blk-iocost: fix divide-by-zero in transfer_surpluses()
[linux-2.6-block.git] / block / blk-iocost.c
CommitLineData
7caa4715
TH
1/* SPDX-License-Identifier: GPL-2.0
2 *
3 * IO cost model based controller.
4 *
5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
7 * Copyright (C) 2019 Facebook
8 *
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric. This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
12 * approximations.
13 *
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution. While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
21 *
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery. For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size. If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
28 * distribution.
29 *
30 * 1. IO Cost Model
31 *
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO). The cost is measured in
34 * device time. If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
36 *
37 * Currently, there's only one builtin cost model - linear. Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added. While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough. Default
42 * paramters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
45 *
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
48 *
49 * 2. Control Strategy
50 *
51 * The device virtual time (vtime) is used as the primary control metric.
52 * The control strategy is composed of the following three parts.
53 *
54 * 2-1. Vtime Distribution
55 *
56 * When a cgroup becomes active in terms of IOs, its hierarchical share is
57 * calculated. Please consider the following hierarchy where the numbers
58 * inside parentheses denote the configured weights.
59 *
60 * root
61 * / \
62 * A (w:100) B (w:300)
63 * / \
64 * A0 (w:100) A1 (w:100)
65 *
66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B
68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69 * 12.5% each. The distribution mechanism only cares about these flattened
70 * shares. They're called hweights (hierarchical weights) and always add
fe20cdb5 71 * upto 1 (WEIGHT_ONE).
7caa4715
TH
72 *
73 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75 * against the device vtime - an IO which takes 10ms on the underlying
76 * device is considered to take 80ms on A0.
77 *
78 * This constitutes the basis of IO capacity distribution. Each cgroup's
79 * vtime is running at a rate determined by its hweight. A cgroup tracks
80 * the vtime consumed by past IOs and can issue a new IO iff doing so
81 * wouldn't outrun the current device vtime. Otherwise, the IO is
82 * suspended until the vtime has progressed enough to cover it.
83 *
84 * 2-2. Vrate Adjustment
85 *
86 * It's unrealistic to expect the cost model to be perfect. There are too
87 * many devices and even on the same device the overall performance
88 * fluctuates depending on numerous factors such as IO mixture and device
89 * internal garbage collection. The controller needs to adapt dynamically.
90 *
91 * This is achieved by adjusting the overall IO rate according to how busy
92 * the device is. If the device becomes overloaded, we're sending down too
93 * many IOs and should generally slow down. If there are waiting issuers
94 * but the device isn't saturated, we're issuing too few and should
95 * generally speed up.
96 *
97 * To slow down, we lower the vrate - the rate at which the device vtime
98 * passes compared to the wall clock. For example, if the vtime is running
99 * at the vrate of 75%, all cgroups added up would only be able to issue
100 * 750ms worth of IOs per second, and vice-versa for speeding up.
101 *
102 * Device business is determined using two criteria - rq wait and
103 * completion latencies.
104 *
105 * When a device gets saturated, the on-device and then the request queues
106 * fill up and a bio which is ready to be issued has to wait for a request
107 * to become available. When this delay becomes noticeable, it's a clear
108 * indication that the device is saturated and we lower the vrate. This
109 * saturation signal is fairly conservative as it only triggers when both
110 * hardware and software queues are filled up, and is used as the default
111 * busy signal.
112 *
113 * As devices can have deep queues and be unfair in how the queued commands
114 * are executed, soley depending on rq wait may not result in satisfactory
115 * control quality. For a better control quality, completion latency QoS
116 * parameters can be configured so that the device is considered saturated
117 * if N'th percentile completion latency rises above the set point.
118 *
119 * The completion latency requirements are a function of both the
120 * underlying device characteristics and the desired IO latency quality of
121 * service. There is an inherent trade-off - the tighter the latency QoS,
122 * the higher the bandwidth lossage. Latency QoS is disabled by default
123 * and can be set through /sys/fs/cgroup/io.cost.qos.
124 *
125 * 2-3. Work Conservation
126 *
127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO
128 * periodically while B is sending out enough parallel IOs to saturate the
129 * device on its own. Let's say A's usage amounts to 100ms worth of IO
130 * cost per second, i.e., 10% of the device capacity. The naive
131 * distribution of half and half would lead to 60% utilization of the
132 * device, a significant reduction in the total amount of work done
133 * compared to free-for-all competition. This is too high a cost to pay
134 * for IO control.
135 *
136 * To conserve the total amount of work done, we keep track of how much
137 * each active cgroup is actually using and yield part of its weight if
138 * there are other cgroups which can make use of it. In the above case,
139 * A's weight will be lowered so that it hovers above the actual usage and
140 * B would be able to use the rest.
141 *
142 * As we don't want to penalize a cgroup for donating its weight, the
143 * surplus weight adjustment factors in a margin and has an immediate
144 * snapback mechanism in case the cgroup needs more IO vtime for itself.
145 *
146 * Note that adjusting down surplus weights has the same effects as
147 * accelerating vtime for other cgroups and work conservation can also be
148 * implemented by adjusting vrate dynamically. However, squaring who can
149 * donate and should take back how much requires hweight propagations
150 * anyway making it easier to implement and understand as a separate
151 * mechanism.
6954ff18
TH
152 *
153 * 3. Monitoring
154 *
155 * Instead of debugfs or other clumsy monitoring mechanisms, this
156 * controller uses a drgn based monitoring script -
157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see
158 * https://github.com/osandov/drgn. The ouput looks like the following.
159 *
160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
7c1ee704
TH
161 * active weight hweight% inflt% dbt delay usages%
162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033
163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077
6954ff18
TH
164 *
165 * - per : Timer period
166 * - cur_per : Internal wall and device vtime clock
167 * - vrate : Device virtual time rate against wall clock
168 * - weight : Surplus-adjusted and configured weights
169 * - hweight : Surplus-adjusted and configured hierarchical weights
170 * - inflt : The percentage of in-flight IO cost at the end of last period
171 * - del_ms : Deferred issuer delay induction level and duration
172 * - usages : Usage history
7caa4715
TH
173 */
174
175#include <linux/kernel.h>
176#include <linux/module.h>
177#include <linux/timer.h>
178#include <linux/time64.h>
179#include <linux/parser.h>
180#include <linux/sched/signal.h>
181#include <linux/blk-cgroup.h>
5e124f74
TH
182#include <asm/local.h>
183#include <asm/local64.h>
7caa4715
TH
184#include "blk-rq-qos.h"
185#include "blk-stat.h"
186#include "blk-wbt.h"
187
188#ifdef CONFIG_TRACEPOINTS
189
190/* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191#define TRACE_IOCG_PATH_LEN 1024
192static DEFINE_SPINLOCK(trace_iocg_path_lock);
193static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195#define TRACE_IOCG_PATH(type, iocg, ...) \
196 do { \
197 unsigned long flags; \
198 if (trace_iocost_##type##_enabled()) { \
199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \
200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \
201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \
202 trace_iocost_##type(iocg, trace_iocg_path, \
203 ##__VA_ARGS__); \
204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \
205 } \
206 } while (0)
207
208#else /* CONFIG_TRACE_POINTS */
209#define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0)
210#endif /* CONFIG_TRACE_POINTS */
211
212enum {
213 MILLION = 1000000,
214
215 /* timer period is calculated from latency requirements, bound it */
216 MIN_PERIOD = USEC_PER_MSEC,
217 MAX_PERIOD = USEC_PER_SEC,
218
219 /*
f1de2439 220 * iocg->vtime is targeted at 50% behind the device vtime, which
7caa4715
TH
221 * serves as its IO credit buffer. Surplus weight adjustment is
222 * immediately canceled if the vtime margin runs below 10%.
223 */
7ca5b2e6 224 MARGIN_MIN_PCT = 10,
f1de2439
TH
225 MARGIN_LOW_PCT = 20,
226 MARGIN_TARGET_PCT = 50,
7caa4715 227
b0853ab4
TH
228 INUSE_ADJ_STEP_PCT = 25,
229
7ca5b2e6
TH
230 /* Have some play in timer operations */
231 TIMER_SLACK_PCT = 1,
7caa4715 232
7caa4715 233 /* 1/64k is granular enough and can easily be handled w/ u32 */
fe20cdb5 234 WEIGHT_ONE = 1 << 16,
7caa4715
TH
235
236 /*
237 * As vtime is used to calculate the cost of each IO, it needs to
238 * be fairly high precision. For example, it should be able to
239 * represent the cost of a single page worth of discard with
240 * suffificient accuracy. At the same time, it should be able to
241 * represent reasonably long enough durations to be useful and
242 * convenient during operation.
243 *
244 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond
245 * granularity and days of wrap-around time even at extreme vrates.
246 */
247 VTIME_PER_SEC_SHIFT = 37,
248 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT,
249 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC,
cd006509 250 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC,
7caa4715
TH
251
252 /* bound vrate adjustments within two orders of magnitude */
253 VRATE_MIN_PPM = 10000, /* 1% */
254 VRATE_MAX_PPM = 100000000, /* 10000% */
255
256 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
257 VRATE_CLAMP_ADJ_PCT = 4,
258
259 /* if IOs end up waiting for requests, issue less */
260 RQ_WAIT_BUSY_PCT = 5,
261
262 /* unbusy hysterisis */
263 UNBUSY_THR_PCT = 75,
264
5160a5a5
TH
265 /*
266 * The effect of delay is indirect and non-linear and a huge amount of
267 * future debt can accumulate abruptly while unthrottled. Linearly scale
268 * up delay as debt is going up and then let it decay exponentially.
269 * This gives us quick ramp ups while delay is accumulating and long
270 * tails which can help reducing the frequency of debt explosions on
271 * unthrottle. The parameters are experimentally determined.
272 *
273 * The delay mechanism provides adequate protection and behavior in many
274 * cases. However, this is far from ideal and falls shorts on both
275 * fronts. The debtors are often throttled too harshly costing a
276 * significant level of fairness and possibly total work while the
277 * protection against their impacts on the system can be choppy and
278 * unreliable.
279 *
280 * The shortcoming primarily stems from the fact that, unlike for page
281 * cache, the kernel doesn't have well-defined back-pressure propagation
282 * mechanism and policies for anonymous memory. Fully addressing this
283 * issue will likely require substantial improvements in the area.
284 */
285 MIN_DELAY_THR_PCT = 500,
286 MAX_DELAY_THR_PCT = 25000,
287 MIN_DELAY = 250,
288 MAX_DELAY = 250 * USEC_PER_MSEC,
289
dda1315f
TH
290 /*
291 * Halve debts if total usage keeps staying under 25% w/o any shortages
292 * for over 100ms.
293 */
294 DEBT_BUSY_USAGE_PCT = 25,
295 DEBT_REDUCTION_IDLE_DUR = 100 * USEC_PER_MSEC,
296
7caa4715
TH
297 /* don't let cmds which take a very long time pin lagging for too long */
298 MAX_LAGGING_PERIODS = 10,
299
7caa4715
TH
300 /* switch iff the conditions are met for longer than this */
301 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC,
302
303 /*
304 * Count IO size in 4k pages. The 12bit shift helps keeping
305 * size-proportional components of cost calculation in closer
306 * numbers of digits to per-IO cost components.
307 */
308 IOC_PAGE_SHIFT = 12,
309 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT,
310 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT,
311
312 /* if apart further than 16M, consider randio for linear model */
313 LCOEF_RANDIO_PAGES = 4096,
314};
315
316enum ioc_running {
317 IOC_IDLE,
318 IOC_RUNNING,
319 IOC_STOP,
320};
321
322/* io.cost.qos controls including per-dev enable of the whole controller */
323enum {
324 QOS_ENABLE,
325 QOS_CTRL,
326 NR_QOS_CTRL_PARAMS,
327};
328
329/* io.cost.qos params */
330enum {
331 QOS_RPPM,
332 QOS_RLAT,
333 QOS_WPPM,
334 QOS_WLAT,
335 QOS_MIN,
336 QOS_MAX,
337 NR_QOS_PARAMS,
338};
339
340/* io.cost.model controls */
341enum {
342 COST_CTRL,
343 COST_MODEL,
344 NR_COST_CTRL_PARAMS,
345};
346
347/* builtin linear cost model coefficients */
348enum {
349 I_LCOEF_RBPS,
350 I_LCOEF_RSEQIOPS,
351 I_LCOEF_RRANDIOPS,
352 I_LCOEF_WBPS,
353 I_LCOEF_WSEQIOPS,
354 I_LCOEF_WRANDIOPS,
355 NR_I_LCOEFS,
356};
357
358enum {
359 LCOEF_RPAGE,
360 LCOEF_RSEQIO,
361 LCOEF_RRANDIO,
362 LCOEF_WPAGE,
363 LCOEF_WSEQIO,
364 LCOEF_WRANDIO,
365 NR_LCOEFS,
366};
367
368enum {
369 AUTOP_INVALID,
370 AUTOP_HDD,
371 AUTOP_SSD_QD1,
372 AUTOP_SSD_DFL,
373 AUTOP_SSD_FAST,
374};
375
376struct ioc_gq;
377
378struct ioc_params {
379 u32 qos[NR_QOS_PARAMS];
380 u64 i_lcoefs[NR_I_LCOEFS];
381 u64 lcoefs[NR_LCOEFS];
382 u32 too_fast_vrate_pct;
383 u32 too_slow_vrate_pct;
384};
385
7ca5b2e6
TH
386struct ioc_margins {
387 s64 min;
f1de2439
TH
388 s64 low;
389 s64 target;
7ca5b2e6
TH
390};
391
7caa4715 392struct ioc_missed {
5e124f74
TH
393 local_t nr_met;
394 local_t nr_missed;
7caa4715
TH
395 u32 last_met;
396 u32 last_missed;
397};
398
399struct ioc_pcpu_stat {
400 struct ioc_missed missed[2];
401
5e124f74 402 local64_t rq_wait_ns;
7caa4715
TH
403 u64 last_rq_wait_ns;
404};
405
406/* per device */
407struct ioc {
408 struct rq_qos rqos;
409
410 bool enabled;
411
412 struct ioc_params params;
7ca5b2e6 413 struct ioc_margins margins;
7caa4715 414 u32 period_us;
7ca5b2e6 415 u32 timer_slack_ns;
7caa4715
TH
416 u64 vrate_min;
417 u64 vrate_max;
418
419 spinlock_t lock;
420 struct timer_list timer;
421 struct list_head active_iocgs; /* active cgroups */
422 struct ioc_pcpu_stat __percpu *pcpu_stat;
423
424 enum ioc_running running;
425 atomic64_t vtime_rate;
ac33e91e
TH
426 u64 vtime_base_rate;
427 s64 vtime_err;
7caa4715 428
67b7b641 429 seqcount_spinlock_t period_seqcount;
ce95570a 430 u64 period_at; /* wallclock starttime */
7caa4715
TH
431 u64 period_at_vtime; /* vtime starttime */
432
433 atomic64_t cur_period; /* inc'd each period */
434 int busy_level; /* saturation history */
435
7caa4715
TH
436 bool weights_updated;
437 atomic_t hweight_gen; /* for lazy hweights */
438
dda1315f
TH
439 /* the last time debt cancel condition wasn't met */
440 u64 debt_busy_at;
441
7caa4715
TH
442 u64 autop_too_fast_at;
443 u64 autop_too_slow_at;
444 int autop_idx;
445 bool user_qos_params:1;
446 bool user_cost_model:1;
447};
448
97eb1975
TH
449struct iocg_pcpu_stat {
450 local64_t abs_vusage;
451};
452
453struct iocg_stat {
454 u64 usage_us;
f0bf84a5
TH
455 u64 wait_us;
456 u64 indebt_us;
457 u64 indelay_us;
97eb1975
TH
458};
459
7caa4715
TH
460/* per device-cgroup pair */
461struct ioc_gq {
462 struct blkg_policy_data pd;
463 struct ioc *ioc;
464
465 /*
466 * A iocg can get its weight from two sources - an explicit
467 * per-device-cgroup configuration or the default weight of the
468 * cgroup. `cfg_weight` is the explicit per-device-cgroup
469 * configuration. `weight` is the effective considering both
470 * sources.
471 *
472 * When an idle cgroup becomes active its `active` goes from 0 to
473 * `weight`. `inuse` is the surplus adjusted active weight.
474 * `active` and `inuse` are used to calculate `hweight_active` and
475 * `hweight_inuse`.
476 *
477 * `last_inuse` remembers `inuse` while an iocg is idle to persist
478 * surplus adjustments.
b0853ab4
TH
479 *
480 * `inuse` may be adjusted dynamically during period. `saved_*` are used
481 * to determine and track adjustments.
7caa4715
TH
482 */
483 u32 cfg_weight;
484 u32 weight;
485 u32 active;
486 u32 inuse;
b0853ab4 487
7caa4715 488 u32 last_inuse;
b0853ab4 489 s64 saved_margin;
7caa4715
TH
490
491 sector_t cursor; /* to detect randio */
492
493 /*
494 * `vtime` is this iocg's vtime cursor which progresses as IOs are
495 * issued. If lagging behind device vtime, the delta represents
496 * the currently available IO budget. If runnning ahead, the
497 * overage.
498 *
499 * `vtime_done` is the same but progressed on completion rather
500 * than issue. The delta behind `vtime` represents the cost of
501 * currently in-flight IOs.
7caa4715
TH
502 */
503 atomic64_t vtime;
504 atomic64_t done_vtime;
0b80f986 505 u64 abs_vdebt;
7caa4715 506
5160a5a5
TH
507 /* current delay in effect and when it started */
508 u64 delay;
509 u64 delay_at;
510
7caa4715
TH
511 /*
512 * The period this iocg was last active in. Used for deactivation
513 * and invalidating `vtime`.
514 */
515 atomic64_t active_period;
516 struct list_head active_list;
517
00410f1b 518 /* see __propagate_weights() and current_hweight() for details */
7caa4715
TH
519 u64 child_active_sum;
520 u64 child_inuse_sum;
e08d02aa 521 u64 child_adjusted_sum;
7caa4715
TH
522 int hweight_gen;
523 u32 hweight_active;
524 u32 hweight_inuse;
e08d02aa 525 u32 hweight_donating;
93f7d2db 526 u32 hweight_after_donation;
7caa4715 527
97eb1975 528 struct list_head walk_list;
8692d2db 529 struct list_head surplus_list;
97eb1975 530
7caa4715
TH
531 struct wait_queue_head waitq;
532 struct hrtimer waitq_timer;
7caa4715 533
1aa50d02
TH
534 /* timestamp at the latest activation */
535 u64 activated_at;
536
97eb1975
TH
537 /* statistics */
538 struct iocg_pcpu_stat __percpu *pcpu_stat;
539 struct iocg_stat local_stat;
540 struct iocg_stat desc_stat;
541 struct iocg_stat last_stat;
542 u64 last_stat_abs_vusage;
f1de2439 543 u64 usage_delta_us;
f0bf84a5
TH
544 u64 wait_since;
545 u64 indebt_since;
546 u64 indelay_since;
7caa4715
TH
547
548 /* this iocg's depth in the hierarchy and ancestors including self */
549 int level;
550 struct ioc_gq *ancestors[];
551};
552
553/* per cgroup */
554struct ioc_cgrp {
555 struct blkcg_policy_data cpd;
556 unsigned int dfl_weight;
557};
558
559struct ioc_now {
560 u64 now_ns;
ce95570a 561 u64 now;
7caa4715
TH
562 u64 vnow;
563 u64 vrate;
564};
565
566struct iocg_wait {
567 struct wait_queue_entry wait;
568 struct bio *bio;
569 u64 abs_cost;
570 bool committed;
571};
572
573struct iocg_wake_ctx {
574 struct ioc_gq *iocg;
575 u32 hw_inuse;
576 s64 vbudget;
577};
578
579static const struct ioc_params autop[] = {
580 [AUTOP_HDD] = {
581 .qos = {
7afcccaf
TH
582 [QOS_RLAT] = 250000, /* 250ms */
583 [QOS_WLAT] = 250000,
7caa4715
TH
584 [QOS_MIN] = VRATE_MIN_PPM,
585 [QOS_MAX] = VRATE_MAX_PPM,
586 },
587 .i_lcoefs = {
588 [I_LCOEF_RBPS] = 174019176,
589 [I_LCOEF_RSEQIOPS] = 41708,
590 [I_LCOEF_RRANDIOPS] = 370,
591 [I_LCOEF_WBPS] = 178075866,
592 [I_LCOEF_WSEQIOPS] = 42705,
593 [I_LCOEF_WRANDIOPS] = 378,
594 },
595 },
596 [AUTOP_SSD_QD1] = {
597 .qos = {
598 [QOS_RLAT] = 25000, /* 25ms */
599 [QOS_WLAT] = 25000,
600 [QOS_MIN] = VRATE_MIN_PPM,
601 [QOS_MAX] = VRATE_MAX_PPM,
602 },
603 .i_lcoefs = {
604 [I_LCOEF_RBPS] = 245855193,
605 [I_LCOEF_RSEQIOPS] = 61575,
606 [I_LCOEF_RRANDIOPS] = 6946,
607 [I_LCOEF_WBPS] = 141365009,
608 [I_LCOEF_WSEQIOPS] = 33716,
609 [I_LCOEF_WRANDIOPS] = 26796,
610 },
611 },
612 [AUTOP_SSD_DFL] = {
613 .qos = {
614 [QOS_RLAT] = 25000, /* 25ms */
615 [QOS_WLAT] = 25000,
616 [QOS_MIN] = VRATE_MIN_PPM,
617 [QOS_MAX] = VRATE_MAX_PPM,
618 },
619 .i_lcoefs = {
620 [I_LCOEF_RBPS] = 488636629,
621 [I_LCOEF_RSEQIOPS] = 8932,
622 [I_LCOEF_RRANDIOPS] = 8518,
623 [I_LCOEF_WBPS] = 427891549,
624 [I_LCOEF_WSEQIOPS] = 28755,
625 [I_LCOEF_WRANDIOPS] = 21940,
626 },
627 .too_fast_vrate_pct = 500,
628 },
629 [AUTOP_SSD_FAST] = {
630 .qos = {
631 [QOS_RLAT] = 5000, /* 5ms */
632 [QOS_WLAT] = 5000,
633 [QOS_MIN] = VRATE_MIN_PPM,
634 [QOS_MAX] = VRATE_MAX_PPM,
635 },
636 .i_lcoefs = {
637 [I_LCOEF_RBPS] = 3102524156LLU,
638 [I_LCOEF_RSEQIOPS] = 724816,
639 [I_LCOEF_RRANDIOPS] = 778122,
640 [I_LCOEF_WBPS] = 1742780862LLU,
641 [I_LCOEF_WSEQIOPS] = 425702,
642 [I_LCOEF_WRANDIOPS] = 443193,
643 },
644 .too_slow_vrate_pct = 10,
645 },
646};
647
648/*
649 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on
650 * vtime credit shortage and down on device saturation.
651 */
652static u32 vrate_adj_pct[] =
653 { 0, 0, 0, 0,
654 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
655 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
656 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
657
658static struct blkcg_policy blkcg_policy_iocost;
659
660/* accessors and helpers */
661static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
662{
663 return container_of(rqos, struct ioc, rqos);
664}
665
666static struct ioc *q_to_ioc(struct request_queue *q)
667{
668 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
669}
670
671static const char *q_name(struct request_queue *q)
672{
673 if (test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
674 return kobject_name(q->kobj.parent);
675 else
676 return "<unknown>";
677}
678
679static const char __maybe_unused *ioc_name(struct ioc *ioc)
680{
681 return q_name(ioc->rqos.q);
682}
683
684static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
685{
686 return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
687}
688
689static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
690{
691 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
692}
693
694static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
695{
696 return pd_to_blkg(&iocg->pd);
697}
698
699static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
700{
701 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
702 struct ioc_cgrp, cpd);
703}
704
705/*
706 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical
36a52481 707 * weight, the more expensive each IO. Must round up.
7caa4715
TH
708 */
709static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
710{
fe20cdb5 711 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
7caa4715
TH
712}
713
36a52481
TH
714/*
715 * The inverse of abs_cost_to_cost(). Must round up.
716 */
717static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
718{
fe20cdb5 719 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
36a52481
TH
720}
721
97eb1975
TH
722static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
723 u64 abs_cost, u64 cost)
7caa4715 724{
97eb1975
TH
725 struct iocg_pcpu_stat *gcs;
726
7caa4715
TH
727 bio->bi_iocost_cost = cost;
728 atomic64_add(cost, &iocg->vtime);
97eb1975
TH
729
730 gcs = get_cpu_ptr(iocg->pcpu_stat);
731 local64_add(abs_cost, &gcs->abs_vusage);
732 put_cpu_ptr(gcs);
7caa4715
TH
733}
734
da437b95
TH
735static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
736{
737 if (lock_ioc) {
738 spin_lock_irqsave(&iocg->ioc->lock, *flags);
739 spin_lock(&iocg->waitq.lock);
740 } else {
741 spin_lock_irqsave(&iocg->waitq.lock, *flags);
742 }
743}
744
745static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
746{
747 if (unlock_ioc) {
748 spin_unlock(&iocg->waitq.lock);
749 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
750 } else {
751 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
752 }
753}
754
7caa4715
TH
755#define CREATE_TRACE_POINTS
756#include <trace/events/iocost.h>
757
7ca5b2e6
TH
758static void ioc_refresh_margins(struct ioc *ioc)
759{
760 struct ioc_margins *margins = &ioc->margins;
761 u32 period_us = ioc->period_us;
ac33e91e 762 u64 vrate = ioc->vtime_base_rate;
7ca5b2e6
TH
763
764 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
f1de2439
TH
765 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
766 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
7ca5b2e6
TH
767}
768
7caa4715
TH
769/* latency Qos params changed, update period_us and all the dependent params */
770static void ioc_refresh_period_us(struct ioc *ioc)
771{
772 u32 ppm, lat, multi, period_us;
773
774 lockdep_assert_held(&ioc->lock);
775
776 /* pick the higher latency target */
777 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
778 ppm = ioc->params.qos[QOS_RPPM];
779 lat = ioc->params.qos[QOS_RLAT];
780 } else {
781 ppm = ioc->params.qos[QOS_WPPM];
782 lat = ioc->params.qos[QOS_WLAT];
783 }
784
785 /*
786 * We want the period to be long enough to contain a healthy number
787 * of IOs while short enough for granular control. Define it as a
788 * multiple of the latency target. Ideally, the multiplier should
789 * be scaled according to the percentile so that it would nominally
790 * contain a certain number of requests. Let's be simpler and
791 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
792 */
793 if (ppm)
794 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
795 else
796 multi = 2;
797 period_us = multi * lat;
798 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
799
800 /* calculate dependent params */
801 ioc->period_us = period_us;
7ca5b2e6
TH
802 ioc->timer_slack_ns = div64_u64(
803 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
804 100);
805 ioc_refresh_margins(ioc);
7caa4715
TH
806}
807
808static int ioc_autop_idx(struct ioc *ioc)
809{
810 int idx = ioc->autop_idx;
811 const struct ioc_params *p = &autop[idx];
812 u32 vrate_pct;
813 u64 now_ns;
814
815 /* rotational? */
816 if (!blk_queue_nonrot(ioc->rqos.q))
817 return AUTOP_HDD;
818
819 /* handle SATA SSDs w/ broken NCQ */
820 if (blk_queue_depth(ioc->rqos.q) == 1)
821 return AUTOP_SSD_QD1;
822
823 /* use one of the normal ssd sets */
824 if (idx < AUTOP_SSD_DFL)
825 return AUTOP_SSD_DFL;
826
827 /* if user is overriding anything, maintain what was there */
828 if (ioc->user_qos_params || ioc->user_cost_model)
829 return idx;
830
831 /* step up/down based on the vrate */
ac33e91e 832 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
7caa4715
TH
833 now_ns = ktime_get_ns();
834
835 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
836 if (!ioc->autop_too_fast_at)
837 ioc->autop_too_fast_at = now_ns;
838 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
839 return idx + 1;
840 } else {
841 ioc->autop_too_fast_at = 0;
842 }
843
844 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
845 if (!ioc->autop_too_slow_at)
846 ioc->autop_too_slow_at = now_ns;
847 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
848 return idx - 1;
849 } else {
850 ioc->autop_too_slow_at = 0;
851 }
852
853 return idx;
854}
855
856/*
857 * Take the followings as input
858 *
859 * @bps maximum sequential throughput
860 * @seqiops maximum sequential 4k iops
861 * @randiops maximum random 4k iops
862 *
863 * and calculate the linear model cost coefficients.
864 *
865 * *@page per-page cost 1s / (@bps / 4096)
866 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0)
867 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0)
868 */
869static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
870 u64 *page, u64 *seqio, u64 *randio)
871{
872 u64 v;
873
874 *page = *seqio = *randio = 0;
875
876 if (bps)
877 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
878 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
879
880 if (seqiops) {
881 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
882 if (v > *page)
883 *seqio = v - *page;
884 }
885
886 if (randiops) {
887 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
888 if (v > *page)
889 *randio = v - *page;
890 }
891}
892
893static void ioc_refresh_lcoefs(struct ioc *ioc)
894{
895 u64 *u = ioc->params.i_lcoefs;
896 u64 *c = ioc->params.lcoefs;
897
898 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
899 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
900 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
901 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
902}
903
904static bool ioc_refresh_params(struct ioc *ioc, bool force)
905{
906 const struct ioc_params *p;
907 int idx;
908
909 lockdep_assert_held(&ioc->lock);
910
911 idx = ioc_autop_idx(ioc);
912 p = &autop[idx];
913
914 if (idx == ioc->autop_idx && !force)
915 return false;
916
917 if (idx != ioc->autop_idx)
918 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
919
920 ioc->autop_idx = idx;
921 ioc->autop_too_fast_at = 0;
922 ioc->autop_too_slow_at = 0;
923
924 if (!ioc->user_qos_params)
925 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
926 if (!ioc->user_cost_model)
927 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
928
929 ioc_refresh_period_us(ioc);
930 ioc_refresh_lcoefs(ioc);
931
932 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
933 VTIME_PER_USEC, MILLION);
934 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
935 VTIME_PER_USEC, MILLION);
936
937 return true;
938}
939
ac33e91e
TH
940/*
941 * When an iocg accumulates too much vtime or gets deactivated, we throw away
942 * some vtime, which lowers the overall device utilization. As the exact amount
943 * which is being thrown away is known, we can compensate by accelerating the
944 * vrate accordingly so that the extra vtime generated in the current period
945 * matches what got lost.
946 */
947static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
948{
949 s64 pleft = ioc->period_at + ioc->period_us - now->now;
950 s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
951 s64 vcomp, vcomp_min, vcomp_max;
952
953 lockdep_assert_held(&ioc->lock);
954
955 /* we need some time left in this period */
956 if (pleft <= 0)
957 goto done;
958
959 /*
960 * Calculate how much vrate should be adjusted to offset the error.
961 * Limit the amount of adjustment and deduct the adjusted amount from
962 * the error.
963 */
964 vcomp = -div64_s64(ioc->vtime_err, pleft);
965 vcomp_min = -(ioc->vtime_base_rate >> 1);
966 vcomp_max = ioc->vtime_base_rate;
967 vcomp = clamp(vcomp, vcomp_min, vcomp_max);
968
969 ioc->vtime_err += vcomp * pleft;
970
971 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
972done:
973 /* bound how much error can accumulate */
974 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
975}
976
7caa4715
TH
977/* take a snapshot of the current [v]time and vrate */
978static void ioc_now(struct ioc *ioc, struct ioc_now *now)
979{
980 unsigned seq;
981
982 now->now_ns = ktime_get();
983 now->now = ktime_to_us(now->now_ns);
984 now->vrate = atomic64_read(&ioc->vtime_rate);
985
986 /*
987 * The current vtime is
988 *
989 * vtime at period start + (wallclock time since the start) * vrate
990 *
991 * As a consistent snapshot of `period_at_vtime` and `period_at` is
992 * needed, they're seqcount protected.
993 */
994 do {
995 seq = read_seqcount_begin(&ioc->period_seqcount);
996 now->vnow = ioc->period_at_vtime +
997 (now->now - ioc->period_at) * now->vrate;
998 } while (read_seqcount_retry(&ioc->period_seqcount, seq));
999}
1000
1001static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1002{
7caa4715
TH
1003 WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1004
1005 write_seqcount_begin(&ioc->period_seqcount);
1006 ioc->period_at = now->now;
1007 ioc->period_at_vtime = now->vnow;
1008 write_seqcount_end(&ioc->period_seqcount);
1009
1010 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1011 add_timer(&ioc->timer);
1012}
1013
1014/*
1015 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
b0853ab4
TH
1016 * weight sums and propagate upwards accordingly. If @save, the current margin
1017 * is saved to be used as reference for later inuse in-period adjustments.
7caa4715 1018 */
b0853ab4
TH
1019static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1020 bool save, struct ioc_now *now)
7caa4715
TH
1021{
1022 struct ioc *ioc = iocg->ioc;
1023 int lvl;
1024
1025 lockdep_assert_held(&ioc->lock);
1026
db84a72a
TH
1027 inuse = clamp_t(u32, inuse, 1, active);
1028
b0853ab4
TH
1029 iocg->last_inuse = iocg->inuse;
1030 if (save)
1031 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1032
db84a72a
TH
1033 if (active == iocg->active && inuse == iocg->inuse)
1034 return;
7caa4715
TH
1035
1036 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1037 struct ioc_gq *parent = iocg->ancestors[lvl];
1038 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1039 u32 parent_active = 0, parent_inuse = 0;
1040
1041 /* update the level sums */
1042 parent->child_active_sum += (s32)(active - child->active);
1043 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1044 /* apply the udpates */
1045 child->active = active;
1046 child->inuse = inuse;
1047
1048 /*
1049 * The delta between inuse and active sums indicates that
1050 * that much of weight is being given away. Parent's inuse
1051 * and active should reflect the ratio.
1052 */
1053 if (parent->child_active_sum) {
1054 parent_active = parent->weight;
1055 parent_inuse = DIV64_U64_ROUND_UP(
1056 parent_active * parent->child_inuse_sum,
1057 parent->child_active_sum);
1058 }
1059
1060 /* do we need to keep walking up? */
1061 if (parent_active == parent->active &&
1062 parent_inuse == parent->inuse)
1063 break;
1064
1065 active = parent_active;
1066 inuse = parent_inuse;
1067 }
1068
1069 ioc->weights_updated = true;
1070}
1071
00410f1b 1072static void commit_weights(struct ioc *ioc)
7caa4715
TH
1073{
1074 lockdep_assert_held(&ioc->lock);
1075
1076 if (ioc->weights_updated) {
1077 /* paired with rmb in current_hweight(), see there */
1078 smp_wmb();
1079 atomic_inc(&ioc->hweight_gen);
1080 ioc->weights_updated = false;
1081 }
1082}
1083
b0853ab4
TH
1084static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1085 bool save, struct ioc_now *now)
7caa4715 1086{
b0853ab4 1087 __propagate_weights(iocg, active, inuse, save, now);
00410f1b 1088 commit_weights(iocg->ioc);
7caa4715
TH
1089}
1090
1091static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1092{
1093 struct ioc *ioc = iocg->ioc;
1094 int lvl;
1095 u32 hwa, hwi;
1096 int ioc_gen;
1097
1098 /* hot path - if uptodate, use cached */
1099 ioc_gen = atomic_read(&ioc->hweight_gen);
1100 if (ioc_gen == iocg->hweight_gen)
1101 goto out;
1102
1103 /*
00410f1b
TH
1104 * Paired with wmb in commit_weights(). If we saw the updated
1105 * hweight_gen, all the weight updates from __propagate_weights() are
1106 * visible too.
7caa4715
TH
1107 *
1108 * We can race with weight updates during calculation and get it
1109 * wrong. However, hweight_gen would have changed and a future
1110 * reader will recalculate and we're guaranteed to discard the
1111 * wrong result soon.
1112 */
1113 smp_rmb();
1114
fe20cdb5 1115 hwa = hwi = WEIGHT_ONE;
7caa4715
TH
1116 for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1117 struct ioc_gq *parent = iocg->ancestors[lvl];
1118 struct ioc_gq *child = iocg->ancestors[lvl + 1];
bd0adb91
TH
1119 u64 active_sum = READ_ONCE(parent->child_active_sum);
1120 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
7caa4715
TH
1121 u32 active = READ_ONCE(child->active);
1122 u32 inuse = READ_ONCE(child->inuse);
1123
1124 /* we can race with deactivations and either may read as zero */
1125 if (!active_sum || !inuse_sum)
1126 continue;
1127
bd0adb91
TH
1128 active_sum = max_t(u64, active, active_sum);
1129 hwa = div64_u64((u64)hwa * active, active_sum);
7caa4715 1130
bd0adb91
TH
1131 inuse_sum = max_t(u64, inuse, inuse_sum);
1132 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
7caa4715
TH
1133 }
1134
1135 iocg->hweight_active = max_t(u32, hwa, 1);
1136 iocg->hweight_inuse = max_t(u32, hwi, 1);
1137 iocg->hweight_gen = ioc_gen;
1138out:
1139 if (hw_activep)
1140 *hw_activep = iocg->hweight_active;
1141 if (hw_inusep)
1142 *hw_inusep = iocg->hweight_inuse;
1143}
1144
93f7d2db
TH
1145/*
1146 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1147 * other weights stay unchanged.
1148 */
1149static u32 current_hweight_max(struct ioc_gq *iocg)
1150{
1151 u32 hwm = WEIGHT_ONE;
1152 u32 inuse = iocg->active;
1153 u64 child_inuse_sum;
1154 int lvl;
1155
1156 lockdep_assert_held(&iocg->ioc->lock);
1157
1158 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1159 struct ioc_gq *parent = iocg->ancestors[lvl];
1160 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1161
1162 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1163 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1164 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1165 parent->child_active_sum);
1166 }
1167
1168 return max_t(u32, hwm, 1);
1169}
1170
b0853ab4 1171static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
7caa4715
TH
1172{
1173 struct ioc *ioc = iocg->ioc;
1174 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1175 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1176 u32 weight;
1177
1178 lockdep_assert_held(&ioc->lock);
1179
1180 weight = iocg->cfg_weight ?: iocc->dfl_weight;
1181 if (weight != iocg->weight && iocg->active)
b0853ab4 1182 propagate_weights(iocg, weight, iocg->inuse, true, now);
7caa4715
TH
1183 iocg->weight = weight;
1184}
1185
1186static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1187{
1188 struct ioc *ioc = iocg->ioc;
ac33e91e
TH
1189 u64 last_period, cur_period;
1190 u64 vtime, vtarget;
7caa4715
TH
1191 int i;
1192
1193 /*
1194 * If seem to be already active, just update the stamp to tell the
1195 * timer that we're still active. We don't mind occassional races.
1196 */
1197 if (!list_empty(&iocg->active_list)) {
1198 ioc_now(ioc, now);
1199 cur_period = atomic64_read(&ioc->cur_period);
1200 if (atomic64_read(&iocg->active_period) != cur_period)
1201 atomic64_set(&iocg->active_period, cur_period);
1202 return true;
1203 }
1204
1205 /* racy check on internal node IOs, treat as root level IOs */
1206 if (iocg->child_active_sum)
1207 return false;
1208
1209 spin_lock_irq(&ioc->lock);
1210
1211 ioc_now(ioc, now);
1212
1213 /* update period */
1214 cur_period = atomic64_read(&ioc->cur_period);
1215 last_period = atomic64_read(&iocg->active_period);
1216 atomic64_set(&iocg->active_period, cur_period);
1217
1218 /* already activated or breaking leaf-only constraint? */
8b37bc27
JX
1219 if (!list_empty(&iocg->active_list))
1220 goto succeed_unlock;
1221 for (i = iocg->level - 1; i > 0; i--)
1222 if (!list_empty(&iocg->ancestors[i]->active_list))
7caa4715 1223 goto fail_unlock;
8b37bc27 1224
7caa4715
TH
1225 if (iocg->child_active_sum)
1226 goto fail_unlock;
1227
1228 /*
ac33e91e
TH
1229 * Always start with the target budget. On deactivation, we throw away
1230 * anything above it.
7caa4715 1231 */
ac33e91e 1232 vtarget = now->vnow - ioc->margins.target;
7caa4715 1233 vtime = atomic64_read(&iocg->vtime);
7caa4715 1234
ac33e91e
TH
1235 atomic64_add(vtarget - vtime, &iocg->vtime);
1236 atomic64_add(vtarget - vtime, &iocg->done_vtime);
1237 vtime = vtarget;
7caa4715
TH
1238
1239 /*
1240 * Activate, propagate weight and start period timer if not
1241 * running. Reset hweight_gen to avoid accidental match from
1242 * wrapping.
1243 */
1244 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1245 list_add(&iocg->active_list, &ioc->active_iocgs);
b0853ab4 1246
00410f1b 1247 propagate_weights(iocg, iocg->weight,
b0853ab4 1248 iocg->last_inuse ?: iocg->weight, true, now);
7caa4715
TH
1249
1250 TRACE_IOCG_PATH(iocg_activate, iocg, now,
1251 last_period, cur_period, vtime);
1252
1aa50d02 1253 iocg->activated_at = now->now;
7caa4715
TH
1254
1255 if (ioc->running == IOC_IDLE) {
1256 ioc->running = IOC_RUNNING;
dda1315f 1257 ioc->debt_busy_at = now->now;
7caa4715
TH
1258 ioc_start_period(ioc, now);
1259 }
1260
8b37bc27 1261succeed_unlock:
7caa4715
TH
1262 spin_unlock_irq(&ioc->lock);
1263 return true;
1264
1265fail_unlock:
1266 spin_unlock_irq(&ioc->lock);
1267 return false;
1268}
1269
6ef20f78
TH
1270static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1271{
1272 struct ioc *ioc = iocg->ioc;
1273 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
5160a5a5
TH
1274 u64 tdelta, delay, new_delay;
1275 s64 vover, vover_pct;
c421a3eb 1276 u32 hwa;
6ef20f78
TH
1277
1278 lockdep_assert_held(&iocg->waitq.lock);
1279
5160a5a5
TH
1280 /* calculate the current delay in effect - 1/2 every second */
1281 tdelta = now->now - iocg->delay_at;
1282 if (iocg->delay)
1283 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1284 else
1285 delay = 0;
1286
1287 /* calculate the new delay from the debt amount */
c421a3eb 1288 current_hweight(iocg, &hwa, NULL);
5160a5a5
TH
1289 vover = atomic64_read(&iocg->vtime) +
1290 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
ac33e91e
TH
1291 vover_pct = div64_s64(100 * vover,
1292 ioc->period_us * ioc->vtime_base_rate);
5160a5a5
TH
1293
1294 if (vover_pct <= MIN_DELAY_THR_PCT)
1295 new_delay = 0;
1296 else if (vover_pct >= MAX_DELAY_THR_PCT)
1297 new_delay = MAX_DELAY;
1298 else
1299 new_delay = MIN_DELAY +
1300 div_u64((MAX_DELAY - MIN_DELAY) *
1301 (vover_pct - MIN_DELAY_THR_PCT),
1302 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1303
1304 /* pick the higher one and apply */
1305 if (new_delay > delay) {
1306 iocg->delay = new_delay;
1307 iocg->delay_at = now->now;
1308 delay = new_delay;
1309 }
6ef20f78 1310
5160a5a5 1311 if (delay >= MIN_DELAY) {
f0bf84a5
TH
1312 if (!iocg->indelay_since)
1313 iocg->indelay_since = now->now;
5160a5a5
TH
1314 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1315 return true;
1316 } else {
f0bf84a5
TH
1317 if (iocg->indelay_since) {
1318 iocg->local_stat.indelay_us += now->now - iocg->indelay_since;
1319 iocg->indelay_since = 0;
1320 }
5160a5a5 1321 iocg->delay = 0;
6ef20f78
TH
1322 blkcg_clear_delay(blkg);
1323 return false;
1324 }
6ef20f78
TH
1325}
1326
c421a3eb
TH
1327static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1328 struct ioc_now *now)
1329{
1330 struct iocg_pcpu_stat *gcs;
1331
1332 lockdep_assert_held(&iocg->ioc->lock);
1333 lockdep_assert_held(&iocg->waitq.lock);
1334 WARN_ON_ONCE(list_empty(&iocg->active_list));
1335
1336 /*
1337 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1338 * inuse donating all of it share to others until its debt is paid off.
1339 */
f0bf84a5
TH
1340 if (!iocg->abs_vdebt && abs_cost) {
1341 iocg->indebt_since = now->now;
c421a3eb 1342 propagate_weights(iocg, iocg->active, 0, false, now);
f0bf84a5 1343 }
c421a3eb
TH
1344
1345 iocg->abs_vdebt += abs_cost;
1346
1347 gcs = get_cpu_ptr(iocg->pcpu_stat);
1348 local64_add(abs_cost, &gcs->abs_vusage);
1349 put_cpu_ptr(gcs);
1350}
1351
1352static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1353 struct ioc_now *now)
1354{
1355 lockdep_assert_held(&iocg->ioc->lock);
1356 lockdep_assert_held(&iocg->waitq.lock);
1357
1358 /* make sure that nobody messed with @iocg */
1359 WARN_ON_ONCE(list_empty(&iocg->active_list));
1360 WARN_ON_ONCE(iocg->inuse > 1);
1361
1362 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1363
1364 /* if debt is paid in full, restore inuse */
f0bf84a5
TH
1365 if (!iocg->abs_vdebt) {
1366 iocg->local_stat.indebt_us += now->now - iocg->indebt_since;
1367 iocg->indebt_since = 0;
1368
c421a3eb
TH
1369 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1370 false, now);
f0bf84a5 1371 }
c421a3eb
TH
1372}
1373
7caa4715
TH
1374static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1375 int flags, void *key)
1376{
1377 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1378 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1379 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1380
1381 ctx->vbudget -= cost;
1382
1383 if (ctx->vbudget < 0)
1384 return -1;
1385
97eb1975 1386 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
7caa4715
TH
1387
1388 /*
1389 * autoremove_wake_function() removes the wait entry only when it
1390 * actually changed the task state. We want the wait always
1391 * removed. Remove explicitly and use default_wake_function().
1392 */
1393 list_del_init(&wq_entry->entry);
1394 wait->committed = true;
1395
1396 default_wake_function(wq_entry, mode, flags, key);
1397 return 0;
1398}
1399
da437b95
TH
1400/*
1401 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1402 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1403 * addition to iocg->waitq.lock.
1404 */
1405static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1406 struct ioc_now *now)
7caa4715
TH
1407{
1408 struct ioc *ioc = iocg->ioc;
1409 struct iocg_wake_ctx ctx = { .iocg = iocg };
da437b95 1410 u64 vshortage, expires, oexpires;
36a52481 1411 s64 vbudget;
c421a3eb 1412 u32 hwa;
7caa4715
TH
1413
1414 lockdep_assert_held(&iocg->waitq.lock);
1415
c421a3eb 1416 current_hweight(iocg, &hwa, NULL);
36a52481
TH
1417 vbudget = now->vnow - atomic64_read(&iocg->vtime);
1418
1419 /* pay off debt */
da437b95 1420 if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
c421a3eb
TH
1421 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1422 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1423 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
36a52481 1424
da437b95
TH
1425 lockdep_assert_held(&ioc->lock);
1426
c421a3eb
TH
1427 atomic64_add(vpay, &iocg->vtime);
1428 atomic64_add(vpay, &iocg->done_vtime);
1429 iocg_pay_debt(iocg, abs_vpay, now);
1430 vbudget -= vpay;
5160a5a5 1431 }
7b84b49e 1432
5160a5a5 1433 if (iocg->abs_vdebt || iocg->delay)
7b84b49e 1434 iocg_kick_delay(iocg, now);
36a52481 1435
da437b95
TH
1436 /*
1437 * Debt can still be outstanding if we haven't paid all yet or the
1438 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1439 * under debt. Make sure @vbudget reflects the outstanding amount and is
1440 * not positive.
1441 */
1442 if (iocg->abs_vdebt) {
c421a3eb 1443 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
da437b95
TH
1444 vbudget = min_t(s64, 0, vbudget - vdebt);
1445 }
1446
7caa4715 1447 /*
c421a3eb
TH
1448 * Wake up the ones which are due and see how much vtime we'll need for
1449 * the next one. As paying off debt restores hw_inuse, it must be read
1450 * after the above debt payment.
7caa4715 1451 */
da437b95 1452 ctx.vbudget = vbudget;
c421a3eb
TH
1453 current_hweight(iocg, NULL, &ctx.hw_inuse);
1454
7caa4715 1455 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
c421a3eb 1456
f0bf84a5
TH
1457 if (!waitqueue_active(&iocg->waitq)) {
1458 if (iocg->wait_since) {
1459 iocg->local_stat.wait_us += now->now - iocg->wait_since;
1460 iocg->wait_since = 0;
1461 }
7caa4715 1462 return;
f0bf84a5
TH
1463 }
1464
1465 if (!iocg->wait_since)
1466 iocg->wait_since = now->now;
1467
7caa4715
TH
1468 if (WARN_ON_ONCE(ctx.vbudget >= 0))
1469 return;
1470
7ca5b2e6 1471 /* determine next wakeup, add a timer margin to guarantee chunking */
7caa4715
TH
1472 vshortage = -ctx.vbudget;
1473 expires = now->now_ns +
ac33e91e
TH
1474 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1475 NSEC_PER_USEC;
7ca5b2e6 1476 expires += ioc->timer_slack_ns;
7caa4715
TH
1477
1478 /* if already active and close enough, don't bother */
1479 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1480 if (hrtimer_is_queued(&iocg->waitq_timer) &&
7ca5b2e6 1481 abs(oexpires - expires) <= ioc->timer_slack_ns)
7caa4715
TH
1482 return;
1483
1484 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
7ca5b2e6 1485 ioc->timer_slack_ns, HRTIMER_MODE_ABS);
7caa4715
TH
1486}
1487
1488static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1489{
1490 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
da437b95 1491 bool pay_debt = READ_ONCE(iocg->abs_vdebt);
7caa4715
TH
1492 struct ioc_now now;
1493 unsigned long flags;
1494
1495 ioc_now(iocg->ioc, &now);
1496
da437b95
TH
1497 iocg_lock(iocg, pay_debt, &flags);
1498 iocg_kick_waitq(iocg, pay_debt, &now);
1499 iocg_unlock(iocg, pay_debt, &flags);
7caa4715
TH
1500
1501 return HRTIMER_NORESTART;
1502}
1503
7caa4715
TH
1504static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1505{
1506 u32 nr_met[2] = { };
1507 u32 nr_missed[2] = { };
1508 u64 rq_wait_ns = 0;
1509 int cpu, rw;
1510
1511 for_each_online_cpu(cpu) {
1512 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1513 u64 this_rq_wait_ns;
1514
1515 for (rw = READ; rw <= WRITE; rw++) {
5e124f74
TH
1516 u32 this_met = local_read(&stat->missed[rw].nr_met);
1517 u32 this_missed = local_read(&stat->missed[rw].nr_missed);
7caa4715
TH
1518
1519 nr_met[rw] += this_met - stat->missed[rw].last_met;
1520 nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1521 stat->missed[rw].last_met = this_met;
1522 stat->missed[rw].last_missed = this_missed;
1523 }
1524
5e124f74 1525 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
7caa4715
TH
1526 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1527 stat->last_rq_wait_ns = this_rq_wait_ns;
1528 }
1529
1530 for (rw = READ; rw <= WRITE; rw++) {
1531 if (nr_met[rw] + nr_missed[rw])
1532 missed_ppm_ar[rw] =
1533 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1534 nr_met[rw] + nr_missed[rw]);
1535 else
1536 missed_ppm_ar[rw] = 0;
1537 }
1538
1539 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1540 ioc->period_us * NSEC_PER_USEC);
1541}
1542
1543/* was iocg idle this period? */
1544static bool iocg_is_idle(struct ioc_gq *iocg)
1545{
1546 struct ioc *ioc = iocg->ioc;
1547
1548 /* did something get issued this period? */
1549 if (atomic64_read(&iocg->active_period) ==
1550 atomic64_read(&ioc->cur_period))
1551 return false;
1552
1553 /* is something in flight? */
dcd6589b 1554 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
7caa4715
TH
1555 return false;
1556
1557 return true;
1558}
1559
97eb1975
TH
1560/*
1561 * Call this function on the target leaf @iocg's to build pre-order traversal
1562 * list of all the ancestors in @inner_walk. The inner nodes are linked through
1563 * ->walk_list and the caller is responsible for dissolving the list after use.
1564 */
1565static void iocg_build_inner_walk(struct ioc_gq *iocg,
1566 struct list_head *inner_walk)
1567{
1568 int lvl;
1569
1570 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1571
1572 /* find the first ancestor which hasn't been visited yet */
1573 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1574 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1575 break;
1576 }
1577
1578 /* walk down and visit the inner nodes to get pre-order traversal */
1579 while (++lvl <= iocg->level - 1) {
1580 struct ioc_gq *inner = iocg->ancestors[lvl];
1581
1582 /* record traversal order */
1583 list_add_tail(&inner->walk_list, inner_walk);
1584 }
1585}
1586
1587/* collect per-cpu counters and propagate the deltas to the parent */
1588static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
1589{
ac33e91e 1590 struct ioc *ioc = iocg->ioc;
97eb1975
TH
1591 struct iocg_stat new_stat;
1592 u64 abs_vusage = 0;
1593 u64 vusage_delta;
1594 int cpu;
1595
1596 lockdep_assert_held(&iocg->ioc->lock);
1597
1598 /* collect per-cpu counters */
1599 for_each_possible_cpu(cpu) {
1600 abs_vusage += local64_read(
1601 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1602 }
1603 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1604 iocg->last_stat_abs_vusage = abs_vusage;
1605
ac33e91e 1606 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1aa50d02 1607 iocg->local_stat.usage_us += iocg->usage_delta_us;
97eb1975 1608
f0bf84a5 1609 /* propagate upwards */
97eb1975
TH
1610 new_stat.usage_us =
1611 iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
f0bf84a5
TH
1612 new_stat.wait_us =
1613 iocg->local_stat.wait_us + iocg->desc_stat.wait_us;
1614 new_stat.indebt_us =
1615 iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us;
1616 new_stat.indelay_us =
1617 iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us;
97eb1975
TH
1618
1619 /* propagate the deltas to the parent */
1620 if (iocg->level > 0) {
1621 struct iocg_stat *parent_stat =
1622 &iocg->ancestors[iocg->level - 1]->desc_stat;
1623
1624 parent_stat->usage_us +=
1625 new_stat.usage_us - iocg->last_stat.usage_us;
f0bf84a5
TH
1626 parent_stat->wait_us +=
1627 new_stat.wait_us - iocg->last_stat.wait_us;
1628 parent_stat->indebt_us +=
1629 new_stat.indebt_us - iocg->last_stat.indebt_us;
1630 parent_stat->indelay_us +=
1631 new_stat.indelay_us - iocg->last_stat.indelay_us;
97eb1975
TH
1632 }
1633
1634 iocg->last_stat = new_stat;
1635}
1636
1637/* get stat counters ready for reading on all active iocgs */
1638static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1639{
1640 LIST_HEAD(inner_walk);
1641 struct ioc_gq *iocg, *tiocg;
1642
1643 /* flush leaves and build inner node walk list */
1644 list_for_each_entry(iocg, target_iocgs, active_list) {
1645 iocg_flush_stat_one(iocg, now);
1646 iocg_build_inner_walk(iocg, &inner_walk);
1647 }
1648
1649 /* keep flushing upwards by walking the inner list backwards */
1650 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1651 iocg_flush_stat_one(iocg, now);
1652 list_del_init(&iocg->walk_list);
1653 }
1654}
1655
93f7d2db
TH
1656/*
1657 * Determine what @iocg's hweight_inuse should be after donating unused
1658 * capacity. @hwm is the upper bound and used to signal no donation. This
1659 * function also throws away @iocg's excess budget.
1660 */
ac33e91e
TH
1661static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1662 u32 usage, struct ioc_now *now)
7caa4715 1663{
93f7d2db
TH
1664 struct ioc *ioc = iocg->ioc;
1665 u64 vtime = atomic64_read(&iocg->vtime);
f1de2439 1666 s64 excess, delta, target, new_hwi;
93f7d2db 1667
c421a3eb
TH
1668 /* debt handling owns inuse for debtors */
1669 if (iocg->abs_vdebt)
1670 return 1;
1671
93f7d2db
TH
1672 /* see whether minimum margin requirement is met */
1673 if (waitqueue_active(&iocg->waitq) ||
1674 time_after64(vtime, now->vnow - ioc->margins.min))
1675 return hwm;
1676
ac33e91e
TH
1677 /* throw away excess above target */
1678 excess = now->vnow - vtime - ioc->margins.target;
93f7d2db
TH
1679 if (excess > 0) {
1680 atomic64_add(excess, &iocg->vtime);
1681 atomic64_add(excess, &iocg->done_vtime);
1682 vtime += excess;
ac33e91e 1683 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
93f7d2db
TH
1684 }
1685
f1de2439
TH
1686 /*
1687 * Let's say the distance between iocg's and device's vtimes as a
1688 * fraction of period duration is delta. Assuming that the iocg will
1689 * consume the usage determined above, we want to determine new_hwi so
1690 * that delta equals MARGIN_TARGET at the end of the next period.
1691 *
1692 * We need to execute usage worth of IOs while spending the sum of the
1693 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1694 * (delta):
1695 *
1696 * usage = (1 - MARGIN_TARGET + delta) * new_hwi
1697 *
1698 * Therefore, the new_hwi is:
1699 *
1700 * new_hwi = usage / (1 - MARGIN_TARGET + delta)
1701 */
1702 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1703 now->vnow - ioc->period_at_vtime);
1704 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1705 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
7caa4715 1706
f1de2439 1707 return clamp_t(s64, new_hwi, 1, hwm);
7caa4715
TH
1708}
1709
e08d02aa
TH
1710/*
1711 * For work-conservation, an iocg which isn't using all of its share should
1712 * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1713 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1714 *
1715 * #1 is mathematically simpler but has the drawback of requiring synchronous
1716 * global hweight_inuse updates when idle iocg's get activated or inuse weights
1717 * change due to donation snapbacks as it has the possibility of grossly
1718 * overshooting what's allowed by the model and vrate.
1719 *
1720 * #2 is inherently safe with local operations. The donating iocg can easily
1721 * snap back to higher weights when needed without worrying about impacts on
1722 * other nodes as the impacts will be inherently correct. This also makes idle
1723 * iocg activations safe. The only effect activations have is decreasing
1724 * hweight_inuse of others, the right solution to which is for those iocgs to
1725 * snap back to higher weights.
1726 *
1727 * So, we go with #2. The challenge is calculating how each donating iocg's
1728 * inuse should be adjusted to achieve the target donation amounts. This is done
1729 * using Andy's method described in the following pdf.
1730 *
1731 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1732 *
1733 * Given the weights and target after-donation hweight_inuse values, Andy's
1734 * method determines how the proportional distribution should look like at each
1735 * sibling level to maintain the relative relationship between all non-donating
1736 * pairs. To roughly summarize, it divides the tree into donating and
1737 * non-donating parts, calculates global donation rate which is used to
1738 * determine the target hweight_inuse for each node, and then derives per-level
1739 * proportions.
1740 *
1741 * The following pdf shows that global distribution calculated this way can be
1742 * achieved by scaling inuse weights of donating leaves and propagating the
1743 * adjustments upwards proportionally.
1744 *
1745 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1746 *
1747 * Combining the above two, we can determine how each leaf iocg's inuse should
1748 * be adjusted to achieve the target donation.
1749 *
1750 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1751 *
1752 * The inline comments use symbols from the last pdf.
1753 *
1754 * b is the sum of the absolute budgets in the subtree. 1 for the root node.
1755 * f is the sum of the absolute budgets of non-donating nodes in the subtree.
1756 * t is the sum of the absolute budgets of donating nodes in the subtree.
1757 * w is the weight of the node. w = w_f + w_t
1758 * w_f is the non-donating portion of w. w_f = w * f / b
1759 * w_b is the donating portion of w. w_t = w * t / b
1760 * s is the sum of all sibling weights. s = Sum(w) for siblings
1761 * s_f and s_t are the non-donating and donating portions of s.
1762 *
1763 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1764 * w_pt is the donating portion of the parent's weight and w'_pt the same value
1765 * after adjustments. Subscript r denotes the root node's values.
1766 */
93f7d2db
TH
1767static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1768{
e08d02aa
TH
1769 LIST_HEAD(over_hwa);
1770 LIST_HEAD(inner_walk);
1771 struct ioc_gq *iocg, *tiocg, *root_iocg;
1772 u32 after_sum, over_sum, over_target, gamma;
93f7d2db 1773
e08d02aa
TH
1774 /*
1775 * It's pretty unlikely but possible for the total sum of
1776 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1777 * confuse the following calculations. If such condition is detected,
1778 * scale down everyone over its full share equally to keep the sum below
1779 * WEIGHT_ONE.
1780 */
1781 after_sum = 0;
1782 over_sum = 0;
93f7d2db 1783 list_for_each_entry(iocg, surpluses, surplus_list) {
e08d02aa 1784 u32 hwa;
93f7d2db 1785
e08d02aa
TH
1786 current_hweight(iocg, &hwa, NULL);
1787 after_sum += iocg->hweight_after_donation;
93f7d2db 1788
e08d02aa
TH
1789 if (iocg->hweight_after_donation > hwa) {
1790 over_sum += iocg->hweight_after_donation;
1791 list_add(&iocg->walk_list, &over_hwa);
1792 }
93f7d2db 1793 }
e08d02aa
TH
1794
1795 if (after_sum >= WEIGHT_ONE) {
1796 /*
1797 * The delta should be deducted from the over_sum, calculate
1798 * target over_sum value.
1799 */
1800 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1801 WARN_ON_ONCE(over_sum <= over_delta);
1802 over_target = over_sum - over_delta;
1803 } else {
1804 over_target = 0;
1805 }
1806
1807 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1808 if (over_target)
1809 iocg->hweight_after_donation =
1810 div_u64((u64)iocg->hweight_after_donation *
1811 over_target, over_sum);
1812 list_del_init(&iocg->walk_list);
1813 }
1814
1815 /*
1816 * Build pre-order inner node walk list and prepare for donation
1817 * adjustment calculations.
1818 */
1819 list_for_each_entry(iocg, surpluses, surplus_list) {
1820 iocg_build_inner_walk(iocg, &inner_walk);
1821 }
1822
1823 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1824 WARN_ON_ONCE(root_iocg->level > 0);
1825
1826 list_for_each_entry(iocg, &inner_walk, walk_list) {
1827 iocg->child_adjusted_sum = 0;
1828 iocg->hweight_donating = 0;
1829 iocg->hweight_after_donation = 0;
1830 }
1831
1832 /*
1833 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1834 * up the hierarchy.
1835 */
1836 list_for_each_entry(iocg, surpluses, surplus_list) {
1837 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1838
1839 parent->hweight_donating += iocg->hweight_donating;
1840 parent->hweight_after_donation += iocg->hweight_after_donation;
1841 }
1842
1843 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1844 if (iocg->level > 0) {
1845 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1846
1847 parent->hweight_donating += iocg->hweight_donating;
1848 parent->hweight_after_donation += iocg->hweight_after_donation;
1849 }
1850 }
1851
1852 /*
1853 * Calculate inner hwa's (b) and make sure the donation values are
1854 * within the accepted ranges as we're doing low res calculations with
1855 * roundups.
1856 */
1857 list_for_each_entry(iocg, &inner_walk, walk_list) {
1858 if (iocg->level) {
1859 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1860
1861 iocg->hweight_active = DIV64_U64_ROUND_UP(
1862 (u64)parent->hweight_active * iocg->active,
1863 parent->child_active_sum);
1864
1865 }
1866
1867 iocg->hweight_donating = min(iocg->hweight_donating,
1868 iocg->hweight_active);
1869 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1870 iocg->hweight_donating - 1);
1871 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1872 iocg->hweight_donating <= 1 ||
1873 iocg->hweight_after_donation == 0)) {
1874 pr_warn("iocg: invalid donation weights in ");
1875 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1876 pr_cont(": active=%u donating=%u after=%u\n",
1877 iocg->hweight_active, iocg->hweight_donating,
1878 iocg->hweight_after_donation);
1879 }
1880 }
1881
1882 /*
1883 * Calculate the global donation rate (gamma) - the rate to adjust
769b628d
TH
1884 * non-donating budgets by.
1885 *
1886 * No need to use 64bit multiplication here as the first operand is
1887 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1888 *
1889 * We know that there are beneficiary nodes and the sum of the donating
1890 * hweights can't be whole; however, due to the round-ups during hweight
1891 * calculations, root_iocg->hweight_donating might still end up equal to
1892 * or greater than whole. Limit the range when calculating the divider.
e08d02aa
TH
1893 *
1894 * gamma = (1 - t_r') / (1 - t_r)
1895 */
1896 gamma = DIV_ROUND_UP(
1897 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
769b628d 1898 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
e08d02aa
TH
1899
1900 /*
1901 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1902 * nodes.
1903 */
1904 list_for_each_entry(iocg, &inner_walk, walk_list) {
1905 struct ioc_gq *parent;
1906 u32 inuse, wpt, wptp;
1907 u64 st, sf;
1908
1909 if (iocg->level == 0) {
1910 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1911 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1912 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1913 WEIGHT_ONE - iocg->hweight_after_donation);
1914 continue;
1915 }
1916
1917 parent = iocg->ancestors[iocg->level - 1];
1918
1919 /* b' = gamma * b_f + b_t' */
1920 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1921 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1922 WEIGHT_ONE) + iocg->hweight_after_donation;
1923
1924 /* w' = s' * b' / b'_p */
1925 inuse = DIV64_U64_ROUND_UP(
1926 (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1927 parent->hweight_inuse);
1928
1929 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1930 st = DIV64_U64_ROUND_UP(
1931 iocg->child_active_sum * iocg->hweight_donating,
1932 iocg->hweight_active);
1933 sf = iocg->child_active_sum - st;
1934 wpt = DIV64_U64_ROUND_UP(
1935 (u64)iocg->active * iocg->hweight_donating,
1936 iocg->hweight_active);
1937 wptp = DIV64_U64_ROUND_UP(
1938 (u64)inuse * iocg->hweight_after_donation,
1939 iocg->hweight_inuse);
1940
1941 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1942 }
1943
1944 /*
1945 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1946 * we can finally determine leaf adjustments.
1947 */
1948 list_for_each_entry(iocg, surpluses, surplus_list) {
1949 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1950 u32 inuse;
1951
c421a3eb
TH
1952 /*
1953 * In-debt iocgs participated in the donation calculation with
1954 * the minimum target hweight_inuse. Configuring inuse
1955 * accordingly would work fine but debt handling expects
1956 * @iocg->inuse stay at the minimum and we don't wanna
1957 * interfere.
1958 */
1959 if (iocg->abs_vdebt) {
1960 WARN_ON_ONCE(iocg->inuse > 1);
1961 continue;
1962 }
1963
e08d02aa
TH
1964 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
1965 inuse = DIV64_U64_ROUND_UP(
1966 parent->child_adjusted_sum * iocg->hweight_after_donation,
1967 parent->hweight_inuse);
04603755
TH
1968
1969 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
1970 iocg->inuse, inuse,
1971 iocg->hweight_inuse,
1972 iocg->hweight_after_donation);
1973
b0853ab4 1974 __propagate_weights(iocg, iocg->active, inuse, true, now);
e08d02aa
TH
1975 }
1976
1977 /* walk list should be dissolved after use */
1978 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
1979 list_del_init(&iocg->walk_list);
93f7d2db
TH
1980}
1981
7caa4715
TH
1982static void ioc_timer_fn(struct timer_list *timer)
1983{
1984 struct ioc *ioc = container_of(timer, struct ioc, timer);
1985 struct ioc_gq *iocg, *tiocg;
1986 struct ioc_now now;
8692d2db 1987 LIST_HEAD(surpluses);
dda1315f
TH
1988 int nr_debtors = 0, nr_shortages = 0, nr_lagging = 0;
1989 u64 usage_us_sum = 0;
7caa4715
TH
1990 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
1991 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
1992 u32 missed_ppm[2], rq_wait_pct;
1993 u64 period_vtime;
f1de2439 1994 int prev_busy_level;
7caa4715
TH
1995
1996 /* how were the latencies during the period? */
1997 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
1998
1999 /* take care of active iocgs */
2000 spin_lock_irq(&ioc->lock);
2001
2002 ioc_now(ioc, &now);
2003
2004 period_vtime = now.vnow - ioc->period_at_vtime;
2005 if (WARN_ON_ONCE(!period_vtime)) {
2006 spin_unlock_irq(&ioc->lock);
2007 return;
2008 }
2009
2010 /*
2011 * Waiters determine the sleep durations based on the vrate they
2012 * saw at the time of sleep. If vrate has increased, some waiters
2013 * could be sleeping for too long. Wake up tardy waiters which
2014 * should have woken up in the last period and expire idle iocgs.
2015 */
2016 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
d9012a59 2017 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
5160a5a5 2018 !iocg->delay && !iocg_is_idle(iocg))
7caa4715
TH
2019 continue;
2020
2021 spin_lock(&iocg->waitq.lock);
2022
f0bf84a5
TH
2023 /* flush wait and indebt stat deltas */
2024 if (iocg->wait_since) {
2025 iocg->local_stat.wait_us += now.now - iocg->wait_since;
2026 iocg->wait_since = now.now;
2027 }
2028 if (iocg->indebt_since) {
2029 iocg->local_stat.indebt_us +=
2030 now.now - iocg->indebt_since;
2031 iocg->indebt_since = now.now;
2032 }
2033 if (iocg->indelay_since) {
2034 iocg->local_stat.indelay_us +=
2035 now.now - iocg->indelay_since;
2036 iocg->indelay_since = now.now;
2037 }
2038
5160a5a5
TH
2039 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2040 iocg->delay) {
7caa4715 2041 /* might be oversleeping vtime / hweight changes, kick */
da437b95 2042 iocg_kick_waitq(iocg, true, &now);
dda1315f
TH
2043 if (iocg->abs_vdebt)
2044 nr_debtors++;
7caa4715
TH
2045 } else if (iocg_is_idle(iocg)) {
2046 /* no waiter and idle, deactivate */
ac33e91e
TH
2047 u64 vtime = atomic64_read(&iocg->vtime);
2048 s64 excess;
2049
2050 /*
2051 * @iocg has been inactive for a full duration and will
2052 * have a high budget. Account anything above target as
2053 * error and throw away. On reactivation, it'll start
2054 * with the target budget.
2055 */
2056 excess = now.vnow - vtime - ioc->margins.target;
2057 if (excess > 0) {
2058 u32 old_hwi;
2059
2060 current_hweight(iocg, NULL, &old_hwi);
2061 ioc->vtime_err -= div64_u64(excess * old_hwi,
2062 WEIGHT_ONE);
2063 }
2064
b0853ab4 2065 __propagate_weights(iocg, 0, 0, false, &now);
7caa4715
TH
2066 list_del_init(&iocg->active_list);
2067 }
2068
2069 spin_unlock(&iocg->waitq.lock);
2070 }
00410f1b 2071 commit_weights(ioc);
7caa4715 2072
f0bf84a5
TH
2073 /*
2074 * Wait and indebt stat are flushed above and the donation calculation
2075 * below needs updated usage stat. Let's bring stat up-to-date.
2076 */
2077 iocg_flush_stat(&ioc->active_iocgs, &now);
2078
f1de2439 2079 /* calc usage and see whether some weights need to be moved around */
7caa4715 2080 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
f1de2439
TH
2081 u64 vdone, vtime, usage_us, usage_dur;
2082 u32 usage, hw_active, hw_inuse;
7caa4715
TH
2083
2084 /*
2085 * Collect unused and wind vtime closer to vnow to prevent
2086 * iocgs from accumulating a large amount of budget.
2087 */
2088 vdone = atomic64_read(&iocg->done_vtime);
2089 vtime = atomic64_read(&iocg->vtime);
2090 current_hweight(iocg, &hw_active, &hw_inuse);
2091
2092 /*
2093 * Latency QoS detection doesn't account for IOs which are
2094 * in-flight for longer than a period. Detect them by
2095 * comparing vdone against period start. If lagging behind
2096 * IOs from past periods, don't increase vrate.
2097 */
7cd806a9
TH
2098 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2099 !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
7caa4715
TH
2100 time_after64(vtime, vdone) &&
2101 time_after64(vtime, now.vnow -
2102 MAX_LAGGING_PERIODS * period_vtime) &&
2103 time_before64(vdone, now.vnow - period_vtime))
2104 nr_lagging++;
2105
7caa4715 2106 /*
f1de2439
TH
2107 * Determine absolute usage factoring in in-flight IOs to avoid
2108 * high-latency completions appearing as idle.
7caa4715 2109 */
1aa50d02 2110 usage_us = iocg->usage_delta_us;
dda1315f 2111 usage_us_sum += usage_us;
f1de2439 2112
1aa50d02
TH
2113 if (vdone != vtime) {
2114 u64 inflight_us = DIV64_U64_ROUND_UP(
2115 cost_to_abs_cost(vtime - vdone, hw_inuse),
ac33e91e 2116 ioc->vtime_base_rate);
1aa50d02
TH
2117 usage_us = max(usage_us, inflight_us);
2118 }
2119
f1de2439
TH
2120 /* convert to hweight based usage ratio */
2121 if (time_after64(iocg->activated_at, ioc->period_at))
2122 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2123 else
2124 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
93f7d2db 2125
f1de2439
TH
2126 usage = clamp_t(u32,
2127 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2128 usage_dur),
1aa50d02 2129 1, WEIGHT_ONE);
7caa4715
TH
2130
2131 /* see whether there's surplus vtime */
8692d2db 2132 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
93f7d2db
TH
2133 if (hw_inuse < hw_active ||
2134 (!waitqueue_active(&iocg->waitq) &&
f1de2439 2135 time_before64(vtime, now.vnow - ioc->margins.low))) {
ac33e91e 2136 u32 hwa, old_hwi, hwm, new_hwi;
93f7d2db
TH
2137
2138 /*
2139 * Already donating or accumulated enough to start.
2140 * Determine the donation amount.
2141 */
ac33e91e 2142 current_hweight(iocg, &hwa, &old_hwi);
93f7d2db 2143 hwm = current_hweight_max(iocg);
ac33e91e
TH
2144 new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2145 usage, &now);
93f7d2db 2146 if (new_hwi < hwm) {
e08d02aa 2147 iocg->hweight_donating = hwa;
93f7d2db 2148 iocg->hweight_after_donation = new_hwi;
8692d2db 2149 list_add(&iocg->surplus_list, &surpluses);
7caa4715 2150 } else {
04603755
TH
2151 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2152 iocg->inuse, iocg->active,
2153 iocg->hweight_inuse, new_hwi);
2154
93f7d2db 2155 __propagate_weights(iocg, iocg->active,
b0853ab4 2156 iocg->active, true, &now);
93f7d2db 2157 nr_shortages++;
7caa4715
TH
2158 }
2159 } else {
93f7d2db 2160 /* genuinely short on vtime */
7caa4715
TH
2161 nr_shortages++;
2162 }
2163 }
2164
93f7d2db
TH
2165 if (!list_empty(&surpluses) && nr_shortages)
2166 transfer_surpluses(&surpluses, &now);
7caa4715 2167
00410f1b 2168 commit_weights(ioc);
7caa4715 2169
8692d2db
TH
2170 /* surplus list should be dissolved after use */
2171 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2172 list_del_init(&iocg->surplus_list);
2173
dda1315f
TH
2174 /*
2175 * A low weight iocg can amass a large amount of debt, for example, when
2176 * anonymous memory gets reclaimed aggressively. If the system has a lot
2177 * of memory paired with a slow IO device, the debt can span multiple
2178 * seconds or more. If there are no other subsequent IO issuers, the
2179 * in-debt iocg may end up blocked paying its debt while the IO device
2180 * is idle.
2181 *
2182 * The following protects against such pathological cases. If the device
2183 * has been sufficiently idle for a substantial amount of time, the
2184 * debts are halved. The criteria are on the conservative side as we
2185 * want to resolve the rare extreme cases without impacting regular
2186 * operation by forgiving debts too readily.
2187 */
2188 if (nr_shortages ||
2189 div64_u64(100 * usage_us_sum, now.now - ioc->period_at) >=
2190 DEBT_BUSY_USAGE_PCT)
2191 ioc->debt_busy_at = now.now;
2192
2193 if (nr_debtors &&
2194 now.now - ioc->debt_busy_at >= DEBT_REDUCTION_IDLE_DUR) {
2195 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2196 if (iocg->abs_vdebt) {
2197 spin_lock(&iocg->waitq.lock);
2198 iocg->abs_vdebt /= 2;
2199 iocg_kick_waitq(iocg, true, &now);
2200 spin_unlock(&iocg->waitq.lock);
2201 }
2202 }
2203 ioc->debt_busy_at = now.now;
2204 }
2205
7caa4715
TH
2206 /*
2207 * If q is getting clogged or we're missing too much, we're issuing
2208 * too much IO and should lower vtime rate. If we're not missing
2209 * and experiencing shortages but not surpluses, we're too stingy
2210 * and should increase vtime rate.
2211 */
25d41e4a 2212 prev_busy_level = ioc->busy_level;
7caa4715
TH
2213 if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2214 missed_ppm[READ] > ppm_rthr ||
2215 missed_ppm[WRITE] > ppm_wthr) {
81ca627a 2216 /* clearly missing QoS targets, slow down vrate */
7caa4715
TH
2217 ioc->busy_level = max(ioc->busy_level, 0);
2218 ioc->busy_level++;
7cd806a9 2219 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
7caa4715
TH
2220 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2221 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
81ca627a
TH
2222 /* QoS targets are being met with >25% margin */
2223 if (nr_shortages) {
2224 /*
2225 * We're throttling while the device has spare
2226 * capacity. If vrate was being slowed down, stop.
2227 */
7cd806a9 2228 ioc->busy_level = min(ioc->busy_level, 0);
81ca627a
TH
2229
2230 /*
2231 * If there are IOs spanning multiple periods, wait
065655c8 2232 * them out before pushing the device harder.
81ca627a 2233 */
065655c8 2234 if (!nr_lagging)
7cd806a9 2235 ioc->busy_level--;
81ca627a
TH
2236 } else {
2237 /*
2238 * Nobody is being throttled and the users aren't
2239 * issuing enough IOs to saturate the device. We
2240 * simply don't know how close the device is to
2241 * saturation. Coast.
2242 */
2243 ioc->busy_level = 0;
7cd806a9 2244 }
7caa4715 2245 } else {
81ca627a 2246 /* inside the hysterisis margin, we're good */
7caa4715
TH
2247 ioc->busy_level = 0;
2248 }
2249
2250 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2251
7cd806a9 2252 if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
ac33e91e 2253 u64 vrate = ioc->vtime_base_rate;
7caa4715
TH
2254 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
2255
2256 /* rq_wait signal is always reliable, ignore user vrate_min */
2257 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
2258 vrate_min = VRATE_MIN;
2259
2260 /*
2261 * If vrate is out of bounds, apply clamp gradually as the
2262 * bounds can change abruptly. Otherwise, apply busy_level
2263 * based adjustment.
2264 */
2265 if (vrate < vrate_min) {
2266 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
2267 100);
2268 vrate = min(vrate, vrate_min);
2269 } else if (vrate > vrate_max) {
2270 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
2271 100);
2272 vrate = max(vrate, vrate_max);
2273 } else {
2274 int idx = min_t(int, abs(ioc->busy_level),
2275 ARRAY_SIZE(vrate_adj_pct) - 1);
2276 u32 adj_pct = vrate_adj_pct[idx];
2277
2278 if (ioc->busy_level > 0)
2279 adj_pct = 100 - adj_pct;
2280 else
2281 adj_pct = 100 + adj_pct;
2282
2283 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
2284 vrate_min, vrate_max);
2285 }
2286
d6c8e949 2287 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
065655c8 2288 nr_lagging, nr_shortages);
7caa4715 2289
ac33e91e 2290 ioc->vtime_base_rate = vrate;
7ca5b2e6 2291 ioc_refresh_margins(ioc);
25d41e4a
TH
2292 } else if (ioc->busy_level != prev_busy_level || nr_lagging) {
2293 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
d6c8e949 2294 missed_ppm, rq_wait_pct, nr_lagging,
065655c8 2295 nr_shortages);
7caa4715
TH
2296 }
2297
2298 ioc_refresh_params(ioc, false);
2299
2300 /*
2301 * This period is done. Move onto the next one. If nothing's
2302 * going on with the device, stop the timer.
2303 */
2304 atomic64_inc(&ioc->cur_period);
2305
2306 if (ioc->running != IOC_STOP) {
2307 if (!list_empty(&ioc->active_iocgs)) {
2308 ioc_start_period(ioc, &now);
2309 } else {
2310 ioc->busy_level = 0;
ac33e91e 2311 ioc->vtime_err = 0;
7caa4715
TH
2312 ioc->running = IOC_IDLE;
2313 }
ac33e91e
TH
2314
2315 ioc_refresh_vrate(ioc, &now);
7caa4715
TH
2316 }
2317
2318 spin_unlock_irq(&ioc->lock);
2319}
2320
b0853ab4
TH
2321static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2322 u64 abs_cost, struct ioc_now *now)
2323{
2324 struct ioc *ioc = iocg->ioc;
2325 struct ioc_margins *margins = &ioc->margins;
2326 u32 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
04603755 2327 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
b0853ab4
TH
2328 u32 hwi;
2329 s64 margin;
2330 u64 cost, new_inuse;
2331
2332 current_hweight(iocg, NULL, &hwi);
04603755 2333 old_hwi = hwi;
b0853ab4
TH
2334 cost = abs_cost_to_cost(abs_cost, hwi);
2335 margin = now->vnow - vtime - cost;
2336
c421a3eb
TH
2337 /* debt handling owns inuse for debtors */
2338 if (iocg->abs_vdebt)
2339 return cost;
2340
b0853ab4
TH
2341 /*
2342 * We only increase inuse during period and do so iff the margin has
2343 * deteriorated since the previous adjustment.
2344 */
2345 if (margin >= iocg->saved_margin || margin >= margins->low ||
2346 iocg->inuse == iocg->active)
2347 return cost;
2348
2349 spin_lock_irq(&ioc->lock);
2350
2351 /* we own inuse only when @iocg is in the normal active state */
c421a3eb 2352 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
b0853ab4
TH
2353 spin_unlock_irq(&ioc->lock);
2354 return cost;
2355 }
2356
2357 /* bump up inuse till @abs_cost fits in the existing budget */
2358 new_inuse = iocg->inuse;
2359 do {
2360 new_inuse = new_inuse + adj_step;
2361 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2362 current_hweight(iocg, NULL, &hwi);
2363 cost = abs_cost_to_cost(abs_cost, hwi);
2364 } while (time_after64(vtime + cost, now->vnow) &&
2365 iocg->inuse != iocg->active);
2366
2367 spin_unlock_irq(&ioc->lock);
04603755
TH
2368
2369 TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2370 old_inuse, iocg->inuse, old_hwi, hwi);
2371
b0853ab4
TH
2372 return cost;
2373}
2374
7caa4715
TH
2375static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2376 bool is_merge, u64 *costp)
2377{
2378 struct ioc *ioc = iocg->ioc;
2379 u64 coef_seqio, coef_randio, coef_page;
2380 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2381 u64 seek_pages = 0;
2382 u64 cost = 0;
2383
2384 switch (bio_op(bio)) {
2385 case REQ_OP_READ:
2386 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO];
2387 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO];
2388 coef_page = ioc->params.lcoefs[LCOEF_RPAGE];
2389 break;
2390 case REQ_OP_WRITE:
2391 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO];
2392 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO];
2393 coef_page = ioc->params.lcoefs[LCOEF_WPAGE];
2394 break;
2395 default:
2396 goto out;
2397 }
2398
2399 if (iocg->cursor) {
2400 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2401 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2402 }
2403
2404 if (!is_merge) {
2405 if (seek_pages > LCOEF_RANDIO_PAGES) {
2406 cost += coef_randio;
2407 } else {
2408 cost += coef_seqio;
2409 }
2410 }
2411 cost += pages * coef_page;
2412out:
2413 *costp = cost;
2414}
2415
2416static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2417{
2418 u64 cost;
2419
2420 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2421 return cost;
2422}
2423
cd006509
TH
2424static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2425 u64 *costp)
2426{
2427 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2428
2429 switch (req_op(rq)) {
2430 case REQ_OP_READ:
2431 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2432 break;
2433 case REQ_OP_WRITE:
2434 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2435 break;
2436 default:
2437 *costp = 0;
2438 }
2439}
2440
2441static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2442{
2443 u64 cost;
2444
2445 calc_size_vtime_cost_builtin(rq, ioc, &cost);
2446 return cost;
2447}
2448
7caa4715
TH
2449static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2450{
2451 struct blkcg_gq *blkg = bio->bi_blkg;
2452 struct ioc *ioc = rqos_to_ioc(rqos);
2453 struct ioc_gq *iocg = blkg_to_iocg(blkg);
2454 struct ioc_now now;
2455 struct iocg_wait wait;
7caa4715 2456 u64 abs_cost, cost, vtime;
da437b95
TH
2457 bool use_debt, ioc_locked;
2458 unsigned long flags;
7caa4715
TH
2459
2460 /* bypass IOs if disabled or for root cgroup */
2461 if (!ioc->enabled || !iocg->level)
2462 return;
2463
7caa4715
TH
2464 /* calculate the absolute vtime cost */
2465 abs_cost = calc_vtime_cost(bio, iocg, false);
2466 if (!abs_cost)
2467 return;
2468
f1de2439
TH
2469 if (!iocg_activate(iocg, &now))
2470 return;
2471
7caa4715 2472 iocg->cursor = bio_end_sector(bio);
7caa4715 2473 vtime = atomic64_read(&iocg->vtime);
b0853ab4 2474 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
7caa4715
TH
2475
2476 /*
2477 * If no one's waiting and within budget, issue right away. The
2478 * tests are racy but the races aren't systemic - we only miss once
2479 * in a while which is fine.
2480 */
0b80f986 2481 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
7caa4715 2482 time_before_eq64(vtime + cost, now.vnow)) {
97eb1975 2483 iocg_commit_bio(iocg, bio, abs_cost, cost);
7caa4715
TH
2484 return;
2485 }
2486
36a52481 2487 /*
da437b95
TH
2488 * We're over budget. This can be handled in two ways. IOs which may
2489 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2490 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2491 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2492 * whether debt handling is needed and acquire locks accordingly.
0b80f986 2493 */
da437b95
TH
2494 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2495 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
b0853ab4 2496retry_lock:
da437b95
TH
2497 iocg_lock(iocg, ioc_locked, &flags);
2498
2499 /*
2500 * @iocg must stay activated for debt and waitq handling. Deactivation
2501 * is synchronized against both ioc->lock and waitq.lock and we won't
2502 * get deactivated as long as we're waiting or has debt, so we're good
2503 * if we're activated here. In the unlikely cases that we aren't, just
2504 * issue the IO.
2505 */
0b80f986 2506 if (unlikely(list_empty(&iocg->active_list))) {
da437b95 2507 iocg_unlock(iocg, ioc_locked, &flags);
97eb1975 2508 iocg_commit_bio(iocg, bio, abs_cost, cost);
0b80f986
TH
2509 return;
2510 }
2511
2512 /*
2513 * We're over budget. If @bio has to be issued regardless, remember
2514 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2515 * off the debt before waking more IOs.
2516 *
36a52481 2517 * This way, the debt is continuously paid off each period with the
0b80f986
TH
2518 * actual budget available to the cgroup. If we just wound vtime, we
2519 * would incorrectly use the current hw_inuse for the entire amount
2520 * which, for example, can lead to the cgroup staying blocked for a
2521 * long time even with substantially raised hw_inuse.
2522 *
2523 * An iocg with vdebt should stay online so that the timer can keep
2524 * deducting its vdebt and [de]activate use_delay mechanism
2525 * accordingly. We don't want to race against the timer trying to
2526 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2527 * penalizing the cgroup and its descendants.
36a52481 2528 */
da437b95 2529 if (use_debt) {
c421a3eb 2530 iocg_incur_debt(iocg, abs_cost, &now);
54c52e10 2531 if (iocg_kick_delay(iocg, &now))
d7bd15a1
TH
2532 blkcg_schedule_throttle(rqos->q,
2533 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
da437b95 2534 iocg_unlock(iocg, ioc_locked, &flags);
7caa4715
TH
2535 return;
2536 }
2537
b0853ab4 2538 /* guarantee that iocgs w/ waiters have maximum inuse */
c421a3eb 2539 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
b0853ab4
TH
2540 if (!ioc_locked) {
2541 iocg_unlock(iocg, false, &flags);
2542 ioc_locked = true;
2543 goto retry_lock;
2544 }
2545 propagate_weights(iocg, iocg->active, iocg->active, true,
2546 &now);
2547 }
2548
7caa4715
TH
2549 /*
2550 * Append self to the waitq and schedule the wakeup timer if we're
2551 * the first waiter. The timer duration is calculated based on the
2552 * current vrate. vtime and hweight changes can make it too short
2553 * or too long. Each wait entry records the absolute cost it's
2554 * waiting for to allow re-evaluation using a custom wait entry.
2555 *
2556 * If too short, the timer simply reschedules itself. If too long,
2557 * the period timer will notice and trigger wakeups.
2558 *
2559 * All waiters are on iocg->waitq and the wait states are
2560 * synchronized using waitq.lock.
2561 */
7caa4715
TH
2562 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2563 wait.wait.private = current;
2564 wait.bio = bio;
2565 wait.abs_cost = abs_cost;
2566 wait.committed = false; /* will be set true by waker */
2567
2568 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
da437b95 2569 iocg_kick_waitq(iocg, ioc_locked, &now);
7caa4715 2570
da437b95 2571 iocg_unlock(iocg, ioc_locked, &flags);
7caa4715
TH
2572
2573 while (true) {
2574 set_current_state(TASK_UNINTERRUPTIBLE);
2575 if (wait.committed)
2576 break;
2577 io_schedule();
2578 }
2579
2580 /* waker already committed us, proceed */
2581 finish_wait(&iocg->waitq, &wait.wait);
2582}
2583
2584static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2585 struct bio *bio)
2586{
2587 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
e1518f63 2588 struct ioc *ioc = iocg->ioc;
7caa4715 2589 sector_t bio_end = bio_end_sector(bio);
e1518f63 2590 struct ioc_now now;
b0853ab4 2591 u64 vtime, abs_cost, cost;
0b80f986 2592 unsigned long flags;
7caa4715 2593
e1518f63
TH
2594 /* bypass if disabled or for root cgroup */
2595 if (!ioc->enabled || !iocg->level)
7caa4715
TH
2596 return;
2597
2598 abs_cost = calc_vtime_cost(bio, iocg, true);
2599 if (!abs_cost)
2600 return;
2601
e1518f63 2602 ioc_now(ioc, &now);
b0853ab4
TH
2603
2604 vtime = atomic64_read(&iocg->vtime);
2605 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
e1518f63 2606
7caa4715
TH
2607 /* update cursor if backmerging into the request at the cursor */
2608 if (blk_rq_pos(rq) < bio_end &&
2609 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2610 iocg->cursor = bio_end;
2611
e1518f63 2612 /*
0b80f986
TH
2613 * Charge if there's enough vtime budget and the existing request has
2614 * cost assigned.
e1518f63
TH
2615 */
2616 if (rq->bio && rq->bio->bi_iocost_cost &&
0b80f986 2617 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
97eb1975 2618 iocg_commit_bio(iocg, bio, abs_cost, cost);
0b80f986
TH
2619 return;
2620 }
2621
2622 /*
2623 * Otherwise, account it as debt if @iocg is online, which it should
2624 * be for the vast majority of cases. See debt handling in
2625 * ioc_rqos_throttle() for details.
2626 */
c421a3eb
TH
2627 spin_lock_irqsave(&ioc->lock, flags);
2628 spin_lock(&iocg->waitq.lock);
2629
0b80f986 2630 if (likely(!list_empty(&iocg->active_list))) {
c421a3eb
TH
2631 iocg_incur_debt(iocg, abs_cost, &now);
2632 if (iocg_kick_delay(iocg, &now))
2633 blkcg_schedule_throttle(rqos->q,
2634 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
0b80f986 2635 } else {
97eb1975 2636 iocg_commit_bio(iocg, bio, abs_cost, cost);
0b80f986 2637 }
c421a3eb
TH
2638
2639 spin_unlock(&iocg->waitq.lock);
2640 spin_unlock_irqrestore(&ioc->lock, flags);
7caa4715
TH
2641}
2642
2643static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2644{
2645 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2646
2647 if (iocg && bio->bi_iocost_cost)
2648 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2649}
2650
2651static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2652{
2653 struct ioc *ioc = rqos_to_ioc(rqos);
5e124f74 2654 struct ioc_pcpu_stat *ccs;
cd006509 2655 u64 on_q_ns, rq_wait_ns, size_nsec;
7caa4715
TH
2656 int pidx, rw;
2657
2658 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2659 return;
2660
2661 switch (req_op(rq) & REQ_OP_MASK) {
2662 case REQ_OP_READ:
2663 pidx = QOS_RLAT;
2664 rw = READ;
2665 break;
2666 case REQ_OP_WRITE:
2667 pidx = QOS_WLAT;
2668 rw = WRITE;
2669 break;
2670 default:
2671 return;
2672 }
2673
2674 on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2675 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
cd006509 2676 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
7caa4715 2677
5e124f74
TH
2678 ccs = get_cpu_ptr(ioc->pcpu_stat);
2679
cd006509
TH
2680 if (on_q_ns <= size_nsec ||
2681 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
5e124f74 2682 local_inc(&ccs->missed[rw].nr_met);
7caa4715 2683 else
5e124f74
TH
2684 local_inc(&ccs->missed[rw].nr_missed);
2685
2686 local64_add(rq_wait_ns, &ccs->rq_wait_ns);
7caa4715 2687
5e124f74 2688 put_cpu_ptr(ccs);
7caa4715
TH
2689}
2690
2691static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2692{
2693 struct ioc *ioc = rqos_to_ioc(rqos);
2694
2695 spin_lock_irq(&ioc->lock);
2696 ioc_refresh_params(ioc, false);
2697 spin_unlock_irq(&ioc->lock);
2698}
2699
2700static void ioc_rqos_exit(struct rq_qos *rqos)
2701{
2702 struct ioc *ioc = rqos_to_ioc(rqos);
2703
2704 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2705
2706 spin_lock_irq(&ioc->lock);
2707 ioc->running = IOC_STOP;
2708 spin_unlock_irq(&ioc->lock);
2709
2710 del_timer_sync(&ioc->timer);
2711 free_percpu(ioc->pcpu_stat);
2712 kfree(ioc);
2713}
2714
2715static struct rq_qos_ops ioc_rqos_ops = {
2716 .throttle = ioc_rqos_throttle,
2717 .merge = ioc_rqos_merge,
2718 .done_bio = ioc_rqos_done_bio,
2719 .done = ioc_rqos_done,
2720 .queue_depth_changed = ioc_rqos_queue_depth_changed,
2721 .exit = ioc_rqos_exit,
2722};
2723
2724static int blk_iocost_init(struct request_queue *q)
2725{
2726 struct ioc *ioc;
2727 struct rq_qos *rqos;
5e124f74 2728 int i, cpu, ret;
7caa4715
TH
2729
2730 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2731 if (!ioc)
2732 return -ENOMEM;
2733
2734 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2735 if (!ioc->pcpu_stat) {
2736 kfree(ioc);
2737 return -ENOMEM;
2738 }
2739
5e124f74
TH
2740 for_each_possible_cpu(cpu) {
2741 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2742
2743 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2744 local_set(&ccs->missed[i].nr_met, 0);
2745 local_set(&ccs->missed[i].nr_missed, 0);
2746 }
2747 local64_set(&ccs->rq_wait_ns, 0);
2748 }
2749
7caa4715
TH
2750 rqos = &ioc->rqos;
2751 rqos->id = RQ_QOS_COST;
2752 rqos->ops = &ioc_rqos_ops;
2753 rqos->q = q;
2754
2755 spin_lock_init(&ioc->lock);
2756 timer_setup(&ioc->timer, ioc_timer_fn, 0);
2757 INIT_LIST_HEAD(&ioc->active_iocgs);
2758
2759 ioc->running = IOC_IDLE;
ac33e91e 2760 ioc->vtime_base_rate = VTIME_PER_USEC;
7caa4715 2761 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
67b7b641 2762 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
7caa4715
TH
2763 ioc->period_at = ktime_to_us(ktime_get());
2764 atomic64_set(&ioc->cur_period, 0);
2765 atomic_set(&ioc->hweight_gen, 0);
2766
2767 spin_lock_irq(&ioc->lock);
2768 ioc->autop_idx = AUTOP_INVALID;
2769 ioc_refresh_params(ioc, true);
2770 spin_unlock_irq(&ioc->lock);
2771
2772 rq_qos_add(q, rqos);
2773 ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2774 if (ret) {
2775 rq_qos_del(q, rqos);
3532e722 2776 free_percpu(ioc->pcpu_stat);
7caa4715
TH
2777 kfree(ioc);
2778 return ret;
2779 }
2780 return 0;
2781}
2782
2783static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2784{
2785 struct ioc_cgrp *iocc;
2786
2787 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
e916ad29
TH
2788 if (!iocc)
2789 return NULL;
7caa4715 2790
bd0adb91 2791 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
7caa4715
TH
2792 return &iocc->cpd;
2793}
2794
2795static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2796{
2797 kfree(container_of(cpd, struct ioc_cgrp, cpd));
2798}
2799
2800static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2801 struct blkcg *blkcg)
2802{
2803 int levels = blkcg->css.cgroup->level + 1;
2804 struct ioc_gq *iocg;
2805
f61d6e25 2806 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
7caa4715
TH
2807 if (!iocg)
2808 return NULL;
2809
97eb1975
TH
2810 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2811 if (!iocg->pcpu_stat) {
2812 kfree(iocg);
2813 return NULL;
2814 }
2815
7caa4715
TH
2816 return &iocg->pd;
2817}
2818
2819static void ioc_pd_init(struct blkg_policy_data *pd)
2820{
2821 struct ioc_gq *iocg = pd_to_iocg(pd);
2822 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2823 struct ioc *ioc = q_to_ioc(blkg->q);
2824 struct ioc_now now;
2825 struct blkcg_gq *tblkg;
2826 unsigned long flags;
2827
2828 ioc_now(ioc, &now);
2829
2830 iocg->ioc = ioc;
2831 atomic64_set(&iocg->vtime, now.vnow);
2832 atomic64_set(&iocg->done_vtime, now.vnow);
2833 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2834 INIT_LIST_HEAD(&iocg->active_list);
97eb1975 2835 INIT_LIST_HEAD(&iocg->walk_list);
8692d2db 2836 INIT_LIST_HEAD(&iocg->surplus_list);
fe20cdb5
TH
2837 iocg->hweight_active = WEIGHT_ONE;
2838 iocg->hweight_inuse = WEIGHT_ONE;
7caa4715
TH
2839
2840 init_waitqueue_head(&iocg->waitq);
2841 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2842 iocg->waitq_timer.function = iocg_waitq_timer_fn;
7caa4715
TH
2843
2844 iocg->level = blkg->blkcg->css.cgroup->level;
2845
2846 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2847 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2848 iocg->ancestors[tiocg->level] = tiocg;
2849 }
2850
2851 spin_lock_irqsave(&ioc->lock, flags);
b0853ab4 2852 weight_updated(iocg, &now);
7caa4715
TH
2853 spin_unlock_irqrestore(&ioc->lock, flags);
2854}
2855
2856static void ioc_pd_free(struct blkg_policy_data *pd)
2857{
2858 struct ioc_gq *iocg = pd_to_iocg(pd);
2859 struct ioc *ioc = iocg->ioc;
5aeac7c4 2860 unsigned long flags;
7caa4715
TH
2861
2862 if (ioc) {
5aeac7c4 2863 spin_lock_irqsave(&ioc->lock, flags);
97eb1975 2864
7caa4715 2865 if (!list_empty(&iocg->active_list)) {
b0853ab4
TH
2866 struct ioc_now now;
2867
2868 ioc_now(ioc, &now);
2869 propagate_weights(iocg, 0, 0, false, &now);
7caa4715
TH
2870 list_del_init(&iocg->active_list);
2871 }
97eb1975
TH
2872
2873 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
8692d2db 2874 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
97eb1975 2875
5aeac7c4 2876 spin_unlock_irqrestore(&ioc->lock, flags);
e036c4ca
TH
2877
2878 hrtimer_cancel(&iocg->waitq_timer);
7caa4715 2879 }
97eb1975 2880 free_percpu(iocg->pcpu_stat);
7caa4715
TH
2881 kfree(iocg);
2882}
2883
97eb1975
TH
2884static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size)
2885{
2886 struct ioc_gq *iocg = pd_to_iocg(pd);
2887 struct ioc *ioc = iocg->ioc;
2888 size_t pos = 0;
2889
2890 if (!ioc->enabled)
2891 return 0;
2892
2893 if (iocg->level == 0) {
2894 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
ac33e91e 2895 ioc->vtime_base_rate * 10000,
97eb1975
TH
2896 VTIME_PER_USEC);
2897 pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u",
2898 vp10k / 100, vp10k % 100);
2899 }
2900
2901 pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu",
2902 iocg->last_stat.usage_us);
2903
f0bf84a5
TH
2904 if (blkcg_debug_stats)
2905 pos += scnprintf(buf + pos, size - pos,
2906 " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
2907 iocg->last_stat.wait_us,
2908 iocg->last_stat.indebt_us,
2909 iocg->last_stat.indelay_us);
2910
97eb1975
TH
2911 return pos;
2912}
2913
7caa4715
TH
2914static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
2915 int off)
2916{
2917 const char *dname = blkg_dev_name(pd->blkg);
2918 struct ioc_gq *iocg = pd_to_iocg(pd);
2919
2920 if (dname && iocg->cfg_weight)
bd0adb91 2921 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
7caa4715
TH
2922 return 0;
2923}
2924
2925
2926static int ioc_weight_show(struct seq_file *sf, void *v)
2927{
2928 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2929 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2930
bd0adb91 2931 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
7caa4715
TH
2932 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
2933 &blkcg_policy_iocost, seq_cft(sf)->private, false);
2934 return 0;
2935}
2936
2937static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
2938 size_t nbytes, loff_t off)
2939{
2940 struct blkcg *blkcg = css_to_blkcg(of_css(of));
2941 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
2942 struct blkg_conf_ctx ctx;
b0853ab4 2943 struct ioc_now now;
7caa4715
TH
2944 struct ioc_gq *iocg;
2945 u32 v;
2946 int ret;
2947
2948 if (!strchr(buf, ':')) {
2949 struct blkcg_gq *blkg;
2950
2951 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
2952 return -EINVAL;
2953
2954 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2955 return -EINVAL;
2956
2957 spin_lock(&blkcg->lock);
bd0adb91 2958 iocc->dfl_weight = v * WEIGHT_ONE;
7caa4715
TH
2959 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
2960 struct ioc_gq *iocg = blkg_to_iocg(blkg);
2961
2962 if (iocg) {
2963 spin_lock_irq(&iocg->ioc->lock);
b0853ab4
TH
2964 ioc_now(iocg->ioc, &now);
2965 weight_updated(iocg, &now);
7caa4715
TH
2966 spin_unlock_irq(&iocg->ioc->lock);
2967 }
2968 }
2969 spin_unlock(&blkcg->lock);
2970
2971 return nbytes;
2972 }
2973
2974 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
2975 if (ret)
2976 return ret;
2977
2978 iocg = blkg_to_iocg(ctx.blkg);
2979
2980 if (!strncmp(ctx.body, "default", 7)) {
2981 v = 0;
2982 } else {
2983 if (!sscanf(ctx.body, "%u", &v))
2984 goto einval;
2985 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
2986 goto einval;
2987 }
2988
41591a51 2989 spin_lock(&iocg->ioc->lock);
bd0adb91 2990 iocg->cfg_weight = v * WEIGHT_ONE;
b0853ab4
TH
2991 ioc_now(iocg->ioc, &now);
2992 weight_updated(iocg, &now);
41591a51 2993 spin_unlock(&iocg->ioc->lock);
7caa4715
TH
2994
2995 blkg_conf_finish(&ctx);
2996 return nbytes;
2997
2998einval:
2999 blkg_conf_finish(&ctx);
3000 return -EINVAL;
3001}
3002
3003static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3004 int off)
3005{
3006 const char *dname = blkg_dev_name(pd->blkg);
3007 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3008
3009 if (!dname)
3010 return 0;
3011
3012 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3013 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3014 ioc->params.qos[QOS_RPPM] / 10000,
3015 ioc->params.qos[QOS_RPPM] % 10000 / 100,
3016 ioc->params.qos[QOS_RLAT],
3017 ioc->params.qos[QOS_WPPM] / 10000,
3018 ioc->params.qos[QOS_WPPM] % 10000 / 100,
3019 ioc->params.qos[QOS_WLAT],
3020 ioc->params.qos[QOS_MIN] / 10000,
3021 ioc->params.qos[QOS_MIN] % 10000 / 100,
3022 ioc->params.qos[QOS_MAX] / 10000,
3023 ioc->params.qos[QOS_MAX] % 10000 / 100);
3024 return 0;
3025}
3026
3027static int ioc_qos_show(struct seq_file *sf, void *v)
3028{
3029 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3030
3031 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3032 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3033 return 0;
3034}
3035
3036static const match_table_t qos_ctrl_tokens = {
3037 { QOS_ENABLE, "enable=%u" },
3038 { QOS_CTRL, "ctrl=%s" },
3039 { NR_QOS_CTRL_PARAMS, NULL },
3040};
3041
3042static const match_table_t qos_tokens = {
3043 { QOS_RPPM, "rpct=%s" },
3044 { QOS_RLAT, "rlat=%u" },
3045 { QOS_WPPM, "wpct=%s" },
3046 { QOS_WLAT, "wlat=%u" },
3047 { QOS_MIN, "min=%s" },
3048 { QOS_MAX, "max=%s" },
3049 { NR_QOS_PARAMS, NULL },
3050};
3051
3052static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3053 size_t nbytes, loff_t off)
3054{
3055 struct gendisk *disk;
3056 struct ioc *ioc;
3057 u32 qos[NR_QOS_PARAMS];
3058 bool enable, user;
3059 char *p;
3060 int ret;
3061
3062 disk = blkcg_conf_get_disk(&input);
3063 if (IS_ERR(disk))
3064 return PTR_ERR(disk);
3065
3066 ioc = q_to_ioc(disk->queue);
3067 if (!ioc) {
3068 ret = blk_iocost_init(disk->queue);
3069 if (ret)
3070 goto err;
3071 ioc = q_to_ioc(disk->queue);
3072 }
3073
3074 spin_lock_irq(&ioc->lock);
3075 memcpy(qos, ioc->params.qos, sizeof(qos));
3076 enable = ioc->enabled;
3077 user = ioc->user_qos_params;
3078 spin_unlock_irq(&ioc->lock);
3079
3080 while ((p = strsep(&input, " \t\n"))) {
3081 substring_t args[MAX_OPT_ARGS];
3082 char buf[32];
3083 int tok;
3084 s64 v;
3085
3086 if (!*p)
3087 continue;
3088
3089 switch (match_token(p, qos_ctrl_tokens, args)) {
3090 case QOS_ENABLE:
3091 match_u64(&args[0], &v);
3092 enable = v;
3093 continue;
3094 case QOS_CTRL:
3095 match_strlcpy(buf, &args[0], sizeof(buf));
3096 if (!strcmp(buf, "auto"))
3097 user = false;
3098 else if (!strcmp(buf, "user"))
3099 user = true;
3100 else
3101 goto einval;
3102 continue;
3103 }
3104
3105 tok = match_token(p, qos_tokens, args);
3106 switch (tok) {
3107 case QOS_RPPM:
3108 case QOS_WPPM:
3109 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3110 sizeof(buf))
3111 goto einval;
3112 if (cgroup_parse_float(buf, 2, &v))
3113 goto einval;
3114 if (v < 0 || v > 10000)
3115 goto einval;
3116 qos[tok] = v * 100;
3117 break;
3118 case QOS_RLAT:
3119 case QOS_WLAT:
3120 if (match_u64(&args[0], &v))
3121 goto einval;
3122 qos[tok] = v;
3123 break;
3124 case QOS_MIN:
3125 case QOS_MAX:
3126 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3127 sizeof(buf))
3128 goto einval;
3129 if (cgroup_parse_float(buf, 2, &v))
3130 goto einval;
3131 if (v < 0)
3132 goto einval;
3133 qos[tok] = clamp_t(s64, v * 100,
3134 VRATE_MIN_PPM, VRATE_MAX_PPM);
3135 break;
3136 default:
3137 goto einval;
3138 }
3139 user = true;
3140 }
3141
3142 if (qos[QOS_MIN] > qos[QOS_MAX])
3143 goto einval;
3144
3145 spin_lock_irq(&ioc->lock);
3146
3147 if (enable) {
cd006509 3148 blk_stat_enable_accounting(ioc->rqos.q);
7caa4715
TH
3149 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3150 ioc->enabled = true;
3151 } else {
3152 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3153 ioc->enabled = false;
3154 }
3155
3156 if (user) {
3157 memcpy(ioc->params.qos, qos, sizeof(qos));
3158 ioc->user_qos_params = true;
3159 } else {
3160 ioc->user_qos_params = false;
3161 }
3162
3163 ioc_refresh_params(ioc, true);
3164 spin_unlock_irq(&ioc->lock);
3165
3166 put_disk_and_module(disk);
3167 return nbytes;
3168einval:
3169 ret = -EINVAL;
3170err:
3171 put_disk_and_module(disk);
3172 return ret;
3173}
3174
3175static u64 ioc_cost_model_prfill(struct seq_file *sf,
3176 struct blkg_policy_data *pd, int off)
3177{
3178 const char *dname = blkg_dev_name(pd->blkg);
3179 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3180 u64 *u = ioc->params.i_lcoefs;
3181
3182 if (!dname)
3183 return 0;
3184
3185 seq_printf(sf, "%s ctrl=%s model=linear "
3186 "rbps=%llu rseqiops=%llu rrandiops=%llu "
3187 "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3188 dname, ioc->user_cost_model ? "user" : "auto",
3189 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3190 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3191 return 0;
3192}
3193
3194static int ioc_cost_model_show(struct seq_file *sf, void *v)
3195{
3196 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3197
3198 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3199 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3200 return 0;
3201}
3202
3203static const match_table_t cost_ctrl_tokens = {
3204 { COST_CTRL, "ctrl=%s" },
3205 { COST_MODEL, "model=%s" },
3206 { NR_COST_CTRL_PARAMS, NULL },
3207};
3208
3209static const match_table_t i_lcoef_tokens = {
3210 { I_LCOEF_RBPS, "rbps=%u" },
3211 { I_LCOEF_RSEQIOPS, "rseqiops=%u" },
3212 { I_LCOEF_RRANDIOPS, "rrandiops=%u" },
3213 { I_LCOEF_WBPS, "wbps=%u" },
3214 { I_LCOEF_WSEQIOPS, "wseqiops=%u" },
3215 { I_LCOEF_WRANDIOPS, "wrandiops=%u" },
3216 { NR_I_LCOEFS, NULL },
3217};
3218
3219static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3220 size_t nbytes, loff_t off)
3221{
3222 struct gendisk *disk;
3223 struct ioc *ioc;
3224 u64 u[NR_I_LCOEFS];
3225 bool user;
3226 char *p;
3227 int ret;
3228
3229 disk = blkcg_conf_get_disk(&input);
3230 if (IS_ERR(disk))
3231 return PTR_ERR(disk);
3232
3233 ioc = q_to_ioc(disk->queue);
3234 if (!ioc) {
3235 ret = blk_iocost_init(disk->queue);
3236 if (ret)
3237 goto err;
3238 ioc = q_to_ioc(disk->queue);
3239 }
3240
3241 spin_lock_irq(&ioc->lock);
3242 memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3243 user = ioc->user_cost_model;
3244 spin_unlock_irq(&ioc->lock);
3245
3246 while ((p = strsep(&input, " \t\n"))) {
3247 substring_t args[MAX_OPT_ARGS];
3248 char buf[32];
3249 int tok;
3250 u64 v;
3251
3252 if (!*p)
3253 continue;
3254
3255 switch (match_token(p, cost_ctrl_tokens, args)) {
3256 case COST_CTRL:
3257 match_strlcpy(buf, &args[0], sizeof(buf));
3258 if (!strcmp(buf, "auto"))
3259 user = false;
3260 else if (!strcmp(buf, "user"))
3261 user = true;
3262 else
3263 goto einval;
3264 continue;
3265 case COST_MODEL:
3266 match_strlcpy(buf, &args[0], sizeof(buf));
3267 if (strcmp(buf, "linear"))
3268 goto einval;
3269 continue;
3270 }
3271
3272 tok = match_token(p, i_lcoef_tokens, args);
3273 if (tok == NR_I_LCOEFS)
3274 goto einval;
3275 if (match_u64(&args[0], &v))
3276 goto einval;
3277 u[tok] = v;
3278 user = true;
3279 }
3280
3281 spin_lock_irq(&ioc->lock);
3282 if (user) {
3283 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3284 ioc->user_cost_model = true;
3285 } else {
3286 ioc->user_cost_model = false;
3287 }
3288 ioc_refresh_params(ioc, true);
3289 spin_unlock_irq(&ioc->lock);
3290
3291 put_disk_and_module(disk);
3292 return nbytes;
3293
3294einval:
3295 ret = -EINVAL;
3296err:
3297 put_disk_and_module(disk);
3298 return ret;
3299}
3300
3301static struct cftype ioc_files[] = {
3302 {
3303 .name = "weight",
3304 .flags = CFTYPE_NOT_ON_ROOT,
3305 .seq_show = ioc_weight_show,
3306 .write = ioc_weight_write,
3307 },
3308 {
3309 .name = "cost.qos",
3310 .flags = CFTYPE_ONLY_ON_ROOT,
3311 .seq_show = ioc_qos_show,
3312 .write = ioc_qos_write,
3313 },
3314 {
3315 .name = "cost.model",
3316 .flags = CFTYPE_ONLY_ON_ROOT,
3317 .seq_show = ioc_cost_model_show,
3318 .write = ioc_cost_model_write,
3319 },
3320 {}
3321};
3322
3323static struct blkcg_policy blkcg_policy_iocost = {
3324 .dfl_cftypes = ioc_files,
3325 .cpd_alloc_fn = ioc_cpd_alloc,
3326 .cpd_free_fn = ioc_cpd_free,
3327 .pd_alloc_fn = ioc_pd_alloc,
3328 .pd_init_fn = ioc_pd_init,
3329 .pd_free_fn = ioc_pd_free,
97eb1975 3330 .pd_stat_fn = ioc_pd_stat,
7caa4715
TH
3331};
3332
3333static int __init ioc_init(void)
3334{
3335 return blkcg_policy_register(&blkcg_policy_iocost);
3336}
3337
3338static void __exit ioc_exit(void)
3339{
3340 return blkcg_policy_unregister(&blkcg_policy_iocost);
3341}
3342
3343module_init(ioc_init);
3344module_exit(ioc_exit);