk_mq_unquiesce_queue(q);
70f36b60 3173 blk_mq_unfreeze_queue(q);
70f36b60 3174
e3a2b3f9
JA
3175 return ret;
3176}
3177
d48ece20
JW
3178/*
3179 * request_queue and elevator_type pair.
3180 * It is just used by __blk_mq_update_nr_hw_queues to cache
3181 * the elevator_type associated with a request_queue.
3182 */
3183struct blk_mq_qe_pair {
3184 struct list_head node;
3185 struct request_queue *q;
3186 struct elevator_type *type;
3187};
3188
3189/*
3190 * Cache the elevator_type in qe pair list and switch the
3191 * io scheduler to 'none'
3192 */
3193static bool blk_mq_elv_switch_none(struct list_head *head,
3194 struct request_queue *q)
3195{
3196 struct blk_mq_qe_pair *qe;
3197
3198 if (!q->elevator)
3199 return true;
3200
3201 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3202 if (!qe)
3203 return false;
3204
3205 INIT_LIST_HEAD(&qe->node);
3206 qe->q = q;
3207 qe->type = q->elevator->type;
3208 list_add(&qe->node, head);
3209
3210 mutex_lock(&q->sysfs_lock);
3211 /*
3212 * After elevator_switch_mq, the previous elevator_queue will be
3213 * released by elevator_release. The reference of the io scheduler
3214 * module get by elevator_get will also be put. So we need to get
3215 * a reference of the io scheduler module here to prevent it to be
3216 * removed.
3217 */
3218 __module_get(qe->type->elevator_owner);
3219 elevator_switch_mq(q, NULL);
3220 mutex_unlock(&q->sysfs_lock);
3221
3222 return true;
3223}
3224
3225static void blk_mq_elv_switch_back(struct list_head *head,
3226 struct request_queue *q)
3227{
3228 struct blk_mq_qe_pair *qe;
3229 struct elevator_type *t = NULL;
3230
3231 list_for_each_entry(qe, head, node)
3232 if (qe->q == q) {
3233 t = qe->type;
3234 break;
3235 }
3236
3237 if (!t)
3238 return;
3239
3240 list_del(&qe->node);
3241 kfree(qe);
3242
3243 mutex_lock(&q->sysfs_lock);
3244 elevator_switch_mq(q, t);
3245 mutex_unlock(&q->sysfs_lock);
3246}
3247
e4dc2b32
KB
3248static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3249 int nr_hw_queues)
868f2f0b
KB
3250{
3251 struct request_queue *q;
d48ece20 3252 LIST_HEAD(head);
e01ad46d 3253 int prev_nr_hw_queues;
868f2f0b 3254
705cda97
BVA
3255 lockdep_assert_held(&set->tag_list_lock);
3256
392546ae 3257 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
868f2f0b
KB
3258 nr_hw_queues = nr_cpu_ids;
3259 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3260 return;
3261
3262 list_for_each_entry(q, &set->tag_list, tag_set_list)
3263 blk_mq_freeze_queue(q);
f5bbbbe4
JW
3264 /*
3265 * Sync with blk_mq_queue_tag_busy_iter.
3266 */
3267 synchronize_rcu();
d48ece20
JW
3268 /*
3269 * Switch IO scheduler to 'none', cleaning up the data associated
3270 * with the previous scheduler. We will switch back once we are done
3271 * updating the new sw to hw queue mappings.
3272 */
3273 list_for_each_entry(q, &set->tag_list, tag_set_list)
3274 if (!blk_mq_elv_switch_none(&head, q))
3275 goto switch_back;
868f2f0b 3276
477e19de
JW
3277 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3278 blk_mq_debugfs_unregister_hctxs(q);
3279 blk_mq_sysfs_unregister(q);
3280 }
3281
e01ad46d 3282 prev_nr_hw_queues = set->nr_hw_queues;
868f2f0b 3283 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 3284 blk_mq_update_queue_map(set);
e01ad46d 3285fallback:
868f2f0b
KB
3286 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3287 blk_mq_realloc_hw_ctxs(set, q);
e01ad46d
JW
3288 if (q->nr_hw_queues != set->nr_hw_queues) {
3289 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3290 nr_hw_queues, prev_nr_hw_queues);
3291 set->nr_hw_queues = prev_nr_hw_queues;
7d76f856 3292 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
e01ad46d
JW
3293 goto fallback;
3294 }
477e19de
JW
3295 blk_mq_map_swqueue(q);
3296 }
3297
3298 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3299 blk_mq_sysfs_register(q);
3300 blk_mq_debugfs_register_hctxs(q);
868f2f0b
KB
3301 }
3302
d48ece20
JW
3303switch_back:
3304 list_for_each_entry(q, &set->tag_list, tag_set_list)
3305 blk_mq_elv_switch_back(&head, q);
3306
868f2f0b
KB
3307 list_for_each_entry(q, &set->tag_list, tag_set_list)
3308 blk_mq_unfreeze_queue(q);
3309}
e4dc2b32
KB
3310
3311void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3312{
3313 mutex_lock(&set->tag_list_lock);
3314 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3315 mutex_unlock(&set->tag_list_lock);
3316}
868f2f0b
KB
3317EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3318
34dbad5d
OS
3319/* Enable polling stats and return whether they were already enabled. */
3320static bool blk_poll_stats_enable(struct request_queue *q)
3321{
3322 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
7dfdbc73 3323 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
34dbad5d
OS
3324 return true;
3325 blk_stat_add_callback(q, q->poll_cb);
3326 return false;
3327}
3328
3329static void blk_mq_poll_stats_start(struct request_queue *q)
3330{
3331 /*
3332 * We don't arm the callback if polling stats are not enabled or the
3333 * callback is already active.
3334 */
3335 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3336 blk_stat_is_active(q->poll_cb))
3337 return;
3338
3339 blk_stat_activate_msecs(q->poll_cb, 100);
3340}
3341
3342static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3343{
3344 struct request_queue *q = cb->data;
720b8ccc 3345 int bucket;
34dbad5d 3346
720b8ccc
SB
3347 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3348 if (cb->stat[bucket].nr_samples)
3349 q->poll_stat[bucket] = cb->stat[bucket];
3350 }
34dbad5d
OS
3351}
3352
64f1c21e
JA
3353static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3354 struct blk_mq_hw_ctx *hctx,
3355 struct request *rq)
3356{
64f1c21e 3357 unsigned long ret = 0;
720b8ccc 3358 int bucket;
64f1c21e
JA
3359
3360 /*
3361 * If stats collection isn't on, don't sleep but turn it on for
3362 * future users
3363 */
34dbad5d 3364 if (!blk_poll_stats_enable(q))
64f1c21e
JA
3365 return 0;
3366
64f1c21e
JA
3367 /*
3368 * As an optimistic guess, use half of the mean service time
3369 * for this type of request. We can (and should) make this smarter.
3370 * For instance, if the completion latencies are tight, we can
3371 * get closer than just half the mean. This is especially
3372 * important on devices where the completion latencies are longer
720b8ccc
SB
3373 * than ~10 usec. We do use the stats for the relevant IO size
3374 * if available which does lead to better estimates.
64f1c21e 3375 */
720b8ccc
SB
3376 bucket = blk_mq_poll_stats_bkt(rq);
3377 if (bucket < 0)
3378 return ret;
3379
3380 if (q->poll_stat[bucket].nr_samples)
3381 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
3382
3383 return ret;
3384}
3385
06426adf 3386static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 3387 struct blk_mq_hw_ctx *hctx,
06426adf
JA
3388 struct request *rq)
3389{
3390 struct hrtimer_sleeper hs;
3391 enum hrtimer_mode mode;
64f1c21e 3392 unsigned int nsecs;
06426adf
JA
3393 ktime_t kt;
3394
76a86f9d 3395 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
64f1c21e
JA
3396 return false;
3397
3398 /*
1052b8ac 3399 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
64f1c21e 3400 *
64f1c21e
JA
3401 * 0: use half of prev avg
3402 * >0: use this specific value
3403 */
1052b8ac 3404 if (q->poll_nsec > 0)
64f1c21e
JA
3405 nsecs = q->poll_nsec;
3406 else
3407 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3408
3409 if (!nsecs)
06426adf
JA
3410 return false;
3411
76a86f9d 3412 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
06426adf
JA
3413
3414 /*
3415 * This will be replaced with the stats tracking code, using
3416 * 'avg_completion_time / 2' as the pre-sleep target.
3417 */
8b0e1953 3418 kt = nsecs;
06426adf
JA
3419
3420 mode = HRTIMER_MODE_REL;
dbc1625f 3421 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
06426adf
JA
3422 hrtimer_set_expires(&hs.timer, kt);
3423
06426adf 3424 do {
5a61c363 3425 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
06426adf
JA
3426 break;
3427 set_current_state(TASK_UNINTERRUPTIBLE);
9dd8813e 3428 hrtimer_sleeper_start_expires(&hs, mode);
06426adf
JA
3429 if (hs.task)
3430 io_schedule();
3431 hrtimer_cancel(&hs.timer);
3432 mode = HRTIMER_MODE_ABS;
3433 } while (hs.task && !signal_pending(current));
3434
3435 __set_current_state(TASK_RUNNING);
3436 destroy_hrtimer_on_stack(&hs.timer);
3437 return true;
3438}
3439
1052b8ac
JA
3440static bool blk_mq_poll_hybrid(struct request_queue *q,
3441 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
bbd7bb70 3442{
1052b8ac
JA
3443 struct request *rq;
3444
29ece8b4 3445 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
1052b8ac
JA
3446 return false;
3447
3448 if (!blk_qc_t_is_internal(cookie))
3449 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3450 else {
3451 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3452 /*
3453 * With scheduling, if the request has completed, we'll
3454 * get a NULL return here, as we clear the sched tag when
3455 * that happens. The request still remains valid, like always,
3456 * so we should be safe with just the NULL check.
3457 */
3458 if (!rq)
3459 return false;
3460 }
3461
3462 return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3463}
3464
529262d5
CH
3465/**
3466 * blk_poll - poll for IO completions
3467 * @q: the queue
3468 * @cookie: cookie passed back at IO submission time
3469 * @spin: whether to spin for completions
3470 *
3471 * Description:
3472 * Poll for completions on the passed in queue. Returns number of
3473 * completed entries found. If @spin is true, then blk_poll will continue
3474 * looping until at least one completion is found, unless the task is
3475 * otherwise marked running (or we need to reschedule).
3476 */
3477int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
1052b8ac
JA
3478{
3479 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
3480 long state;
3481
529262d5
CH
3482 if (!blk_qc_t_valid(cookie) ||
3483 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1052b8ac
JA
3484 return 0;
3485
529262d5
CH
3486 if (current->plug)
3487 blk_flush_plug_list(current->plug, false);
3488
1052b8ac
JA
3489 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3490
06426adf
JA
3491 /*
3492 * If we sleep, have the caller restart the poll loop to reset
3493 * the state. Like for the other success return cases, the
3494 * caller is responsible for checking if the IO completed. If
3495 * the IO isn't complete, we'll get called again and will go
3496 * straight to the busy poll loop.
3497 */
1052b8ac 3498 if (blk_mq_poll_hybrid(q, hctx, cookie))
85f4d4b6 3499 return 1;
06426adf 3500
bbd7bb70
JA
3501 hctx->poll_considered++;
3502
3503 state = current->state;
aa61bec3 3504 do {
bbd7bb70
JA
3505 int ret;
3506
3507 hctx->poll_invoked++;
3508
9743139c 3509 ret = q->mq_ops->poll(hctx);
bbd7bb70
JA
3510 if (ret > 0) {
3511 hctx->poll_success++;
849a3700 3512 __set_current_state(TASK_RUNNING);
85f4d4b6 3513 return ret;
bbd7bb70
JA
3514 }
3515
3516 if (signal_pending_state(state, current))
849a3700 3517 __set_current_state(TASK_RUNNING);
bbd7bb70
JA
3518
3519 if (current->state == TASK_RUNNING)
85f4d4b6 3520 return 1;
0a1b8b87 3521 if (ret < 0 || !spin)
bbd7bb70
JA
3522 break;
3523 cpu_relax();
aa61bec3 3524 } while (!need_resched());
bbd7bb70 3525
67b4110f 3526 __set_current_state(TASK_RUNNING);
85f4d4b6 3527 return 0;
bbd7bb70 3528}
529262d5 3529EXPORT_SYMBOL_GPL(blk_poll);
bbd7bb70 3530
9cf2bab6
JA
3531unsigned int blk_mq_rq_cpu(struct request *rq)
3532{
3533 return rq->mq_ctx->cpu;
3534}
3535EXPORT_SYMBOL(blk_mq_rq_cpu);
3536
320ae51f
JA
3537static int __init blk_mq_init(void)
3538{
9467f859
TG
3539 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3540 blk_mq_hctx_notify_dead);
320ae51f
JA
3541 return 0;
3542}
3543subsys_initcall(blk_mq_init);