Merge tag 'y2038-vfs' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/playground
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
75bb4625
JA
2/*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
320ae51f
JA
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/backing-dev.h>
11#include <linux/bio.h>
12#include <linux/blkdev.h>
f75782e4 13#include <linux/kmemleak.h>
320ae51f
JA
14#include <linux/mm.h>
15#include <linux/init.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18#include <linux/smp.h>
19#include <linux/llist.h>
20#include <linux/list_sort.h>
21#include <linux/cpu.h>
22#include <linux/cache.h>
23#include <linux/sched/sysctl.h>
105ab3d8 24#include <linux/sched/topology.h>
174cd4b1 25#include <linux/sched/signal.h>
320ae51f 26#include <linux/delay.h>
aedcd72f 27#include <linux/crash_dump.h>
88c7b2b7 28#include <linux/prefetch.h>
320ae51f
JA
29
30#include <trace/events/block.h>
31
32#include <linux/blk-mq.h>
33#include "blk.h"
34#include "blk-mq.h"
9c1051aa 35#include "blk-mq-debugfs.h"
320ae51f 36#include "blk-mq-tag.h"
986d413b 37#include "blk-pm.h"
cf43e6be 38#include "blk-stat.h"
bd166ef1 39#include "blk-mq-sched.h"
c1c80384 40#include "blk-rq-qos.h"
320ae51f 41
34dbad5d
OS
42static void blk_mq_poll_stats_start(struct request_queue *q);
43static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
720b8ccc
SB
45static int blk_mq_poll_stats_bkt(const struct request *rq)
46{
3d244306 47 int ddir, sectors, bucket;
720b8ccc 48
99c749a4 49 ddir = rq_data_dir(rq);
3d244306 50 sectors = blk_rq_stats_sectors(rq);
720b8ccc 51
3d244306 52 bucket = ddir + 2 * ilog2(sectors);
720b8ccc
SB
53
54 if (bucket < 0)
55 return -1;
56 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58
59 return bucket;
60}
61
320ae51f 62/*
85fae294
YY
63 * Check if any of the ctx, dispatch list or elevator
64 * have pending work in this hardware queue.
320ae51f 65 */
79f720a7 66static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 67{
79f720a7
JA
68 return !list_empty_careful(&hctx->dispatch) ||
69 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 70 blk_mq_sched_has_work(hctx);
1429d7c9
JA
71}
72
320ae51f
JA
73/*
74 * Mark this ctx as having pending work in this hardware queue
75 */
76static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77 struct blk_mq_ctx *ctx)
78{
f31967f0
JA
79 const int bit = ctx->index_hw[hctx->type];
80
81 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
82 sbitmap_set_bit(&hctx->ctx_map, bit);
1429d7c9
JA
83}
84
85static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
86 struct blk_mq_ctx *ctx)
87{
f31967f0
JA
88 const int bit = ctx->index_hw[hctx->type];
89
90 sbitmap_clear_bit(&hctx->ctx_map, bit);
320ae51f
JA
91}
92
f299b7c7
JA
93struct mq_inflight {
94 struct hd_struct *part;
95 unsigned int *inflight;
96};
97
7baa8572 98static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
f299b7c7
JA
99 struct request *rq, void *priv,
100 bool reserved)
101{
102 struct mq_inflight *mi = priv;
103
6131837b 104 /*
e016b782 105 * index[0] counts the specific partition that was asked for.
6131837b
OS
106 */
107 if (rq->part == mi->part)
108 mi->inflight[0]++;
7baa8572
JA
109
110 return true;
f299b7c7
JA
111}
112
e016b782 113unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
f299b7c7 114{
e016b782 115 unsigned inflight[2];
f299b7c7
JA
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
b8d62b3a 118 inflight[0] = inflight[1] = 0;
f299b7c7 119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
e016b782
MP
120
121 return inflight[0];
f299b7c7
JA
122}
123
7baa8572 124static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
bf0ddaba
OS
125 struct request *rq, void *priv,
126 bool reserved)
127{
128 struct mq_inflight *mi = priv;
129
130 if (rq->part == mi->part)
131 mi->inflight[rq_data_dir(rq)]++;
7baa8572
JA
132
133 return true;
bf0ddaba
OS
134}
135
136void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
137 unsigned int inflight[2])
138{
139 struct mq_inflight mi = { .part = part, .inflight = inflight, };
140
141 inflight[0] = inflight[1] = 0;
142 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
143}
144
1671d522 145void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 146{
7996a8b5
BL
147 mutex_lock(&q->mq_freeze_lock);
148 if (++q->mq_freeze_depth == 1) {
3ef28e83 149 percpu_ref_kill(&q->q_usage_counter);
7996a8b5 150 mutex_unlock(&q->mq_freeze_lock);
344e9ffc 151 if (queue_is_mq(q))
055f6e18 152 blk_mq_run_hw_queues(q, false);
7996a8b5
BL
153 } else {
154 mutex_unlock(&q->mq_freeze_lock);
cddd5d17 155 }
f3af020b 156}
1671d522 157EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 158
6bae363e 159void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 160{
3ef28e83 161 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 162}
6bae363e 163EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 164
f91328c4
KB
165int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
166 unsigned long timeout)
167{
168 return wait_event_timeout(q->mq_freeze_wq,
169 percpu_ref_is_zero(&q->q_usage_counter),
170 timeout);
171}
172EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 173
f3af020b
TH
174/*
175 * Guarantee no request is in use, so we can change any data structure of
176 * the queue afterward.
177 */
3ef28e83 178void blk_freeze_queue(struct request_queue *q)
f3af020b 179{
3ef28e83
DW
180 /*
181 * In the !blk_mq case we are only calling this to kill the
182 * q_usage_counter, otherwise this increases the freeze depth
183 * and waits for it to return to zero. For this reason there is
184 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
185 * exported to drivers as the only user for unfreeze is blk_mq.
186 */
1671d522 187 blk_freeze_queue_start(q);
f3af020b
TH
188 blk_mq_freeze_queue_wait(q);
189}
3ef28e83
DW
190
191void blk_mq_freeze_queue(struct request_queue *q)
192{
193 /*
194 * ...just an alias to keep freeze and unfreeze actions balanced
195 * in the blk_mq_* namespace
196 */
197 blk_freeze_queue(q);
198}
c761d96b 199EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 200
b4c6a028 201void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 202{
7996a8b5
BL
203 mutex_lock(&q->mq_freeze_lock);
204 q->mq_freeze_depth--;
205 WARN_ON_ONCE(q->mq_freeze_depth < 0);
206 if (!q->mq_freeze_depth) {
bdd63160 207 percpu_ref_resurrect(&q->q_usage_counter);
320ae51f 208 wake_up_all(&q->mq_freeze_wq);
add703fd 209 }
7996a8b5 210 mutex_unlock(&q->mq_freeze_lock);
320ae51f 211}
b4c6a028 212EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 213
852ec809
BVA
214/*
215 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
216 * mpt3sas driver such that this function can be removed.
217 */
218void blk_mq_quiesce_queue_nowait(struct request_queue *q)
219{
8814ce8a 220 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
852ec809
BVA
221}
222EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
223
6a83e74d 224/**
69e07c4a 225 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
226 * @q: request queue.
227 *
228 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
229 * callback function is invoked. Once this function is returned, we make
230 * sure no dispatch can happen until the queue is unquiesced via
231 * blk_mq_unquiesce_queue().
6a83e74d
BVA
232 */
233void blk_mq_quiesce_queue(struct request_queue *q)
234{
235 struct blk_mq_hw_ctx *hctx;
236 unsigned int i;
237 bool rcu = false;
238
1d9e9bc6 239 blk_mq_quiesce_queue_nowait(q);
f4560ffe 240
6a83e74d
BVA
241 queue_for_each_hw_ctx(q, hctx, i) {
242 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 243 synchronize_srcu(hctx->srcu);
6a83e74d
BVA
244 else
245 rcu = true;
246 }
247 if (rcu)
248 synchronize_rcu();
249}
250EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
251
e4e73913
ML
252/*
253 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
254 * @q: request queue.
255 *
256 * This function recovers queue into the state before quiescing
257 * which is done by blk_mq_quiesce_queue.
258 */
259void blk_mq_unquiesce_queue(struct request_queue *q)
260{
8814ce8a 261 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
f4560ffe 262
1d9e9bc6
ML
263 /* dispatch requests which are inserted during quiescing */
264 blk_mq_run_hw_queues(q, true);
e4e73913
ML
265}
266EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
267
aed3ea94
JA
268void blk_mq_wake_waiters(struct request_queue *q)
269{
270 struct blk_mq_hw_ctx *hctx;
271 unsigned int i;
272
273 queue_for_each_hw_ctx(q, hctx, i)
274 if (blk_mq_hw_queue_mapped(hctx))
275 blk_mq_tag_wakeup_all(hctx->tags, true);
276}
277
320ae51f
JA
278bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
279{
280 return blk_mq_has_free_tags(hctx->tags);
281}
282EXPORT_SYMBOL(blk_mq_can_queue);
283
fe1f4526 284/*
9a91b05b
HT
285 * Only need start/end time stamping if we have iostat or
286 * blk stats enabled, or using an IO scheduler.
fe1f4526
JA
287 */
288static inline bool blk_mq_need_time_stamp(struct request *rq)
289{
9a91b05b 290 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
fe1f4526
JA
291}
292
e4cdf1a1 293static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
6f816b4b 294 unsigned int tag, unsigned int op, u64 alloc_time_ns)
320ae51f 295{
e4cdf1a1
CH
296 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
297 struct request *rq = tags->static_rqs[tag];
bf9ae8c5 298 req_flags_t rq_flags = 0;
c3a148d2 299
e4cdf1a1
CH
300 if (data->flags & BLK_MQ_REQ_INTERNAL) {
301 rq->tag = -1;
302 rq->internal_tag = tag;
303 } else {
d263ed99 304 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
bf9ae8c5 305 rq_flags = RQF_MQ_INFLIGHT;
e4cdf1a1
CH
306 atomic_inc(&data->hctx->nr_active);
307 }
308 rq->tag = tag;
309 rq->internal_tag = -1;
310 data->hctx->tags->rqs[rq->tag] = rq;
311 }
312
af76e555 313 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
314 rq->q = data->q;
315 rq->mq_ctx = data->ctx;
ea4f995e 316 rq->mq_hctx = data->hctx;
bf9ae8c5 317 rq->rq_flags = rq_flags;
ef295ecf 318 rq->cmd_flags = op;
1b6d65a0
BVA
319 if (data->flags & BLK_MQ_REQ_PREEMPT)
320 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 321 if (blk_queue_io_stat(data->q))
e8064021 322 rq->rq_flags |= RQF_IO_STAT;
7c3fb70f 323 INIT_LIST_HEAD(&rq->queuelist);
af76e555
CH
324 INIT_HLIST_NODE(&rq->hash);
325 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
326 rq->rq_disk = NULL;
327 rq->part = NULL;
6f816b4b
TH
328#ifdef CONFIG_BLK_RQ_ALLOC_TIME
329 rq->alloc_time_ns = alloc_time_ns;
330#endif
fe1f4526
JA
331 if (blk_mq_need_time_stamp(rq))
332 rq->start_time_ns = ktime_get_ns();
333 else
334 rq->start_time_ns = 0;
544ccc8d 335 rq->io_start_time_ns = 0;
3d244306 336 rq->stats_sectors = 0;
af76e555
CH
337 rq->nr_phys_segments = 0;
338#if defined(CONFIG_BLK_DEV_INTEGRITY)
339 rq->nr_integrity_segments = 0;
340#endif
af76e555 341 /* tag was already set */
af76e555 342 rq->extra_len = 0;
079076b3 343 WRITE_ONCE(rq->deadline, 0);
af76e555 344
f6be4fb4
JA
345 rq->timeout = 0;
346
af76e555
CH
347 rq->end_io = NULL;
348 rq->end_io_data = NULL;
af76e555 349
e4cdf1a1 350 data->ctx->rq_dispatched[op_is_sync(op)]++;
12f5b931 351 refcount_set(&rq->ref, 1);
e4cdf1a1 352 return rq;
5dee8577
CH
353}
354
d2c0d383 355static struct request *blk_mq_get_request(struct request_queue *q,
f9afca4d
JA
356 struct bio *bio,
357 struct blk_mq_alloc_data *data)
d2c0d383
CH
358{
359 struct elevator_queue *e = q->elevator;
360 struct request *rq;
e4cdf1a1 361 unsigned int tag;
c05f4220 362 bool clear_ctx_on_error = false;
6f816b4b 363 u64 alloc_time_ns = 0;
d2c0d383
CH
364
365 blk_queue_enter_live(q);
6f816b4b
TH
366
367 /* alloc_time includes depth and tag waits */
368 if (blk_queue_rq_alloc_time(q))
369 alloc_time_ns = ktime_get_ns();
370
d2c0d383 371 data->q = q;
21e768b4
BVA
372 if (likely(!data->ctx)) {
373 data->ctx = blk_mq_get_ctx(q);
c05f4220 374 clear_ctx_on_error = true;
21e768b4 375 }
d2c0d383 376 if (likely(!data->hctx))
f9afca4d 377 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
8ccdf4a3 378 data->ctx);
f9afca4d 379 if (data->cmd_flags & REQ_NOWAIT)
03a07c92 380 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
381
382 if (e) {
383 data->flags |= BLK_MQ_REQ_INTERNAL;
384
385 /*
386 * Flush requests are special and go directly to the
17a51199
JA
387 * dispatch list. Don't include reserved tags in the
388 * limiting, as it isn't useful.
d2c0d383 389 */
f9afca4d
JA
390 if (!op_is_flush(data->cmd_flags) &&
391 e->type->ops.limit_depth &&
17a51199 392 !(data->flags & BLK_MQ_REQ_RESERVED))
f9afca4d 393 e->type->ops.limit_depth(data->cmd_flags, data);
d263ed99
JW
394 } else {
395 blk_mq_tag_busy(data->hctx);
d2c0d383
CH
396 }
397
e4cdf1a1
CH
398 tag = blk_mq_get_tag(data);
399 if (tag == BLK_MQ_TAG_FAIL) {
c05f4220 400 if (clear_ctx_on_error)
1ad43c00 401 data->ctx = NULL;
037cebb8
CH
402 blk_queue_exit(q);
403 return NULL;
d2c0d383
CH
404 }
405
6f816b4b 406 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
f9afca4d 407 if (!op_is_flush(data->cmd_flags)) {
037cebb8 408 rq->elv.icq = NULL;
f9cd4bfe 409 if (e && e->type->ops.prepare_request) {
e2b3fa5a
DLM
410 if (e->type->icq_cache)
411 blk_mq_sched_assign_ioc(rq);
44e8c2bf 412
f9cd4bfe 413 e->type->ops.prepare_request(rq, bio);
5bbf4e5a 414 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 415 }
037cebb8
CH
416 }
417 data->hctx->queued++;
418 return rq;
d2c0d383
CH
419}
420
cd6ce148 421struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 422 blk_mq_req_flags_t flags)
320ae51f 423{
f9afca4d 424 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
bd166ef1 425 struct request *rq;
a492f075 426 int ret;
320ae51f 427
3a0a5299 428 ret = blk_queue_enter(q, flags);
a492f075
JL
429 if (ret)
430 return ERR_PTR(ret);
320ae51f 431
f9afca4d 432 rq = blk_mq_get_request(q, NULL, &alloc_data);
3280d66a 433 blk_queue_exit(q);
841bac2c 434
bd166ef1 435 if (!rq)
a492f075 436 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
437
438 rq->__data_len = 0;
439 rq->__sector = (sector_t) -1;
440 rq->bio = rq->biotail = NULL;
320ae51f
JA
441 return rq;
442}
4bb659b1 443EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 444
cd6ce148 445struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 446 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 447{
f9afca4d 448 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
1f5bd336 449 struct request *rq;
6d2809d5 450 unsigned int cpu;
1f5bd336
ML
451 int ret;
452
453 /*
454 * If the tag allocator sleeps we could get an allocation for a
455 * different hardware context. No need to complicate the low level
456 * allocator for this for the rare use case of a command tied to
457 * a specific queue.
458 */
459 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
460 return ERR_PTR(-EINVAL);
461
462 if (hctx_idx >= q->nr_hw_queues)
463 return ERR_PTR(-EIO);
464
3a0a5299 465 ret = blk_queue_enter(q, flags);
1f5bd336
ML
466 if (ret)
467 return ERR_PTR(ret);
468
c8712c6a
CH
469 /*
470 * Check if the hardware context is actually mapped to anything.
471 * If not tell the caller that it should skip this queue.
472 */
6d2809d5
OS
473 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
474 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
475 blk_queue_exit(q);
476 return ERR_PTR(-EXDEV);
c8712c6a 477 }
20e4d813 478 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
6d2809d5 479 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 480
f9afca4d 481 rq = blk_mq_get_request(q, NULL, &alloc_data);
3280d66a 482 blk_queue_exit(q);
c8712c6a 483
6d2809d5
OS
484 if (!rq)
485 return ERR_PTR(-EWOULDBLOCK);
486
487 return rq;
1f5bd336
ML
488}
489EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
490
12f5b931
KB
491static void __blk_mq_free_request(struct request *rq)
492{
493 struct request_queue *q = rq->q;
494 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 495 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
12f5b931
KB
496 const int sched_tag = rq->internal_tag;
497
986d413b 498 blk_pm_mark_last_busy(rq);
ea4f995e 499 rq->mq_hctx = NULL;
12f5b931
KB
500 if (rq->tag != -1)
501 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
502 if (sched_tag != -1)
503 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
504 blk_mq_sched_restart(hctx);
505 blk_queue_exit(q);
506}
507
6af54051 508void blk_mq_free_request(struct request *rq)
320ae51f 509{
320ae51f 510 struct request_queue *q = rq->q;
6af54051
CH
511 struct elevator_queue *e = q->elevator;
512 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 513 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
6af54051 514
5bbf4e5a 515 if (rq->rq_flags & RQF_ELVPRIV) {
f9cd4bfe
JA
516 if (e && e->type->ops.finish_request)
517 e->type->ops.finish_request(rq);
6af54051
CH
518 if (rq->elv.icq) {
519 put_io_context(rq->elv.icq->ioc);
520 rq->elv.icq = NULL;
521 }
522 }
320ae51f 523
6af54051 524 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 525 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 526 atomic_dec(&hctx->nr_active);
87760e5e 527
7beb2f84
JA
528 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
529 laptop_io_completion(q->backing_dev_info);
530
a7905043 531 rq_qos_done(q, rq);
0d2602ca 532
12f5b931
KB
533 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
534 if (refcount_dec_and_test(&rq->ref))
535 __blk_mq_free_request(rq);
320ae51f 536}
1a3b595a 537EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 538
2a842aca 539inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 540{
fe1f4526
JA
541 u64 now = 0;
542
543 if (blk_mq_need_time_stamp(rq))
544 now = ktime_get_ns();
522a7775 545
4bc6339a
OS
546 if (rq->rq_flags & RQF_STATS) {
547 blk_mq_poll_stats_start(rq->q);
522a7775 548 blk_stat_add(rq, now);
4bc6339a
OS
549 }
550
ed88660a
OS
551 if (rq->internal_tag != -1)
552 blk_mq_sched_completed_request(rq, now);
553
522a7775 554 blk_account_io_done(rq, now);
0d11e6ac 555
91b63639 556 if (rq->end_io) {
a7905043 557 rq_qos_done(rq->q, rq);
320ae51f 558 rq->end_io(rq, error);
91b63639 559 } else {
320ae51f 560 blk_mq_free_request(rq);
91b63639 561 }
320ae51f 562}
c8a446ad 563EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 564
2a842aca 565void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
566{
567 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
568 BUG();
c8a446ad 569 __blk_mq_end_request(rq, error);
63151a44 570}
c8a446ad 571EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 572
30a91cb4 573static void __blk_mq_complete_request_remote(void *data)
320ae51f 574{
3d6efbf6 575 struct request *rq = data;
c7bb9ad1 576 struct request_queue *q = rq->q;
320ae51f 577
c7bb9ad1 578 q->mq_ops->complete(rq);
320ae51f 579}
320ae51f 580
453f8341 581static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
582{
583 struct blk_mq_ctx *ctx = rq->mq_ctx;
c7bb9ad1 584 struct request_queue *q = rq->q;
38535201 585 bool shared = false;
320ae51f
JA
586 int cpu;
587
af78ff7c 588 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
36e76539
ML
589 /*
590 * Most of single queue controllers, there is only one irq vector
591 * for handling IO completion, and the only irq's affinity is set
592 * as all possible CPUs. On most of ARCHs, this affinity means the
593 * irq is handled on one specific CPU.
594 *
595 * So complete IO reqeust in softirq context in case of single queue
596 * for not degrading IO performance by irqsoff latency.
597 */
c7bb9ad1 598 if (q->nr_hw_queues == 1) {
36e76539
ML
599 __blk_complete_request(rq);
600 return;
601 }
602
4ab32bf3
JA
603 /*
604 * For a polled request, always complete locallly, it's pointless
605 * to redirect the completion.
606 */
607 if ((rq->cmd_flags & REQ_HIPRI) ||
608 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
c7bb9ad1 609 q->mq_ops->complete(rq);
30a91cb4
CH
610 return;
611 }
320ae51f
JA
612
613 cpu = get_cpu();
c7bb9ad1 614 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
38535201
CH
615 shared = cpus_share_cache(cpu, ctx->cpu);
616
617 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 618 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
619 rq->csd.info = rq;
620 rq->csd.flags = 0;
c46fff2a 621 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 622 } else {
c7bb9ad1 623 q->mq_ops->complete(rq);
3d6efbf6 624 }
320ae51f
JA
625 put_cpu();
626}
30a91cb4 627
04ced159 628static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
b7435db8 629 __releases(hctx->srcu)
04ced159
JA
630{
631 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
632 rcu_read_unlock();
633 else
05707b64 634 srcu_read_unlock(hctx->srcu, srcu_idx);
04ced159
JA
635}
636
637static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
b7435db8 638 __acquires(hctx->srcu)
04ced159 639{
08b5a6e2
JA
640 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
641 /* shut up gcc false positive */
642 *srcu_idx = 0;
04ced159 643 rcu_read_lock();
08b5a6e2 644 } else
05707b64 645 *srcu_idx = srcu_read_lock(hctx->srcu);
04ced159
JA
646}
647
30a91cb4
CH
648/**
649 * blk_mq_complete_request - end I/O on a request
650 * @rq: the request being processed
651 *
652 * Description:
653 * Ends all I/O on a request. It does not handle partial completions.
654 * The actual completion happens out-of-order, through a IPI handler.
655 **/
16c15eb1 656bool blk_mq_complete_request(struct request *rq)
30a91cb4 657{
12f5b931 658 if (unlikely(blk_should_fake_timeout(rq->q)))
16c15eb1 659 return false;
12f5b931 660 __blk_mq_complete_request(rq);
16c15eb1 661 return true;
30a91cb4
CH
662}
663EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 664
973c0191
KB
665int blk_mq_request_started(struct request *rq)
666{
5a61c363 667 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
973c0191
KB
668}
669EXPORT_SYMBOL_GPL(blk_mq_request_started);
670
aa306ab7
ML
671int blk_mq_request_completed(struct request *rq)
672{
673 return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
674}
675EXPORT_SYMBOL_GPL(blk_mq_request_completed);
676
e2490073 677void blk_mq_start_request(struct request *rq)
320ae51f
JA
678{
679 struct request_queue *q = rq->q;
680
681 trace_block_rq_issue(q, rq);
682
cf43e6be 683 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
544ccc8d 684 rq->io_start_time_ns = ktime_get_ns();
3d244306 685 rq->stats_sectors = blk_rq_sectors(rq);
cf43e6be 686 rq->rq_flags |= RQF_STATS;
a7905043 687 rq_qos_issue(q, rq);
cf43e6be
JA
688 }
689
1d9bd516 690 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 691
1d9bd516 692 blk_add_timer(rq);
12f5b931 693 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
49f5baa5
CH
694
695 if (q->dma_drain_size && blk_rq_bytes(rq)) {
696 /*
697 * Make sure space for the drain appears. We know we can do
698 * this because max_hw_segments has been adjusted to be one
699 * fewer than the device can handle.
700 */
701 rq->nr_phys_segments++;
702 }
320ae51f 703}
e2490073 704EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 705
ed0791b2 706static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
707{
708 struct request_queue *q = rq->q;
709
923218f6
ML
710 blk_mq_put_driver_tag(rq);
711
320ae51f 712 trace_block_rq_requeue(q, rq);
a7905043 713 rq_qos_requeue(q, rq);
49f5baa5 714
12f5b931
KB
715 if (blk_mq_request_started(rq)) {
716 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
da661267 717 rq->rq_flags &= ~RQF_TIMED_OUT;
e2490073
CH
718 if (q->dma_drain_size && blk_rq_bytes(rq))
719 rq->nr_phys_segments--;
720 }
320ae51f
JA
721}
722
2b053aca 723void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 724{
ed0791b2 725 __blk_mq_requeue_request(rq);
ed0791b2 726
105976f5
ML
727 /* this request will be re-inserted to io scheduler queue */
728 blk_mq_sched_requeue_request(rq);
729
7d692330 730 BUG_ON(!list_empty(&rq->queuelist));
2b053aca 731 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
732}
733EXPORT_SYMBOL(blk_mq_requeue_request);
734
6fca6a61
CH
735static void blk_mq_requeue_work(struct work_struct *work)
736{
737 struct request_queue *q =
2849450a 738 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
739 LIST_HEAD(rq_list);
740 struct request *rq, *next;
6fca6a61 741
18e9781d 742 spin_lock_irq(&q->requeue_lock);
6fca6a61 743 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 744 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
745
746 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
aef1897c 747 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
6fca6a61
CH
748 continue;
749
e8064021 750 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 751 list_del_init(&rq->queuelist);
aef1897c
JW
752 /*
753 * If RQF_DONTPREP, rq has contained some driver specific
754 * data, so insert it to hctx dispatch list to avoid any
755 * merge.
756 */
757 if (rq->rq_flags & RQF_DONTPREP)
758 blk_mq_request_bypass_insert(rq, false);
759 else
760 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
761 }
762
763 while (!list_empty(&rq_list)) {
764 rq = list_entry(rq_list.next, struct request, queuelist);
765 list_del_init(&rq->queuelist);
9e97d295 766 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
767 }
768
52d7f1b5 769 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
770}
771
2b053aca
BVA
772void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
773 bool kick_requeue_list)
6fca6a61
CH
774{
775 struct request_queue *q = rq->q;
776 unsigned long flags;
777
778 /*
779 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 780 * request head insertion from the workqueue.
6fca6a61 781 */
e8064021 782 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
783
784 spin_lock_irqsave(&q->requeue_lock, flags);
785 if (at_head) {
e8064021 786 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
787 list_add(&rq->queuelist, &q->requeue_list);
788 } else {
789 list_add_tail(&rq->queuelist, &q->requeue_list);
790 }
791 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
792
793 if (kick_requeue_list)
794 blk_mq_kick_requeue_list(q);
6fca6a61 795}
6fca6a61
CH
796
797void blk_mq_kick_requeue_list(struct request_queue *q)
798{
ae943d20 799 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
6fca6a61
CH
800}
801EXPORT_SYMBOL(blk_mq_kick_requeue_list);
802
2849450a
MS
803void blk_mq_delay_kick_requeue_list(struct request_queue *q,
804 unsigned long msecs)
805{
d4acf365
BVA
806 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
807 msecs_to_jiffies(msecs));
2849450a
MS
808}
809EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
810
0e62f51f
JA
811struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
812{
88c7b2b7
JA
813 if (tag < tags->nr_tags) {
814 prefetch(tags->rqs[tag]);
4ee86bab 815 return tags->rqs[tag];
88c7b2b7 816 }
4ee86bab
HR
817
818 return NULL;
24d2f903
CH
819}
820EXPORT_SYMBOL(blk_mq_tag_to_rq);
821
3c94d83c
JA
822static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
823 void *priv, bool reserved)
ae879912
JA
824{
825 /*
3c94d83c
JA
826 * If we find a request that is inflight and the queue matches,
827 * we know the queue is busy. Return false to stop the iteration.
ae879912 828 */
3c94d83c 829 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
ae879912
JA
830 bool *busy = priv;
831
832 *busy = true;
833 return false;
834 }
835
836 return true;
837}
838
3c94d83c 839bool blk_mq_queue_inflight(struct request_queue *q)
ae879912
JA
840{
841 bool busy = false;
842
3c94d83c 843 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
ae879912
JA
844 return busy;
845}
3c94d83c 846EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
ae879912 847
358f70da 848static void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 849{
da661267 850 req->rq_flags |= RQF_TIMED_OUT;
d1210d5a
CH
851 if (req->q->mq_ops->timeout) {
852 enum blk_eh_timer_return ret;
853
854 ret = req->q->mq_ops->timeout(req, reserved);
855 if (ret == BLK_EH_DONE)
856 return;
857 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
46f92d42 858 }
d1210d5a
CH
859
860 blk_add_timer(req);
87ee7b11 861}
5b3f25fc 862
12f5b931 863static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
81481eb4 864{
12f5b931 865 unsigned long deadline;
87ee7b11 866
12f5b931
KB
867 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
868 return false;
da661267
CH
869 if (rq->rq_flags & RQF_TIMED_OUT)
870 return false;
a7af0af3 871
079076b3 872 deadline = READ_ONCE(rq->deadline);
12f5b931
KB
873 if (time_after_eq(jiffies, deadline))
874 return true;
a7af0af3 875
12f5b931
KB
876 if (*next == 0)
877 *next = deadline;
878 else if (time_after(*next, deadline))
879 *next = deadline;
880 return false;
87ee7b11
JA
881}
882
7baa8572 883static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1d9bd516
TH
884 struct request *rq, void *priv, bool reserved)
885{
12f5b931
KB
886 unsigned long *next = priv;
887
888 /*
889 * Just do a quick check if it is expired before locking the request in
890 * so we're not unnecessarilly synchronizing across CPUs.
891 */
892 if (!blk_mq_req_expired(rq, next))
7baa8572 893 return true;
12f5b931
KB
894
895 /*
896 * We have reason to believe the request may be expired. Take a
897 * reference on the request to lock this request lifetime into its
898 * currently allocated context to prevent it from being reallocated in
899 * the event the completion by-passes this timeout handler.
900 *
901 * If the reference was already released, then the driver beat the
902 * timeout handler to posting a natural completion.
903 */
904 if (!refcount_inc_not_zero(&rq->ref))
7baa8572 905 return true;
12f5b931 906
1d9bd516 907 /*
12f5b931
KB
908 * The request is now locked and cannot be reallocated underneath the
909 * timeout handler's processing. Re-verify this exact request is truly
910 * expired; if it is not expired, then the request was completed and
911 * reallocated as a new request.
1d9bd516 912 */
12f5b931 913 if (blk_mq_req_expired(rq, next))
1d9bd516 914 blk_mq_rq_timed_out(rq, reserved);
12f5b931
KB
915 if (refcount_dec_and_test(&rq->ref))
916 __blk_mq_free_request(rq);
7baa8572
JA
917
918 return true;
1d9bd516
TH
919}
920
287922eb 921static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 922{
287922eb
CH
923 struct request_queue *q =
924 container_of(work, struct request_queue, timeout_work);
12f5b931 925 unsigned long next = 0;
1d9bd516 926 struct blk_mq_hw_ctx *hctx;
81481eb4 927 int i;
320ae51f 928
71f79fb3
GKB
929 /* A deadlock might occur if a request is stuck requiring a
930 * timeout at the same time a queue freeze is waiting
931 * completion, since the timeout code would not be able to
932 * acquire the queue reference here.
933 *
934 * That's why we don't use blk_queue_enter here; instead, we use
935 * percpu_ref_tryget directly, because we need to be able to
936 * obtain a reference even in the short window between the queue
937 * starting to freeze, by dropping the first reference in
1671d522 938 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
939 * consumed, marked by the instant q_usage_counter reaches
940 * zero.
941 */
942 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
943 return;
944
12f5b931 945 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
320ae51f 946
12f5b931
KB
947 if (next != 0) {
948 mod_timer(&q->timeout, next);
0d2602ca 949 } else {
fcd36c36
BVA
950 /*
951 * Request timeouts are handled as a forward rolling timer. If
952 * we end up here it means that no requests are pending and
953 * also that no request has been pending for a while. Mark
954 * each hctx as idle.
955 */
f054b56c
ML
956 queue_for_each_hw_ctx(q, hctx, i) {
957 /* the hctx may be unmapped, so check it here */
958 if (blk_mq_hw_queue_mapped(hctx))
959 blk_mq_tag_idle(hctx);
960 }
0d2602ca 961 }
287922eb 962 blk_queue_exit(q);
320ae51f
JA
963}
964
88459642
OS
965struct flush_busy_ctx_data {
966 struct blk_mq_hw_ctx *hctx;
967 struct list_head *list;
968};
969
970static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
971{
972 struct flush_busy_ctx_data *flush_data = data;
973 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
974 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 975 enum hctx_type type = hctx->type;
88459642 976
88459642 977 spin_lock(&ctx->lock);
c16d6b5a 978 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
e9a99a63 979 sbitmap_clear_bit(sb, bitnr);
88459642
OS
980 spin_unlock(&ctx->lock);
981 return true;
982}
983
1429d7c9
JA
984/*
985 * Process software queues that have been marked busy, splicing them
986 * to the for-dispatch
987 */
2c3ad667 988void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 989{
88459642
OS
990 struct flush_busy_ctx_data data = {
991 .hctx = hctx,
992 .list = list,
993 };
1429d7c9 994
88459642 995 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 996}
2c3ad667 997EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 998
b347689f
ML
999struct dispatch_rq_data {
1000 struct blk_mq_hw_ctx *hctx;
1001 struct request *rq;
1002};
1003
1004static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1005 void *data)
1006{
1007 struct dispatch_rq_data *dispatch_data = data;
1008 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1009 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 1010 enum hctx_type type = hctx->type;
b347689f
ML
1011
1012 spin_lock(&ctx->lock);
c16d6b5a
ML
1013 if (!list_empty(&ctx->rq_lists[type])) {
1014 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
b347689f 1015 list_del_init(&dispatch_data->rq->queuelist);
c16d6b5a 1016 if (list_empty(&ctx->rq_lists[type]))
b347689f
ML
1017 sbitmap_clear_bit(sb, bitnr);
1018 }
1019 spin_unlock(&ctx->lock);
1020
1021 return !dispatch_data->rq;
1022}
1023
1024struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1025 struct blk_mq_ctx *start)
1026{
f31967f0 1027 unsigned off = start ? start->index_hw[hctx->type] : 0;
b347689f
ML
1028 struct dispatch_rq_data data = {
1029 .hctx = hctx,
1030 .rq = NULL,
1031 };
1032
1033 __sbitmap_for_each_set(&hctx->ctx_map, off,
1034 dispatch_rq_from_ctx, &data);
1035
1036 return data.rq;
1037}
1038
703fd1c0
JA
1039static inline unsigned int queued_to_index(unsigned int queued)
1040{
1041 if (!queued)
1042 return 0;
1429d7c9 1043
703fd1c0 1044 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
1045}
1046
8ab6bb9e 1047bool blk_mq_get_driver_tag(struct request *rq)
bd166ef1
JA
1048{
1049 struct blk_mq_alloc_data data = {
1050 .q = rq->q,
ea4f995e 1051 .hctx = rq->mq_hctx,
8ab6bb9e 1052 .flags = BLK_MQ_REQ_NOWAIT,
f9afca4d 1053 .cmd_flags = rq->cmd_flags,
bd166ef1 1054 };
d263ed99 1055 bool shared;
5feeacdd 1056
81380ca1
OS
1057 if (rq->tag != -1)
1058 goto done;
bd166ef1 1059
415b806d
SG
1060 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1061 data.flags |= BLK_MQ_REQ_RESERVED;
1062
d263ed99 1063 shared = blk_mq_tag_busy(data.hctx);
bd166ef1
JA
1064 rq->tag = blk_mq_get_tag(&data);
1065 if (rq->tag >= 0) {
d263ed99 1066 if (shared) {
200e86b3
JA
1067 rq->rq_flags |= RQF_MQ_INFLIGHT;
1068 atomic_inc(&data.hctx->nr_active);
1069 }
bd166ef1 1070 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
1071 }
1072
81380ca1 1073done:
81380ca1 1074 return rq->tag != -1;
bd166ef1
JA
1075}
1076
eb619fdb
JA
1077static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1078 int flags, void *key)
da55f2cc
OS
1079{
1080 struct blk_mq_hw_ctx *hctx;
1081
1082 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1083
5815839b 1084 spin_lock(&hctx->dispatch_wait_lock);
e8618575
JA
1085 if (!list_empty(&wait->entry)) {
1086 struct sbitmap_queue *sbq;
1087
1088 list_del_init(&wait->entry);
1089 sbq = &hctx->tags->bitmap_tags;
1090 atomic_dec(&sbq->ws_active);
1091 }
5815839b
ML
1092 spin_unlock(&hctx->dispatch_wait_lock);
1093
da55f2cc
OS
1094 blk_mq_run_hw_queue(hctx, true);
1095 return 1;
1096}
1097
f906a6a0
JA
1098/*
1099 * Mark us waiting for a tag. For shared tags, this involves hooking us into
ee3e4de5
BVA
1100 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1101 * restart. For both cases, take care to check the condition again after
f906a6a0
JA
1102 * marking us as waiting.
1103 */
2278d69f 1104static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
f906a6a0 1105 struct request *rq)
da55f2cc 1106{
e8618575 1107 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
5815839b 1108 struct wait_queue_head *wq;
f906a6a0
JA
1109 wait_queue_entry_t *wait;
1110 bool ret;
da55f2cc 1111
2278d69f 1112 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
684b7324 1113 blk_mq_sched_mark_restart_hctx(hctx);
f906a6a0 1114
c27d53fb
BVA
1115 /*
1116 * It's possible that a tag was freed in the window between the
1117 * allocation failure and adding the hardware queue to the wait
1118 * queue.
1119 *
1120 * Don't clear RESTART here, someone else could have set it.
1121 * At most this will cost an extra queue run.
1122 */
8ab6bb9e 1123 return blk_mq_get_driver_tag(rq);
eb619fdb 1124 }
eb619fdb 1125
2278d69f 1126 wait = &hctx->dispatch_wait;
c27d53fb
BVA
1127 if (!list_empty_careful(&wait->entry))
1128 return false;
1129
e8618575 1130 wq = &bt_wait_ptr(sbq, hctx)->wait;
5815839b
ML
1131
1132 spin_lock_irq(&wq->lock);
1133 spin_lock(&hctx->dispatch_wait_lock);
c27d53fb 1134 if (!list_empty(&wait->entry)) {
5815839b
ML
1135 spin_unlock(&hctx->dispatch_wait_lock);
1136 spin_unlock_irq(&wq->lock);
c27d53fb 1137 return false;
eb619fdb
JA
1138 }
1139
e8618575 1140 atomic_inc(&sbq->ws_active);
5815839b
ML
1141 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1142 __add_wait_queue(wq, wait);
c27d53fb 1143
da55f2cc 1144 /*
eb619fdb
JA
1145 * It's possible that a tag was freed in the window between the
1146 * allocation failure and adding the hardware queue to the wait
1147 * queue.
da55f2cc 1148 */
8ab6bb9e 1149 ret = blk_mq_get_driver_tag(rq);
c27d53fb 1150 if (!ret) {
5815839b
ML
1151 spin_unlock(&hctx->dispatch_wait_lock);
1152 spin_unlock_irq(&wq->lock);
c27d53fb 1153 return false;
eb619fdb 1154 }
c27d53fb
BVA
1155
1156 /*
1157 * We got a tag, remove ourselves from the wait queue to ensure
1158 * someone else gets the wakeup.
1159 */
c27d53fb 1160 list_del_init(&wait->entry);
e8618575 1161 atomic_dec(&sbq->ws_active);
5815839b
ML
1162 spin_unlock(&hctx->dispatch_wait_lock);
1163 spin_unlock_irq(&wq->lock);
c27d53fb
BVA
1164
1165 return true;
da55f2cc
OS
1166}
1167
6e768717
ML
1168#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1169#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1170/*
1171 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1172 * - EWMA is one simple way to compute running average value
1173 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1174 * - take 4 as factor for avoiding to get too small(0) result, and this
1175 * factor doesn't matter because EWMA decreases exponentially
1176 */
1177static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1178{
1179 unsigned int ewma;
1180
1181 if (hctx->queue->elevator)
1182 return;
1183
1184 ewma = hctx->dispatch_busy;
1185
1186 if (!ewma && !busy)
1187 return;
1188
1189 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1190 if (busy)
1191 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1192 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1193
1194 hctx->dispatch_busy = ewma;
1195}
1196
86ff7c2a
ML
1197#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1198
1f57f8d4
JA
1199/*
1200 * Returns true if we did some work AND can potentially do more.
1201 */
de148297 1202bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1203 bool got_budget)
320ae51f 1204{
81380ca1 1205 struct blk_mq_hw_ctx *hctx;
6d6f167c 1206 struct request *rq, *nxt;
eb619fdb 1207 bool no_tag = false;
fc17b653 1208 int errors, queued;
86ff7c2a 1209 blk_status_t ret = BLK_STS_OK;
320ae51f 1210
81380ca1
OS
1211 if (list_empty(list))
1212 return false;
1213
de148297
ML
1214 WARN_ON(!list_is_singular(list) && got_budget);
1215
320ae51f
JA
1216 /*
1217 * Now process all the entries, sending them to the driver.
1218 */
93efe981 1219 errors = queued = 0;
81380ca1 1220 do {
74c45052 1221 struct blk_mq_queue_data bd;
320ae51f 1222
f04c3df3 1223 rq = list_first_entry(list, struct request, queuelist);
0bca799b 1224
ea4f995e 1225 hctx = rq->mq_hctx;
0bca799b
ML
1226 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1227 break;
1228
8ab6bb9e 1229 if (!blk_mq_get_driver_tag(rq)) {
3c782d67 1230 /*
da55f2cc 1231 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1232 * rerun the hardware queue when a tag is freed. The
1233 * waitqueue takes care of that. If the queue is run
1234 * before we add this entry back on the dispatch list,
1235 * we'll re-run it below.
3c782d67 1236 */
2278d69f 1237 if (!blk_mq_mark_tag_wait(hctx, rq)) {
0bca799b 1238 blk_mq_put_dispatch_budget(hctx);
f906a6a0
JA
1239 /*
1240 * For non-shared tags, the RESTART check
1241 * will suffice.
1242 */
1243 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1244 no_tag = true;
de148297
ML
1245 break;
1246 }
1247 }
1248
320ae51f 1249 list_del_init(&rq->queuelist);
320ae51f 1250
74c45052 1251 bd.rq = rq;
113285b4
JA
1252
1253 /*
1254 * Flag last if we have no more requests, or if we have more
1255 * but can't assign a driver tag to it.
1256 */
1257 if (list_empty(list))
1258 bd.last = true;
1259 else {
113285b4 1260 nxt = list_first_entry(list, struct request, queuelist);
8ab6bb9e 1261 bd.last = !blk_mq_get_driver_tag(nxt);
113285b4 1262 }
74c45052
JA
1263
1264 ret = q->mq_ops->queue_rq(hctx, &bd);
86ff7c2a 1265 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
6d6f167c
JW
1266 /*
1267 * If an I/O scheduler has been configured and we got a
ff821d27
JA
1268 * driver tag for the next request already, free it
1269 * again.
6d6f167c
JW
1270 */
1271 if (!list_empty(list)) {
1272 nxt = list_first_entry(list, struct request, queuelist);
1273 blk_mq_put_driver_tag(nxt);
1274 }
f04c3df3 1275 list_add(&rq->queuelist, list);
ed0791b2 1276 __blk_mq_requeue_request(rq);
320ae51f 1277 break;
fc17b653
CH
1278 }
1279
1280 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1281 errors++;
2a842aca 1282 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1283 continue;
320ae51f
JA
1284 }
1285
fc17b653 1286 queued++;
81380ca1 1287 } while (!list_empty(list));
320ae51f 1288
703fd1c0 1289 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1290
1291 /*
1292 * Any items that need requeuing? Stuff them into hctx->dispatch,
1293 * that is where we will continue on next queue run.
1294 */
f04c3df3 1295 if (!list_empty(list)) {
86ff7c2a
ML
1296 bool needs_restart;
1297
d666ba98
JA
1298 /*
1299 * If we didn't flush the entire list, we could have told
1300 * the driver there was more coming, but that turned out to
1301 * be a lie.
1302 */
1303 if (q->mq_ops->commit_rqs)
1304 q->mq_ops->commit_rqs(hctx);
1305
320ae51f 1306 spin_lock(&hctx->lock);
c13660a0 1307 list_splice_init(list, &hctx->dispatch);
320ae51f 1308 spin_unlock(&hctx->lock);
f04c3df3 1309
9ba52e58 1310 /*
710c785f
BVA
1311 * If SCHED_RESTART was set by the caller of this function and
1312 * it is no longer set that means that it was cleared by another
1313 * thread and hence that a queue rerun is needed.
9ba52e58 1314 *
eb619fdb
JA
1315 * If 'no_tag' is set, that means that we failed getting
1316 * a driver tag with an I/O scheduler attached. If our dispatch
1317 * waitqueue is no longer active, ensure that we run the queue
1318 * AFTER adding our entries back to the list.
bd166ef1 1319 *
710c785f
BVA
1320 * If no I/O scheduler has been configured it is possible that
1321 * the hardware queue got stopped and restarted before requests
1322 * were pushed back onto the dispatch list. Rerun the queue to
1323 * avoid starvation. Notes:
1324 * - blk_mq_run_hw_queue() checks whether or not a queue has
1325 * been stopped before rerunning a queue.
1326 * - Some but not all block drivers stop a queue before
fc17b653 1327 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1328 * and dm-rq.
86ff7c2a
ML
1329 *
1330 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1331 * bit is set, run queue after a delay to avoid IO stalls
1332 * that could otherwise occur if the queue is idle.
bd166ef1 1333 */
86ff7c2a
ML
1334 needs_restart = blk_mq_sched_needs_restart(hctx);
1335 if (!needs_restart ||
eb619fdb 1336 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1337 blk_mq_run_hw_queue(hctx, true);
86ff7c2a
ML
1338 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1339 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1f57f8d4 1340
6e768717 1341 blk_mq_update_dispatch_busy(hctx, true);
1f57f8d4 1342 return false;
6e768717
ML
1343 } else
1344 blk_mq_update_dispatch_busy(hctx, false);
f04c3df3 1345
1f57f8d4
JA
1346 /*
1347 * If the host/device is unable to accept more work, inform the
1348 * caller of that.
1349 */
1350 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1351 return false;
1352
93efe981 1353 return (queued + errors) != 0;
f04c3df3
JA
1354}
1355
6a83e74d
BVA
1356static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1357{
1358 int srcu_idx;
1359
b7a71e66
JA
1360 /*
1361 * We should be running this queue from one of the CPUs that
1362 * are mapped to it.
7df938fb
ML
1363 *
1364 * There are at least two related races now between setting
1365 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1366 * __blk_mq_run_hw_queue():
1367 *
1368 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1369 * but later it becomes online, then this warning is harmless
1370 * at all
1371 *
1372 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1373 * but later it becomes offline, then the warning can't be
1374 * triggered, and we depend on blk-mq timeout handler to
1375 * handle dispatched requests to this hctx
b7a71e66 1376 */
7df938fb
ML
1377 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1378 cpu_online(hctx->next_cpu)) {
1379 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1380 raw_smp_processor_id(),
1381 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1382 dump_stack();
1383 }
6a83e74d 1384
b7a71e66
JA
1385 /*
1386 * We can't run the queue inline with ints disabled. Ensure that
1387 * we catch bad users of this early.
1388 */
1389 WARN_ON_ONCE(in_interrupt());
1390
04ced159 1391 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1392
04ced159
JA
1393 hctx_lock(hctx, &srcu_idx);
1394 blk_mq_sched_dispatch_requests(hctx);
1395 hctx_unlock(hctx, srcu_idx);
6a83e74d
BVA
1396}
1397
f82ddf19
ML
1398static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1399{
1400 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1401
1402 if (cpu >= nr_cpu_ids)
1403 cpu = cpumask_first(hctx->cpumask);
1404 return cpu;
1405}
1406
506e931f
JA
1407/*
1408 * It'd be great if the workqueue API had a way to pass
1409 * in a mask and had some smarts for more clever placement.
1410 * For now we just round-robin here, switching for every
1411 * BLK_MQ_CPU_WORK_BATCH queued items.
1412 */
1413static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1414{
7bed4595 1415 bool tried = false;
476f8c98 1416 int next_cpu = hctx->next_cpu;
7bed4595 1417
b657d7e6
CH
1418 if (hctx->queue->nr_hw_queues == 1)
1419 return WORK_CPU_UNBOUND;
506e931f
JA
1420
1421 if (--hctx->next_cpu_batch <= 0) {
7bed4595 1422select_cpu:
476f8c98 1423 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
20e4d813 1424 cpu_online_mask);
506e931f 1425 if (next_cpu >= nr_cpu_ids)
f82ddf19 1426 next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
1427 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1428 }
1429
7bed4595
ML
1430 /*
1431 * Do unbound schedule if we can't find a online CPU for this hctx,
1432 * and it should only happen in the path of handling CPU DEAD.
1433 */
476f8c98 1434 if (!cpu_online(next_cpu)) {
7bed4595
ML
1435 if (!tried) {
1436 tried = true;
1437 goto select_cpu;
1438 }
1439
1440 /*
1441 * Make sure to re-select CPU next time once after CPUs
1442 * in hctx->cpumask become online again.
1443 */
476f8c98 1444 hctx->next_cpu = next_cpu;
7bed4595
ML
1445 hctx->next_cpu_batch = 1;
1446 return WORK_CPU_UNBOUND;
1447 }
476f8c98
ML
1448
1449 hctx->next_cpu = next_cpu;
1450 return next_cpu;
506e931f
JA
1451}
1452
7587a5ae
BVA
1453static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1454 unsigned long msecs)
320ae51f 1455{
5435c023 1456 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1457 return;
1458
1b792f2f 1459 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1460 int cpu = get_cpu();
1461 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1462 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1463 put_cpu();
398205b8
PB
1464 return;
1465 }
e4043dcf 1466
2a90d4aa 1467 put_cpu();
e4043dcf 1468 }
398205b8 1469
ae943d20
BVA
1470 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1471 msecs_to_jiffies(msecs));
7587a5ae
BVA
1472}
1473
1474void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1475{
1476 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1477}
1478EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1479
79f720a7 1480bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1481{
24f5a90f
ML
1482 int srcu_idx;
1483 bool need_run;
1484
1485 /*
1486 * When queue is quiesced, we may be switching io scheduler, or
1487 * updating nr_hw_queues, or other things, and we can't run queue
1488 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1489 *
1490 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1491 * quiesced.
1492 */
04ced159
JA
1493 hctx_lock(hctx, &srcu_idx);
1494 need_run = !blk_queue_quiesced(hctx->queue) &&
1495 blk_mq_hctx_has_pending(hctx);
1496 hctx_unlock(hctx, srcu_idx);
24f5a90f
ML
1497
1498 if (need_run) {
79f720a7
JA
1499 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1500 return true;
1501 }
1502
1503 return false;
320ae51f 1504}
5b727272 1505EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1506
b94ec296 1507void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1508{
1509 struct blk_mq_hw_ctx *hctx;
1510 int i;
1511
1512 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1513 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1514 continue;
1515
b94ec296 1516 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1517 }
1518}
b94ec296 1519EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1520
fd001443
BVA
1521/**
1522 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1523 * @q: request queue.
1524 *
1525 * The caller is responsible for serializing this function against
1526 * blk_mq_{start,stop}_hw_queue().
1527 */
1528bool blk_mq_queue_stopped(struct request_queue *q)
1529{
1530 struct blk_mq_hw_ctx *hctx;
1531 int i;
1532
1533 queue_for_each_hw_ctx(q, hctx, i)
1534 if (blk_mq_hctx_stopped(hctx))
1535 return true;
1536
1537 return false;
1538}
1539EXPORT_SYMBOL(blk_mq_queue_stopped);
1540
39a70c76
ML
1541/*
1542 * This function is often used for pausing .queue_rq() by driver when
1543 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1544 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1545 *
1546 * We do not guarantee that dispatch can be drained or blocked
1547 * after blk_mq_stop_hw_queue() returns. Please use
1548 * blk_mq_quiesce_queue() for that requirement.
1549 */
2719aa21
JA
1550void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1551{
641a9ed6 1552 cancel_delayed_work(&hctx->run_work);
280d45f6 1553
641a9ed6 1554 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1555}
641a9ed6 1556EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1557
39a70c76
ML
1558/*
1559 * This function is often used for pausing .queue_rq() by driver when
1560 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1561 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1562 *
1563 * We do not guarantee that dispatch can be drained or blocked
1564 * after blk_mq_stop_hw_queues() returns. Please use
1565 * blk_mq_quiesce_queue() for that requirement.
1566 */
2719aa21
JA
1567void blk_mq_stop_hw_queues(struct request_queue *q)
1568{
641a9ed6
ML
1569 struct blk_mq_hw_ctx *hctx;
1570 int i;
1571
1572 queue_for_each_hw_ctx(q, hctx, i)
1573 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1574}
1575EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1576
320ae51f
JA
1577void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1578{
1579 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1580
0ffbce80 1581 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1582}
1583EXPORT_SYMBOL(blk_mq_start_hw_queue);
1584
2f268556
CH
1585void blk_mq_start_hw_queues(struct request_queue *q)
1586{
1587 struct blk_mq_hw_ctx *hctx;
1588 int i;
1589
1590 queue_for_each_hw_ctx(q, hctx, i)
1591 blk_mq_start_hw_queue(hctx);
1592}
1593EXPORT_SYMBOL(blk_mq_start_hw_queues);
1594
ae911c5e
JA
1595void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1596{
1597 if (!blk_mq_hctx_stopped(hctx))
1598 return;
1599
1600 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1601 blk_mq_run_hw_queue(hctx, async);
1602}
1603EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1604
1b4a3258 1605void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1606{
1607 struct blk_mq_hw_ctx *hctx;
1608 int i;
1609
ae911c5e
JA
1610 queue_for_each_hw_ctx(q, hctx, i)
1611 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1612}
1613EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1614
70f4db63 1615static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1616{
1617 struct blk_mq_hw_ctx *hctx;
1618
9f993737 1619 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1620
21c6e939 1621 /*
15fe8a90 1622 * If we are stopped, don't run the queue.
21c6e939 1623 */
15fe8a90 1624 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
0196d6b4 1625 return;
7587a5ae
BVA
1626
1627 __blk_mq_run_hw_queue(hctx);
1628}
1629
cfd0c552 1630static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1631 struct request *rq,
1632 bool at_head)
320ae51f 1633{
e57690fe 1634 struct blk_mq_ctx *ctx = rq->mq_ctx;
c16d6b5a 1635 enum hctx_type type = hctx->type;
e57690fe 1636
7b607814
BVA
1637 lockdep_assert_held(&ctx->lock);
1638
01b983c9
JA
1639 trace_block_rq_insert(hctx->queue, rq);
1640
72a0a36e 1641 if (at_head)
c16d6b5a 1642 list_add(&rq->queuelist, &ctx->rq_lists[type]);
72a0a36e 1643 else
c16d6b5a 1644 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
cfd0c552 1645}
4bb659b1 1646
2c3ad667
JA
1647void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1648 bool at_head)
cfd0c552
ML
1649{
1650 struct blk_mq_ctx *ctx = rq->mq_ctx;
1651
7b607814
BVA
1652 lockdep_assert_held(&ctx->lock);
1653
e57690fe 1654 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1655 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1656}
1657
157f377b
JA
1658/*
1659 * Should only be used carefully, when the caller knows we want to
1660 * bypass a potential IO scheduler on the target device.
1661 */
b0850297 1662void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
157f377b 1663{
ea4f995e 1664 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
157f377b
JA
1665
1666 spin_lock(&hctx->lock);
1667 list_add_tail(&rq->queuelist, &hctx->dispatch);
1668 spin_unlock(&hctx->lock);
1669
b0850297
ML
1670 if (run_queue)
1671 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1672}
1673
bd166ef1
JA
1674void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1675 struct list_head *list)
320ae51f
JA
1676
1677{
3f0cedc7 1678 struct request *rq;
c16d6b5a 1679 enum hctx_type type = hctx->type;
3f0cedc7 1680
320ae51f
JA
1681 /*
1682 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1683 * offline now
1684 */
3f0cedc7 1685 list_for_each_entry(rq, list, queuelist) {
e57690fe 1686 BUG_ON(rq->mq_ctx != ctx);
3f0cedc7 1687 trace_block_rq_insert(hctx->queue, rq);
320ae51f 1688 }
3f0cedc7
ML
1689
1690 spin_lock(&ctx->lock);
c16d6b5a 1691 list_splice_tail_init(list, &ctx->rq_lists[type]);
cfd0c552 1692 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1693 spin_unlock(&ctx->lock);
320ae51f
JA
1694}
1695
3110fc79 1696static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
320ae51f
JA
1697{
1698 struct request *rqa = container_of(a, struct request, queuelist);
1699 struct request *rqb = container_of(b, struct request, queuelist);
1700
3110fc79
JA
1701 if (rqa->mq_ctx < rqb->mq_ctx)
1702 return -1;
1703 else if (rqa->mq_ctx > rqb->mq_ctx)
1704 return 1;
1705 else if (rqa->mq_hctx < rqb->mq_hctx)
1706 return -1;
1707 else if (rqa->mq_hctx > rqb->mq_hctx)
1708 return 1;
1709
1710 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
320ae51f
JA
1711}
1712
1713void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1714{
67cae4c9 1715 struct blk_mq_hw_ctx *this_hctx;
320ae51f
JA
1716 struct blk_mq_ctx *this_ctx;
1717 struct request_queue *this_q;
1718 struct request *rq;
1719 LIST_HEAD(list);
67cae4c9 1720 LIST_HEAD(rq_list);
320ae51f
JA
1721 unsigned int depth;
1722
1723 list_splice_init(&plug->mq_list, &list);
1724
ce5b009c
JA
1725 if (plug->rq_count > 2 && plug->multiple_queues)
1726 list_sort(NULL, &list, plug_rq_cmp);
320ae51f 1727
bcc816df
DZ
1728 plug->rq_count = 0;
1729
320ae51f 1730 this_q = NULL;
67cae4c9 1731 this_hctx = NULL;
320ae51f
JA
1732 this_ctx = NULL;
1733 depth = 0;
1734
1735 while (!list_empty(&list)) {
1736 rq = list_entry_rq(list.next);
1737 list_del_init(&rq->queuelist);
1738 BUG_ON(!rq->q);
67cae4c9
JA
1739 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1740 if (this_hctx) {
587562d0 1741 trace_block_unplug(this_q, depth, !from_schedule);
67cae4c9
JA
1742 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1743 &rq_list,
bd166ef1 1744 from_schedule);
320ae51f
JA
1745 }
1746
320ae51f 1747 this_q = rq->q;
67cae4c9
JA
1748 this_ctx = rq->mq_ctx;
1749 this_hctx = rq->mq_hctx;
320ae51f
JA
1750 depth = 0;
1751 }
1752
1753 depth++;
67cae4c9 1754 list_add_tail(&rq->queuelist, &rq_list);
320ae51f
JA
1755 }
1756
1757 /*
67cae4c9
JA
1758 * If 'this_hctx' is set, we know we have entries to complete
1759 * on 'rq_list'. Do those.
320ae51f 1760 */
67cae4c9 1761 if (this_hctx) {
587562d0 1762 trace_block_unplug(this_q, depth, !from_schedule);
67cae4c9 1763 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
bd166ef1 1764 from_schedule);
320ae51f
JA
1765 }
1766}
1767
14ccb66b
CH
1768static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1769 unsigned int nr_segs)
320ae51f 1770{
f924cdde
CH
1771 if (bio->bi_opf & REQ_RAHEAD)
1772 rq->cmd_flags |= REQ_FAILFAST_MASK;
1773
1774 rq->__sector = bio->bi_iter.bi_sector;
1775 rq->write_hint = bio->bi_write_hint;
14ccb66b 1776 blk_rq_bio_prep(rq, bio, nr_segs);
4b570521 1777
6e85eaf3 1778 blk_account_io_start(rq, true);
320ae51f
JA
1779}
1780
0f95549c
MS
1781static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1782 struct request *rq,
be94f058 1783 blk_qc_t *cookie, bool last)
f984df1f 1784{
f984df1f 1785 struct request_queue *q = rq->q;
f984df1f
SL
1786 struct blk_mq_queue_data bd = {
1787 .rq = rq,
be94f058 1788 .last = last,
f984df1f 1789 };
bd166ef1 1790 blk_qc_t new_cookie;
f06345ad 1791 blk_status_t ret;
0f95549c
MS
1792
1793 new_cookie = request_to_qc_t(hctx, rq);
1794
1795 /*
1796 * For OK queue, we are done. For error, caller may kill it.
1797 * Any other error (busy), just add it to our list as we
1798 * previously would have done.
1799 */
1800 ret = q->mq_ops->queue_rq(hctx, &bd);
1801 switch (ret) {
1802 case BLK_STS_OK:
6ce3dd6e 1803 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1804 *cookie = new_cookie;
1805 break;
1806 case BLK_STS_RESOURCE:
86ff7c2a 1807 case BLK_STS_DEV_RESOURCE:
6ce3dd6e 1808 blk_mq_update_dispatch_busy(hctx, true);
0f95549c
MS
1809 __blk_mq_requeue_request(rq);
1810 break;
1811 default:
6ce3dd6e 1812 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1813 *cookie = BLK_QC_T_NONE;
1814 break;
1815 }
1816
1817 return ret;
1818}
1819
fd9c40f6 1820static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
0f95549c 1821 struct request *rq,
396eaf21 1822 blk_qc_t *cookie,
fd9c40f6 1823 bool bypass_insert, bool last)
0f95549c
MS
1824{
1825 struct request_queue *q = rq->q;
d964f04a
ML
1826 bool run_queue = true;
1827
23d4ee19 1828 /*
fd9c40f6 1829 * RCU or SRCU read lock is needed before checking quiesced flag.
23d4ee19 1830 *
fd9c40f6
BVA
1831 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1832 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1833 * and avoid driver to try to dispatch again.
23d4ee19 1834 */
fd9c40f6 1835 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a 1836 run_queue = false;
fd9c40f6
BVA
1837 bypass_insert = false;
1838 goto insert;
d964f04a 1839 }
f984df1f 1840
fd9c40f6
BVA
1841 if (q->elevator && !bypass_insert)
1842 goto insert;
2253efc8 1843
0bca799b 1844 if (!blk_mq_get_dispatch_budget(hctx))
fd9c40f6 1845 goto insert;
bd166ef1 1846
8ab6bb9e 1847 if (!blk_mq_get_driver_tag(rq)) {
0bca799b 1848 blk_mq_put_dispatch_budget(hctx);
fd9c40f6 1849 goto insert;
88022d72 1850 }
de148297 1851
fd9c40f6
BVA
1852 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1853insert:
1854 if (bypass_insert)
1855 return BLK_STS_RESOURCE;
1856
1857 blk_mq_request_bypass_insert(rq, run_queue);
1858 return BLK_STS_OK;
1859}
1860
1861static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1862 struct request *rq, blk_qc_t *cookie)
1863{
1864 blk_status_t ret;
1865 int srcu_idx;
1866
1867 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1868
1869 hctx_lock(hctx, &srcu_idx);
1870
1871 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1872 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1873 blk_mq_request_bypass_insert(rq, true);
1874 else if (ret != BLK_STS_OK)
1875 blk_mq_end_request(rq, ret);
1876
1877 hctx_unlock(hctx, srcu_idx);
1878}
1879
1880blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1881{
1882 blk_status_t ret;
1883 int srcu_idx;
1884 blk_qc_t unused_cookie;
1885 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1886
1887 hctx_lock(hctx, &srcu_idx);
1888 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
04ced159 1889 hctx_unlock(hctx, srcu_idx);
7f556a44
JW
1890
1891 return ret;
5eb6126e
CH
1892}
1893
6ce3dd6e
ML
1894void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1895 struct list_head *list)
1896{
1897 while (!list_empty(list)) {
fd9c40f6 1898 blk_status_t ret;
6ce3dd6e
ML
1899 struct request *rq = list_first_entry(list, struct request,
1900 queuelist);
1901
1902 list_del_init(&rq->queuelist);
fd9c40f6
BVA
1903 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1904 if (ret != BLK_STS_OK) {
1905 if (ret == BLK_STS_RESOURCE ||
1906 ret == BLK_STS_DEV_RESOURCE) {
1907 blk_mq_request_bypass_insert(rq,
c616cbee 1908 list_empty(list));
fd9c40f6
BVA
1909 break;
1910 }
1911 blk_mq_end_request(rq, ret);
1912 }
6ce3dd6e 1913 }
d666ba98
JA
1914
1915 /*
1916 * If we didn't flush the entire list, we could have told
1917 * the driver there was more coming, but that turned out to
1918 * be a lie.
1919 */
fd9c40f6 1920 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
d666ba98 1921 hctx->queue->mq_ops->commit_rqs(hctx);
6ce3dd6e
ML
1922}
1923
ce5b009c
JA
1924static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1925{
1926 list_add_tail(&rq->queuelist, &plug->mq_list);
1927 plug->rq_count++;
1928 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1929 struct request *tmp;
1930
1931 tmp = list_first_entry(&plug->mq_list, struct request,
1932 queuelist);
1933 if (tmp->q != rq->q)
1934 plug->multiple_queues = true;
1935 }
1936}
1937
dece1635 1938static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1939{
ef295ecf 1940 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1941 const int is_flush_fua = op_is_flush(bio->bi_opf);
7809167d 1942 struct blk_mq_alloc_data data = { .flags = 0};
07068d5b 1943 struct request *rq;
f984df1f 1944 struct blk_plug *plug;
5b3f341f 1945 struct request *same_queue_rq = NULL;
14ccb66b 1946 unsigned int nr_segs;
7b371636 1947 blk_qc_t cookie;
07068d5b
JA
1948
1949 blk_queue_bounce(q, &bio);
14ccb66b 1950 __blk_queue_split(q, &bio, &nr_segs);
f36ea50c 1951
e23947bd 1952 if (!bio_integrity_prep(bio))
dece1635 1953 return BLK_QC_T_NONE;
07068d5b 1954
87c279e6 1955 if (!is_flush_fua && !blk_queue_nomerges(q) &&
14ccb66b 1956 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
87c279e6 1957 return BLK_QC_T_NONE;
f984df1f 1958
14ccb66b 1959 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
bd166ef1
JA
1960 return BLK_QC_T_NONE;
1961
d5337560 1962 rq_qos_throttle(q, bio);
87760e5e 1963
7809167d 1964 data.cmd_flags = bio->bi_opf;
f9afca4d 1965 rq = blk_mq_get_request(q, bio, &data);
87760e5e 1966 if (unlikely(!rq)) {
c1c80384 1967 rq_qos_cleanup(q, bio);
7b6620d7 1968 if (bio->bi_opf & REQ_NOWAIT)
03a07c92 1969 bio_wouldblock_error(bio);
7b6620d7 1970 return BLK_QC_T_NONE;
87760e5e
JA
1971 }
1972
d6f1dda2
XW
1973 trace_block_getrq(q, bio, bio->bi_opf);
1974
c1c80384 1975 rq_qos_track(q, rq, bio);
07068d5b 1976
fd2d3326 1977 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1978
970d168d
BVA
1979 blk_mq_bio_to_request(rq, bio, nr_segs);
1980
b49773e7 1981 plug = blk_mq_plug(q, bio);
07068d5b 1982 if (unlikely(is_flush_fua)) {
923218f6
ML
1983 /* bypass scheduler for flush rq */
1984 blk_insert_flush(rq);
1985 blk_mq_run_hw_queue(data.hctx, true);
b2c5d16b
JA
1986 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1987 /*
1988 * Use plugging if we have a ->commit_rqs() hook as well, as
1989 * we know the driver uses bd->last in a smart fashion.
1990 */
5f0ed774 1991 unsigned int request_count = plug->rq_count;
600271d9
SL
1992 struct request *last = NULL;
1993
676d0607 1994 if (!request_count)
e6c4438b 1995 trace_block_plug(q);
600271d9
SL
1996 else
1997 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1998
600271d9
SL
1999 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2000 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
2001 blk_flush_plug_list(plug, false);
2002 trace_block_plug(q);
320ae51f 2003 }
b094f89c 2004
ce5b009c 2005 blk_add_rq_to_plug(plug, rq);
2299722c 2006 } else if (plug && !blk_queue_nomerges(q)) {
07068d5b 2007 /*
6a83e74d 2008 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
2009 * Otherwise the existing request in the plug list will be
2010 * issued. So the plug list will have one request at most
2299722c
CH
2011 * The plug list might get flushed before this. If that happens,
2012 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 2013 */
2299722c
CH
2014 if (list_empty(&plug->mq_list))
2015 same_queue_rq = NULL;
4711b573 2016 if (same_queue_rq) {
2299722c 2017 list_del_init(&same_queue_rq->queuelist);
4711b573
JA
2018 plug->rq_count--;
2019 }
ce5b009c 2020 blk_add_rq_to_plug(plug, rq);
ff3b74b8 2021 trace_block_plug(q);
2299722c 2022
dad7a3be 2023 if (same_queue_rq) {
ea4f995e 2024 data.hctx = same_queue_rq->mq_hctx;
ff3b74b8 2025 trace_block_unplug(q, 1, true);
2299722c 2026 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
fd9c40f6 2027 &cookie);
dad7a3be 2028 }
6ce3dd6e
ML
2029 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2030 !data.hctx->dispatch_busy)) {
fd9c40f6 2031 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
ab42f35d 2032 } else {
8fa9f556 2033 blk_mq_sched_insert_request(rq, false, true, true);
ab42f35d 2034 }
320ae51f 2035
7b371636 2036 return cookie;
320ae51f
JA
2037}
2038
cc71a6f4
JA
2039void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2040 unsigned int hctx_idx)
95363efd 2041{
e9b267d9 2042 struct page *page;
320ae51f 2043
24d2f903 2044 if (tags->rqs && set->ops->exit_request) {
e9b267d9 2045 int i;
320ae51f 2046
24d2f903 2047 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
2048 struct request *rq = tags->static_rqs[i];
2049
2050 if (!rq)
e9b267d9 2051 continue;
d6296d39 2052 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 2053 tags->static_rqs[i] = NULL;
e9b267d9 2054 }
320ae51f 2055 }
320ae51f 2056
24d2f903
CH
2057 while (!list_empty(&tags->page_list)) {
2058 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 2059 list_del_init(&page->lru);
f75782e4
CM
2060 /*
2061 * Remove kmemleak object previously allocated in
273938bf 2062 * blk_mq_alloc_rqs().
f75782e4
CM
2063 */
2064 kmemleak_free(page_address(page));
320ae51f
JA
2065 __free_pages(page, page->private);
2066 }
cc71a6f4 2067}
320ae51f 2068
cc71a6f4
JA
2069void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2070{
24d2f903 2071 kfree(tags->rqs);
cc71a6f4 2072 tags->rqs = NULL;
2af8cbe3
JA
2073 kfree(tags->static_rqs);
2074 tags->static_rqs = NULL;
320ae51f 2075
24d2f903 2076 blk_mq_free_tags(tags);
320ae51f
JA
2077}
2078
cc71a6f4
JA
2079struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2080 unsigned int hctx_idx,
2081 unsigned int nr_tags,
2082 unsigned int reserved_tags)
320ae51f 2083{
24d2f903 2084 struct blk_mq_tags *tags;
59f082e4 2085 int node;
320ae51f 2086
7d76f856 2087 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
59f082e4
SL
2088 if (node == NUMA_NO_NODE)
2089 node = set->numa_node;
2090
2091 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 2092 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
2093 if (!tags)
2094 return NULL;
320ae51f 2095
590b5b7d 2096 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
36e1f3d1 2097 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 2098 node);
24d2f903
CH
2099 if (!tags->rqs) {
2100 blk_mq_free_tags(tags);
2101 return NULL;
2102 }
320ae51f 2103
590b5b7d
KC
2104 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2105 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2106 node);
2af8cbe3
JA
2107 if (!tags->static_rqs) {
2108 kfree(tags->rqs);
2109 blk_mq_free_tags(tags);
2110 return NULL;
2111 }
2112
cc71a6f4
JA
2113 return tags;
2114}
2115
2116static size_t order_to_size(unsigned int order)
2117{
2118 return (size_t)PAGE_SIZE << order;
2119}
2120
1d9bd516
TH
2121static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2122 unsigned int hctx_idx, int node)
2123{
2124 int ret;
2125
2126 if (set->ops->init_request) {
2127 ret = set->ops->init_request(set, rq, hctx_idx, node);
2128 if (ret)
2129 return ret;
2130 }
2131
12f5b931 2132 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1d9bd516
TH
2133 return 0;
2134}
2135
cc71a6f4
JA
2136int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2137 unsigned int hctx_idx, unsigned int depth)
2138{
2139 unsigned int i, j, entries_per_page, max_order = 4;
2140 size_t rq_size, left;
59f082e4
SL
2141 int node;
2142
7d76f856 2143 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
59f082e4
SL
2144 if (node == NUMA_NO_NODE)
2145 node = set->numa_node;
cc71a6f4
JA
2146
2147 INIT_LIST_HEAD(&tags->page_list);
2148
320ae51f
JA
2149 /*
2150 * rq_size is the size of the request plus driver payload, rounded
2151 * to the cacheline size
2152 */
24d2f903 2153 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 2154 cache_line_size());
cc71a6f4 2155 left = rq_size * depth;
320ae51f 2156
cc71a6f4 2157 for (i = 0; i < depth; ) {
320ae51f
JA
2158 int this_order = max_order;
2159 struct page *page;
2160 int to_do;
2161 void *p;
2162
b3a834b1 2163 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
2164 this_order--;
2165
2166 do {
59f082e4 2167 page = alloc_pages_node(node,
36e1f3d1 2168 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 2169 this_order);
320ae51f
JA
2170 if (page)
2171 break;
2172 if (!this_order--)
2173 break;
2174 if (order_to_size(this_order) < rq_size)
2175 break;
2176 } while (1);
2177
2178 if (!page)
24d2f903 2179 goto fail;
320ae51f
JA
2180
2181 page->private = this_order;
24d2f903 2182 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
2183
2184 p = page_address(page);
f75782e4
CM
2185 /*
2186 * Allow kmemleak to scan these pages as they contain pointers
2187 * to additional allocations like via ops->init_request().
2188 */
36e1f3d1 2189 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 2190 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 2191 to_do = min(entries_per_page, depth - i);
320ae51f
JA
2192 left -= to_do * rq_size;
2193 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
2194 struct request *rq = p;
2195
2196 tags->static_rqs[i] = rq;
1d9bd516
TH
2197 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2198 tags->static_rqs[i] = NULL;
2199 goto fail;
e9b267d9
CH
2200 }
2201
320ae51f
JA
2202 p += rq_size;
2203 i++;
2204 }
2205 }
cc71a6f4 2206 return 0;
320ae51f 2207
24d2f903 2208fail:
cc71a6f4
JA
2209 blk_mq_free_rqs(set, tags, hctx_idx);
2210 return -ENOMEM;
320ae51f
JA
2211}
2212
e57690fe
JA
2213/*
2214 * 'cpu' is going away. splice any existing rq_list entries from this
2215 * software queue to the hw queue dispatch list, and ensure that it
2216 * gets run.
2217 */
9467f859 2218static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 2219{
9467f859 2220 struct blk_mq_hw_ctx *hctx;
484b4061
JA
2221 struct blk_mq_ctx *ctx;
2222 LIST_HEAD(tmp);
c16d6b5a 2223 enum hctx_type type;
484b4061 2224
9467f859 2225 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 2226 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
c16d6b5a 2227 type = hctx->type;
484b4061
JA
2228
2229 spin_lock(&ctx->lock);
c16d6b5a
ML
2230 if (!list_empty(&ctx->rq_lists[type])) {
2231 list_splice_init(&ctx->rq_lists[type], &tmp);
484b4061
JA
2232 blk_mq_hctx_clear_pending(hctx, ctx);
2233 }
2234 spin_unlock(&ctx->lock);
2235
2236 if (list_empty(&tmp))
9467f859 2237 return 0;
484b4061 2238
e57690fe
JA
2239 spin_lock(&hctx->lock);
2240 list_splice_tail_init(&tmp, &hctx->dispatch);
2241 spin_unlock(&hctx->lock);
484b4061
JA
2242
2243 blk_mq_run_hw_queue(hctx, true);
9467f859 2244 return 0;
484b4061
JA
2245}
2246
9467f859 2247static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2248{
9467f859
TG
2249 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2250 &hctx->cpuhp_dead);
484b4061
JA
2251}
2252
c3b4afca 2253/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2254static void blk_mq_exit_hctx(struct request_queue *q,
2255 struct blk_mq_tag_set *set,
2256 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2257{
8ab0b7dc
ML
2258 if (blk_mq_hw_queue_mapped(hctx))
2259 blk_mq_tag_idle(hctx);
08e98fc6 2260
f70ced09 2261 if (set->ops->exit_request)
d6296d39 2262 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2263
08e98fc6
ML
2264 if (set->ops->exit_hctx)
2265 set->ops->exit_hctx(hctx, hctx_idx);
2266
9467f859 2267 blk_mq_remove_cpuhp(hctx);
2f8f1336
ML
2268
2269 spin_lock(&q->unused_hctx_lock);
2270 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2271 spin_unlock(&q->unused_hctx_lock);
08e98fc6
ML
2272}
2273
624dbe47
ML
2274static void blk_mq_exit_hw_queues(struct request_queue *q,
2275 struct blk_mq_tag_set *set, int nr_queue)
2276{
2277 struct blk_mq_hw_ctx *hctx;
2278 unsigned int i;
2279
2280 queue_for_each_hw_ctx(q, hctx, i) {
2281 if (i == nr_queue)
2282 break;
477e19de 2283 blk_mq_debugfs_unregister_hctx(hctx);
08e98fc6 2284 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2285 }
624dbe47
ML
2286}
2287
7c6c5b7c
ML
2288static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2289{
2290 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2291
2292 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2293 __alignof__(struct blk_mq_hw_ctx)) !=
2294 sizeof(struct blk_mq_hw_ctx));
2295
2296 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2297 hw_ctx_size += sizeof(struct srcu_struct);
2298
2299 return hw_ctx_size;
2300}
2301
08e98fc6
ML
2302static int blk_mq_init_hctx(struct request_queue *q,
2303 struct blk_mq_tag_set *set,
2304 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2305{
7c6c5b7c
ML
2306 hctx->queue_num = hctx_idx;
2307
2308 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2309
2310 hctx->tags = set->tags[hctx_idx];
2311
2312 if (set->ops->init_hctx &&
2313 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2314 goto unregister_cpu_notifier;
08e98fc6 2315
7c6c5b7c
ML
2316 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2317 hctx->numa_node))
2318 goto exit_hctx;
2319 return 0;
2320
2321 exit_hctx:
2322 if (set->ops->exit_hctx)
2323 set->ops->exit_hctx(hctx, hctx_idx);
2324 unregister_cpu_notifier:
2325 blk_mq_remove_cpuhp(hctx);
2326 return -1;
2327}
2328
2329static struct blk_mq_hw_ctx *
2330blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2331 int node)
2332{
2333 struct blk_mq_hw_ctx *hctx;
2334 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2335
2336 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2337 if (!hctx)
2338 goto fail_alloc_hctx;
2339
2340 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2341 goto free_hctx;
2342
2343 atomic_set(&hctx->nr_active, 0);
08e98fc6 2344 if (node == NUMA_NO_NODE)
7c6c5b7c
ML
2345 node = set->numa_node;
2346 hctx->numa_node = node;
08e98fc6 2347
9f993737 2348 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2349 spin_lock_init(&hctx->lock);
2350 INIT_LIST_HEAD(&hctx->dispatch);
2351 hctx->queue = q;
2404e607 2352 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2353
2f8f1336
ML
2354 INIT_LIST_HEAD(&hctx->hctx_list);
2355
320ae51f 2356 /*
08e98fc6
ML
2357 * Allocate space for all possible cpus to avoid allocation at
2358 * runtime
320ae51f 2359 */
d904bfa7 2360 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
7c6c5b7c 2361 gfp, node);
08e98fc6 2362 if (!hctx->ctxs)
7c6c5b7c 2363 goto free_cpumask;
320ae51f 2364
5b202853 2365 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
7c6c5b7c 2366 gfp, node))
08e98fc6 2367 goto free_ctxs;
08e98fc6 2368 hctx->nr_ctx = 0;
320ae51f 2369
5815839b 2370 spin_lock_init(&hctx->dispatch_wait_lock);
eb619fdb
JA
2371 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2372 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2373
5b202853 2374 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
7c6c5b7c 2375 gfp);
f70ced09 2376 if (!hctx->fq)
7c6c5b7c 2377 goto free_bitmap;
320ae51f 2378
6a83e74d 2379 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2380 init_srcu_struct(hctx->srcu);
7c6c5b7c 2381 blk_mq_hctx_kobj_init(hctx);
6a83e74d 2382
7c6c5b7c 2383 return hctx;
320ae51f 2384
08e98fc6 2385 free_bitmap:
88459642 2386 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2387 free_ctxs:
2388 kfree(hctx->ctxs);
7c6c5b7c
ML
2389 free_cpumask:
2390 free_cpumask_var(hctx->cpumask);
2391 free_hctx:
2392 kfree(hctx);
2393 fail_alloc_hctx:
2394 return NULL;
08e98fc6 2395}
320ae51f 2396
320ae51f
JA
2397static void blk_mq_init_cpu_queues(struct request_queue *q,
2398 unsigned int nr_hw_queues)
2399{
b3c661b1
JA
2400 struct blk_mq_tag_set *set = q->tag_set;
2401 unsigned int i, j;
320ae51f
JA
2402
2403 for_each_possible_cpu(i) {
2404 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2405 struct blk_mq_hw_ctx *hctx;
c16d6b5a 2406 int k;
320ae51f 2407
320ae51f
JA
2408 __ctx->cpu = i;
2409 spin_lock_init(&__ctx->lock);
c16d6b5a
ML
2410 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2411 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2412
320ae51f
JA
2413 __ctx->queue = q;
2414
320ae51f
JA
2415 /*
2416 * Set local node, IFF we have more than one hw queue. If
2417 * not, we remain on the home node of the device
2418 */
b3c661b1
JA
2419 for (j = 0; j < set->nr_maps; j++) {
2420 hctx = blk_mq_map_queue_type(q, j, i);
2421 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2422 hctx->numa_node = local_memory_node(cpu_to_node(i));
2423 }
320ae51f
JA
2424 }
2425}
2426
cc71a6f4
JA
2427static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2428{
2429 int ret = 0;
2430
2431 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2432 set->queue_depth, set->reserved_tags);
2433 if (!set->tags[hctx_idx])
2434 return false;
2435
2436 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2437 set->queue_depth);
2438 if (!ret)
2439 return true;
2440
2441 blk_mq_free_rq_map(set->tags[hctx_idx]);
2442 set->tags[hctx_idx] = NULL;
2443 return false;
2444}
2445
2446static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2447 unsigned int hctx_idx)
2448{
4e6db0f2 2449 if (set->tags && set->tags[hctx_idx]) {
bd166ef1
JA
2450 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2451 blk_mq_free_rq_map(set->tags[hctx_idx]);
2452 set->tags[hctx_idx] = NULL;
2453 }
cc71a6f4
JA
2454}
2455
4b855ad3 2456static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2457{
b3c661b1 2458 unsigned int i, j, hctx_idx;
320ae51f
JA
2459 struct blk_mq_hw_ctx *hctx;
2460 struct blk_mq_ctx *ctx;
2a34c087 2461 struct blk_mq_tag_set *set = q->tag_set;
320ae51f
JA
2462
2463 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2464 cpumask_clear(hctx->cpumask);
320ae51f 2465 hctx->nr_ctx = 0;
d416c92c 2466 hctx->dispatch_from = NULL;
320ae51f
JA
2467 }
2468
2469 /*
4b855ad3 2470 * Map software to hardware queues.
4412efec
ML
2471 *
2472 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2473 */
20e4d813 2474 for_each_possible_cpu(i) {
7d76f856 2475 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
4412efec
ML
2476 /* unmapped hw queue can be remapped after CPU topo changed */
2477 if (!set->tags[hctx_idx] &&
2478 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2479 /*
2480 * If tags initialization fail for some hctx,
2481 * that hctx won't be brought online. In this
2482 * case, remap the current ctx to hctx[0] which
2483 * is guaranteed to always have tags allocated
2484 */
7d76f856 2485 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
4412efec
ML
2486 }
2487
897bb0c7 2488 ctx = per_cpu_ptr(q->queue_ctx, i);
b3c661b1 2489 for (j = 0; j < set->nr_maps; j++) {
bb94aea1
JW
2490 if (!set->map[j].nr_queues) {
2491 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2492 HCTX_TYPE_DEFAULT, i);
e5edd5f2 2493 continue;
bb94aea1 2494 }
e5edd5f2 2495
b3c661b1 2496 hctx = blk_mq_map_queue_type(q, j, i);
8ccdf4a3 2497 ctx->hctxs[j] = hctx;
b3c661b1
JA
2498 /*
2499 * If the CPU is already set in the mask, then we've
2500 * mapped this one already. This can happen if
2501 * devices share queues across queue maps.
2502 */
2503 if (cpumask_test_cpu(i, hctx->cpumask))
2504 continue;
2505
2506 cpumask_set_cpu(i, hctx->cpumask);
2507 hctx->type = j;
2508 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2509 hctx->ctxs[hctx->nr_ctx++] = ctx;
2510
2511 /*
2512 * If the nr_ctx type overflows, we have exceeded the
2513 * amount of sw queues we can support.
2514 */
2515 BUG_ON(!hctx->nr_ctx);
2516 }
bb94aea1
JW
2517
2518 for (; j < HCTX_MAX_TYPES; j++)
2519 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2520 HCTX_TYPE_DEFAULT, i);
320ae51f 2521 }
506e931f
JA
2522
2523 queue_for_each_hw_ctx(q, hctx, i) {
4412efec
ML
2524 /*
2525 * If no software queues are mapped to this hardware queue,
2526 * disable it and free the request entries.
2527 */
2528 if (!hctx->nr_ctx) {
2529 /* Never unmap queue 0. We need it as a
2530 * fallback in case of a new remap fails
2531 * allocation
2532 */
2533 if (i && set->tags[i])
2534 blk_mq_free_map_and_requests(set, i);
2535
2536 hctx->tags = NULL;
2537 continue;
2538 }
484b4061 2539
2a34c087
ML
2540 hctx->tags = set->tags[i];
2541 WARN_ON(!hctx->tags);
2542
889fa31f
CY
2543 /*
2544 * Set the map size to the number of mapped software queues.
2545 * This is more accurate and more efficient than looping
2546 * over all possibly mapped software queues.
2547 */
88459642 2548 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2549
484b4061
JA
2550 /*
2551 * Initialize batch roundrobin counts
2552 */
f82ddf19 2553 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
2554 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2555 }
320ae51f
JA
2556}
2557
8e8320c9
JA
2558/*
2559 * Caller needs to ensure that we're either frozen/quiesced, or that
2560 * the queue isn't live yet.
2561 */
2404e607 2562static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2563{
2564 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2565 int i;
2566
2404e607 2567 queue_for_each_hw_ctx(q, hctx, i) {
97889f9a 2568 if (shared)
2404e607 2569 hctx->flags |= BLK_MQ_F_TAG_SHARED;
97889f9a 2570 else
2404e607
JM
2571 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2572 }
2573}
2574
8e8320c9
JA
2575static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2576 bool shared)
2404e607
JM
2577{
2578 struct request_queue *q;
0d2602ca 2579
705cda97
BVA
2580 lockdep_assert_held(&set->tag_list_lock);
2581
0d2602ca
JA
2582 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2583 blk_mq_freeze_queue(q);
2404e607 2584 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2585 blk_mq_unfreeze_queue(q);
2586 }
2587}
2588
2589static void blk_mq_del_queue_tag_set(struct request_queue *q)
2590{
2591 struct blk_mq_tag_set *set = q->tag_set;
2592
0d2602ca 2593 mutex_lock(&set->tag_list_lock);
705cda97 2594 list_del_rcu(&q->tag_set_list);
2404e607
JM
2595 if (list_is_singular(&set->tag_list)) {
2596 /* just transitioned to unshared */
2597 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2598 /* update existing queue */
2599 blk_mq_update_tag_set_depth(set, false);
2600 }
0d2602ca 2601 mutex_unlock(&set->tag_list_lock);
a347c7ad 2602 INIT_LIST_HEAD(&q->tag_set_list);
0d2602ca
JA
2603}
2604
2605static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2606 struct request_queue *q)
2607{
0d2602ca 2608 mutex_lock(&set->tag_list_lock);
2404e607 2609
ff821d27
JA
2610 /*
2611 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2612 */
2613 if (!list_empty(&set->tag_list) &&
2614 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404e607
JM
2615 set->flags |= BLK_MQ_F_TAG_SHARED;
2616 /* update existing queue */
2617 blk_mq_update_tag_set_depth(set, true);
2618 }
2619 if (set->flags & BLK_MQ_F_TAG_SHARED)
2620 queue_set_hctx_shared(q, true);
705cda97 2621 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2622
0d2602ca
JA
2623 mutex_unlock(&set->tag_list_lock);
2624}
2625
1db4909e
ML
2626/* All allocations will be freed in release handler of q->mq_kobj */
2627static int blk_mq_alloc_ctxs(struct request_queue *q)
2628{
2629 struct blk_mq_ctxs *ctxs;
2630 int cpu;
2631
2632 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2633 if (!ctxs)
2634 return -ENOMEM;
2635
2636 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2637 if (!ctxs->queue_ctx)
2638 goto fail;
2639
2640 for_each_possible_cpu(cpu) {
2641 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2642 ctx->ctxs = ctxs;
2643 }
2644
2645 q->mq_kobj = &ctxs->kobj;
2646 q->queue_ctx = ctxs->queue_ctx;
2647
2648 return 0;
2649 fail:
2650 kfree(ctxs);
2651 return -ENOMEM;
2652}
2653
e09aae7e
ML
2654/*
2655 * It is the actual release handler for mq, but we do it from
2656 * request queue's release handler for avoiding use-after-free
2657 * and headache because q->mq_kobj shouldn't have been introduced,
2658 * but we can't group ctx/kctx kobj without it.
2659 */
2660void blk_mq_release(struct request_queue *q)
2661{
2f8f1336
ML
2662 struct blk_mq_hw_ctx *hctx, *next;
2663 int i;
e09aae7e 2664
2f8f1336
ML
2665 queue_for_each_hw_ctx(q, hctx, i)
2666 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2667
2668 /* all hctx are in .unused_hctx_list now */
2669 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2670 list_del_init(&hctx->hctx_list);
6c8b232e 2671 kobject_put(&hctx->kobj);
c3b4afca 2672 }
e09aae7e
ML
2673
2674 kfree(q->queue_hw_ctx);
2675
7ea5fe31
ML
2676 /*
2677 * release .mq_kobj and sw queue's kobject now because
2678 * both share lifetime with request queue.
2679 */
2680 blk_mq_sysfs_deinit(q);
e09aae7e
ML
2681}
2682
24d2f903 2683struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2684{
2685 struct request_queue *uninit_q, *q;
2686
6d469642 2687 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
b62c21b7
MS
2688 if (!uninit_q)
2689 return ERR_PTR(-ENOMEM);
2690
737eb78e
DLM
2691 /*
2692 * Initialize the queue without an elevator. device_add_disk() will do
2693 * the initialization.
2694 */
2695 q = blk_mq_init_allocated_queue(set, uninit_q, false);
b62c21b7
MS
2696 if (IS_ERR(q))
2697 blk_cleanup_queue(uninit_q);
2698
2699 return q;
2700}
2701EXPORT_SYMBOL(blk_mq_init_queue);
2702
9316a9ed
JA
2703/*
2704 * Helper for setting up a queue with mq ops, given queue depth, and
2705 * the passed in mq ops flags.
2706 */
2707struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2708 const struct blk_mq_ops *ops,
2709 unsigned int queue_depth,
2710 unsigned int set_flags)
2711{
2712 struct request_queue *q;
2713 int ret;
2714
2715 memset(set, 0, sizeof(*set));
2716 set->ops = ops;
2717 set->nr_hw_queues = 1;
b3c661b1 2718 set->nr_maps = 1;
9316a9ed
JA
2719 set->queue_depth = queue_depth;
2720 set->numa_node = NUMA_NO_NODE;
2721 set->flags = set_flags;
2722
2723 ret = blk_mq_alloc_tag_set(set);
2724 if (ret)
2725 return ERR_PTR(ret);
2726
2727 q = blk_mq_init_queue(set);
2728 if (IS_ERR(q)) {
2729 blk_mq_free_tag_set(set);
2730 return q;
2731 }
2732
2733 return q;
2734}
2735EXPORT_SYMBOL(blk_mq_init_sq_queue);
2736
34d11ffa
JW
2737static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2738 struct blk_mq_tag_set *set, struct request_queue *q,
2739 int hctx_idx, int node)
2740{
2f8f1336 2741 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
34d11ffa 2742
2f8f1336
ML
2743 /* reuse dead hctx first */
2744 spin_lock(&q->unused_hctx_lock);
2745 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2746 if (tmp->numa_node == node) {
2747 hctx = tmp;
2748 break;
2749 }
2750 }
2751 if (hctx)
2752 list_del_init(&hctx->hctx_list);
2753 spin_unlock(&q->unused_hctx_lock);
2754
2755 if (!hctx)
2756 hctx = blk_mq_alloc_hctx(q, set, node);
34d11ffa 2757 if (!hctx)
7c6c5b7c 2758 goto fail;
34d11ffa 2759
7c6c5b7c
ML
2760 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2761 goto free_hctx;
34d11ffa
JW
2762
2763 return hctx;
7c6c5b7c
ML
2764
2765 free_hctx:
2766 kobject_put(&hctx->kobj);
2767 fail:
2768 return NULL;
34d11ffa
JW
2769}
2770
868f2f0b
KB
2771static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2772 struct request_queue *q)
320ae51f 2773{
e01ad46d 2774 int i, j, end;
868f2f0b 2775 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2776
fb350e0a
ML
2777 /* protect against switching io scheduler */
2778 mutex_lock(&q->sysfs_lock);
24d2f903 2779 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2780 int node;
34d11ffa 2781 struct blk_mq_hw_ctx *hctx;
868f2f0b 2782
7d76f856 2783 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
34d11ffa
JW
2784 /*
2785 * If the hw queue has been mapped to another numa node,
2786 * we need to realloc the hctx. If allocation fails, fallback
2787 * to use the previous one.
2788 */
2789 if (hctxs[i] && (hctxs[i]->numa_node == node))
2790 continue;
868f2f0b 2791
34d11ffa
JW
2792 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2793 if (hctx) {
2f8f1336 2794 if (hctxs[i])
34d11ffa 2795 blk_mq_exit_hctx(q, set, hctxs[i], i);
34d11ffa
JW
2796 hctxs[i] = hctx;
2797 } else {
2798 if (hctxs[i])
2799 pr_warn("Allocate new hctx on node %d fails,\
2800 fallback to previous one on node %d\n",
2801 node, hctxs[i]->numa_node);
2802 else
2803 break;
868f2f0b 2804 }
320ae51f 2805 }
e01ad46d
JW
2806 /*
2807 * Increasing nr_hw_queues fails. Free the newly allocated
2808 * hctxs and keep the previous q->nr_hw_queues.
2809 */
2810 if (i != set->nr_hw_queues) {
2811 j = q->nr_hw_queues;
2812 end = i;
2813 } else {
2814 j = i;
2815 end = q->nr_hw_queues;
2816 q->nr_hw_queues = set->nr_hw_queues;
2817 }
34d11ffa 2818
e01ad46d 2819 for (; j < end; j++) {
868f2f0b
KB
2820 struct blk_mq_hw_ctx *hctx = hctxs[j];
2821
2822 if (hctx) {
cc71a6f4
JA
2823 if (hctx->tags)
2824 blk_mq_free_map_and_requests(set, j);
868f2f0b 2825 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2826 hctxs[j] = NULL;
868f2f0b
KB
2827 }
2828 }
fb350e0a 2829 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
2830}
2831
392546ae
JA
2832/*
2833 * Maximum number of hardware queues we support. For single sets, we'll never
2834 * have more than the CPUs (software queues). For multiple sets, the tag_set
2835 * user may have set ->nr_hw_queues larger.
2836 */
2837static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2838{
2839 if (set->nr_maps == 1)
2840 return nr_cpu_ids;
2841
2842 return max(set->nr_hw_queues, nr_cpu_ids);
2843}
2844
868f2f0b 2845struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
737eb78e
DLM
2846 struct request_queue *q,
2847 bool elevator_init)
868f2f0b 2848{
66841672
ML
2849 /* mark the queue as mq asap */
2850 q->mq_ops = set->ops;
2851
34dbad5d 2852 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2853 blk_mq_poll_stats_bkt,
2854 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2855 if (!q->poll_cb)
2856 goto err_exit;
2857
1db4909e 2858 if (blk_mq_alloc_ctxs(q))
41de54c6 2859 goto err_poll;
868f2f0b 2860
737f98cf
ML
2861 /* init q->mq_kobj and sw queues' kobjects */
2862 blk_mq_sysfs_init(q);
2863
392546ae
JA
2864 q->nr_queues = nr_hw_queues(set);
2865 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
868f2f0b
KB
2866 GFP_KERNEL, set->numa_node);
2867 if (!q->queue_hw_ctx)
1db4909e 2868 goto err_sys_init;
868f2f0b 2869
2f8f1336
ML
2870 INIT_LIST_HEAD(&q->unused_hctx_list);
2871 spin_lock_init(&q->unused_hctx_lock);
2872
868f2f0b
KB
2873 blk_mq_realloc_hw_ctxs(set, q);
2874 if (!q->nr_hw_queues)
2875 goto err_hctxs;
320ae51f 2876
287922eb 2877 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2878 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f 2879
a8908939 2880 q->tag_set = set;
320ae51f 2881
94eddfbe 2882 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
cd19181b
ML
2883 if (set->nr_maps > HCTX_TYPE_POLL &&
2884 set->map[HCTX_TYPE_POLL].nr_queues)
6544d229 2885 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
320ae51f 2886
1be036e9
CH
2887 q->sg_reserved_size = INT_MAX;
2888
2849450a 2889 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2890 INIT_LIST_HEAD(&q->requeue_list);
2891 spin_lock_init(&q->requeue_lock);
2892
254d259d 2893 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2894
eba71768
JA
2895 /*
2896 * Do this after blk_queue_make_request() overrides it...
2897 */
2898 q->nr_requests = set->queue_depth;
2899
64f1c21e
JA
2900 /*
2901 * Default to classic polling
2902 */
29ece8b4 2903 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
64f1c21e 2904
24d2f903 2905 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2906 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2907 blk_mq_map_swqueue(q);
4593fdbe 2908
737eb78e
DLM
2909 if (elevator_init)
2910 elevator_init_mq(q);
d3484991 2911
320ae51f 2912 return q;
18741986 2913
320ae51f 2914err_hctxs:
868f2f0b 2915 kfree(q->queue_hw_ctx);
73d9c8d4 2916 q->nr_hw_queues = 0;
1db4909e
ML
2917err_sys_init:
2918 blk_mq_sysfs_deinit(q);
41de54c6
JS
2919err_poll:
2920 blk_stat_free_callback(q->poll_cb);
2921 q->poll_cb = NULL;
c7de5726
ML
2922err_exit:
2923 q->mq_ops = NULL;
320ae51f
JA
2924 return ERR_PTR(-ENOMEM);
2925}
b62c21b7 2926EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f 2927
c7e2d94b
ML
2928/* tags can _not_ be used after returning from blk_mq_exit_queue */
2929void blk_mq_exit_queue(struct request_queue *q)
320ae51f 2930{
624dbe47 2931 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2932
0d2602ca 2933 blk_mq_del_queue_tag_set(q);
624dbe47 2934 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2935}
320ae51f 2936
a5164405
JA
2937static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2938{
2939 int i;
2940
cc71a6f4
JA
2941 for (i = 0; i < set->nr_hw_queues; i++)
2942 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2943 goto out_unwind;
a5164405
JA
2944
2945 return 0;
2946
2947out_unwind:
2948 while (--i >= 0)
cc71a6f4 2949 blk_mq_free_rq_map(set->tags[i]);
a5164405 2950
a5164405
JA
2951 return -ENOMEM;
2952}
2953
2954/*
2955 * Allocate the request maps associated with this tag_set. Note that this
2956 * may reduce the depth asked for, if memory is tight. set->queue_depth
2957 * will be updated to reflect the allocated depth.
2958 */
2959static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2960{
2961 unsigned int depth;
2962 int err;
2963
2964 depth = set->queue_depth;
2965 do {
2966 err = __blk_mq_alloc_rq_maps(set);
2967 if (!err)
2968 break;
2969
2970 set->queue_depth >>= 1;
2971 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2972 err = -ENOMEM;
2973 break;
2974 }
2975 } while (set->queue_depth);
2976
2977 if (!set->queue_depth || err) {
2978 pr_err("blk-mq: failed to allocate request map\n");
2979 return -ENOMEM;
2980 }
2981
2982 if (depth != set->queue_depth)
2983 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2984 depth, set->queue_depth);
2985
2986 return 0;
2987}
2988
ebe8bddb
OS
2989static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2990{
59388702 2991 if (set->ops->map_queues && !is_kdump_kernel()) {
b3c661b1
JA
2992 int i;
2993
7d4901a9
ML
2994 /*
2995 * transport .map_queues is usually done in the following
2996 * way:
2997 *
2998 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2999 * mask = get_cpu_mask(queue)
3000 * for_each_cpu(cpu, mask)
b3c661b1 3001 * set->map[x].mq_map[cpu] = queue;
7d4901a9
ML
3002 * }
3003 *
3004 * When we need to remap, the table has to be cleared for
3005 * killing stale mapping since one CPU may not be mapped
3006 * to any hw queue.
3007 */
b3c661b1
JA
3008 for (i = 0; i < set->nr_maps; i++)
3009 blk_mq_clear_mq_map(&set->map[i]);
7d4901a9 3010
ebe8bddb 3011 return set->ops->map_queues(set);
b3c661b1
JA
3012 } else {
3013 BUG_ON(set->nr_maps > 1);
7d76f856 3014 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
b3c661b1 3015 }
ebe8bddb
OS
3016}
3017
a4391c64
JA
3018/*
3019 * Alloc a tag set to be associated with one or more request queues.
3020 * May fail with EINVAL for various error conditions. May adjust the
c018c84f 3021 * requested depth down, if it's too large. In that case, the set
a4391c64
JA
3022 * value will be stored in set->queue_depth.
3023 */
24d2f903
CH
3024int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3025{
b3c661b1 3026 int i, ret;
da695ba2 3027
205fb5f5
BVA
3028 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3029
24d2f903
CH
3030 if (!set->nr_hw_queues)
3031 return -EINVAL;
a4391c64 3032 if (!set->queue_depth)
24d2f903
CH
3033 return -EINVAL;
3034 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3035 return -EINVAL;
3036
7d7e0f90 3037 if (!set->ops->queue_rq)
24d2f903
CH
3038 return -EINVAL;
3039
de148297
ML
3040 if (!set->ops->get_budget ^ !set->ops->put_budget)
3041 return -EINVAL;
3042
a4391c64
JA
3043 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3044 pr_info("blk-mq: reduced tag depth to %u\n",
3045 BLK_MQ_MAX_DEPTH);
3046 set->queue_depth = BLK_MQ_MAX_DEPTH;
3047 }
24d2f903 3048
b3c661b1
JA
3049 if (!set->nr_maps)
3050 set->nr_maps = 1;
3051 else if (set->nr_maps > HCTX_MAX_TYPES)
3052 return -EINVAL;
3053
6637fadf
SL
3054 /*
3055 * If a crashdump is active, then we are potentially in a very
3056 * memory constrained environment. Limit us to 1 queue and
3057 * 64 tags to prevent using too much memory.
3058 */
3059 if (is_kdump_kernel()) {
3060 set->nr_hw_queues = 1;
59388702 3061 set->nr_maps = 1;
6637fadf
SL
3062 set->queue_depth = min(64U, set->queue_depth);
3063 }
868f2f0b 3064 /*
392546ae
JA
3065 * There is no use for more h/w queues than cpus if we just have
3066 * a single map
868f2f0b 3067 */
392546ae 3068 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
868f2f0b 3069 set->nr_hw_queues = nr_cpu_ids;
6637fadf 3070
392546ae 3071 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
24d2f903
CH
3072 GFP_KERNEL, set->numa_node);
3073 if (!set->tags)
a5164405 3074 return -ENOMEM;
24d2f903 3075
da695ba2 3076 ret = -ENOMEM;
b3c661b1
JA
3077 for (i = 0; i < set->nr_maps; i++) {
3078 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
07b35eb5 3079 sizeof(set->map[i].mq_map[0]),
b3c661b1
JA
3080 GFP_KERNEL, set->numa_node);
3081 if (!set->map[i].mq_map)
3082 goto out_free_mq_map;
59388702 3083 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
b3c661b1 3084 }
bdd17e75 3085
ebe8bddb 3086 ret = blk_mq_update_queue_map(set);
da695ba2
CH
3087 if (ret)
3088 goto out_free_mq_map;
3089
3090 ret = blk_mq_alloc_rq_maps(set);
3091 if (ret)
bdd17e75 3092 goto out_free_mq_map;
24d2f903 3093
0d2602ca
JA
3094 mutex_init(&set->tag_list_lock);
3095 INIT_LIST_HEAD(&set->tag_list);
3096
24d2f903 3097 return 0;
bdd17e75
CH
3098
3099out_free_mq_map:
b3c661b1
JA
3100 for (i = 0; i < set->nr_maps; i++) {
3101 kfree(set->map[i].mq_map);
3102 set->map[i].mq_map = NULL;
3103 }
5676e7b6
RE
3104 kfree(set->tags);
3105 set->tags = NULL;
da695ba2 3106 return ret;
24d2f903
CH
3107}
3108EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3109
3110void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3111{
b3c661b1 3112 int i, j;
24d2f903 3113
392546ae 3114 for (i = 0; i < nr_hw_queues(set); i++)
cc71a6f4 3115 blk_mq_free_map_and_requests(set, i);
484b4061 3116
b3c661b1
JA
3117 for (j = 0; j < set->nr_maps; j++) {
3118 kfree(set->map[j].mq_map);
3119 set->map[j].mq_map = NULL;
3120 }
bdd17e75 3121
981bd189 3122 kfree(set->tags);
5676e7b6 3123 set->tags = NULL;
24d2f903
CH
3124}
3125EXPORT_SYMBOL(blk_mq_free_tag_set);
3126
e3a2b3f9
JA
3127int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3128{
3129 struct blk_mq_tag_set *set = q->tag_set;
3130 struct blk_mq_hw_ctx *hctx;
3131 int i, ret;
3132
bd166ef1 3133 if (!set)
e3a2b3f9
JA
3134 return -EINVAL;
3135
e5fa8140
AZ
3136 if (q->nr_requests == nr)
3137 return 0;
3138
70f36b60 3139 blk_mq_freeze_queue(q);
24f5a90f 3140 blk_mq_quiesce_queue(q);
70f36b60 3141
e3a2b3f9
JA
3142 ret = 0;
3143 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
3144 if (!hctx->tags)
3145 continue;
bd166ef1
JA
3146 /*
3147 * If we're using an MQ scheduler, just update the scheduler
3148 * queue depth. This is similar to what the old code would do.
3149 */
70f36b60 3150 if (!hctx->sched_tags) {
c2e82a23 3151 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
3152 false);
3153 } else {
3154 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3155 nr, true);
3156 }
e3a2b3f9
JA
3157 if (ret)
3158 break;
77f1e0a5
JA
3159 if (q->elevator && q->elevator->type->ops.depth_updated)
3160 q->elevator->type->ops.depth_updated(hctx);
e3a2b3f9
JA
3161 }
3162
3163 if (!ret)
3164 q->nr_requests = nr;
3165
24f5a90f 3166 blk_mq_unquiesce_queue(q);
70f36b60 3167 blk_mq_unfreeze_queue(q);
70f36b60 3168
e3a2b3f9
JA
3169 return ret;
3170}
3171
d48ece20
JW
3172/*
3173 * request_queue and elevator_type pair.
3174 * It is just used by __blk_mq_update_nr_hw_queues to cache
3175 * the elevator_type associated with a request_queue.
3176 */
3177struct blk_mq_qe_pair {
3178 struct list_head node;
3179 struct request_queue *q;
3180 struct elevator_type *type;
3181};
3182
3183/*
3184 * Cache the elevator_type in qe pair list and switch the
3185 * io scheduler to 'none'
3186 */
3187static bool blk_mq_elv_switch_none(struct list_head *head,
3188 struct request_queue *q)
3189{
3190 struct blk_mq_qe_pair *qe;
3191
3192 if (!q->elevator)
3193 return true;
3194
3195 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3196 if (!qe)
3197 return false;
3198
3199 INIT_LIST_HEAD(&qe->node);
3200 qe->q = q;
3201 qe->type = q->elevator->type;
3202 list_add(&qe->node, head);
3203
3204 mutex_lock(&q->sysfs_lock);
3205 /*
3206 * After elevator_switch_mq, the previous elevator_queue will be
3207 * released by elevator_release. The reference of the io scheduler
3208 * module get by elevator_get will also be put. So we need to get
3209 * a reference of the io scheduler module here to prevent it to be
3210 * removed.
3211 */
3212 __module_get(qe->type->elevator_owner);
3213 elevator_switch_mq(q, NULL);
3214 mutex_unlock(&q->sysfs_lock);
3215
3216 return true;
3217}
3218
3219static void blk_mq_elv_switch_back(struct list_head *head,
3220 struct request_queue *q)
3221{
3222 struct blk_mq_qe_pair *qe;
3223 struct elevator_type *t = NULL;
3224
3225 list_for_each_entry(qe, head, node)
3226 if (qe->q == q) {
3227 t = qe->type;
3228 break;
3229 }
3230
3231 if (!t)
3232 return;
3233
3234 list_del(&qe->node);
3235 kfree(qe);
3236
3237 mutex_lock(&q->sysfs_lock);
3238 elevator_switch_mq(q, t);
3239 mutex_unlock(&q->sysfs_lock);
3240}
3241
e4dc2b32
KB
3242static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3243 int nr_hw_queues)
868f2f0b
KB
3244{
3245 struct request_queue *q;
d48ece20 3246 LIST_HEAD(head);
e01ad46d 3247 int prev_nr_hw_queues;
868f2f0b 3248
705cda97
BVA
3249 lockdep_assert_held(&set->tag_list_lock);
3250
392546ae 3251 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
868f2f0b
KB
3252 nr_hw_queues = nr_cpu_ids;
3253 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3254 return;
3255
3256 list_for_each_entry(q, &set->tag_list, tag_set_list)
3257 blk_mq_freeze_queue(q);
f5bbbbe4
JW
3258 /*
3259 * Sync with blk_mq_queue_tag_busy_iter.
3260 */
3261 synchronize_rcu();
d48ece20
JW
3262 /*
3263 * Switch IO scheduler to 'none', cleaning up the data associated
3264 * with the previous scheduler. We will switch back once we are done
3265 * updating the new sw to hw queue mappings.
3266 */
3267 list_for_each_entry(q, &set->tag_list, tag_set_list)
3268 if (!blk_mq_elv_switch_none(&head, q))
3269 goto switch_back;
868f2f0b 3270
477e19de
JW
3271 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3272 blk_mq_debugfs_unregister_hctxs(q);
3273 blk_mq_sysfs_unregister(q);
3274 }
3275
e01ad46d 3276 prev_nr_hw_queues = set->nr_hw_queues;
868f2f0b 3277 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 3278 blk_mq_update_queue_map(set);
e01ad46d 3279fallback:
868f2f0b
KB
3280 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3281 blk_mq_realloc_hw_ctxs(set, q);
e01ad46d
JW
3282 if (q->nr_hw_queues != set->nr_hw_queues) {
3283 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3284 nr_hw_queues, prev_nr_hw_queues);
3285 set->nr_hw_queues = prev_nr_hw_queues;
7d76f856 3286 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
e01ad46d
JW
3287 goto fallback;
3288 }
477e19de
JW
3289 blk_mq_map_swqueue(q);
3290 }
3291
3292 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3293 blk_mq_sysfs_register(q);
3294 blk_mq_debugfs_register_hctxs(q);
868f2f0b
KB
3295 }
3296
d48ece20
JW
3297switch_back:
3298 list_for_each_entry(q, &set->tag_list, tag_set_list)
3299 blk_mq_elv_switch_back(&head, q);
3300
868f2f0b
KB
3301 list_for_each_entry(q, &set->tag_list, tag_set_list)
3302 blk_mq_unfreeze_queue(q);
3303}
e4dc2b32
KB
3304
3305void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3306{
3307 mutex_lock(&set->tag_list_lock);
3308 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3309 mutex_unlock(&set->tag_list_lock);
3310}
868f2f0b
KB
3311EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3312
34dbad5d
OS
3313/* Enable polling stats and return whether they were already enabled. */
3314static bool blk_poll_stats_enable(struct request_queue *q)
3315{
3316 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
7dfdbc73 3317 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
34dbad5d
OS
3318 return true;
3319 blk_stat_add_callback(q, q->poll_cb);
3320 return false;
3321}
3322
3323static void blk_mq_poll_stats_start(struct request_queue *q)
3324{
3325 /*
3326 * We don't arm the callback if polling stats are not enabled or the
3327 * callback is already active.
3328 */
3329 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3330 blk_stat_is_active(q->poll_cb))
3331 return;
3332
3333 blk_stat_activate_msecs(q->poll_cb, 100);
3334}
3335
3336static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3337{
3338 struct request_queue *q = cb->data;
720b8ccc 3339 int bucket;
34dbad5d 3340
720b8ccc
SB
3341 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3342 if (cb->stat[bucket].nr_samples)
3343 q->poll_stat[bucket] = cb->stat[bucket];
3344 }
34dbad5d
OS
3345}
3346
64f1c21e
JA
3347static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3348 struct blk_mq_hw_ctx *hctx,
3349 struct request *rq)
3350{
64f1c21e 3351 unsigned long ret = 0;
720b8ccc 3352 int bucket;
64f1c21e
JA
3353
3354 /*
3355 * If stats collection isn't on, don't sleep but turn it on for
3356 * future users
3357 */
34dbad5d 3358 if (!blk_poll_stats_enable(q))
64f1c21e
JA
3359 return 0;
3360
64f1c21e
JA
3361 /*
3362 * As an optimistic guess, use half of the mean service time
3363 * for this type of request. We can (and should) make this smarter.
3364 * For instance, if the completion latencies are tight, we can
3365 * get closer than just half the mean. This is especially
3366 * important on devices where the completion latencies are longer
720b8ccc
SB
3367 * than ~10 usec. We do use the stats for the relevant IO size
3368 * if available which does lead to better estimates.
64f1c21e 3369 */
720b8ccc
SB
3370 bucket = blk_mq_poll_stats_bkt(rq);
3371 if (bucket < 0)
3372 return ret;
3373
3374 if (q->poll_stat[bucket].nr_samples)
3375 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
3376
3377 return ret;
3378}
3379
06426adf 3380static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 3381 struct blk_mq_hw_ctx *hctx,
06426adf
JA
3382 struct request *rq)
3383{
3384 struct hrtimer_sleeper hs;
3385 enum hrtimer_mode mode;
64f1c21e 3386 unsigned int nsecs;
06426adf
JA
3387 ktime_t kt;
3388
76a86f9d 3389 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
64f1c21e
JA
3390 return false;
3391
3392 /*
1052b8ac 3393 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
64f1c21e 3394 *
64f1c21e
JA
3395 * 0: use half of prev avg
3396 * >0: use this specific value
3397 */
1052b8ac 3398 if (q->poll_nsec > 0)
64f1c21e
JA
3399 nsecs = q->poll_nsec;
3400 else
3401 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3402
3403 if (!nsecs)
06426adf
JA
3404 return false;
3405
76a86f9d 3406 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
06426adf
JA
3407
3408 /*
3409 * This will be replaced with the stats tracking code, using
3410 * 'avg_completion_time / 2' as the pre-sleep target.
3411 */
8b0e1953 3412 kt = nsecs;
06426adf
JA
3413
3414 mode = HRTIMER_MODE_REL;
dbc1625f 3415 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
06426adf
JA
3416 hrtimer_set_expires(&hs.timer, kt);
3417
06426adf 3418 do {
5a61c363 3419 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
06426adf
JA
3420 break;
3421 set_current_state(TASK_UNINTERRUPTIBLE);
9dd8813e 3422 hrtimer_sleeper_start_expires(&hs, mode);
06426adf
JA
3423 if (hs.task)
3424 io_schedule();
3425 hrtimer_cancel(&hs.timer);
3426 mode = HRTIMER_MODE_ABS;
3427 } while (hs.task && !signal_pending(current));
3428
3429 __set_current_state(TASK_RUNNING);
3430 destroy_hrtimer_on_stack(&hs.timer);
3431 return true;
3432}
3433
1052b8ac
JA
3434static bool blk_mq_poll_hybrid(struct request_queue *q,
3435 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
bbd7bb70 3436{
1052b8ac
JA
3437 struct request *rq;
3438
29ece8b4 3439 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
1052b8ac
JA
3440 return false;
3441
3442 if (!blk_qc_t_is_internal(cookie))
3443 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3444 else {
3445 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3446 /*
3447 * With scheduling, if the request has completed, we'll
3448 * get a NULL return here, as we clear the sched tag when
3449 * that happens. The request still remains valid, like always,
3450 * so we should be safe with just the NULL check.
3451 */
3452 if (!rq)
3453 return false;
3454 }
3455
3456 return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3457}
3458
529262d5
CH
3459/**
3460 * blk_poll - poll for IO completions
3461 * @q: the queue
3462 * @cookie: cookie passed back at IO submission time
3463 * @spin: whether to spin for completions
3464 *
3465 * Description:
3466 * Poll for completions on the passed in queue. Returns number of
3467 * completed entries found. If @spin is true, then blk_poll will continue
3468 * looping until at least one completion is found, unless the task is
3469 * otherwise marked running (or we need to reschedule).
3470 */
3471int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
1052b8ac
JA
3472{
3473 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
3474 long state;
3475
529262d5
CH
3476 if (!blk_qc_t_valid(cookie) ||
3477 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1052b8ac
JA
3478 return 0;
3479
529262d5
CH
3480 if (current->plug)
3481 blk_flush_plug_list(current->plug, false);
3482
1052b8ac
JA
3483 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3484
06426adf
JA
3485 /*
3486 * If we sleep, have the caller restart the poll loop to reset
3487 * the state. Like for the other success return cases, the
3488 * caller is responsible for checking if the IO completed. If
3489 * the IO isn't complete, we'll get called again and will go
3490 * straight to the busy poll loop.
3491 */
1052b8ac 3492 if (blk_mq_poll_hybrid(q, hctx, cookie))
85f4d4b6 3493 return 1;
06426adf 3494
bbd7bb70
JA
3495 hctx->poll_considered++;
3496
3497 state = current->state;
aa61bec3 3498 do {
bbd7bb70
JA
3499 int ret;
3500
3501 hctx->poll_invoked++;
3502
9743139c 3503 ret = q->mq_ops->poll(hctx);
bbd7bb70
JA
3504 if (ret > 0) {
3505 hctx->poll_success++;
849a3700 3506 __set_current_state(TASK_RUNNING);
85f4d4b6 3507 return ret;
bbd7bb70
JA
3508 }
3509
3510 if (signal_pending_state(state, current))
849a3700 3511 __set_current_state(TASK_RUNNING);
bbd7bb70
JA
3512
3513 if (current->state == TASK_RUNNING)
85f4d4b6 3514 return 1;
0a1b8b87 3515 if (ret < 0 || !spin)
bbd7bb70
JA
3516 break;
3517 cpu_relax();
aa61bec3 3518 } while (!need_resched());
bbd7bb70 3519
67b4110f 3520 __set_current_state(TASK_RUNNING);
85f4d4b6 3521 return 0;
bbd7bb70 3522}
529262d5 3523EXPORT_SYMBOL_GPL(blk_poll);
bbd7bb70 3524
9cf2bab6
JA
3525unsigned int blk_mq_rq_cpu(struct request *rq)
3526{
3527 return rq->mq_ctx->cpu;
3528}
3529EXPORT_SYMBOL(blk_mq_rq_cpu);
3530
320ae51f
JA
3531static int __init blk_mq_init(void)
3532{
9467f859
TG
3533 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3534 blk_mq_hctx_notify_dead);
320ae51f
JA
3535 return 0;
3536}
3537subsys_initcall(blk_mq_init);