iocost: factor out ioc_forgive_debts()
[linux-2.6-block.git] / block / blk-iocost.c
CommitLineData
7caa4715
TH
1/* SPDX-License-Identifier: GPL-2.0
2 *
3 * IO cost model based controller.
4 *
5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
7 * Copyright (C) 2019 Facebook
8 *
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric. This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
12 * approximations.
13 *
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution. While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
21 *
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery. For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size. If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
28 * distribution.
29 *
30 * 1. IO Cost Model
31 *
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO). The cost is measured in
34 * device time. If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
36 *
37 * Currently, there's only one builtin cost model - linear. Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added. While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough. Default
42 * paramters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
45 *
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
48 *
49 * 2. Control Strategy
50 *
51 * The device virtual time (vtime) is used as the primary control metric.
52 * The control strategy is composed of the following three parts.
53 *
54 * 2-1. Vtime Distribution
55 *
56 * When a cgroup becomes active in terms of IOs, its hierarchical share is
57 * calculated. Please consider the following hierarchy where the numbers
58 * inside parentheses denote the configured weights.
59 *
60 * root
61 * / \
62 * A (w:100) B (w:300)
63 * / \
64 * A0 (w:100) A1 (w:100)
65 *
66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B
68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69 * 12.5% each. The distribution mechanism only cares about these flattened
70 * shares. They're called hweights (hierarchical weights) and always add
fe20cdb5 71 * upto 1 (WEIGHT_ONE).
7caa4715
TH
72 *
73 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75 * against the device vtime - an IO which takes 10ms on the underlying
76 * device is considered to take 80ms on A0.
77 *
78 * This constitutes the basis of IO capacity distribution. Each cgroup's
79 * vtime is running at a rate determined by its hweight. A cgroup tracks
80 * the vtime consumed by past IOs and can issue a new IO iff doing so
81 * wouldn't outrun the current device vtime. Otherwise, the IO is
82 * suspended until the vtime has progressed enough to cover it.
83 *
84 * 2-2. Vrate Adjustment
85 *
86 * It's unrealistic to expect the cost model to be perfect. There are too
87 * many devices and even on the same device the overall performance
88 * fluctuates depending on numerous factors such as IO mixture and device
89 * internal garbage collection. The controller needs to adapt dynamically.
90 *
91 * This is achieved by adjusting the overall IO rate according to how busy
92 * the device is. If the device becomes overloaded, we're sending down too
93 * many IOs and should generally slow down. If there are waiting issuers
94 * but the device isn't saturated, we're issuing too few and should
95 * generally speed up.
96 *
97 * To slow down, we lower the vrate - the rate at which the device vtime
98 * passes compared to the wall clock. For example, if the vtime is running
99 * at the vrate of 75%, all cgroups added up would only be able to issue
100 * 750ms worth of IOs per second, and vice-versa for speeding up.
101 *
102 * Device business is determined using two criteria - rq wait and
103 * completion latencies.
104 *
105 * When a device gets saturated, the on-device and then the request queues
106 * fill up and a bio which is ready to be issued has to wait for a request
107 * to become available. When this delay becomes noticeable, it's a clear
108 * indication that the device is saturated and we lower the vrate. This
109 * saturation signal is fairly conservative as it only triggers when both
110 * hardware and software queues are filled up, and is used as the default
111 * busy signal.
112 *
113 * As devices can have deep queues and be unfair in how the queued commands
114 * are executed, soley depending on rq wait may not result in satisfactory
115 * control quality. For a better control quality, completion latency QoS
116 * parameters can be configured so that the device is considered saturated
117 * if N'th percentile completion latency rises above the set point.
118 *
119 * The completion latency requirements are a function of both the
120 * underlying device characteristics and the desired IO latency quality of
121 * service. There is an inherent trade-off - the tighter the latency QoS,
122 * the higher the bandwidth lossage. Latency QoS is disabled by default
123 * and can be set through /sys/fs/cgroup/io.cost.qos.
124 *
125 * 2-3. Work Conservation
126 *
127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO
128 * periodically while B is sending out enough parallel IOs to saturate the
129 * device on its own. Let's say A's usage amounts to 100ms worth of IO
130 * cost per second, i.e., 10% of the device capacity. The naive
131 * distribution of half and half would lead to 60% utilization of the
132 * device, a significant reduction in the total amount of work done
133 * compared to free-for-all competition. This is too high a cost to pay
134 * for IO control.
135 *
136 * To conserve the total amount of work done, we keep track of how much
137 * each active cgroup is actually using and yield part of its weight if
138 * there are other cgroups which can make use of it. In the above case,
139 * A's weight will be lowered so that it hovers above the actual usage and
140 * B would be able to use the rest.
141 *
142 * As we don't want to penalize a cgroup for donating its weight, the
143 * surplus weight adjustment factors in a margin and has an immediate
144 * snapback mechanism in case the cgroup needs more IO vtime for itself.
145 *
146 * Note that adjusting down surplus weights has the same effects as
147 * accelerating vtime for other cgroups and work conservation can also be
148 * implemented by adjusting vrate dynamically. However, squaring who can
149 * donate and should take back how much requires hweight propagations
150 * anyway making it easier to implement and understand as a separate
151 * mechanism.
6954ff18
TH
152 *
153 * 3. Monitoring
154 *
155 * Instead of debugfs or other clumsy monitoring mechanisms, this
156 * controller uses a drgn based monitoring script -
157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see
158 * https://github.com/osandov/drgn. The ouput looks like the following.
159 *
160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
7c1ee704
TH
161 * active weight hweight% inflt% dbt delay usages%
162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033
163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077
6954ff18
TH
164 *
165 * - per : Timer period
166 * - cur_per : Internal wall and device vtime clock
167 * - vrate : Device virtual time rate against wall clock
168 * - weight : Surplus-adjusted and configured weights
169 * - hweight : Surplus-adjusted and configured hierarchical weights
170 * - inflt : The percentage of in-flight IO cost at the end of last period
171 * - del_ms : Deferred issuer delay induction level and duration
172 * - usages : Usage history
7caa4715
TH
173 */
174
175#include <linux/kernel.h>
176#include <linux/module.h>
177#include <linux/timer.h>
178#include <linux/time64.h>
179#include <linux/parser.h>
180#include <linux/sched/signal.h>
181#include <linux/blk-cgroup.h>
5e124f74
TH
182#include <asm/local.h>
183#include <asm/local64.h>
7caa4715
TH
184#include "blk-rq-qos.h"
185#include "blk-stat.h"
186#include "blk-wbt.h"
187
188#ifdef CONFIG_TRACEPOINTS
189
190/* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191#define TRACE_IOCG_PATH_LEN 1024
192static DEFINE_SPINLOCK(trace_iocg_path_lock);
193static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195#define TRACE_IOCG_PATH(type, iocg, ...) \
196 do { \
197 unsigned long flags; \
198 if (trace_iocost_##type##_enabled()) { \
199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \
200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \
201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \
202 trace_iocost_##type(iocg, trace_iocg_path, \
203 ##__VA_ARGS__); \
204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \
205 } \
206 } while (0)
207
208#else /* CONFIG_TRACE_POINTS */
209#define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0)
210#endif /* CONFIG_TRACE_POINTS */
211
212enum {
213 MILLION = 1000000,
214
215 /* timer period is calculated from latency requirements, bound it */
216 MIN_PERIOD = USEC_PER_MSEC,
217 MAX_PERIOD = USEC_PER_SEC,
218
219 /*
f1de2439 220 * iocg->vtime is targeted at 50% behind the device vtime, which
7caa4715
TH
221 * serves as its IO credit buffer. Surplus weight adjustment is
222 * immediately canceled if the vtime margin runs below 10%.
223 */
7ca5b2e6 224 MARGIN_MIN_PCT = 10,
f1de2439
TH
225 MARGIN_LOW_PCT = 20,
226 MARGIN_TARGET_PCT = 50,
7caa4715 227
b0853ab4
TH
228 INUSE_ADJ_STEP_PCT = 25,
229
7ca5b2e6
TH
230 /* Have some play in timer operations */
231 TIMER_SLACK_PCT = 1,
7caa4715 232
7caa4715 233 /* 1/64k is granular enough and can easily be handled w/ u32 */
fe20cdb5 234 WEIGHT_ONE = 1 << 16,
7caa4715
TH
235
236 /*
237 * As vtime is used to calculate the cost of each IO, it needs to
238 * be fairly high precision. For example, it should be able to
239 * represent the cost of a single page worth of discard with
240 * suffificient accuracy. At the same time, it should be able to
241 * represent reasonably long enough durations to be useful and
242 * convenient during operation.
243 *
244 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond
245 * granularity and days of wrap-around time even at extreme vrates.
246 */
247 VTIME_PER_SEC_SHIFT = 37,
248 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT,
249 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC,
cd006509 250 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC,
7caa4715
TH
251
252 /* bound vrate adjustments within two orders of magnitude */
253 VRATE_MIN_PPM = 10000, /* 1% */
254 VRATE_MAX_PPM = 100000000, /* 10000% */
255
256 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
257 VRATE_CLAMP_ADJ_PCT = 4,
258
259 /* if IOs end up waiting for requests, issue less */
260 RQ_WAIT_BUSY_PCT = 5,
261
262 /* unbusy hysterisis */
263 UNBUSY_THR_PCT = 75,
264
5160a5a5
TH
265 /*
266 * The effect of delay is indirect and non-linear and a huge amount of
267 * future debt can accumulate abruptly while unthrottled. Linearly scale
268 * up delay as debt is going up and then let it decay exponentially.
269 * This gives us quick ramp ups while delay is accumulating and long
270 * tails which can help reducing the frequency of debt explosions on
271 * unthrottle. The parameters are experimentally determined.
272 *
273 * The delay mechanism provides adequate protection and behavior in many
274 * cases. However, this is far from ideal and falls shorts on both
275 * fronts. The debtors are often throttled too harshly costing a
276 * significant level of fairness and possibly total work while the
277 * protection against their impacts on the system can be choppy and
278 * unreliable.
279 *
280 * The shortcoming primarily stems from the fact that, unlike for page
281 * cache, the kernel doesn't have well-defined back-pressure propagation
282 * mechanism and policies for anonymous memory. Fully addressing this
283 * issue will likely require substantial improvements in the area.
284 */
285 MIN_DELAY_THR_PCT = 500,
286 MAX_DELAY_THR_PCT = 25000,
287 MIN_DELAY = 250,
288 MAX_DELAY = 250 * USEC_PER_MSEC,
289
dda1315f
TH
290 /*
291 * Halve debts if total usage keeps staying under 25% w/o any shortages
292 * for over 100ms.
293 */
294 DEBT_BUSY_USAGE_PCT = 25,
295 DEBT_REDUCTION_IDLE_DUR = 100 * USEC_PER_MSEC,
296
7caa4715
TH
297 /* don't let cmds which take a very long time pin lagging for too long */
298 MAX_LAGGING_PERIODS = 10,
299
7caa4715
TH
300 /* switch iff the conditions are met for longer than this */
301 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC,
302
303 /*
304 * Count IO size in 4k pages. The 12bit shift helps keeping
305 * size-proportional components of cost calculation in closer
306 * numbers of digits to per-IO cost components.
307 */
308 IOC_PAGE_SHIFT = 12,
309 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT,
310 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT,
311
312 /* if apart further than 16M, consider randio for linear model */
313 LCOEF_RANDIO_PAGES = 4096,
314};
315
316enum ioc_running {
317 IOC_IDLE,
318 IOC_RUNNING,
319 IOC_STOP,
320};
321
322/* io.cost.qos controls including per-dev enable of the whole controller */
323enum {
324 QOS_ENABLE,
325 QOS_CTRL,
326 NR_QOS_CTRL_PARAMS,
327};
328
329/* io.cost.qos params */
330enum {
331 QOS_RPPM,
332 QOS_RLAT,
333 QOS_WPPM,
334 QOS_WLAT,
335 QOS_MIN,
336 QOS_MAX,
337 NR_QOS_PARAMS,
338};
339
340/* io.cost.model controls */
341enum {
342 COST_CTRL,
343 COST_MODEL,
344 NR_COST_CTRL_PARAMS,
345};
346
347/* builtin linear cost model coefficients */
348enum {
349 I_LCOEF_RBPS,
350 I_LCOEF_RSEQIOPS,
351 I_LCOEF_RRANDIOPS,
352 I_LCOEF_WBPS,
353 I_LCOEF_WSEQIOPS,
354 I_LCOEF_WRANDIOPS,
355 NR_I_LCOEFS,
356};
357
358enum {
359 LCOEF_RPAGE,
360 LCOEF_RSEQIO,
361 LCOEF_RRANDIO,
362 LCOEF_WPAGE,
363 LCOEF_WSEQIO,
364 LCOEF_WRANDIO,
365 NR_LCOEFS,
366};
367
368enum {
369 AUTOP_INVALID,
370 AUTOP_HDD,
371 AUTOP_SSD_QD1,
372 AUTOP_SSD_DFL,
373 AUTOP_SSD_FAST,
374};
375
376struct ioc_gq;
377
378struct ioc_params {
379 u32 qos[NR_QOS_PARAMS];
380 u64 i_lcoefs[NR_I_LCOEFS];
381 u64 lcoefs[NR_LCOEFS];
382 u32 too_fast_vrate_pct;
383 u32 too_slow_vrate_pct;
384};
385
7ca5b2e6
TH
386struct ioc_margins {
387 s64 min;
f1de2439
TH
388 s64 low;
389 s64 target;
7ca5b2e6
TH
390};
391
7caa4715 392struct ioc_missed {
5e124f74
TH
393 local_t nr_met;
394 local_t nr_missed;
7caa4715
TH
395 u32 last_met;
396 u32 last_missed;
397};
398
399struct ioc_pcpu_stat {
400 struct ioc_missed missed[2];
401
5e124f74 402 local64_t rq_wait_ns;
7caa4715
TH
403 u64 last_rq_wait_ns;
404};
405
406/* per device */
407struct ioc {
408 struct rq_qos rqos;
409
410 bool enabled;
411
412 struct ioc_params params;
7ca5b2e6 413 struct ioc_margins margins;
7caa4715 414 u32 period_us;
7ca5b2e6 415 u32 timer_slack_ns;
7caa4715
TH
416 u64 vrate_min;
417 u64 vrate_max;
418
419 spinlock_t lock;
420 struct timer_list timer;
421 struct list_head active_iocgs; /* active cgroups */
422 struct ioc_pcpu_stat __percpu *pcpu_stat;
423
424 enum ioc_running running;
425 atomic64_t vtime_rate;
ac33e91e
TH
426 u64 vtime_base_rate;
427 s64 vtime_err;
7caa4715 428
67b7b641 429 seqcount_spinlock_t period_seqcount;
ce95570a 430 u64 period_at; /* wallclock starttime */
7caa4715
TH
431 u64 period_at_vtime; /* vtime starttime */
432
433 atomic64_t cur_period; /* inc'd each period */
434 int busy_level; /* saturation history */
435
7caa4715
TH
436 bool weights_updated;
437 atomic_t hweight_gen; /* for lazy hweights */
438
dda1315f
TH
439 /* the last time debt cancel condition wasn't met */
440 u64 debt_busy_at;
441
7caa4715
TH
442 u64 autop_too_fast_at;
443 u64 autop_too_slow_at;
444 int autop_idx;
445 bool user_qos_params:1;
446 bool user_cost_model:1;
447};
448
97eb1975
TH
449struct iocg_pcpu_stat {
450 local64_t abs_vusage;
451};
452
453struct iocg_stat {
454 u64 usage_us;
f0bf84a5
TH
455 u64 wait_us;
456 u64 indebt_us;
457 u64 indelay_us;
97eb1975
TH
458};
459
7caa4715
TH
460/* per device-cgroup pair */
461struct ioc_gq {
462 struct blkg_policy_data pd;
463 struct ioc *ioc;
464
465 /*
466 * A iocg can get its weight from two sources - an explicit
467 * per-device-cgroup configuration or the default weight of the
468 * cgroup. `cfg_weight` is the explicit per-device-cgroup
469 * configuration. `weight` is the effective considering both
470 * sources.
471 *
472 * When an idle cgroup becomes active its `active` goes from 0 to
473 * `weight`. `inuse` is the surplus adjusted active weight.
474 * `active` and `inuse` are used to calculate `hweight_active` and
475 * `hweight_inuse`.
476 *
477 * `last_inuse` remembers `inuse` while an iocg is idle to persist
478 * surplus adjustments.
b0853ab4
TH
479 *
480 * `inuse` may be adjusted dynamically during period. `saved_*` are used
481 * to determine and track adjustments.
7caa4715
TH
482 */
483 u32 cfg_weight;
484 u32 weight;
485 u32 active;
486 u32 inuse;
b0853ab4 487
7caa4715 488 u32 last_inuse;
b0853ab4 489 s64 saved_margin;
7caa4715
TH
490
491 sector_t cursor; /* to detect randio */
492
493 /*
494 * `vtime` is this iocg's vtime cursor which progresses as IOs are
495 * issued. If lagging behind device vtime, the delta represents
496 * the currently available IO budget. If runnning ahead, the
497 * overage.
498 *
499 * `vtime_done` is the same but progressed on completion rather
500 * than issue. The delta behind `vtime` represents the cost of
501 * currently in-flight IOs.
7caa4715
TH
502 */
503 atomic64_t vtime;
504 atomic64_t done_vtime;
0b80f986 505 u64 abs_vdebt;
7caa4715 506
5160a5a5
TH
507 /* current delay in effect and when it started */
508 u64 delay;
509 u64 delay_at;
510
7caa4715
TH
511 /*
512 * The period this iocg was last active in. Used for deactivation
513 * and invalidating `vtime`.
514 */
515 atomic64_t active_period;
516 struct list_head active_list;
517
00410f1b 518 /* see __propagate_weights() and current_hweight() for details */
7caa4715
TH
519 u64 child_active_sum;
520 u64 child_inuse_sum;
e08d02aa 521 u64 child_adjusted_sum;
7caa4715
TH
522 int hweight_gen;
523 u32 hweight_active;
524 u32 hweight_inuse;
e08d02aa 525 u32 hweight_donating;
93f7d2db 526 u32 hweight_after_donation;
7caa4715 527
97eb1975 528 struct list_head walk_list;
8692d2db 529 struct list_head surplus_list;
97eb1975 530
7caa4715
TH
531 struct wait_queue_head waitq;
532 struct hrtimer waitq_timer;
7caa4715 533
1aa50d02
TH
534 /* timestamp at the latest activation */
535 u64 activated_at;
536
97eb1975
TH
537 /* statistics */
538 struct iocg_pcpu_stat __percpu *pcpu_stat;
539 struct iocg_stat local_stat;
540 struct iocg_stat desc_stat;
541 struct iocg_stat last_stat;
542 u64 last_stat_abs_vusage;
f1de2439 543 u64 usage_delta_us;
f0bf84a5
TH
544 u64 wait_since;
545 u64 indebt_since;
546 u64 indelay_since;
7caa4715
TH
547
548 /* this iocg's depth in the hierarchy and ancestors including self */
549 int level;
550 struct ioc_gq *ancestors[];
551};
552
553/* per cgroup */
554struct ioc_cgrp {
555 struct blkcg_policy_data cpd;
556 unsigned int dfl_weight;
557};
558
559struct ioc_now {
560 u64 now_ns;
ce95570a 561 u64 now;
7caa4715
TH
562 u64 vnow;
563 u64 vrate;
564};
565
566struct iocg_wait {
567 struct wait_queue_entry wait;
568 struct bio *bio;
569 u64 abs_cost;
570 bool committed;
571};
572
573struct iocg_wake_ctx {
574 struct ioc_gq *iocg;
575 u32 hw_inuse;
576 s64 vbudget;
577};
578
579static const struct ioc_params autop[] = {
580 [AUTOP_HDD] = {
581 .qos = {
7afcccaf
TH
582 [QOS_RLAT] = 250000, /* 250ms */
583 [QOS_WLAT] = 250000,
7caa4715
TH
584 [QOS_MIN] = VRATE_MIN_PPM,
585 [QOS_MAX] = VRATE_MAX_PPM,
586 },
587 .i_lcoefs = {
588 [I_LCOEF_RBPS] = 174019176,
589 [I_LCOEF_RSEQIOPS] = 41708,
590 [I_LCOEF_RRANDIOPS] = 370,
591 [I_LCOEF_WBPS] = 178075866,
592 [I_LCOEF_WSEQIOPS] = 42705,
593 [I_LCOEF_WRANDIOPS] = 378,
594 },
595 },
596 [AUTOP_SSD_QD1] = {
597 .qos = {
598 [QOS_RLAT] = 25000, /* 25ms */
599 [QOS_WLAT] = 25000,
600 [QOS_MIN] = VRATE_MIN_PPM,
601 [QOS_MAX] = VRATE_MAX_PPM,
602 },
603 .i_lcoefs = {
604 [I_LCOEF_RBPS] = 245855193,
605 [I_LCOEF_RSEQIOPS] = 61575,
606 [I_LCOEF_RRANDIOPS] = 6946,
607 [I_LCOEF_WBPS] = 141365009,
608 [I_LCOEF_WSEQIOPS] = 33716,
609 [I_LCOEF_WRANDIOPS] = 26796,
610 },
611 },
612 [AUTOP_SSD_DFL] = {
613 .qos = {
614 [QOS_RLAT] = 25000, /* 25ms */
615 [QOS_WLAT] = 25000,
616 [QOS_MIN] = VRATE_MIN_PPM,
617 [QOS_MAX] = VRATE_MAX_PPM,
618 },
619 .i_lcoefs = {
620 [I_LCOEF_RBPS] = 488636629,
621 [I_LCOEF_RSEQIOPS] = 8932,
622 [I_LCOEF_RRANDIOPS] = 8518,
623 [I_LCOEF_WBPS] = 427891549,
624 [I_LCOEF_WSEQIOPS] = 28755,
625 [I_LCOEF_WRANDIOPS] = 21940,
626 },
627 .too_fast_vrate_pct = 500,
628 },
629 [AUTOP_SSD_FAST] = {
630 .qos = {
631 [QOS_RLAT] = 5000, /* 5ms */
632 [QOS_WLAT] = 5000,
633 [QOS_MIN] = VRATE_MIN_PPM,
634 [QOS_MAX] = VRATE_MAX_PPM,
635 },
636 .i_lcoefs = {
637 [I_LCOEF_RBPS] = 3102524156LLU,
638 [I_LCOEF_RSEQIOPS] = 724816,
639 [I_LCOEF_RRANDIOPS] = 778122,
640 [I_LCOEF_WBPS] = 1742780862LLU,
641 [I_LCOEF_WSEQIOPS] = 425702,
642 [I_LCOEF_WRANDIOPS] = 443193,
643 },
644 .too_slow_vrate_pct = 10,
645 },
646};
647
648/*
649 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on
650 * vtime credit shortage and down on device saturation.
651 */
652static u32 vrate_adj_pct[] =
653 { 0, 0, 0, 0,
654 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
655 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
656 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
657
658static struct blkcg_policy blkcg_policy_iocost;
659
660/* accessors and helpers */
661static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
662{
663 return container_of(rqos, struct ioc, rqos);
664}
665
666static struct ioc *q_to_ioc(struct request_queue *q)
667{
668 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
669}
670
671static const char *q_name(struct request_queue *q)
672{
673 if (test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
674 return kobject_name(q->kobj.parent);
675 else
676 return "<unknown>";
677}
678
679static const char __maybe_unused *ioc_name(struct ioc *ioc)
680{
681 return q_name(ioc->rqos.q);
682}
683
684static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
685{
686 return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
687}
688
689static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
690{
691 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
692}
693
694static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
695{
696 return pd_to_blkg(&iocg->pd);
697}
698
699static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
700{
701 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
702 struct ioc_cgrp, cpd);
703}
704
705/*
706 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical
36a52481 707 * weight, the more expensive each IO. Must round up.
7caa4715
TH
708 */
709static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
710{
fe20cdb5 711 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
7caa4715
TH
712}
713
36a52481
TH
714/*
715 * The inverse of abs_cost_to_cost(). Must round up.
716 */
717static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
718{
fe20cdb5 719 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
36a52481
TH
720}
721
97eb1975
TH
722static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
723 u64 abs_cost, u64 cost)
7caa4715 724{
97eb1975
TH
725 struct iocg_pcpu_stat *gcs;
726
7caa4715
TH
727 bio->bi_iocost_cost = cost;
728 atomic64_add(cost, &iocg->vtime);
97eb1975
TH
729
730 gcs = get_cpu_ptr(iocg->pcpu_stat);
731 local64_add(abs_cost, &gcs->abs_vusage);
732 put_cpu_ptr(gcs);
7caa4715
TH
733}
734
da437b95
TH
735static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
736{
737 if (lock_ioc) {
738 spin_lock_irqsave(&iocg->ioc->lock, *flags);
739 spin_lock(&iocg->waitq.lock);
740 } else {
741 spin_lock_irqsave(&iocg->waitq.lock, *flags);
742 }
743}
744
745static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
746{
747 if (unlock_ioc) {
748 spin_unlock(&iocg->waitq.lock);
749 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
750 } else {
751 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
752 }
753}
754
7caa4715
TH
755#define CREATE_TRACE_POINTS
756#include <trace/events/iocost.h>
757
7ca5b2e6
TH
758static void ioc_refresh_margins(struct ioc *ioc)
759{
760 struct ioc_margins *margins = &ioc->margins;
761 u32 period_us = ioc->period_us;
ac33e91e 762 u64 vrate = ioc->vtime_base_rate;
7ca5b2e6
TH
763
764 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
f1de2439
TH
765 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
766 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
7ca5b2e6
TH
767}
768
7caa4715
TH
769/* latency Qos params changed, update period_us and all the dependent params */
770static void ioc_refresh_period_us(struct ioc *ioc)
771{
772 u32 ppm, lat, multi, period_us;
773
774 lockdep_assert_held(&ioc->lock);
775
776 /* pick the higher latency target */
777 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
778 ppm = ioc->params.qos[QOS_RPPM];
779 lat = ioc->params.qos[QOS_RLAT];
780 } else {
781 ppm = ioc->params.qos[QOS_WPPM];
782 lat = ioc->params.qos[QOS_WLAT];
783 }
784
785 /*
786 * We want the period to be long enough to contain a healthy number
787 * of IOs while short enough for granular control. Define it as a
788 * multiple of the latency target. Ideally, the multiplier should
789 * be scaled according to the percentile so that it would nominally
790 * contain a certain number of requests. Let's be simpler and
791 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
792 */
793 if (ppm)
794 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
795 else
796 multi = 2;
797 period_us = multi * lat;
798 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
799
800 /* calculate dependent params */
801 ioc->period_us = period_us;
7ca5b2e6
TH
802 ioc->timer_slack_ns = div64_u64(
803 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
804 100);
805 ioc_refresh_margins(ioc);
7caa4715
TH
806}
807
808static int ioc_autop_idx(struct ioc *ioc)
809{
810 int idx = ioc->autop_idx;
811 const struct ioc_params *p = &autop[idx];
812 u32 vrate_pct;
813 u64 now_ns;
814
815 /* rotational? */
816 if (!blk_queue_nonrot(ioc->rqos.q))
817 return AUTOP_HDD;
818
819 /* handle SATA SSDs w/ broken NCQ */
820 if (blk_queue_depth(ioc->rqos.q) == 1)
821 return AUTOP_SSD_QD1;
822
823 /* use one of the normal ssd sets */
824 if (idx < AUTOP_SSD_DFL)
825 return AUTOP_SSD_DFL;
826
827 /* if user is overriding anything, maintain what was there */
828 if (ioc->user_qos_params || ioc->user_cost_model)
829 return idx;
830
831 /* step up/down based on the vrate */
ac33e91e 832 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
7caa4715
TH
833 now_ns = ktime_get_ns();
834
835 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
836 if (!ioc->autop_too_fast_at)
837 ioc->autop_too_fast_at = now_ns;
838 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
839 return idx + 1;
840 } else {
841 ioc->autop_too_fast_at = 0;
842 }
843
844 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
845 if (!ioc->autop_too_slow_at)
846 ioc->autop_too_slow_at = now_ns;
847 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
848 return idx - 1;
849 } else {
850 ioc->autop_too_slow_at = 0;
851 }
852
853 return idx;
854}
855
856/*
857 * Take the followings as input
858 *
859 * @bps maximum sequential throughput
860 * @seqiops maximum sequential 4k iops
861 * @randiops maximum random 4k iops
862 *
863 * and calculate the linear model cost coefficients.
864 *
865 * *@page per-page cost 1s / (@bps / 4096)
866 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0)
867 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0)
868 */
869static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
870 u64 *page, u64 *seqio, u64 *randio)
871{
872 u64 v;
873
874 *page = *seqio = *randio = 0;
875
876 if (bps)
877 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
878 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
879
880 if (seqiops) {
881 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
882 if (v > *page)
883 *seqio = v - *page;
884 }
885
886 if (randiops) {
887 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
888 if (v > *page)
889 *randio = v - *page;
890 }
891}
892
893static void ioc_refresh_lcoefs(struct ioc *ioc)
894{
895 u64 *u = ioc->params.i_lcoefs;
896 u64 *c = ioc->params.lcoefs;
897
898 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
899 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
900 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
901 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
902}
903
904static bool ioc_refresh_params(struct ioc *ioc, bool force)
905{
906 const struct ioc_params *p;
907 int idx;
908
909 lockdep_assert_held(&ioc->lock);
910
911 idx = ioc_autop_idx(ioc);
912 p = &autop[idx];
913
914 if (idx == ioc->autop_idx && !force)
915 return false;
916
917 if (idx != ioc->autop_idx)
918 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
919
920 ioc->autop_idx = idx;
921 ioc->autop_too_fast_at = 0;
922 ioc->autop_too_slow_at = 0;
923
924 if (!ioc->user_qos_params)
925 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
926 if (!ioc->user_cost_model)
927 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
928
929 ioc_refresh_period_us(ioc);
930 ioc_refresh_lcoefs(ioc);
931
932 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
933 VTIME_PER_USEC, MILLION);
934 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
935 VTIME_PER_USEC, MILLION);
936
937 return true;
938}
939
ac33e91e
TH
940/*
941 * When an iocg accumulates too much vtime or gets deactivated, we throw away
942 * some vtime, which lowers the overall device utilization. As the exact amount
943 * which is being thrown away is known, we can compensate by accelerating the
944 * vrate accordingly so that the extra vtime generated in the current period
945 * matches what got lost.
946 */
947static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
948{
949 s64 pleft = ioc->period_at + ioc->period_us - now->now;
950 s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
951 s64 vcomp, vcomp_min, vcomp_max;
952
953 lockdep_assert_held(&ioc->lock);
954
955 /* we need some time left in this period */
956 if (pleft <= 0)
957 goto done;
958
959 /*
960 * Calculate how much vrate should be adjusted to offset the error.
961 * Limit the amount of adjustment and deduct the adjusted amount from
962 * the error.
963 */
964 vcomp = -div64_s64(ioc->vtime_err, pleft);
965 vcomp_min = -(ioc->vtime_base_rate >> 1);
966 vcomp_max = ioc->vtime_base_rate;
967 vcomp = clamp(vcomp, vcomp_min, vcomp_max);
968
969 ioc->vtime_err += vcomp * pleft;
970
971 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
972done:
973 /* bound how much error can accumulate */
974 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
975}
976
7caa4715
TH
977/* take a snapshot of the current [v]time and vrate */
978static void ioc_now(struct ioc *ioc, struct ioc_now *now)
979{
980 unsigned seq;
981
982 now->now_ns = ktime_get();
983 now->now = ktime_to_us(now->now_ns);
984 now->vrate = atomic64_read(&ioc->vtime_rate);
985
986 /*
987 * The current vtime is
988 *
989 * vtime at period start + (wallclock time since the start) * vrate
990 *
991 * As a consistent snapshot of `period_at_vtime` and `period_at` is
992 * needed, they're seqcount protected.
993 */
994 do {
995 seq = read_seqcount_begin(&ioc->period_seqcount);
996 now->vnow = ioc->period_at_vtime +
997 (now->now - ioc->period_at) * now->vrate;
998 } while (read_seqcount_retry(&ioc->period_seqcount, seq));
999}
1000
1001static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1002{
7caa4715
TH
1003 WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1004
1005 write_seqcount_begin(&ioc->period_seqcount);
1006 ioc->period_at = now->now;
1007 ioc->period_at_vtime = now->vnow;
1008 write_seqcount_end(&ioc->period_seqcount);
1009
1010 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1011 add_timer(&ioc->timer);
1012}
1013
1014/*
1015 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
b0853ab4
TH
1016 * weight sums and propagate upwards accordingly. If @save, the current margin
1017 * is saved to be used as reference for later inuse in-period adjustments.
7caa4715 1018 */
b0853ab4
TH
1019static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1020 bool save, struct ioc_now *now)
7caa4715
TH
1021{
1022 struct ioc *ioc = iocg->ioc;
1023 int lvl;
1024
1025 lockdep_assert_held(&ioc->lock);
1026
db84a72a
TH
1027 inuse = clamp_t(u32, inuse, 1, active);
1028
b0853ab4
TH
1029 iocg->last_inuse = iocg->inuse;
1030 if (save)
1031 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1032
db84a72a
TH
1033 if (active == iocg->active && inuse == iocg->inuse)
1034 return;
7caa4715
TH
1035
1036 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1037 struct ioc_gq *parent = iocg->ancestors[lvl];
1038 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1039 u32 parent_active = 0, parent_inuse = 0;
1040
1041 /* update the level sums */
1042 parent->child_active_sum += (s32)(active - child->active);
1043 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1044 /* apply the udpates */
1045 child->active = active;
1046 child->inuse = inuse;
1047
1048 /*
1049 * The delta between inuse and active sums indicates that
1050 * that much of weight is being given away. Parent's inuse
1051 * and active should reflect the ratio.
1052 */
1053 if (parent->child_active_sum) {
1054 parent_active = parent->weight;
1055 parent_inuse = DIV64_U64_ROUND_UP(
1056 parent_active * parent->child_inuse_sum,
1057 parent->child_active_sum);
1058 }
1059
1060 /* do we need to keep walking up? */
1061 if (parent_active == parent->active &&
1062 parent_inuse == parent->inuse)
1063 break;
1064
1065 active = parent_active;
1066 inuse = parent_inuse;
1067 }
1068
1069 ioc->weights_updated = true;
1070}
1071
00410f1b 1072static void commit_weights(struct ioc *ioc)
7caa4715
TH
1073{
1074 lockdep_assert_held(&ioc->lock);
1075
1076 if (ioc->weights_updated) {
1077 /* paired with rmb in current_hweight(), see there */
1078 smp_wmb();
1079 atomic_inc(&ioc->hweight_gen);
1080 ioc->weights_updated = false;
1081 }
1082}
1083
b0853ab4
TH
1084static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1085 bool save, struct ioc_now *now)
7caa4715 1086{
b0853ab4 1087 __propagate_weights(iocg, active, inuse, save, now);
00410f1b 1088 commit_weights(iocg->ioc);
7caa4715
TH
1089}
1090
1091static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1092{
1093 struct ioc *ioc = iocg->ioc;
1094 int lvl;
1095 u32 hwa, hwi;
1096 int ioc_gen;
1097
1098 /* hot path - if uptodate, use cached */
1099 ioc_gen = atomic_read(&ioc->hweight_gen);
1100 if (ioc_gen == iocg->hweight_gen)
1101 goto out;
1102
1103 /*
00410f1b
TH
1104 * Paired with wmb in commit_weights(). If we saw the updated
1105 * hweight_gen, all the weight updates from __propagate_weights() are
1106 * visible too.
7caa4715
TH
1107 *
1108 * We can race with weight updates during calculation and get it
1109 * wrong. However, hweight_gen would have changed and a future
1110 * reader will recalculate and we're guaranteed to discard the
1111 * wrong result soon.
1112 */
1113 smp_rmb();
1114
fe20cdb5 1115 hwa = hwi = WEIGHT_ONE;
7caa4715
TH
1116 for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1117 struct ioc_gq *parent = iocg->ancestors[lvl];
1118 struct ioc_gq *child = iocg->ancestors[lvl + 1];
bd0adb91
TH
1119 u64 active_sum = READ_ONCE(parent->child_active_sum);
1120 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
7caa4715
TH
1121 u32 active = READ_ONCE(child->active);
1122 u32 inuse = READ_ONCE(child->inuse);
1123
1124 /* we can race with deactivations and either may read as zero */
1125 if (!active_sum || !inuse_sum)
1126 continue;
1127
bd0adb91
TH
1128 active_sum = max_t(u64, active, active_sum);
1129 hwa = div64_u64((u64)hwa * active, active_sum);
7caa4715 1130
bd0adb91
TH
1131 inuse_sum = max_t(u64, inuse, inuse_sum);
1132 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
7caa4715
TH
1133 }
1134
1135 iocg->hweight_active = max_t(u32, hwa, 1);
1136 iocg->hweight_inuse = max_t(u32, hwi, 1);
1137 iocg->hweight_gen = ioc_gen;
1138out:
1139 if (hw_activep)
1140 *hw_activep = iocg->hweight_active;
1141 if (hw_inusep)
1142 *hw_inusep = iocg->hweight_inuse;
1143}
1144
93f7d2db
TH
1145/*
1146 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1147 * other weights stay unchanged.
1148 */
1149static u32 current_hweight_max(struct ioc_gq *iocg)
1150{
1151 u32 hwm = WEIGHT_ONE;
1152 u32 inuse = iocg->active;
1153 u64 child_inuse_sum;
1154 int lvl;
1155
1156 lockdep_assert_held(&iocg->ioc->lock);
1157
1158 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1159 struct ioc_gq *parent = iocg->ancestors[lvl];
1160 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1161
1162 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1163 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1164 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1165 parent->child_active_sum);
1166 }
1167
1168 return max_t(u32, hwm, 1);
1169}
1170
b0853ab4 1171static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
7caa4715
TH
1172{
1173 struct ioc *ioc = iocg->ioc;
1174 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1175 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1176 u32 weight;
1177
1178 lockdep_assert_held(&ioc->lock);
1179
1180 weight = iocg->cfg_weight ?: iocc->dfl_weight;
1181 if (weight != iocg->weight && iocg->active)
b0853ab4 1182 propagate_weights(iocg, weight, iocg->inuse, true, now);
7caa4715
TH
1183 iocg->weight = weight;
1184}
1185
1186static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1187{
1188 struct ioc *ioc = iocg->ioc;
ac33e91e
TH
1189 u64 last_period, cur_period;
1190 u64 vtime, vtarget;
7caa4715
TH
1191 int i;
1192
1193 /*
1194 * If seem to be already active, just update the stamp to tell the
1195 * timer that we're still active. We don't mind occassional races.
1196 */
1197 if (!list_empty(&iocg->active_list)) {
1198 ioc_now(ioc, now);
1199 cur_period = atomic64_read(&ioc->cur_period);
1200 if (atomic64_read(&iocg->active_period) != cur_period)
1201 atomic64_set(&iocg->active_period, cur_period);
1202 return true;
1203 }
1204
1205 /* racy check on internal node IOs, treat as root level IOs */
1206 if (iocg->child_active_sum)
1207 return false;
1208
1209 spin_lock_irq(&ioc->lock);
1210
1211 ioc_now(ioc, now);
1212
1213 /* update period */
1214 cur_period = atomic64_read(&ioc->cur_period);
1215 last_period = atomic64_read(&iocg->active_period);
1216 atomic64_set(&iocg->active_period, cur_period);
1217
1218 /* already activated or breaking leaf-only constraint? */
8b37bc27
JX
1219 if (!list_empty(&iocg->active_list))
1220 goto succeed_unlock;
1221 for (i = iocg->level - 1; i > 0; i--)
1222 if (!list_empty(&iocg->ancestors[i]->active_list))
7caa4715 1223 goto fail_unlock;
8b37bc27 1224
7caa4715
TH
1225 if (iocg->child_active_sum)
1226 goto fail_unlock;
1227
1228 /*
ac33e91e
TH
1229 * Always start with the target budget. On deactivation, we throw away
1230 * anything above it.
7caa4715 1231 */
ac33e91e 1232 vtarget = now->vnow - ioc->margins.target;
7caa4715 1233 vtime = atomic64_read(&iocg->vtime);
7caa4715 1234
ac33e91e
TH
1235 atomic64_add(vtarget - vtime, &iocg->vtime);
1236 atomic64_add(vtarget - vtime, &iocg->done_vtime);
1237 vtime = vtarget;
7caa4715
TH
1238
1239 /*
1240 * Activate, propagate weight and start period timer if not
1241 * running. Reset hweight_gen to avoid accidental match from
1242 * wrapping.
1243 */
1244 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1245 list_add(&iocg->active_list, &ioc->active_iocgs);
b0853ab4 1246
00410f1b 1247 propagate_weights(iocg, iocg->weight,
b0853ab4 1248 iocg->last_inuse ?: iocg->weight, true, now);
7caa4715
TH
1249
1250 TRACE_IOCG_PATH(iocg_activate, iocg, now,
1251 last_period, cur_period, vtime);
1252
1aa50d02 1253 iocg->activated_at = now->now;
7caa4715
TH
1254
1255 if (ioc->running == IOC_IDLE) {
1256 ioc->running = IOC_RUNNING;
dda1315f 1257 ioc->debt_busy_at = now->now;
7caa4715
TH
1258 ioc_start_period(ioc, now);
1259 }
1260
8b37bc27 1261succeed_unlock:
7caa4715
TH
1262 spin_unlock_irq(&ioc->lock);
1263 return true;
1264
1265fail_unlock:
1266 spin_unlock_irq(&ioc->lock);
1267 return false;
1268}
1269
6ef20f78
TH
1270static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1271{
1272 struct ioc *ioc = iocg->ioc;
1273 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
5160a5a5
TH
1274 u64 tdelta, delay, new_delay;
1275 s64 vover, vover_pct;
c421a3eb 1276 u32 hwa;
6ef20f78
TH
1277
1278 lockdep_assert_held(&iocg->waitq.lock);
1279
5160a5a5
TH
1280 /* calculate the current delay in effect - 1/2 every second */
1281 tdelta = now->now - iocg->delay_at;
1282 if (iocg->delay)
1283 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1284 else
1285 delay = 0;
1286
1287 /* calculate the new delay from the debt amount */
c421a3eb 1288 current_hweight(iocg, &hwa, NULL);
5160a5a5
TH
1289 vover = atomic64_read(&iocg->vtime) +
1290 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
ac33e91e
TH
1291 vover_pct = div64_s64(100 * vover,
1292 ioc->period_us * ioc->vtime_base_rate);
5160a5a5
TH
1293
1294 if (vover_pct <= MIN_DELAY_THR_PCT)
1295 new_delay = 0;
1296 else if (vover_pct >= MAX_DELAY_THR_PCT)
1297 new_delay = MAX_DELAY;
1298 else
1299 new_delay = MIN_DELAY +
1300 div_u64((MAX_DELAY - MIN_DELAY) *
1301 (vover_pct - MIN_DELAY_THR_PCT),
1302 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1303
1304 /* pick the higher one and apply */
1305 if (new_delay > delay) {
1306 iocg->delay = new_delay;
1307 iocg->delay_at = now->now;
1308 delay = new_delay;
1309 }
6ef20f78 1310
5160a5a5 1311 if (delay >= MIN_DELAY) {
f0bf84a5
TH
1312 if (!iocg->indelay_since)
1313 iocg->indelay_since = now->now;
5160a5a5
TH
1314 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1315 return true;
1316 } else {
f0bf84a5
TH
1317 if (iocg->indelay_since) {
1318 iocg->local_stat.indelay_us += now->now - iocg->indelay_since;
1319 iocg->indelay_since = 0;
1320 }
5160a5a5 1321 iocg->delay = 0;
6ef20f78
TH
1322 blkcg_clear_delay(blkg);
1323 return false;
1324 }
6ef20f78
TH
1325}
1326
c421a3eb
TH
1327static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1328 struct ioc_now *now)
1329{
1330 struct iocg_pcpu_stat *gcs;
1331
1332 lockdep_assert_held(&iocg->ioc->lock);
1333 lockdep_assert_held(&iocg->waitq.lock);
1334 WARN_ON_ONCE(list_empty(&iocg->active_list));
1335
1336 /*
1337 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1338 * inuse donating all of it share to others until its debt is paid off.
1339 */
f0bf84a5
TH
1340 if (!iocg->abs_vdebt && abs_cost) {
1341 iocg->indebt_since = now->now;
c421a3eb 1342 propagate_weights(iocg, iocg->active, 0, false, now);
f0bf84a5 1343 }
c421a3eb
TH
1344
1345 iocg->abs_vdebt += abs_cost;
1346
1347 gcs = get_cpu_ptr(iocg->pcpu_stat);
1348 local64_add(abs_cost, &gcs->abs_vusage);
1349 put_cpu_ptr(gcs);
1350}
1351
1352static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1353 struct ioc_now *now)
1354{
1355 lockdep_assert_held(&iocg->ioc->lock);
1356 lockdep_assert_held(&iocg->waitq.lock);
1357
1358 /* make sure that nobody messed with @iocg */
1359 WARN_ON_ONCE(list_empty(&iocg->active_list));
1360 WARN_ON_ONCE(iocg->inuse > 1);
1361
1362 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1363
1364 /* if debt is paid in full, restore inuse */
f0bf84a5
TH
1365 if (!iocg->abs_vdebt) {
1366 iocg->local_stat.indebt_us += now->now - iocg->indebt_since;
1367 iocg->indebt_since = 0;
1368
c421a3eb
TH
1369 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1370 false, now);
f0bf84a5 1371 }
c421a3eb
TH
1372}
1373
7caa4715
TH
1374static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1375 int flags, void *key)
1376{
1377 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1378 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1379 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1380
1381 ctx->vbudget -= cost;
1382
1383 if (ctx->vbudget < 0)
1384 return -1;
1385
97eb1975 1386 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
7caa4715
TH
1387
1388 /*
1389 * autoremove_wake_function() removes the wait entry only when it
1390 * actually changed the task state. We want the wait always
1391 * removed. Remove explicitly and use default_wake_function().
1392 */
1393 list_del_init(&wq_entry->entry);
1394 wait->committed = true;
1395
1396 default_wake_function(wq_entry, mode, flags, key);
1397 return 0;
1398}
1399
da437b95
TH
1400/*
1401 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1402 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1403 * addition to iocg->waitq.lock.
1404 */
1405static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1406 struct ioc_now *now)
7caa4715
TH
1407{
1408 struct ioc *ioc = iocg->ioc;
1409 struct iocg_wake_ctx ctx = { .iocg = iocg };
da437b95 1410 u64 vshortage, expires, oexpires;
36a52481 1411 s64 vbudget;
c421a3eb 1412 u32 hwa;
7caa4715
TH
1413
1414 lockdep_assert_held(&iocg->waitq.lock);
1415
c421a3eb 1416 current_hweight(iocg, &hwa, NULL);
36a52481
TH
1417 vbudget = now->vnow - atomic64_read(&iocg->vtime);
1418
1419 /* pay off debt */
da437b95 1420 if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
c421a3eb
TH
1421 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1422 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1423 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
36a52481 1424
da437b95
TH
1425 lockdep_assert_held(&ioc->lock);
1426
c421a3eb
TH
1427 atomic64_add(vpay, &iocg->vtime);
1428 atomic64_add(vpay, &iocg->done_vtime);
1429 iocg_pay_debt(iocg, abs_vpay, now);
1430 vbudget -= vpay;
5160a5a5 1431 }
7b84b49e 1432
5160a5a5 1433 if (iocg->abs_vdebt || iocg->delay)
7b84b49e 1434 iocg_kick_delay(iocg, now);
36a52481 1435
da437b95
TH
1436 /*
1437 * Debt can still be outstanding if we haven't paid all yet or the
1438 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1439 * under debt. Make sure @vbudget reflects the outstanding amount and is
1440 * not positive.
1441 */
1442 if (iocg->abs_vdebt) {
c421a3eb 1443 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
da437b95
TH
1444 vbudget = min_t(s64, 0, vbudget - vdebt);
1445 }
1446
7caa4715 1447 /*
c421a3eb
TH
1448 * Wake up the ones which are due and see how much vtime we'll need for
1449 * the next one. As paying off debt restores hw_inuse, it must be read
1450 * after the above debt payment.
7caa4715 1451 */
da437b95 1452 ctx.vbudget = vbudget;
c421a3eb
TH
1453 current_hweight(iocg, NULL, &ctx.hw_inuse);
1454
7caa4715 1455 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
c421a3eb 1456
f0bf84a5
TH
1457 if (!waitqueue_active(&iocg->waitq)) {
1458 if (iocg->wait_since) {
1459 iocg->local_stat.wait_us += now->now - iocg->wait_since;
1460 iocg->wait_since = 0;
1461 }
7caa4715 1462 return;
f0bf84a5
TH
1463 }
1464
1465 if (!iocg->wait_since)
1466 iocg->wait_since = now->now;
1467
7caa4715
TH
1468 if (WARN_ON_ONCE(ctx.vbudget >= 0))
1469 return;
1470
7ca5b2e6 1471 /* determine next wakeup, add a timer margin to guarantee chunking */
7caa4715
TH
1472 vshortage = -ctx.vbudget;
1473 expires = now->now_ns +
ac33e91e
TH
1474 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1475 NSEC_PER_USEC;
7ca5b2e6 1476 expires += ioc->timer_slack_ns;
7caa4715
TH
1477
1478 /* if already active and close enough, don't bother */
1479 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1480 if (hrtimer_is_queued(&iocg->waitq_timer) &&
7ca5b2e6 1481 abs(oexpires - expires) <= ioc->timer_slack_ns)
7caa4715
TH
1482 return;
1483
1484 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
7ca5b2e6 1485 ioc->timer_slack_ns, HRTIMER_MODE_ABS);
7caa4715
TH
1486}
1487
1488static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1489{
1490 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
da437b95 1491 bool pay_debt = READ_ONCE(iocg->abs_vdebt);
7caa4715
TH
1492 struct ioc_now now;
1493 unsigned long flags;
1494
1495 ioc_now(iocg->ioc, &now);
1496
da437b95
TH
1497 iocg_lock(iocg, pay_debt, &flags);
1498 iocg_kick_waitq(iocg, pay_debt, &now);
1499 iocg_unlock(iocg, pay_debt, &flags);
7caa4715
TH
1500
1501 return HRTIMER_NORESTART;
1502}
1503
7caa4715
TH
1504static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1505{
1506 u32 nr_met[2] = { };
1507 u32 nr_missed[2] = { };
1508 u64 rq_wait_ns = 0;
1509 int cpu, rw;
1510
1511 for_each_online_cpu(cpu) {
1512 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1513 u64 this_rq_wait_ns;
1514
1515 for (rw = READ; rw <= WRITE; rw++) {
5e124f74
TH
1516 u32 this_met = local_read(&stat->missed[rw].nr_met);
1517 u32 this_missed = local_read(&stat->missed[rw].nr_missed);
7caa4715
TH
1518
1519 nr_met[rw] += this_met - stat->missed[rw].last_met;
1520 nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1521 stat->missed[rw].last_met = this_met;
1522 stat->missed[rw].last_missed = this_missed;
1523 }
1524
5e124f74 1525 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
7caa4715
TH
1526 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1527 stat->last_rq_wait_ns = this_rq_wait_ns;
1528 }
1529
1530 for (rw = READ; rw <= WRITE; rw++) {
1531 if (nr_met[rw] + nr_missed[rw])
1532 missed_ppm_ar[rw] =
1533 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1534 nr_met[rw] + nr_missed[rw]);
1535 else
1536 missed_ppm_ar[rw] = 0;
1537 }
1538
1539 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1540 ioc->period_us * NSEC_PER_USEC);
1541}
1542
1543/* was iocg idle this period? */
1544static bool iocg_is_idle(struct ioc_gq *iocg)
1545{
1546 struct ioc *ioc = iocg->ioc;
1547
1548 /* did something get issued this period? */
1549 if (atomic64_read(&iocg->active_period) ==
1550 atomic64_read(&ioc->cur_period))
1551 return false;
1552
1553 /* is something in flight? */
dcd6589b 1554 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
7caa4715
TH
1555 return false;
1556
1557 return true;
1558}
1559
97eb1975
TH
1560/*
1561 * Call this function on the target leaf @iocg's to build pre-order traversal
1562 * list of all the ancestors in @inner_walk. The inner nodes are linked through
1563 * ->walk_list and the caller is responsible for dissolving the list after use.
1564 */
1565static void iocg_build_inner_walk(struct ioc_gq *iocg,
1566 struct list_head *inner_walk)
1567{
1568 int lvl;
1569
1570 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1571
1572 /* find the first ancestor which hasn't been visited yet */
1573 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1574 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1575 break;
1576 }
1577
1578 /* walk down and visit the inner nodes to get pre-order traversal */
1579 while (++lvl <= iocg->level - 1) {
1580 struct ioc_gq *inner = iocg->ancestors[lvl];
1581
1582 /* record traversal order */
1583 list_add_tail(&inner->walk_list, inner_walk);
1584 }
1585}
1586
1587/* collect per-cpu counters and propagate the deltas to the parent */
1588static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
1589{
ac33e91e 1590 struct ioc *ioc = iocg->ioc;
97eb1975
TH
1591 struct iocg_stat new_stat;
1592 u64 abs_vusage = 0;
1593 u64 vusage_delta;
1594 int cpu;
1595
1596 lockdep_assert_held(&iocg->ioc->lock);
1597
1598 /* collect per-cpu counters */
1599 for_each_possible_cpu(cpu) {
1600 abs_vusage += local64_read(
1601 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1602 }
1603 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1604 iocg->last_stat_abs_vusage = abs_vusage;
1605
ac33e91e 1606 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1aa50d02 1607 iocg->local_stat.usage_us += iocg->usage_delta_us;
97eb1975 1608
f0bf84a5 1609 /* propagate upwards */
97eb1975
TH
1610 new_stat.usage_us =
1611 iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
f0bf84a5
TH
1612 new_stat.wait_us =
1613 iocg->local_stat.wait_us + iocg->desc_stat.wait_us;
1614 new_stat.indebt_us =
1615 iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us;
1616 new_stat.indelay_us =
1617 iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us;
97eb1975
TH
1618
1619 /* propagate the deltas to the parent */
1620 if (iocg->level > 0) {
1621 struct iocg_stat *parent_stat =
1622 &iocg->ancestors[iocg->level - 1]->desc_stat;
1623
1624 parent_stat->usage_us +=
1625 new_stat.usage_us - iocg->last_stat.usage_us;
f0bf84a5
TH
1626 parent_stat->wait_us +=
1627 new_stat.wait_us - iocg->last_stat.wait_us;
1628 parent_stat->indebt_us +=
1629 new_stat.indebt_us - iocg->last_stat.indebt_us;
1630 parent_stat->indelay_us +=
1631 new_stat.indelay_us - iocg->last_stat.indelay_us;
97eb1975
TH
1632 }
1633
1634 iocg->last_stat = new_stat;
1635}
1636
1637/* get stat counters ready for reading on all active iocgs */
1638static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1639{
1640 LIST_HEAD(inner_walk);
1641 struct ioc_gq *iocg, *tiocg;
1642
1643 /* flush leaves and build inner node walk list */
1644 list_for_each_entry(iocg, target_iocgs, active_list) {
1645 iocg_flush_stat_one(iocg, now);
1646 iocg_build_inner_walk(iocg, &inner_walk);
1647 }
1648
1649 /* keep flushing upwards by walking the inner list backwards */
1650 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1651 iocg_flush_stat_one(iocg, now);
1652 list_del_init(&iocg->walk_list);
1653 }
1654}
1655
93f7d2db
TH
1656/*
1657 * Determine what @iocg's hweight_inuse should be after donating unused
1658 * capacity. @hwm is the upper bound and used to signal no donation. This
1659 * function also throws away @iocg's excess budget.
1660 */
ac33e91e
TH
1661static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1662 u32 usage, struct ioc_now *now)
7caa4715 1663{
93f7d2db
TH
1664 struct ioc *ioc = iocg->ioc;
1665 u64 vtime = atomic64_read(&iocg->vtime);
f1de2439 1666 s64 excess, delta, target, new_hwi;
93f7d2db 1667
c421a3eb
TH
1668 /* debt handling owns inuse for debtors */
1669 if (iocg->abs_vdebt)
1670 return 1;
1671
93f7d2db
TH
1672 /* see whether minimum margin requirement is met */
1673 if (waitqueue_active(&iocg->waitq) ||
1674 time_after64(vtime, now->vnow - ioc->margins.min))
1675 return hwm;
1676
ac33e91e
TH
1677 /* throw away excess above target */
1678 excess = now->vnow - vtime - ioc->margins.target;
93f7d2db
TH
1679 if (excess > 0) {
1680 atomic64_add(excess, &iocg->vtime);
1681 atomic64_add(excess, &iocg->done_vtime);
1682 vtime += excess;
ac33e91e 1683 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
93f7d2db
TH
1684 }
1685
f1de2439
TH
1686 /*
1687 * Let's say the distance between iocg's and device's vtimes as a
1688 * fraction of period duration is delta. Assuming that the iocg will
1689 * consume the usage determined above, we want to determine new_hwi so
1690 * that delta equals MARGIN_TARGET at the end of the next period.
1691 *
1692 * We need to execute usage worth of IOs while spending the sum of the
1693 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1694 * (delta):
1695 *
1696 * usage = (1 - MARGIN_TARGET + delta) * new_hwi
1697 *
1698 * Therefore, the new_hwi is:
1699 *
1700 * new_hwi = usage / (1 - MARGIN_TARGET + delta)
1701 */
1702 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1703 now->vnow - ioc->period_at_vtime);
1704 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1705 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
7caa4715 1706
f1de2439 1707 return clamp_t(s64, new_hwi, 1, hwm);
7caa4715
TH
1708}
1709
e08d02aa
TH
1710/*
1711 * For work-conservation, an iocg which isn't using all of its share should
1712 * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1713 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1714 *
1715 * #1 is mathematically simpler but has the drawback of requiring synchronous
1716 * global hweight_inuse updates when idle iocg's get activated or inuse weights
1717 * change due to donation snapbacks as it has the possibility of grossly
1718 * overshooting what's allowed by the model and vrate.
1719 *
1720 * #2 is inherently safe with local operations. The donating iocg can easily
1721 * snap back to higher weights when needed without worrying about impacts on
1722 * other nodes as the impacts will be inherently correct. This also makes idle
1723 * iocg activations safe. The only effect activations have is decreasing
1724 * hweight_inuse of others, the right solution to which is for those iocgs to
1725 * snap back to higher weights.
1726 *
1727 * So, we go with #2. The challenge is calculating how each donating iocg's
1728 * inuse should be adjusted to achieve the target donation amounts. This is done
1729 * using Andy's method described in the following pdf.
1730 *
1731 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1732 *
1733 * Given the weights and target after-donation hweight_inuse values, Andy's
1734 * method determines how the proportional distribution should look like at each
1735 * sibling level to maintain the relative relationship between all non-donating
1736 * pairs. To roughly summarize, it divides the tree into donating and
1737 * non-donating parts, calculates global donation rate which is used to
1738 * determine the target hweight_inuse for each node, and then derives per-level
1739 * proportions.
1740 *
1741 * The following pdf shows that global distribution calculated this way can be
1742 * achieved by scaling inuse weights of donating leaves and propagating the
1743 * adjustments upwards proportionally.
1744 *
1745 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1746 *
1747 * Combining the above two, we can determine how each leaf iocg's inuse should
1748 * be adjusted to achieve the target donation.
1749 *
1750 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1751 *
1752 * The inline comments use symbols from the last pdf.
1753 *
1754 * b is the sum of the absolute budgets in the subtree. 1 for the root node.
1755 * f is the sum of the absolute budgets of non-donating nodes in the subtree.
1756 * t is the sum of the absolute budgets of donating nodes in the subtree.
1757 * w is the weight of the node. w = w_f + w_t
1758 * w_f is the non-donating portion of w. w_f = w * f / b
1759 * w_b is the donating portion of w. w_t = w * t / b
1760 * s is the sum of all sibling weights. s = Sum(w) for siblings
1761 * s_f and s_t are the non-donating and donating portions of s.
1762 *
1763 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1764 * w_pt is the donating portion of the parent's weight and w'_pt the same value
1765 * after adjustments. Subscript r denotes the root node's values.
1766 */
93f7d2db
TH
1767static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1768{
e08d02aa
TH
1769 LIST_HEAD(over_hwa);
1770 LIST_HEAD(inner_walk);
1771 struct ioc_gq *iocg, *tiocg, *root_iocg;
1772 u32 after_sum, over_sum, over_target, gamma;
93f7d2db 1773
e08d02aa
TH
1774 /*
1775 * It's pretty unlikely but possible for the total sum of
1776 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1777 * confuse the following calculations. If such condition is detected,
1778 * scale down everyone over its full share equally to keep the sum below
1779 * WEIGHT_ONE.
1780 */
1781 after_sum = 0;
1782 over_sum = 0;
93f7d2db 1783 list_for_each_entry(iocg, surpluses, surplus_list) {
e08d02aa 1784 u32 hwa;
93f7d2db 1785
e08d02aa
TH
1786 current_hweight(iocg, &hwa, NULL);
1787 after_sum += iocg->hweight_after_donation;
93f7d2db 1788
e08d02aa
TH
1789 if (iocg->hweight_after_donation > hwa) {
1790 over_sum += iocg->hweight_after_donation;
1791 list_add(&iocg->walk_list, &over_hwa);
1792 }
93f7d2db 1793 }
e08d02aa
TH
1794
1795 if (after_sum >= WEIGHT_ONE) {
1796 /*
1797 * The delta should be deducted from the over_sum, calculate
1798 * target over_sum value.
1799 */
1800 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1801 WARN_ON_ONCE(over_sum <= over_delta);
1802 over_target = over_sum - over_delta;
1803 } else {
1804 over_target = 0;
1805 }
1806
1807 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1808 if (over_target)
1809 iocg->hweight_after_donation =
1810 div_u64((u64)iocg->hweight_after_donation *
1811 over_target, over_sum);
1812 list_del_init(&iocg->walk_list);
1813 }
1814
1815 /*
1816 * Build pre-order inner node walk list and prepare for donation
1817 * adjustment calculations.
1818 */
1819 list_for_each_entry(iocg, surpluses, surplus_list) {
1820 iocg_build_inner_walk(iocg, &inner_walk);
1821 }
1822
1823 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1824 WARN_ON_ONCE(root_iocg->level > 0);
1825
1826 list_for_each_entry(iocg, &inner_walk, walk_list) {
1827 iocg->child_adjusted_sum = 0;
1828 iocg->hweight_donating = 0;
1829 iocg->hweight_after_donation = 0;
1830 }
1831
1832 /*
1833 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1834 * up the hierarchy.
1835 */
1836 list_for_each_entry(iocg, surpluses, surplus_list) {
1837 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1838
1839 parent->hweight_donating += iocg->hweight_donating;
1840 parent->hweight_after_donation += iocg->hweight_after_donation;
1841 }
1842
1843 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1844 if (iocg->level > 0) {
1845 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1846
1847 parent->hweight_donating += iocg->hweight_donating;
1848 parent->hweight_after_donation += iocg->hweight_after_donation;
1849 }
1850 }
1851
1852 /*
1853 * Calculate inner hwa's (b) and make sure the donation values are
1854 * within the accepted ranges as we're doing low res calculations with
1855 * roundups.
1856 */
1857 list_for_each_entry(iocg, &inner_walk, walk_list) {
1858 if (iocg->level) {
1859 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1860
1861 iocg->hweight_active = DIV64_U64_ROUND_UP(
1862 (u64)parent->hweight_active * iocg->active,
1863 parent->child_active_sum);
1864
1865 }
1866
1867 iocg->hweight_donating = min(iocg->hweight_donating,
1868 iocg->hweight_active);
1869 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1870 iocg->hweight_donating - 1);
1871 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1872 iocg->hweight_donating <= 1 ||
1873 iocg->hweight_after_donation == 0)) {
1874 pr_warn("iocg: invalid donation weights in ");
1875 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1876 pr_cont(": active=%u donating=%u after=%u\n",
1877 iocg->hweight_active, iocg->hweight_donating,
1878 iocg->hweight_after_donation);
1879 }
1880 }
1881
1882 /*
1883 * Calculate the global donation rate (gamma) - the rate to adjust
769b628d
TH
1884 * non-donating budgets by.
1885 *
1886 * No need to use 64bit multiplication here as the first operand is
1887 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1888 *
1889 * We know that there are beneficiary nodes and the sum of the donating
1890 * hweights can't be whole; however, due to the round-ups during hweight
1891 * calculations, root_iocg->hweight_donating might still end up equal to
1892 * or greater than whole. Limit the range when calculating the divider.
e08d02aa
TH
1893 *
1894 * gamma = (1 - t_r') / (1 - t_r)
1895 */
1896 gamma = DIV_ROUND_UP(
1897 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
769b628d 1898 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
e08d02aa
TH
1899
1900 /*
1901 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1902 * nodes.
1903 */
1904 list_for_each_entry(iocg, &inner_walk, walk_list) {
1905 struct ioc_gq *parent;
1906 u32 inuse, wpt, wptp;
1907 u64 st, sf;
1908
1909 if (iocg->level == 0) {
1910 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1911 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1912 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1913 WEIGHT_ONE - iocg->hweight_after_donation);
1914 continue;
1915 }
1916
1917 parent = iocg->ancestors[iocg->level - 1];
1918
1919 /* b' = gamma * b_f + b_t' */
1920 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1921 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1922 WEIGHT_ONE) + iocg->hweight_after_donation;
1923
1924 /* w' = s' * b' / b'_p */
1925 inuse = DIV64_U64_ROUND_UP(
1926 (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1927 parent->hweight_inuse);
1928
1929 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1930 st = DIV64_U64_ROUND_UP(
1931 iocg->child_active_sum * iocg->hweight_donating,
1932 iocg->hweight_active);
1933 sf = iocg->child_active_sum - st;
1934 wpt = DIV64_U64_ROUND_UP(
1935 (u64)iocg->active * iocg->hweight_donating,
1936 iocg->hweight_active);
1937 wptp = DIV64_U64_ROUND_UP(
1938 (u64)inuse * iocg->hweight_after_donation,
1939 iocg->hweight_inuse);
1940
1941 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1942 }
1943
1944 /*
1945 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1946 * we can finally determine leaf adjustments.
1947 */
1948 list_for_each_entry(iocg, surpluses, surplus_list) {
1949 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1950 u32 inuse;
1951
c421a3eb
TH
1952 /*
1953 * In-debt iocgs participated in the donation calculation with
1954 * the minimum target hweight_inuse. Configuring inuse
1955 * accordingly would work fine but debt handling expects
1956 * @iocg->inuse stay at the minimum and we don't wanna
1957 * interfere.
1958 */
1959 if (iocg->abs_vdebt) {
1960 WARN_ON_ONCE(iocg->inuse > 1);
1961 continue;
1962 }
1963
e08d02aa
TH
1964 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
1965 inuse = DIV64_U64_ROUND_UP(
1966 parent->child_adjusted_sum * iocg->hweight_after_donation,
1967 parent->hweight_inuse);
04603755
TH
1968
1969 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
1970 iocg->inuse, inuse,
1971 iocg->hweight_inuse,
1972 iocg->hweight_after_donation);
1973
b0853ab4 1974 __propagate_weights(iocg, iocg->active, inuse, true, now);
e08d02aa
TH
1975 }
1976
1977 /* walk list should be dissolved after use */
1978 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
1979 list_del_init(&iocg->walk_list);
93f7d2db
TH
1980}
1981
ab8df828
TH
1982/*
1983 * A low weight iocg can amass a large amount of debt, for example, when
1984 * anonymous memory gets reclaimed aggressively. If the system has a lot of
1985 * memory paired with a slow IO device, the debt can span multiple seconds or
1986 * more. If there are no other subsequent IO issuers, the in-debt iocg may end
1987 * up blocked paying its debt while the IO device is idle.
1988 *
1989 * The following protects against such cases. If the device has been
1990 * sufficiently idle for a while, the debts are halved.
1991 */
1992static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
1993 int nr_shortages, struct ioc_now *now)
1994{
1995 if (nr_shortages ||
1996 div64_u64(100 * usage_us_sum, now->now - ioc->period_at) >=
1997 DEBT_BUSY_USAGE_PCT)
1998 ioc->debt_busy_at = now->now;
1999
2000 if (nr_debtors &&
2001 now->now - ioc->debt_busy_at >= DEBT_REDUCTION_IDLE_DUR) {
2002 struct ioc_gq *iocg;
2003
2004 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2005 if (iocg->abs_vdebt) {
2006 spin_lock(&iocg->waitq.lock);
2007 iocg->abs_vdebt /= 2;
2008 iocg_kick_waitq(iocg, true, now);
2009 spin_unlock(&iocg->waitq.lock);
2010 }
2011 }
2012 ioc->debt_busy_at = now->now;
2013 }
2014}
2015
7caa4715
TH
2016static void ioc_timer_fn(struct timer_list *timer)
2017{
2018 struct ioc *ioc = container_of(timer, struct ioc, timer);
2019 struct ioc_gq *iocg, *tiocg;
2020 struct ioc_now now;
8692d2db 2021 LIST_HEAD(surpluses);
dda1315f
TH
2022 int nr_debtors = 0, nr_shortages = 0, nr_lagging = 0;
2023 u64 usage_us_sum = 0;
7caa4715
TH
2024 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2025 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2026 u32 missed_ppm[2], rq_wait_pct;
2027 u64 period_vtime;
f1de2439 2028 int prev_busy_level;
7caa4715
TH
2029
2030 /* how were the latencies during the period? */
2031 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2032
2033 /* take care of active iocgs */
2034 spin_lock_irq(&ioc->lock);
2035
2036 ioc_now(ioc, &now);
2037
2038 period_vtime = now.vnow - ioc->period_at_vtime;
2039 if (WARN_ON_ONCE(!period_vtime)) {
2040 spin_unlock_irq(&ioc->lock);
2041 return;
2042 }
2043
2044 /*
2045 * Waiters determine the sleep durations based on the vrate they
2046 * saw at the time of sleep. If vrate has increased, some waiters
2047 * could be sleeping for too long. Wake up tardy waiters which
2048 * should have woken up in the last period and expire idle iocgs.
2049 */
2050 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
d9012a59 2051 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
5160a5a5 2052 !iocg->delay && !iocg_is_idle(iocg))
7caa4715
TH
2053 continue;
2054
2055 spin_lock(&iocg->waitq.lock);
2056
f0bf84a5
TH
2057 /* flush wait and indebt stat deltas */
2058 if (iocg->wait_since) {
2059 iocg->local_stat.wait_us += now.now - iocg->wait_since;
2060 iocg->wait_since = now.now;
2061 }
2062 if (iocg->indebt_since) {
2063 iocg->local_stat.indebt_us +=
2064 now.now - iocg->indebt_since;
2065 iocg->indebt_since = now.now;
2066 }
2067 if (iocg->indelay_since) {
2068 iocg->local_stat.indelay_us +=
2069 now.now - iocg->indelay_since;
2070 iocg->indelay_since = now.now;
2071 }
2072
5160a5a5
TH
2073 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2074 iocg->delay) {
7caa4715 2075 /* might be oversleeping vtime / hweight changes, kick */
da437b95 2076 iocg_kick_waitq(iocg, true, &now);
dda1315f
TH
2077 if (iocg->abs_vdebt)
2078 nr_debtors++;
7caa4715
TH
2079 } else if (iocg_is_idle(iocg)) {
2080 /* no waiter and idle, deactivate */
ac33e91e
TH
2081 u64 vtime = atomic64_read(&iocg->vtime);
2082 s64 excess;
2083
2084 /*
2085 * @iocg has been inactive for a full duration and will
2086 * have a high budget. Account anything above target as
2087 * error and throw away. On reactivation, it'll start
2088 * with the target budget.
2089 */
2090 excess = now.vnow - vtime - ioc->margins.target;
2091 if (excess > 0) {
2092 u32 old_hwi;
2093
2094 current_hweight(iocg, NULL, &old_hwi);
2095 ioc->vtime_err -= div64_u64(excess * old_hwi,
2096 WEIGHT_ONE);
2097 }
2098
b0853ab4 2099 __propagate_weights(iocg, 0, 0, false, &now);
7caa4715
TH
2100 list_del_init(&iocg->active_list);
2101 }
2102
2103 spin_unlock(&iocg->waitq.lock);
2104 }
00410f1b 2105 commit_weights(ioc);
7caa4715 2106
f0bf84a5
TH
2107 /*
2108 * Wait and indebt stat are flushed above and the donation calculation
2109 * below needs updated usage stat. Let's bring stat up-to-date.
2110 */
2111 iocg_flush_stat(&ioc->active_iocgs, &now);
2112
f1de2439 2113 /* calc usage and see whether some weights need to be moved around */
7caa4715 2114 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
f1de2439
TH
2115 u64 vdone, vtime, usage_us, usage_dur;
2116 u32 usage, hw_active, hw_inuse;
7caa4715
TH
2117
2118 /*
2119 * Collect unused and wind vtime closer to vnow to prevent
2120 * iocgs from accumulating a large amount of budget.
2121 */
2122 vdone = atomic64_read(&iocg->done_vtime);
2123 vtime = atomic64_read(&iocg->vtime);
2124 current_hweight(iocg, &hw_active, &hw_inuse);
2125
2126 /*
2127 * Latency QoS detection doesn't account for IOs which are
2128 * in-flight for longer than a period. Detect them by
2129 * comparing vdone against period start. If lagging behind
2130 * IOs from past periods, don't increase vrate.
2131 */
7cd806a9
TH
2132 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2133 !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
7caa4715
TH
2134 time_after64(vtime, vdone) &&
2135 time_after64(vtime, now.vnow -
2136 MAX_LAGGING_PERIODS * period_vtime) &&
2137 time_before64(vdone, now.vnow - period_vtime))
2138 nr_lagging++;
2139
7caa4715 2140 /*
f1de2439
TH
2141 * Determine absolute usage factoring in in-flight IOs to avoid
2142 * high-latency completions appearing as idle.
7caa4715 2143 */
1aa50d02 2144 usage_us = iocg->usage_delta_us;
dda1315f 2145 usage_us_sum += usage_us;
f1de2439 2146
1aa50d02
TH
2147 if (vdone != vtime) {
2148 u64 inflight_us = DIV64_U64_ROUND_UP(
2149 cost_to_abs_cost(vtime - vdone, hw_inuse),
ac33e91e 2150 ioc->vtime_base_rate);
1aa50d02
TH
2151 usage_us = max(usage_us, inflight_us);
2152 }
2153
f1de2439
TH
2154 /* convert to hweight based usage ratio */
2155 if (time_after64(iocg->activated_at, ioc->period_at))
2156 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2157 else
2158 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
93f7d2db 2159
f1de2439
TH
2160 usage = clamp_t(u32,
2161 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2162 usage_dur),
1aa50d02 2163 1, WEIGHT_ONE);
7caa4715
TH
2164
2165 /* see whether there's surplus vtime */
8692d2db 2166 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
93f7d2db
TH
2167 if (hw_inuse < hw_active ||
2168 (!waitqueue_active(&iocg->waitq) &&
f1de2439 2169 time_before64(vtime, now.vnow - ioc->margins.low))) {
ac33e91e 2170 u32 hwa, old_hwi, hwm, new_hwi;
93f7d2db
TH
2171
2172 /*
2173 * Already donating or accumulated enough to start.
2174 * Determine the donation amount.
2175 */
ac33e91e 2176 current_hweight(iocg, &hwa, &old_hwi);
93f7d2db 2177 hwm = current_hweight_max(iocg);
ac33e91e
TH
2178 new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2179 usage, &now);
93f7d2db 2180 if (new_hwi < hwm) {
e08d02aa 2181 iocg->hweight_donating = hwa;
93f7d2db 2182 iocg->hweight_after_donation = new_hwi;
8692d2db 2183 list_add(&iocg->surplus_list, &surpluses);
7caa4715 2184 } else {
04603755
TH
2185 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2186 iocg->inuse, iocg->active,
2187 iocg->hweight_inuse, new_hwi);
2188
93f7d2db 2189 __propagate_weights(iocg, iocg->active,
b0853ab4 2190 iocg->active, true, &now);
93f7d2db 2191 nr_shortages++;
7caa4715
TH
2192 }
2193 } else {
93f7d2db 2194 /* genuinely short on vtime */
7caa4715
TH
2195 nr_shortages++;
2196 }
2197 }
2198
93f7d2db
TH
2199 if (!list_empty(&surpluses) && nr_shortages)
2200 transfer_surpluses(&surpluses, &now);
7caa4715 2201
00410f1b 2202 commit_weights(ioc);
7caa4715 2203
8692d2db
TH
2204 /* surplus list should be dissolved after use */
2205 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2206 list_del_init(&iocg->surplus_list);
2207
ab8df828 2208 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, nr_shortages, &now);
dda1315f 2209
7caa4715
TH
2210 /*
2211 * If q is getting clogged or we're missing too much, we're issuing
2212 * too much IO and should lower vtime rate. If we're not missing
2213 * and experiencing shortages but not surpluses, we're too stingy
2214 * and should increase vtime rate.
2215 */
25d41e4a 2216 prev_busy_level = ioc->busy_level;
7caa4715
TH
2217 if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2218 missed_ppm[READ] > ppm_rthr ||
2219 missed_ppm[WRITE] > ppm_wthr) {
81ca627a 2220 /* clearly missing QoS targets, slow down vrate */
7caa4715
TH
2221 ioc->busy_level = max(ioc->busy_level, 0);
2222 ioc->busy_level++;
7cd806a9 2223 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
7caa4715
TH
2224 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2225 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
81ca627a
TH
2226 /* QoS targets are being met with >25% margin */
2227 if (nr_shortages) {
2228 /*
2229 * We're throttling while the device has spare
2230 * capacity. If vrate was being slowed down, stop.
2231 */
7cd806a9 2232 ioc->busy_level = min(ioc->busy_level, 0);
81ca627a
TH
2233
2234 /*
2235 * If there are IOs spanning multiple periods, wait
065655c8 2236 * them out before pushing the device harder.
81ca627a 2237 */
065655c8 2238 if (!nr_lagging)
7cd806a9 2239 ioc->busy_level--;
81ca627a
TH
2240 } else {
2241 /*
2242 * Nobody is being throttled and the users aren't
2243 * issuing enough IOs to saturate the device. We
2244 * simply don't know how close the device is to
2245 * saturation. Coast.
2246 */
2247 ioc->busy_level = 0;
7cd806a9 2248 }
7caa4715 2249 } else {
81ca627a 2250 /* inside the hysterisis margin, we're good */
7caa4715
TH
2251 ioc->busy_level = 0;
2252 }
2253
2254 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2255
7cd806a9 2256 if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
ac33e91e 2257 u64 vrate = ioc->vtime_base_rate;
7caa4715
TH
2258 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
2259
2260 /* rq_wait signal is always reliable, ignore user vrate_min */
2261 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
2262 vrate_min = VRATE_MIN;
2263
2264 /*
2265 * If vrate is out of bounds, apply clamp gradually as the
2266 * bounds can change abruptly. Otherwise, apply busy_level
2267 * based adjustment.
2268 */
2269 if (vrate < vrate_min) {
2270 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
2271 100);
2272 vrate = min(vrate, vrate_min);
2273 } else if (vrate > vrate_max) {
2274 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
2275 100);
2276 vrate = max(vrate, vrate_max);
2277 } else {
2278 int idx = min_t(int, abs(ioc->busy_level),
2279 ARRAY_SIZE(vrate_adj_pct) - 1);
2280 u32 adj_pct = vrate_adj_pct[idx];
2281
2282 if (ioc->busy_level > 0)
2283 adj_pct = 100 - adj_pct;
2284 else
2285 adj_pct = 100 + adj_pct;
2286
2287 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
2288 vrate_min, vrate_max);
2289 }
2290
d6c8e949 2291 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
065655c8 2292 nr_lagging, nr_shortages);
7caa4715 2293
ac33e91e 2294 ioc->vtime_base_rate = vrate;
7ca5b2e6 2295 ioc_refresh_margins(ioc);
25d41e4a
TH
2296 } else if (ioc->busy_level != prev_busy_level || nr_lagging) {
2297 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
d6c8e949 2298 missed_ppm, rq_wait_pct, nr_lagging,
065655c8 2299 nr_shortages);
7caa4715
TH
2300 }
2301
2302 ioc_refresh_params(ioc, false);
2303
2304 /*
2305 * This period is done. Move onto the next one. If nothing's
2306 * going on with the device, stop the timer.
2307 */
2308 atomic64_inc(&ioc->cur_period);
2309
2310 if (ioc->running != IOC_STOP) {
2311 if (!list_empty(&ioc->active_iocgs)) {
2312 ioc_start_period(ioc, &now);
2313 } else {
2314 ioc->busy_level = 0;
ac33e91e 2315 ioc->vtime_err = 0;
7caa4715
TH
2316 ioc->running = IOC_IDLE;
2317 }
ac33e91e
TH
2318
2319 ioc_refresh_vrate(ioc, &now);
7caa4715
TH
2320 }
2321
2322 spin_unlock_irq(&ioc->lock);
2323}
2324
b0853ab4
TH
2325static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2326 u64 abs_cost, struct ioc_now *now)
2327{
2328 struct ioc *ioc = iocg->ioc;
2329 struct ioc_margins *margins = &ioc->margins;
04603755 2330 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
aa67db24 2331 u32 hwi, adj_step;
b0853ab4
TH
2332 s64 margin;
2333 u64 cost, new_inuse;
2334
2335 current_hweight(iocg, NULL, &hwi);
04603755 2336 old_hwi = hwi;
b0853ab4
TH
2337 cost = abs_cost_to_cost(abs_cost, hwi);
2338 margin = now->vnow - vtime - cost;
2339
c421a3eb
TH
2340 /* debt handling owns inuse for debtors */
2341 if (iocg->abs_vdebt)
2342 return cost;
2343
b0853ab4
TH
2344 /*
2345 * We only increase inuse during period and do so iff the margin has
2346 * deteriorated since the previous adjustment.
2347 */
2348 if (margin >= iocg->saved_margin || margin >= margins->low ||
2349 iocg->inuse == iocg->active)
2350 return cost;
2351
2352 spin_lock_irq(&ioc->lock);
2353
2354 /* we own inuse only when @iocg is in the normal active state */
c421a3eb 2355 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
b0853ab4
TH
2356 spin_unlock_irq(&ioc->lock);
2357 return cost;
2358 }
2359
aa67db24
TH
2360 /*
2361 * Bump up inuse till @abs_cost fits in the existing budget.
2362 * adj_step must be determined after acquiring ioc->lock - we might
2363 * have raced and lost to another thread for activation and could
2364 * be reading 0 iocg->active before ioc->lock which will lead to
2365 * infinite loop.
2366 */
b0853ab4 2367 new_inuse = iocg->inuse;
aa67db24 2368 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
b0853ab4
TH
2369 do {
2370 new_inuse = new_inuse + adj_step;
2371 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2372 current_hweight(iocg, NULL, &hwi);
2373 cost = abs_cost_to_cost(abs_cost, hwi);
2374 } while (time_after64(vtime + cost, now->vnow) &&
2375 iocg->inuse != iocg->active);
2376
2377 spin_unlock_irq(&ioc->lock);
04603755
TH
2378
2379 TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2380 old_inuse, iocg->inuse, old_hwi, hwi);
2381
b0853ab4
TH
2382 return cost;
2383}
2384
7caa4715
TH
2385static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2386 bool is_merge, u64 *costp)
2387{
2388 struct ioc *ioc = iocg->ioc;
2389 u64 coef_seqio, coef_randio, coef_page;
2390 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2391 u64 seek_pages = 0;
2392 u64 cost = 0;
2393
2394 switch (bio_op(bio)) {
2395 case REQ_OP_READ:
2396 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO];
2397 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO];
2398 coef_page = ioc->params.lcoefs[LCOEF_RPAGE];
2399 break;
2400 case REQ_OP_WRITE:
2401 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO];
2402 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO];
2403 coef_page = ioc->params.lcoefs[LCOEF_WPAGE];
2404 break;
2405 default:
2406 goto out;
2407 }
2408
2409 if (iocg->cursor) {
2410 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2411 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2412 }
2413
2414 if (!is_merge) {
2415 if (seek_pages > LCOEF_RANDIO_PAGES) {
2416 cost += coef_randio;
2417 } else {
2418 cost += coef_seqio;
2419 }
2420 }
2421 cost += pages * coef_page;
2422out:
2423 *costp = cost;
2424}
2425
2426static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2427{
2428 u64 cost;
2429
2430 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2431 return cost;
2432}
2433
cd006509
TH
2434static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2435 u64 *costp)
2436{
2437 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2438
2439 switch (req_op(rq)) {
2440 case REQ_OP_READ:
2441 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2442 break;
2443 case REQ_OP_WRITE:
2444 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2445 break;
2446 default:
2447 *costp = 0;
2448 }
2449}
2450
2451static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2452{
2453 u64 cost;
2454
2455 calc_size_vtime_cost_builtin(rq, ioc, &cost);
2456 return cost;
2457}
2458
7caa4715
TH
2459static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2460{
2461 struct blkcg_gq *blkg = bio->bi_blkg;
2462 struct ioc *ioc = rqos_to_ioc(rqos);
2463 struct ioc_gq *iocg = blkg_to_iocg(blkg);
2464 struct ioc_now now;
2465 struct iocg_wait wait;
7caa4715 2466 u64 abs_cost, cost, vtime;
da437b95
TH
2467 bool use_debt, ioc_locked;
2468 unsigned long flags;
7caa4715
TH
2469
2470 /* bypass IOs if disabled or for root cgroup */
2471 if (!ioc->enabled || !iocg->level)
2472 return;
2473
7caa4715
TH
2474 /* calculate the absolute vtime cost */
2475 abs_cost = calc_vtime_cost(bio, iocg, false);
2476 if (!abs_cost)
2477 return;
2478
f1de2439
TH
2479 if (!iocg_activate(iocg, &now))
2480 return;
2481
7caa4715 2482 iocg->cursor = bio_end_sector(bio);
7caa4715 2483 vtime = atomic64_read(&iocg->vtime);
b0853ab4 2484 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
7caa4715
TH
2485
2486 /*
2487 * If no one's waiting and within budget, issue right away. The
2488 * tests are racy but the races aren't systemic - we only miss once
2489 * in a while which is fine.
2490 */
0b80f986 2491 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
7caa4715 2492 time_before_eq64(vtime + cost, now.vnow)) {
97eb1975 2493 iocg_commit_bio(iocg, bio, abs_cost, cost);
7caa4715
TH
2494 return;
2495 }
2496
36a52481 2497 /*
da437b95
TH
2498 * We're over budget. This can be handled in two ways. IOs which may
2499 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2500 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2501 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2502 * whether debt handling is needed and acquire locks accordingly.
0b80f986 2503 */
da437b95
TH
2504 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2505 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
b0853ab4 2506retry_lock:
da437b95
TH
2507 iocg_lock(iocg, ioc_locked, &flags);
2508
2509 /*
2510 * @iocg must stay activated for debt and waitq handling. Deactivation
2511 * is synchronized against both ioc->lock and waitq.lock and we won't
2512 * get deactivated as long as we're waiting or has debt, so we're good
2513 * if we're activated here. In the unlikely cases that we aren't, just
2514 * issue the IO.
2515 */
0b80f986 2516 if (unlikely(list_empty(&iocg->active_list))) {
da437b95 2517 iocg_unlock(iocg, ioc_locked, &flags);
97eb1975 2518 iocg_commit_bio(iocg, bio, abs_cost, cost);
0b80f986
TH
2519 return;
2520 }
2521
2522 /*
2523 * We're over budget. If @bio has to be issued regardless, remember
2524 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2525 * off the debt before waking more IOs.
2526 *
36a52481 2527 * This way, the debt is continuously paid off each period with the
0b80f986
TH
2528 * actual budget available to the cgroup. If we just wound vtime, we
2529 * would incorrectly use the current hw_inuse for the entire amount
2530 * which, for example, can lead to the cgroup staying blocked for a
2531 * long time even with substantially raised hw_inuse.
2532 *
2533 * An iocg with vdebt should stay online so that the timer can keep
2534 * deducting its vdebt and [de]activate use_delay mechanism
2535 * accordingly. We don't want to race against the timer trying to
2536 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2537 * penalizing the cgroup and its descendants.
36a52481 2538 */
da437b95 2539 if (use_debt) {
c421a3eb 2540 iocg_incur_debt(iocg, abs_cost, &now);
54c52e10 2541 if (iocg_kick_delay(iocg, &now))
d7bd15a1
TH
2542 blkcg_schedule_throttle(rqos->q,
2543 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
da437b95 2544 iocg_unlock(iocg, ioc_locked, &flags);
7caa4715
TH
2545 return;
2546 }
2547
b0853ab4 2548 /* guarantee that iocgs w/ waiters have maximum inuse */
c421a3eb 2549 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
b0853ab4
TH
2550 if (!ioc_locked) {
2551 iocg_unlock(iocg, false, &flags);
2552 ioc_locked = true;
2553 goto retry_lock;
2554 }
2555 propagate_weights(iocg, iocg->active, iocg->active, true,
2556 &now);
2557 }
2558
7caa4715
TH
2559 /*
2560 * Append self to the waitq and schedule the wakeup timer if we're
2561 * the first waiter. The timer duration is calculated based on the
2562 * current vrate. vtime and hweight changes can make it too short
2563 * or too long. Each wait entry records the absolute cost it's
2564 * waiting for to allow re-evaluation using a custom wait entry.
2565 *
2566 * If too short, the timer simply reschedules itself. If too long,
2567 * the period timer will notice and trigger wakeups.
2568 *
2569 * All waiters are on iocg->waitq and the wait states are
2570 * synchronized using waitq.lock.
2571 */
7caa4715
TH
2572 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2573 wait.wait.private = current;
2574 wait.bio = bio;
2575 wait.abs_cost = abs_cost;
2576 wait.committed = false; /* will be set true by waker */
2577
2578 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
da437b95 2579 iocg_kick_waitq(iocg, ioc_locked, &now);
7caa4715 2580
da437b95 2581 iocg_unlock(iocg, ioc_locked, &flags);
7caa4715
TH
2582
2583 while (true) {
2584 set_current_state(TASK_UNINTERRUPTIBLE);
2585 if (wait.committed)
2586 break;
2587 io_schedule();
2588 }
2589
2590 /* waker already committed us, proceed */
2591 finish_wait(&iocg->waitq, &wait.wait);
2592}
2593
2594static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2595 struct bio *bio)
2596{
2597 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
e1518f63 2598 struct ioc *ioc = iocg->ioc;
7caa4715 2599 sector_t bio_end = bio_end_sector(bio);
e1518f63 2600 struct ioc_now now;
b0853ab4 2601 u64 vtime, abs_cost, cost;
0b80f986 2602 unsigned long flags;
7caa4715 2603
e1518f63
TH
2604 /* bypass if disabled or for root cgroup */
2605 if (!ioc->enabled || !iocg->level)
7caa4715
TH
2606 return;
2607
2608 abs_cost = calc_vtime_cost(bio, iocg, true);
2609 if (!abs_cost)
2610 return;
2611
e1518f63 2612 ioc_now(ioc, &now);
b0853ab4
TH
2613
2614 vtime = atomic64_read(&iocg->vtime);
2615 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
e1518f63 2616
7caa4715
TH
2617 /* update cursor if backmerging into the request at the cursor */
2618 if (blk_rq_pos(rq) < bio_end &&
2619 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2620 iocg->cursor = bio_end;
2621
e1518f63 2622 /*
0b80f986
TH
2623 * Charge if there's enough vtime budget and the existing request has
2624 * cost assigned.
e1518f63
TH
2625 */
2626 if (rq->bio && rq->bio->bi_iocost_cost &&
0b80f986 2627 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
97eb1975 2628 iocg_commit_bio(iocg, bio, abs_cost, cost);
0b80f986
TH
2629 return;
2630 }
2631
2632 /*
2633 * Otherwise, account it as debt if @iocg is online, which it should
2634 * be for the vast majority of cases. See debt handling in
2635 * ioc_rqos_throttle() for details.
2636 */
c421a3eb
TH
2637 spin_lock_irqsave(&ioc->lock, flags);
2638 spin_lock(&iocg->waitq.lock);
2639
0b80f986 2640 if (likely(!list_empty(&iocg->active_list))) {
c421a3eb
TH
2641 iocg_incur_debt(iocg, abs_cost, &now);
2642 if (iocg_kick_delay(iocg, &now))
2643 blkcg_schedule_throttle(rqos->q,
2644 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
0b80f986 2645 } else {
97eb1975 2646 iocg_commit_bio(iocg, bio, abs_cost, cost);
0b80f986 2647 }
c421a3eb
TH
2648
2649 spin_unlock(&iocg->waitq.lock);
2650 spin_unlock_irqrestore(&ioc->lock, flags);
7caa4715
TH
2651}
2652
2653static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2654{
2655 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2656
2657 if (iocg && bio->bi_iocost_cost)
2658 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2659}
2660
2661static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2662{
2663 struct ioc *ioc = rqos_to_ioc(rqos);
5e124f74 2664 struct ioc_pcpu_stat *ccs;
cd006509 2665 u64 on_q_ns, rq_wait_ns, size_nsec;
7caa4715
TH
2666 int pidx, rw;
2667
2668 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2669 return;
2670
2671 switch (req_op(rq) & REQ_OP_MASK) {
2672 case REQ_OP_READ:
2673 pidx = QOS_RLAT;
2674 rw = READ;
2675 break;
2676 case REQ_OP_WRITE:
2677 pidx = QOS_WLAT;
2678 rw = WRITE;
2679 break;
2680 default:
2681 return;
2682 }
2683
2684 on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2685 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
cd006509 2686 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
7caa4715 2687
5e124f74
TH
2688 ccs = get_cpu_ptr(ioc->pcpu_stat);
2689
cd006509
TH
2690 if (on_q_ns <= size_nsec ||
2691 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
5e124f74 2692 local_inc(&ccs->missed[rw].nr_met);
7caa4715 2693 else
5e124f74
TH
2694 local_inc(&ccs->missed[rw].nr_missed);
2695
2696 local64_add(rq_wait_ns, &ccs->rq_wait_ns);
7caa4715 2697
5e124f74 2698 put_cpu_ptr(ccs);
7caa4715
TH
2699}
2700
2701static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2702{
2703 struct ioc *ioc = rqos_to_ioc(rqos);
2704
2705 spin_lock_irq(&ioc->lock);
2706 ioc_refresh_params(ioc, false);
2707 spin_unlock_irq(&ioc->lock);
2708}
2709
2710static void ioc_rqos_exit(struct rq_qos *rqos)
2711{
2712 struct ioc *ioc = rqos_to_ioc(rqos);
2713
2714 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2715
2716 spin_lock_irq(&ioc->lock);
2717 ioc->running = IOC_STOP;
2718 spin_unlock_irq(&ioc->lock);
2719
2720 del_timer_sync(&ioc->timer);
2721 free_percpu(ioc->pcpu_stat);
2722 kfree(ioc);
2723}
2724
2725static struct rq_qos_ops ioc_rqos_ops = {
2726 .throttle = ioc_rqos_throttle,
2727 .merge = ioc_rqos_merge,
2728 .done_bio = ioc_rqos_done_bio,
2729 .done = ioc_rqos_done,
2730 .queue_depth_changed = ioc_rqos_queue_depth_changed,
2731 .exit = ioc_rqos_exit,
2732};
2733
2734static int blk_iocost_init(struct request_queue *q)
2735{
2736 struct ioc *ioc;
2737 struct rq_qos *rqos;
5e124f74 2738 int i, cpu, ret;
7caa4715
TH
2739
2740 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2741 if (!ioc)
2742 return -ENOMEM;
2743
2744 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2745 if (!ioc->pcpu_stat) {
2746 kfree(ioc);
2747 return -ENOMEM;
2748 }
2749
5e124f74
TH
2750 for_each_possible_cpu(cpu) {
2751 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2752
2753 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2754 local_set(&ccs->missed[i].nr_met, 0);
2755 local_set(&ccs->missed[i].nr_missed, 0);
2756 }
2757 local64_set(&ccs->rq_wait_ns, 0);
2758 }
2759
7caa4715
TH
2760 rqos = &ioc->rqos;
2761 rqos->id = RQ_QOS_COST;
2762 rqos->ops = &ioc_rqos_ops;
2763 rqos->q = q;
2764
2765 spin_lock_init(&ioc->lock);
2766 timer_setup(&ioc->timer, ioc_timer_fn, 0);
2767 INIT_LIST_HEAD(&ioc->active_iocgs);
2768
2769 ioc->running = IOC_IDLE;
ac33e91e 2770 ioc->vtime_base_rate = VTIME_PER_USEC;
7caa4715 2771 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
67b7b641 2772 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
7caa4715
TH
2773 ioc->period_at = ktime_to_us(ktime_get());
2774 atomic64_set(&ioc->cur_period, 0);
2775 atomic_set(&ioc->hweight_gen, 0);
2776
2777 spin_lock_irq(&ioc->lock);
2778 ioc->autop_idx = AUTOP_INVALID;
2779 ioc_refresh_params(ioc, true);
2780 spin_unlock_irq(&ioc->lock);
2781
2782 rq_qos_add(q, rqos);
2783 ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2784 if (ret) {
2785 rq_qos_del(q, rqos);
3532e722 2786 free_percpu(ioc->pcpu_stat);
7caa4715
TH
2787 kfree(ioc);
2788 return ret;
2789 }
2790 return 0;
2791}
2792
2793static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2794{
2795 struct ioc_cgrp *iocc;
2796
2797 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
e916ad29
TH
2798 if (!iocc)
2799 return NULL;
7caa4715 2800
bd0adb91 2801 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
7caa4715
TH
2802 return &iocc->cpd;
2803}
2804
2805static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2806{
2807 kfree(container_of(cpd, struct ioc_cgrp, cpd));
2808}
2809
2810static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2811 struct blkcg *blkcg)
2812{
2813 int levels = blkcg->css.cgroup->level + 1;
2814 struct ioc_gq *iocg;
2815
f61d6e25 2816 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
7caa4715
TH
2817 if (!iocg)
2818 return NULL;
2819
97eb1975
TH
2820 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2821 if (!iocg->pcpu_stat) {
2822 kfree(iocg);
2823 return NULL;
2824 }
2825
7caa4715
TH
2826 return &iocg->pd;
2827}
2828
2829static void ioc_pd_init(struct blkg_policy_data *pd)
2830{
2831 struct ioc_gq *iocg = pd_to_iocg(pd);
2832 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2833 struct ioc *ioc = q_to_ioc(blkg->q);
2834 struct ioc_now now;
2835 struct blkcg_gq *tblkg;
2836 unsigned long flags;
2837
2838 ioc_now(ioc, &now);
2839
2840 iocg->ioc = ioc;
2841 atomic64_set(&iocg->vtime, now.vnow);
2842 atomic64_set(&iocg->done_vtime, now.vnow);
2843 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2844 INIT_LIST_HEAD(&iocg->active_list);
97eb1975 2845 INIT_LIST_HEAD(&iocg->walk_list);
8692d2db 2846 INIT_LIST_HEAD(&iocg->surplus_list);
fe20cdb5
TH
2847 iocg->hweight_active = WEIGHT_ONE;
2848 iocg->hweight_inuse = WEIGHT_ONE;
7caa4715
TH
2849
2850 init_waitqueue_head(&iocg->waitq);
2851 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2852 iocg->waitq_timer.function = iocg_waitq_timer_fn;
7caa4715
TH
2853
2854 iocg->level = blkg->blkcg->css.cgroup->level;
2855
2856 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2857 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2858 iocg->ancestors[tiocg->level] = tiocg;
2859 }
2860
2861 spin_lock_irqsave(&ioc->lock, flags);
b0853ab4 2862 weight_updated(iocg, &now);
7caa4715
TH
2863 spin_unlock_irqrestore(&ioc->lock, flags);
2864}
2865
2866static void ioc_pd_free(struct blkg_policy_data *pd)
2867{
2868 struct ioc_gq *iocg = pd_to_iocg(pd);
2869 struct ioc *ioc = iocg->ioc;
5aeac7c4 2870 unsigned long flags;
7caa4715
TH
2871
2872 if (ioc) {
5aeac7c4 2873 spin_lock_irqsave(&ioc->lock, flags);
97eb1975 2874
7caa4715 2875 if (!list_empty(&iocg->active_list)) {
b0853ab4
TH
2876 struct ioc_now now;
2877
2878 ioc_now(ioc, &now);
2879 propagate_weights(iocg, 0, 0, false, &now);
7caa4715
TH
2880 list_del_init(&iocg->active_list);
2881 }
97eb1975
TH
2882
2883 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
8692d2db 2884 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
97eb1975 2885
5aeac7c4 2886 spin_unlock_irqrestore(&ioc->lock, flags);
e036c4ca
TH
2887
2888 hrtimer_cancel(&iocg->waitq_timer);
7caa4715 2889 }
97eb1975 2890 free_percpu(iocg->pcpu_stat);
7caa4715
TH
2891 kfree(iocg);
2892}
2893
97eb1975
TH
2894static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size)
2895{
2896 struct ioc_gq *iocg = pd_to_iocg(pd);
2897 struct ioc *ioc = iocg->ioc;
2898 size_t pos = 0;
2899
2900 if (!ioc->enabled)
2901 return 0;
2902
2903 if (iocg->level == 0) {
2904 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
ac33e91e 2905 ioc->vtime_base_rate * 10000,
97eb1975
TH
2906 VTIME_PER_USEC);
2907 pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u",
2908 vp10k / 100, vp10k % 100);
2909 }
2910
2911 pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu",
2912 iocg->last_stat.usage_us);
2913
f0bf84a5
TH
2914 if (blkcg_debug_stats)
2915 pos += scnprintf(buf + pos, size - pos,
2916 " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
2917 iocg->last_stat.wait_us,
2918 iocg->last_stat.indebt_us,
2919 iocg->last_stat.indelay_us);
2920
97eb1975
TH
2921 return pos;
2922}
2923
7caa4715
TH
2924static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2925 int off)
2926{
2927 const char *dname = blkg_dev_name(pd->blkg);
2928 struct ioc_gq *iocg = pd_to_iocg(pd);
2929
2930 if (dname && iocg->cfg_weight)
bd0adb91 2931 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
7caa4715
TH
2932 return 0;
2933}
2934
2935
2936static int ioc_weight_show(struct seq_file *sf, void *v)
2937{
2938 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2939 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2940
bd0adb91 2941 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
7caa4715
TH
2942 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
2943 &blkcg_policy_iocost, seq_cft(sf)->private, false);
2944 return 0;
2945}
2946
2947static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
2948 size_t nbytes, loff_t off)
2949{
2950 struct blkcg *blkcg = css_to_blkcg(of_css(of));
2951 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2952 struct blkg_conf_ctx ctx;
b0853ab4 2953 struct ioc_now now;
7caa4715
TH
2954 struct ioc_gq *iocg;
2955 u32 v;
2956 int ret;
2957
2958 if (!strchr(buf, ':')) {
2959 struct blkcg_gq *blkg;
2960
2961 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
2962 return -EINVAL;
2963
2964 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2965 return -EINVAL;
2966
2967 spin_lock(&blkcg->lock);
bd0adb91 2968 iocc->dfl_weight = v * WEIGHT_ONE;
7caa4715
TH
2969 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
2970 struct ioc_gq *iocg = blkg_to_iocg(blkg);
2971
2972 if (iocg) {
2973 spin_lock_irq(&iocg->ioc->lock);
b0853ab4
TH
2974 ioc_now(iocg->ioc, &now);
2975 weight_updated(iocg, &now);
7caa4715
TH
2976 spin_unlock_irq(&iocg->ioc->lock);
2977 }
2978 }
2979 spin_unlock(&blkcg->lock);
2980
2981 return nbytes;
2982 }
2983
2984 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
2985 if (ret)
2986 return ret;
2987
2988 iocg = blkg_to_iocg(ctx.blkg);
2989
2990 if (!strncmp(ctx.body, "default", 7)) {
2991 v = 0;
2992 } else {
2993 if (!sscanf(ctx.body, "%u", &v))
2994 goto einval;
2995 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2996 goto einval;
2997 }
2998
41591a51 2999 spin_lock(&iocg->ioc->lock);
bd0adb91 3000 iocg->cfg_weight = v * WEIGHT_ONE;
b0853ab4
TH
3001 ioc_now(iocg->ioc, &now);
3002 weight_updated(iocg, &now);
41591a51 3003 spin_unlock(&iocg->ioc->lock);
7caa4715
TH
3004
3005 blkg_conf_finish(&ctx);
3006 return nbytes;
3007
3008einval:
3009 blkg_conf_finish(&ctx);
3010 return -EINVAL;
3011}
3012
3013static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3014 int off)
3015{
3016 const char *dname = blkg_dev_name(pd->blkg);
3017 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3018
3019 if (!dname)
3020 return 0;
3021
3022 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3023 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3024 ioc->params.qos[QOS_RPPM] / 10000,
3025 ioc->params.qos[QOS_RPPM] % 10000 / 100,
3026 ioc->params.qos[QOS_RLAT],
3027 ioc->params.qos[QOS_WPPM] / 10000,
3028 ioc->params.qos[QOS_WPPM] % 10000 / 100,
3029 ioc->params.qos[QOS_WLAT],
3030 ioc->params.qos[QOS_MIN] / 10000,
3031 ioc->params.qos[QOS_MIN] % 10000 / 100,
3032 ioc->params.qos[QOS_MAX] / 10000,
3033 ioc->params.qos[QOS_MAX] % 10000 / 100);
3034 return 0;
3035}
3036
3037static int ioc_qos_show(struct seq_file *sf, void *v)
3038{
3039 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3040
3041 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3042 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3043 return 0;
3044}
3045
3046static const match_table_t qos_ctrl_tokens = {
3047 { QOS_ENABLE, "enable=%u" },
3048 { QOS_CTRL, "ctrl=%s" },
3049 { NR_QOS_CTRL_PARAMS, NULL },
3050};
3051
3052static const match_table_t qos_tokens = {
3053 { QOS_RPPM, "rpct=%s" },
3054 { QOS_RLAT, "rlat=%u" },
3055 { QOS_WPPM, "wpct=%s" },
3056 { QOS_WLAT, "wlat=%u" },
3057 { QOS_MIN, "min=%s" },
3058 { QOS_MAX, "max=%s" },
3059 { NR_QOS_PARAMS, NULL },
3060};
3061
3062static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3063 size_t nbytes, loff_t off)
3064{
3065 struct gendisk *disk;
3066 struct ioc *ioc;
3067 u32 qos[NR_QOS_PARAMS];
3068 bool enable, user;
3069 char *p;
3070 int ret;
3071
3072 disk = blkcg_conf_get_disk(&input);
3073 if (IS_ERR(disk))
3074 return PTR_ERR(disk);
3075
3076 ioc = q_to_ioc(disk->queue);
3077 if (!ioc) {
3078 ret = blk_iocost_init(disk->queue);
3079 if (ret)
3080 goto err;
3081 ioc = q_to_ioc(disk->queue);
3082 }
3083
3084 spin_lock_irq(&ioc->lock);
3085 memcpy(qos, ioc->params.qos, sizeof(qos));
3086 enable = ioc->enabled;
3087 user = ioc->user_qos_params;
3088 spin_unlock_irq(&ioc->lock);
3089
3090 while ((p = strsep(&input, " \t\n"))) {
3091 substring_t args[MAX_OPT_ARGS];
3092 char buf[32];
3093 int tok;
3094 s64 v;
3095
3096 if (!*p)
3097 continue;
3098
3099 switch (match_token(p, qos_ctrl_tokens, args)) {
3100 case QOS_ENABLE:
3101 match_u64(&args[0], &v);
3102 enable = v;
3103 continue;
3104 case QOS_CTRL:
3105 match_strlcpy(buf, &args[0], sizeof(buf));
3106 if (!strcmp(buf, "auto"))
3107 user = false;
3108 else if (!strcmp(buf, "user"))
3109 user = true;
3110 else
3111 goto einval;
3112 continue;
3113 }
3114
3115 tok = match_token(p, qos_tokens, args);
3116 switch (tok) {
3117 case QOS_RPPM:
3118 case QOS_WPPM:
3119 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3120 sizeof(buf))
3121 goto einval;
3122 if (cgroup_parse_float(buf, 2, &v))
3123 goto einval;
3124 if (v < 0 || v > 10000)
3125 goto einval;
3126 qos[tok] = v * 100;
3127 break;
3128 case QOS_RLAT:
3129 case QOS_WLAT:
3130 if (match_u64(&args[0], &v))
3131 goto einval;
3132 qos[tok] = v;
3133 break;
3134 case QOS_MIN:
3135 case QOS_MAX:
3136 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3137 sizeof(buf))
3138 goto einval;
3139 if (cgroup_parse_float(buf, 2, &v))
3140 goto einval;
3141 if (v < 0)
3142 goto einval;
3143 qos[tok] = clamp_t(s64, v * 100,
3144 VRATE_MIN_PPM, VRATE_MAX_PPM);
3145 break;
3146 default:
3147 goto einval;
3148 }
3149 user = true;
3150 }
3151
3152 if (qos[QOS_MIN] > qos[QOS_MAX])
3153 goto einval;
3154
3155 spin_lock_irq(&ioc->lock);
3156
3157 if (enable) {
cd006509 3158 blk_stat_enable_accounting(ioc->rqos.q);
7caa4715
TH
3159 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3160 ioc->enabled = true;
3161 } else {
3162 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3163 ioc->enabled = false;
3164 }
3165
3166 if (user) {
3167 memcpy(ioc->params.qos, qos, sizeof(qos));
3168 ioc->user_qos_params = true;
3169 } else {
3170 ioc->user_qos_params = false;
3171 }
3172
3173 ioc_refresh_params(ioc, true);
3174 spin_unlock_irq(&ioc->lock);
3175
3176 put_disk_and_module(disk);
3177 return nbytes;
3178einval:
3179 ret = -EINVAL;
3180err:
3181 put_disk_and_module(disk);
3182 return ret;
3183}
3184
3185static u64 ioc_cost_model_prfill(struct seq_file *sf,
3186 struct blkg_policy_data *pd, int off)
3187{
3188 const char *dname = blkg_dev_name(pd->blkg);
3189 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3190 u64 *u = ioc->params.i_lcoefs;
3191
3192 if (!dname)
3193 return 0;
3194
3195 seq_printf(sf, "%s ctrl=%s model=linear "
3196 "rbps=%llu rseqiops=%llu rrandiops=%llu "
3197 "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3198 dname, ioc->user_cost_model ? "user" : "auto",
3199 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3200 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3201 return 0;
3202}
3203
3204static int ioc_cost_model_show(struct seq_file *sf, void *v)
3205{
3206 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3207
3208 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3209 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3210 return 0;
3211}
3212
3213static const match_table_t cost_ctrl_tokens = {
3214 { COST_CTRL, "ctrl=%s" },
3215 { COST_MODEL, "model=%s" },
3216 { NR_COST_CTRL_PARAMS, NULL },
3217};
3218
3219static const match_table_t i_lcoef_tokens = {
3220 { I_LCOEF_RBPS, "rbps=%u" },
3221 { I_LCOEF_RSEQIOPS, "rseqiops=%u" },
3222 { I_LCOEF_RRANDIOPS, "rrandiops=%u" },
3223 { I_LCOEF_WBPS, "wbps=%u" },
3224 { I_LCOEF_WSEQIOPS, "wseqiops=%u" },
3225 { I_LCOEF_WRANDIOPS, "wrandiops=%u" },
3226 { NR_I_LCOEFS, NULL },
3227};
3228
3229static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3230 size_t nbytes, loff_t off)
3231{
3232 struct gendisk *disk;
3233 struct ioc *ioc;
3234 u64 u[NR_I_LCOEFS];
3235 bool user;
3236 char *p;
3237 int ret;
3238
3239 disk = blkcg_conf_get_disk(&input);
3240 if (IS_ERR(disk))
3241 return PTR_ERR(disk);
3242
3243 ioc = q_to_ioc(disk->queue);
3244 if (!ioc) {
3245 ret = blk_iocost_init(disk->queue);
3246 if (ret)
3247 goto err;
3248 ioc = q_to_ioc(disk->queue);
3249 }
3250
3251 spin_lock_irq(&ioc->lock);
3252 memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3253 user = ioc->user_cost_model;
3254 spin_unlock_irq(&ioc->lock);
3255
3256 while ((p = strsep(&input, " \t\n"))) {
3257 substring_t args[MAX_OPT_ARGS];
3258 char buf[32];
3259 int tok;
3260 u64 v;
3261
3262 if (!*p)
3263 continue;
3264
3265 switch (match_token(p, cost_ctrl_tokens, args)) {
3266 case COST_CTRL:
3267 match_strlcpy(buf, &args[0], sizeof(buf));
3268 if (!strcmp(buf, "auto"))
3269 user = false;
3270 else if (!strcmp(buf, "user"))
3271 user = true;
3272 else
3273 goto einval;
3274 continue;
3275 case COST_MODEL:
3276 match_strlcpy(buf, &args[0], sizeof(buf));
3277 if (strcmp(buf, "linear"))
3278 goto einval;
3279 continue;
3280 }
3281
3282 tok = match_token(p, i_lcoef_tokens, args);
3283 if (tok == NR_I_LCOEFS)
3284 goto einval;
3285 if (match_u64(&args[0], &v))
3286 goto einval;
3287 u[tok] = v;
3288 user = true;
3289 }
3290
3291 spin_lock_irq(&ioc->lock);
3292 if (user) {
3293 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3294 ioc->user_cost_model = true;
3295 } else {
3296 ioc->user_cost_model = false;
3297 }
3298 ioc_refresh_params(ioc, true);
3299 spin_unlock_irq(&ioc->lock);
3300
3301 put_disk_and_module(disk);
3302 return nbytes;
3303
3304einval:
3305 ret = -EINVAL;
3306err:
3307 put_disk_and_module(disk);
3308 return ret;
3309}
3310
3311static struct cftype ioc_files[] = {
3312 {
3313 .name = "weight",
3314 .flags = CFTYPE_NOT_ON_ROOT,
3315 .seq_show = ioc_weight_show,
3316 .write = ioc_weight_write,
3317 },
3318 {
3319 .name = "cost.qos",
3320 .flags = CFTYPE_ONLY_ON_ROOT,
3321 .seq_show = ioc_qos_show,
3322 .write = ioc_qos_write,
3323 },
3324 {
3325 .name = "cost.model",
3326 .flags = CFTYPE_ONLY_ON_ROOT,
3327 .seq_show = ioc_cost_model_show,
3328 .write = ioc_cost_model_write,
3329 },
3330 {}
3331};
3332
3333static struct blkcg_policy blkcg_policy_iocost = {
3334 .dfl_cftypes = ioc_files,
3335 .cpd_alloc_fn = ioc_cpd_alloc,
3336 .cpd_free_fn = ioc_cpd_free,
3337 .pd_alloc_fn = ioc_pd_alloc,
3338 .pd_init_fn = ioc_pd_init,
3339 .pd_free_fn = ioc_pd_free,
97eb1975 3340 .pd_stat_fn = ioc_pd_stat,
7caa4715
TH
3341};
3342
3343static int __init ioc_init(void)
3344{
3345 return blkcg_policy_register(&blkcg_policy_iocost);
3346}
3347
3348static void __exit ioc_exit(void)
3349{
3350 return blkcg_policy_unregister(&blkcg_policy_iocost);
3351}
3352
3353module_init(ioc_init);
3354module_exit(ioc_exit);