block: Fix where bio IO priority gets set
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
1da177e4
LT
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
1da177e4
LT
15#include <linux/kernel.h>
16#include <linux/module.h>
1da177e4
LT
17#include <linux/bio.h>
18#include <linux/blkdev.h>
52abca64 19#include <linux/blk-pm.h>
fe45e630 20#include <linux/blk-integrity.h>
1da177e4
LT
21#include <linux/highmem.h>
22#include <linux/mm.h>
cee9a0c4 23#include <linux/pagemap.h>
1da177e4
LT
24#include <linux/kernel_stat.h>
25#include <linux/string.h>
26#include <linux/init.h>
1da177e4
LT
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
faccbd4b 31#include <linux/task_io_accounting_ops.h>
c17bb495 32#include <linux/fault-inject.h>
73c10101 33#include <linux/list_sort.h>
e3c78ca5 34#include <linux/delay.h>
aaf7c680 35#include <linux/ratelimit.h>
6c954667 36#include <linux/pm_runtime.h>
54d4e6ab 37#include <linux/t10-pi.h>
18fbda91 38#include <linux/debugfs.h>
30abb3a6 39#include <linux/bpf.h>
82d981d4 40#include <linux/part_stat.h>
71ac860a 41#include <linux/sched/sysctl.h>
a892c8d5 42#include <linux/blk-crypto.h>
55782138
LZ
43
44#define CREATE_TRACE_POINTS
45#include <trace/events/block.h>
1da177e4 46
8324aa91 47#include "blk.h"
2aa7745b 48#include "blk-mq-sched.h"
bca6b067 49#include "blk-pm.h"
672fdcf0 50#include "blk-cgroup.h"
a7b36ee6 51#include "blk-throttle.h"
f3c89983 52#include "blk-ioprio.h"
8324aa91 53
18fbda91 54struct dentry *blk_debugfs_root;
18fbda91 55
d07335e5 56EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 57EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 58EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 59EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 60EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
b357e4a6 61EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
0bfc2455 62
2bd85221 63static DEFINE_IDA(blk_queue_ida);
a73f730d 64
1da177e4
LT
65/*
66 * For queue allocation
67 */
2bd85221 68static struct kmem_cache *blk_requestq_cachep;
1da177e4 69
1da177e4
LT
70/*
71 * Controlling structure to kblockd
72 */
ff856bad 73static struct workqueue_struct *kblockd_workqueue;
1da177e4 74
8814ce8a
BVA
75/**
76 * blk_queue_flag_set - atomically set a queue flag
77 * @flag: flag to be set
78 * @q: request queue
79 */
80void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81{
57d74df9 82 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
83}
84EXPORT_SYMBOL(blk_queue_flag_set);
85
86/**
87 * blk_queue_flag_clear - atomically clear a queue flag
88 * @flag: flag to be cleared
89 * @q: request queue
90 */
91void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92{
57d74df9 93 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
94}
95EXPORT_SYMBOL(blk_queue_flag_clear);
96
97/**
98 * blk_queue_flag_test_and_set - atomically test and set a queue flag
99 * @flag: flag to be set
100 * @q: request queue
101 *
102 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
103 * the flag was already set.
104 */
105bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
106{
57d74df9 107 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
108}
109EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
110
e47bc4ed
CK
111#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
112static const char *const blk_op_name[] = {
113 REQ_OP_NAME(READ),
114 REQ_OP_NAME(WRITE),
115 REQ_OP_NAME(FLUSH),
116 REQ_OP_NAME(DISCARD),
117 REQ_OP_NAME(SECURE_ERASE),
118 REQ_OP_NAME(ZONE_RESET),
6e33dbf2 119 REQ_OP_NAME(ZONE_RESET_ALL),
6c1b1da5
AJ
120 REQ_OP_NAME(ZONE_OPEN),
121 REQ_OP_NAME(ZONE_CLOSE),
122 REQ_OP_NAME(ZONE_FINISH),
0512a75b 123 REQ_OP_NAME(ZONE_APPEND),
e47bc4ed 124 REQ_OP_NAME(WRITE_ZEROES),
e47bc4ed
CK
125 REQ_OP_NAME(DRV_IN),
126 REQ_OP_NAME(DRV_OUT),
127};
128#undef REQ_OP_NAME
129
130/**
131 * blk_op_str - Return string XXX in the REQ_OP_XXX.
132 * @op: REQ_OP_XXX.
133 *
134 * Description: Centralize block layer function to convert REQ_OP_XXX into
135 * string format. Useful in the debugging and tracing bio or request. For
136 * invalid REQ_OP_XXX it returns string "UNKNOWN".
137 */
77e7ffd7 138inline const char *blk_op_str(enum req_op op)
e47bc4ed
CK
139{
140 const char *op_str = "UNKNOWN";
141
142 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
143 op_str = blk_op_name[op];
144
145 return op_str;
146}
147EXPORT_SYMBOL_GPL(blk_op_str);
148
2a842aca
CH
149static const struct {
150 int errno;
151 const char *name;
152} blk_errors[] = {
153 [BLK_STS_OK] = { 0, "" },
154 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
155 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
156 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
157 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
158 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
7ba15083 159 [BLK_STS_RESV_CONFLICT] = { -EBADE, "reservation conflict" },
2a842aca
CH
160 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
161 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
162 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 163 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 164 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
7d32c027 165 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
2a842aca 166
4e4cbee9
CH
167 /* device mapper special case, should not leak out: */
168 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
169
3b481d91
KB
170 /* zone device specific errors */
171 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
172 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
173
dffc480d
DLM
174 /* Command duration limit device-side timeout */
175 [BLK_STS_DURATION_LIMIT] = { -ETIME, "duration limit exceeded" },
176
2a842aca
CH
177 /* everything else not covered above: */
178 [BLK_STS_IOERR] = { -EIO, "I/O" },
179};
180
181blk_status_t errno_to_blk_status(int errno)
182{
183 int i;
184
185 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
186 if (blk_errors[i].errno == errno)
187 return (__force blk_status_t)i;
188 }
189
190 return BLK_STS_IOERR;
191}
192EXPORT_SYMBOL_GPL(errno_to_blk_status);
193
194int blk_status_to_errno(blk_status_t status)
195{
196 int idx = (__force int)status;
197
34bd9c1c 198 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
199 return -EIO;
200 return blk_errors[idx].errno;
201}
202EXPORT_SYMBOL_GPL(blk_status_to_errno);
203
0d7a29a2 204const char *blk_status_to_str(blk_status_t status)
2a842aca
CH
205{
206 int idx = (__force int)status;
207
34bd9c1c 208 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
0d7a29a2
CH
209 return "<null>";
210 return blk_errors[idx].name;
2a842aca 211}
7ba37927 212EXPORT_SYMBOL_GPL(blk_status_to_str);
2a842aca 213
1da177e4
LT
214/**
215 * blk_sync_queue - cancel any pending callbacks on a queue
216 * @q: the queue
217 *
218 * Description:
219 * The block layer may perform asynchronous callback activity
220 * on a queue, such as calling the unplug function after a timeout.
221 * A block device may call blk_sync_queue to ensure that any
222 * such activity is cancelled, thus allowing it to release resources
59c51591 223 * that the callbacks might use. The caller must already have made sure
c62b37d9 224 * that its ->submit_bio will not re-add plugging prior to calling
1da177e4
LT
225 * this function.
226 *
da527770 227 * This function does not cancel any asynchronous activity arising
da3dae54 228 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 229 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 230 *
1da177e4
LT
231 */
232void blk_sync_queue(struct request_queue *q)
233{
70ed28b9 234 del_timer_sync(&q->timeout);
4e9b6f20 235 cancel_work_sync(&q->timeout_work);
1da177e4
LT
236}
237EXPORT_SYMBOL(blk_sync_queue);
238
c9254f2d 239/**
cd84a62e 240 * blk_set_pm_only - increment pm_only counter
c9254f2d 241 * @q: request queue pointer
c9254f2d 242 */
cd84a62e 243void blk_set_pm_only(struct request_queue *q)
c9254f2d 244{
cd84a62e 245 atomic_inc(&q->pm_only);
c9254f2d 246}
cd84a62e 247EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 248
cd84a62e 249void blk_clear_pm_only(struct request_queue *q)
c9254f2d 250{
cd84a62e
BVA
251 int pm_only;
252
253 pm_only = atomic_dec_return(&q->pm_only);
254 WARN_ON_ONCE(pm_only < 0);
255 if (pm_only == 0)
256 wake_up_all(&q->mq_freeze_wq);
c9254f2d 257}
cd84a62e 258EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 259
2bd85221
CH
260static void blk_free_queue_rcu(struct rcu_head *rcu_head)
261{
d36a9ea5
ML
262 struct request_queue *q = container_of(rcu_head,
263 struct request_queue, rcu_head);
264
265 percpu_ref_exit(&q->q_usage_counter);
266 kmem_cache_free(blk_requestq_cachep, q);
2bd85221
CH
267}
268
269static void blk_free_queue(struct request_queue *q)
270{
2bd85221 271 blk_free_queue_stats(q->stats);
2bd85221
CH
272 if (queue_is_mq(q))
273 blk_mq_release(q);
274
275 ida_free(&blk_queue_ida, q->id);
276 call_rcu(&q->rcu_head, blk_free_queue_rcu);
277}
278
b5bd357c
LC
279/**
280 * blk_put_queue - decrement the request_queue refcount
281 * @q: the request_queue structure to decrement the refcount for
282 *
2bd85221
CH
283 * Decrements the refcount of the request_queue and free it when the refcount
284 * reaches 0.
b5bd357c 285 */
165125e1 286void blk_put_queue(struct request_queue *q)
483f4afc 287{
2bd85221
CH
288 if (refcount_dec_and_test(&q->refs))
289 blk_free_queue(q);
483f4afc 290}
d86e0e83 291EXPORT_SYMBOL(blk_put_queue);
483f4afc 292
8e141f9e 293void blk_queue_start_drain(struct request_queue *q)
aed3ea94 294{
d3cfb2a0
ML
295 /*
296 * When queue DYING flag is set, we need to block new req
297 * entering queue, so we call blk_freeze_queue_start() to
298 * prevent I/O from crossing blk_queue_enter().
299 */
300 blk_freeze_queue_start(q);
344e9ffc 301 if (queue_is_mq(q))
aed3ea94 302 blk_mq_wake_waiters(q);
055f6e18
ML
303 /* Make blk_queue_enter() reexamine the DYING flag. */
304 wake_up_all(&q->mq_freeze_wq);
aed3ea94 305}
8e141f9e 306
3a0a5299
BVA
307/**
308 * blk_queue_enter() - try to increase q->q_usage_counter
309 * @q: request queue pointer
a4d34da7 310 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
3a0a5299 311 */
9a95e4ef 312int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 313{
a4d34da7 314 const bool pm = flags & BLK_MQ_REQ_PM;
3a0a5299 315
1f14a098 316 while (!blk_try_enter_queue(q, pm)) {
3a0a5299 317 if (flags & BLK_MQ_REQ_NOWAIT)
56f99b8d 318 return -EAGAIN;
3ef28e83 319
5ed61d3f 320 /*
1f14a098
CH
321 * read pair of barrier in blk_freeze_queue_start(), we need to
322 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
323 * reading .mq_freeze_depth or queue dying flag, otherwise the
324 * following wait may never return if the two reads are
325 * reordered.
5ed61d3f
ML
326 */
327 smp_rmb();
1dc3039b 328 wait_event(q->mq_freeze_wq,
7996a8b5 329 (!q->mq_freeze_depth &&
52abca64 330 blk_pm_resume_queue(pm, q)) ||
1dc3039b 331 blk_queue_dying(q));
3ef28e83
DW
332 if (blk_queue_dying(q))
333 return -ENODEV;
3ef28e83 334 }
1f14a098
CH
335
336 return 0;
3ef28e83
DW
337}
338
c98cb5bb 339int __bio_queue_enter(struct request_queue *q, struct bio *bio)
accea322 340{
a6741536 341 while (!blk_try_enter_queue(q, false)) {
eab4e027
PB
342 struct gendisk *disk = bio->bi_bdev->bd_disk;
343
a6741536 344 if (bio->bi_opf & REQ_NOWAIT) {
8e141f9e 345 if (test_bit(GD_DEAD, &disk->state))
a6741536 346 goto dead;
accea322 347 bio_wouldblock_error(bio);
56f99b8d 348 return -EAGAIN;
a6741536
CH
349 }
350
351 /*
352 * read pair of barrier in blk_freeze_queue_start(), we need to
353 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
354 * reading .mq_freeze_depth or queue dying flag, otherwise the
355 * following wait may never return if the two reads are
356 * reordered.
357 */
358 smp_rmb();
359 wait_event(q->mq_freeze_wq,
360 (!q->mq_freeze_depth &&
361 blk_pm_resume_queue(false, q)) ||
8e141f9e
CH
362 test_bit(GD_DEAD, &disk->state));
363 if (test_bit(GD_DEAD, &disk->state))
a6741536 364 goto dead;
accea322
CH
365 }
366
a6741536
CH
367 return 0;
368dead:
369 bio_io_error(bio);
370 return -ENODEV;
accea322
CH
371}
372
3ef28e83
DW
373void blk_queue_exit(struct request_queue *q)
374{
375 percpu_ref_put(&q->q_usage_counter);
376}
377
378static void blk_queue_usage_counter_release(struct percpu_ref *ref)
379{
380 struct request_queue *q =
381 container_of(ref, struct request_queue, q_usage_counter);
382
383 wake_up_all(&q->mq_freeze_wq);
384}
385
bca237a5 386static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 387{
bca237a5 388 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
389
390 kblockd_schedule_work(&q->timeout_work);
391}
392
2e3c18d0
TH
393static void blk_timeout_work(struct work_struct *work)
394{
395}
396
80bd4a7a 397struct request_queue *blk_alloc_queue(int node_id)
1946089a 398{
165125e1 399 struct request_queue *q;
1946089a 400
80bd4a7a
CH
401 q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
402 node_id);
1da177e4
LT
403 if (!q)
404 return NULL;
405
cbf62af3 406 q->last_merge = NULL;
cbf62af3 407
798f2a6f 408 q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
a73f730d 409 if (q->id < 0)
80bd4a7a 410 goto fail_q;
a73f730d 411
a83b576c
JA
412 q->stats = blk_alloc_queue_stats();
413 if (!q->stats)
46754bd0 414 goto fail_id;
a83b576c 415
5151412d 416 q->node = node_id;
0989a025 417
079a2e3e 418 atomic_set(&q->nr_active_requests_shared_tags, 0);
bccf5e26 419
bca237a5 420 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
2e3c18d0 421 INIT_WORK(&q->timeout_work, blk_timeout_work);
a612fddf 422 INIT_LIST_HEAD(&q->icq_list);
483f4afc 423
2bd85221 424 refcount_set(&q->refs, 1);
85e0cbbb 425 mutex_init(&q->debugfs_mutex);
483f4afc 426 mutex_init(&q->sysfs_lock);
cecf5d87 427 mutex_init(&q->sysfs_dir_lock);
a13bd91b 428 mutex_init(&q->rq_qos_mutex);
0d945c1f 429 spin_lock_init(&q->queue_lock);
c94a96ac 430
320ae51f 431 init_waitqueue_head(&q->mq_freeze_wq);
7996a8b5 432 mutex_init(&q->mq_freeze_lock);
320ae51f 433
3ef28e83
DW
434 /*
435 * Init percpu_ref in atomic mode so that it's faster to shutdown.
436 * See blk_register_queue() for details.
437 */
438 if (percpu_ref_init(&q->q_usage_counter,
439 blk_queue_usage_counter_release,
440 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
edb0872f 441 goto fail_stats;
f51b802c 442
3d745ea5 443 blk_set_default_limits(&q->limits);
d2a27964 444 q->nr_requests = BLKDEV_DEFAULT_RQ;
3d745ea5 445
1da177e4 446 return q;
a73f730d 447
a83b576c 448fail_stats:
edb0872f 449 blk_free_queue_stats(q->stats);
a73f730d 450fail_id:
798f2a6f 451 ida_free(&blk_queue_ida, q->id);
a73f730d 452fail_q:
80bd4a7a 453 kmem_cache_free(blk_requestq_cachep, q);
a73f730d 454 return NULL;
1da177e4 455}
1da177e4 456
b5bd357c
LC
457/**
458 * blk_get_queue - increment the request_queue refcount
459 * @q: the request_queue structure to increment the refcount for
460 *
461 * Increment the refcount of the request_queue kobject.
763b5892
LC
462 *
463 * Context: Any context.
b5bd357c 464 */
09ac46c4 465bool blk_get_queue(struct request_queue *q)
1da177e4 466{
828b5f01
CH
467 if (unlikely(blk_queue_dying(q)))
468 return false;
2bd85221 469 refcount_inc(&q->refs);
828b5f01 470 return true;
1da177e4 471}
d86e0e83 472EXPORT_SYMBOL(blk_get_queue);
1da177e4 473
c17bb495
AM
474#ifdef CONFIG_FAIL_MAKE_REQUEST
475
476static DECLARE_FAULT_ATTR(fail_make_request);
477
478static int __init setup_fail_make_request(char *str)
479{
480 return setup_fault_attr(&fail_make_request, str);
481}
482__setup("fail_make_request=", setup_fail_make_request);
483
06c8c691 484bool should_fail_request(struct block_device *part, unsigned int bytes)
c17bb495 485{
8446fe92 486 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
487}
488
489static int __init fail_make_request_debugfs(void)
490{
dd48c085
AM
491 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
492 NULL, &fail_make_request);
493
21f9fcd8 494 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
495}
496
497late_initcall(fail_make_request_debugfs);
c17bb495
AM
498#endif /* CONFIG_FAIL_MAKE_REQUEST */
499
bdb7d420 500static inline void bio_check_ro(struct bio *bio)
721c7fc7 501{
2f9f6221 502 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
8b2ded1c 503 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
bdb7d420 504 return;
67d995e0
YK
505
506 if (bio->bi_bdev->bd_ro_warned)
507 return;
508
509 bio->bi_bdev->bd_ro_warned = true;
510 /*
511 * Use ioctl to set underlying disk of raid/dm to read-only
512 * will trigger this.
513 */
514 pr_warn("Trying to write to read-only block-device %pg\n",
515 bio->bi_bdev);
721c7fc7 516 }
721c7fc7
ID
517}
518
30abb3a6
HM
519static noinline int should_fail_bio(struct bio *bio)
520{
309dca30 521 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
30abb3a6
HM
522 return -EIO;
523 return 0;
524}
525ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
526
52c5e62d
CH
527/*
528 * Check whether this bio extends beyond the end of the device or partition.
529 * This may well happen - the kernel calls bread() without checking the size of
530 * the device, e.g., when mounting a file system.
531 */
2f9f6221 532static inline int bio_check_eod(struct bio *bio)
52c5e62d 533{
2f9f6221 534 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
52c5e62d
CH
535 unsigned int nr_sectors = bio_sectors(bio);
536
3eb96946 537 if (nr_sectors &&
52c5e62d
CH
538 (nr_sectors > maxsector ||
539 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
ad740780 540 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
069adbac
CH
541 "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
542 current->comm, bio->bi_bdev, bio->bi_opf,
543 bio->bi_iter.bi_sector, nr_sectors, maxsector);
52c5e62d
CH
544 return -EIO;
545 }
546 return 0;
547}
548
74d46992
CH
549/*
550 * Remap block n of partition p to block n+start(p) of the disk.
551 */
2f9f6221 552static int blk_partition_remap(struct bio *bio)
74d46992 553{
309dca30 554 struct block_device *p = bio->bi_bdev;
74d46992 555
52c5e62d 556 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2f9f6221 557 return -EIO;
5eac3eb3 558 if (bio_sectors(bio)) {
8446fe92 559 bio->bi_iter.bi_sector += p->bd_start_sect;
1c02fca6 560 trace_block_bio_remap(bio, p->bd_dev,
29ff57c6 561 bio->bi_iter.bi_sector -
8446fe92 562 p->bd_start_sect);
52c5e62d 563 }
30c5d345 564 bio_set_flag(bio, BIO_REMAPPED);
2f9f6221 565 return 0;
74d46992
CH
566}
567
0512a75b
KB
568/*
569 * Check write append to a zoned block device.
570 */
571static inline blk_status_t blk_check_zone_append(struct request_queue *q,
572 struct bio *bio)
573{
0512a75b
KB
574 int nr_sectors = bio_sectors(bio);
575
576 /* Only applicable to zoned block devices */
edd1dbc8 577 if (!bdev_is_zoned(bio->bi_bdev))
0512a75b
KB
578 return BLK_STS_NOTSUPP;
579
580 /* The bio sector must point to the start of a sequential zone */
e29b2100 581 if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector) ||
052e545c 582 !bio_zone_is_seq(bio))
0512a75b
KB
583 return BLK_STS_IOERR;
584
585 /*
586 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
587 * split and could result in non-contiguous sectors being written in
588 * different zones.
589 */
590 if (nr_sectors > q->limits.chunk_sectors)
591 return BLK_STS_IOERR;
592
593 /* Make sure the BIO is small enough and will not get split */
594 if (nr_sectors > q->limits.max_zone_append_sectors)
595 return BLK_STS_IOERR;
596
597 bio->bi_opf |= REQ_NOMERGE;
598
599 return BLK_STS_OK;
600}
601
900e0807
JA
602static void __submit_bio(struct bio *bio)
603{
7f36b7d0
ML
604 if (unlikely(!blk_crypto_bio_prep(&bio)))
605 return;
606
9f4107b0 607 if (!bio->bi_bdev->bd_has_submit_bio) {
3e08773c 608 blk_mq_submit_bio(bio);
7f36b7d0 609 } else if (likely(bio_queue_enter(bio) == 0)) {
9f4107b0
JA
610 struct gendisk *disk = bio->bi_bdev->bd_disk;
611
7f36b7d0
ML
612 disk->fops->submit_bio(bio);
613 blk_queue_exit(disk->queue);
614 }
ac7c5675
CH
615}
616
566acf2d
CH
617/*
618 * The loop in this function may be a bit non-obvious, and so deserves some
619 * explanation:
620 *
621 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
622 * that), so we have a list with a single bio.
623 * - We pretend that we have just taken it off a longer list, so we assign
624 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
625 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
626 * bios through a recursive call to submit_bio_noacct. If it did, we find a
627 * non-NULL value in bio_list and re-enter the loop from the top.
628 * - In this case we really did just take the bio of the top of the list (no
629 * pretending) and so remove it from bio_list, and call into ->submit_bio()
630 * again.
631 *
632 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
633 * bio_list_on_stack[1] contains bios that were submitted before the current
69fe0f29 634 * ->submit_bio, but that haven't been processed yet.
566acf2d 635 */
3e08773c 636static void __submit_bio_noacct(struct bio *bio)
566acf2d
CH
637{
638 struct bio_list bio_list_on_stack[2];
566acf2d
CH
639
640 BUG_ON(bio->bi_next);
641
642 bio_list_init(&bio_list_on_stack[0]);
643 current->bio_list = bio_list_on_stack;
644
645 do {
eab4e027 646 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
566acf2d
CH
647 struct bio_list lower, same;
648
566acf2d
CH
649 /*
650 * Create a fresh bio_list for all subordinate requests.
651 */
652 bio_list_on_stack[1] = bio_list_on_stack[0];
653 bio_list_init(&bio_list_on_stack[0]);
654
3e08773c 655 __submit_bio(bio);
566acf2d
CH
656
657 /*
658 * Sort new bios into those for a lower level and those for the
659 * same level.
660 */
661 bio_list_init(&lower);
662 bio_list_init(&same);
663 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
eab4e027 664 if (q == bdev_get_queue(bio->bi_bdev))
566acf2d
CH
665 bio_list_add(&same, bio);
666 else
667 bio_list_add(&lower, bio);
668
669 /*
670 * Now assemble so we handle the lowest level first.
671 */
672 bio_list_merge(&bio_list_on_stack[0], &lower);
673 bio_list_merge(&bio_list_on_stack[0], &same);
674 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
675 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
676
677 current->bio_list = NULL;
566acf2d
CH
678}
679
3e08773c 680static void __submit_bio_noacct_mq(struct bio *bio)
ff93ea0c 681{
7c792f33 682 struct bio_list bio_list[2] = { };
ff93ea0c 683
7c792f33 684 current->bio_list = bio_list;
ff93ea0c
CH
685
686 do {
3e08773c 687 __submit_bio(bio);
7c792f33 688 } while ((bio = bio_list_pop(&bio_list[0])));
ff93ea0c
CH
689
690 current->bio_list = NULL;
ff93ea0c
CH
691}
692
3f98c753 693void submit_bio_noacct_nocheck(struct bio *bio)
d89d8796 694{
0f7c8f0f
JH
695 blk_cgroup_bio_start(bio);
696 blkcg_bio_issue_init(bio);
697
698 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
699 trace_block_bio_queue(bio);
700 /*
701 * Now that enqueuing has been traced, we need to trace
702 * completion as well.
703 */
704 bio_set_flag(bio, BIO_TRACE_COMPLETION);
705 }
706
27a84d54 707 /*
566acf2d
CH
708 * We only want one ->submit_bio to be active at a time, else stack
709 * usage with stacked devices could be a problem. Use current->bio_list
710 * to collect a list of requests submited by a ->submit_bio method while
711 * it is active, and then process them after it returned.
27a84d54 712 */
3e08773c 713 if (current->bio_list)
f5fe1b51 714 bio_list_add(&current->bio_list[0], bio);
9f4107b0 715 else if (!bio->bi_bdev->bd_has_submit_bio)
3e08773c
CH
716 __submit_bio_noacct_mq(bio);
717 else
718 __submit_bio_noacct(bio);
d89d8796 719}
3f98c753
ML
720
721/**
722 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
723 * @bio: The bio describing the location in memory and on the device.
724 *
725 * This is a version of submit_bio() that shall only be used for I/O that is
726 * resubmitted to lower level drivers by stacking block drivers. All file
727 * systems and other upper level users of the block layer should use
728 * submit_bio() instead.
729 */
730void submit_bio_noacct(struct bio *bio)
1da177e4 731{
309dca30 732 struct block_device *bdev = bio->bi_bdev;
eab4e027 733 struct request_queue *q = bdev_get_queue(bdev);
4e4cbee9 734 blk_status_t status = BLK_STS_IOERR;
1da177e4
LT
735
736 might_sleep();
1da177e4 737
03a07c92 738 /*
b0beb280 739 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
021a2446 740 * if queue does not support NOWAIT.
03a07c92 741 */
568ec936 742 if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
b0beb280 743 goto not_supported;
03a07c92 744
30abb3a6 745 if (should_fail_bio(bio))
5a7bbad2 746 goto end_io;
bdb7d420 747 bio_check_ro(bio);
3a905c37
CH
748 if (!bio_flagged(bio, BIO_REMAPPED)) {
749 if (unlikely(bio_check_eod(bio)))
750 goto end_io;
751 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
752 goto end_io;
753 }
2056a782 754
5a7bbad2 755 /*
ed00aabd
CH
756 * Filter flush bio's early so that bio based drivers without flush
757 * support don't have to worry about them.
5a7bbad2 758 */
b4a6bb3a
CH
759 if (op_is_flush(bio->bi_opf)) {
760 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
761 bio_op(bio) != REQ_OP_ZONE_APPEND))
51fd77bd 762 goto end_io;
b4a6bb3a
CH
763 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
764 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
765 if (!bio_sectors(bio)) {
766 status = BLK_STS_OK;
767 goto end_io;
768 }
51fd77bd 769 }
5a7bbad2 770 }
5ddfe969 771
d04c406f 772 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
6ce913fe 773 bio_clear_polled(bio);
d04c406f 774
288dab8a 775 switch (bio_op(bio)) {
1c042f8d
CH
776 case REQ_OP_READ:
777 case REQ_OP_WRITE:
778 break;
779 case REQ_OP_FLUSH:
780 /*
781 * REQ_OP_FLUSH can't be submitted through bios, it is only
782 * synthetized in struct request by the flush state machine.
783 */
784 goto not_supported;
288dab8a 785 case REQ_OP_DISCARD:
70200574 786 if (!bdev_max_discard_sectors(bdev))
288dab8a
CH
787 goto not_supported;
788 break;
789 case REQ_OP_SECURE_ERASE:
44abff2c 790 if (!bdev_max_secure_erase_sectors(bdev))
288dab8a
CH
791 goto not_supported;
792 break;
0512a75b
KB
793 case REQ_OP_ZONE_APPEND:
794 status = blk_check_zone_append(q, bio);
795 if (status != BLK_STS_OK)
796 goto end_io;
797 break;
1c042f8d
CH
798 case REQ_OP_WRITE_ZEROES:
799 if (!q->limits.max_write_zeroes_sectors)
800 goto not_supported;
801 break;
2d253440 802 case REQ_OP_ZONE_RESET:
6c1b1da5
AJ
803 case REQ_OP_ZONE_OPEN:
804 case REQ_OP_ZONE_CLOSE:
805 case REQ_OP_ZONE_FINISH:
edd1dbc8 806 if (!bdev_is_zoned(bio->bi_bdev))
2d253440 807 goto not_supported;
288dab8a 808 break;
6e33dbf2 809 case REQ_OP_ZONE_RESET_ALL:
edd1dbc8 810 if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q))
6e33dbf2
CK
811 goto not_supported;
812 break;
1c042f8d
CH
813 case REQ_OP_DRV_IN:
814 case REQ_OP_DRV_OUT:
815 /*
816 * Driver private operations are only used with passthrough
817 * requests.
818 */
819 fallthrough;
288dab8a 820 default:
1c042f8d 821 goto not_supported;
5a7bbad2 822 }
01edede4 823
b781d8db 824 if (blk_throtl_bio(bio))
3f98c753
ML
825 return;
826 submit_bio_noacct_nocheck(bio);
d24c670e 827 return;
a7384677 828
288dab8a 829not_supported:
4e4cbee9 830 status = BLK_STS_NOTSUPP;
a7384677 831end_io:
4e4cbee9 832 bio->bi_status = status;
4246a0b6 833 bio_endio(bio);
d89d8796 834}
ed00aabd 835EXPORT_SYMBOL(submit_bio_noacct);
1da177e4 836
f3c89983
HJ
837static void bio_set_ioprio(struct bio *bio)
838{
839 /* Nobody set ioprio so far? Initialize it based on task's nice value */
840 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
841 bio->bi_ioprio = get_current_ioprio();
842 blkcg_set_ioprio(bio);
843}
844
1da177e4 845/**
710027a4 846 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
847 * @bio: The &struct bio which describes the I/O
848 *
3fdd4086
CH
849 * submit_bio() is used to submit I/O requests to block devices. It is passed a
850 * fully set up &struct bio that describes the I/O that needs to be done. The
309dca30 851 * bio will be send to the device described by the bi_bdev field.
1da177e4 852 *
3fdd4086
CH
853 * The success/failure status of the request, along with notification of
854 * completion, is delivered asynchronously through the ->bi_end_io() callback
e8848087 855 * in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has
3fdd4086 856 * been called.
1da177e4 857 */
3e08773c 858void submit_bio(struct bio *bio)
1da177e4 859{
a3e7689b
CH
860 if (bio_op(bio) == REQ_OP_READ) {
861 task_io_account_read(bio->bi_iter.bi_size);
862 count_vm_events(PGPGIN, bio_sectors(bio));
863 } else if (bio_op(bio) == REQ_OP_WRITE) {
864 count_vm_events(PGPGOUT, bio_sectors(bio));
1da177e4
LT
865 }
866
f3c89983 867 bio_set_ioprio(bio);
3e08773c 868 submit_bio_noacct(bio);
1da177e4 869}
1da177e4
LT
870EXPORT_SYMBOL(submit_bio);
871
3e08773c
CH
872/**
873 * bio_poll - poll for BIO completions
874 * @bio: bio to poll for
e30028ac 875 * @iob: batches of IO
3e08773c
CH
876 * @flags: BLK_POLL_* flags that control the behavior
877 *
878 * Poll for completions on queue associated with the bio. Returns number of
879 * completed entries found.
880 *
881 * Note: the caller must either be the context that submitted @bio, or
882 * be in a RCU critical section to prevent freeing of @bio.
883 */
5a72e899 884int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
3e08773c 885{
3e08773c 886 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
310726c3
JA
887 struct block_device *bdev;
888 struct request_queue *q;
69fe0f29 889 int ret = 0;
3e08773c 890
310726c3
JA
891 bdev = READ_ONCE(bio->bi_bdev);
892 if (!bdev)
893 return 0;
894
895 q = bdev_get_queue(bdev);
3e08773c
CH
896 if (cookie == BLK_QC_T_NONE ||
897 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
898 return 0;
899
110fdb44
PR
900 /*
901 * As the requests that require a zone lock are not plugged in the
902 * first place, directly accessing the plug instead of using
903 * blk_mq_plug() should not have any consequences during flushing for
904 * zoned devices.
905 */
aa8dccca 906 blk_flush_plug(current->plug, false);
3e08773c 907
33391eec
JA
908 /*
909 * We need to be able to enter a frozen queue, similar to how
910 * timeouts also need to do that. If that is blocked, then we can
911 * have pending IO when a queue freeze is started, and then the
912 * wait for the freeze to finish will wait for polled requests to
913 * timeout as the poller is preventer from entering the queue and
914 * completing them. As long as we prevent new IO from being queued,
915 * that should be all that matters.
916 */
917 if (!percpu_ref_tryget(&q->q_usage_counter))
3e08773c 918 return 0;
69fe0f29 919 if (queue_is_mq(q)) {
5a72e899 920 ret = blk_mq_poll(q, cookie, iob, flags);
69fe0f29
ML
921 } else {
922 struct gendisk *disk = q->disk;
923
924 if (disk && disk->fops->poll_bio)
925 ret = disk->fops->poll_bio(bio, iob, flags);
926 }
3e08773c
CH
927 blk_queue_exit(q);
928 return ret;
929}
930EXPORT_SYMBOL_GPL(bio_poll);
931
932/*
933 * Helper to implement file_operations.iopoll. Requires the bio to be stored
934 * in iocb->private, and cleared before freeing the bio.
935 */
5a72e899
JA
936int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
937 unsigned int flags)
3e08773c
CH
938{
939 struct bio *bio;
940 int ret = 0;
941
942 /*
943 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
944 * point to a freshly allocated bio at this point. If that happens
945 * we have a few cases to consider:
946 *
947 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
948 * simply nothing in this case
949 * 2) the bio points to a not poll enabled device. bio_poll will catch
950 * this and return 0
951 * 3) the bio points to a poll capable device, including but not
952 * limited to the one that the original bio pointed to. In this
953 * case we will call into the actual poll method and poll for I/O,
954 * even if we don't need to, but it won't cause harm either.
955 *
956 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
957 * is still allocated. Because partitions hold a reference to the whole
958 * device bdev and thus disk, the disk is also still valid. Grabbing
959 * a reference to the queue in bio_poll() ensures the hctxs and requests
960 * are still valid as well.
961 */
962 rcu_read_lock();
963 bio = READ_ONCE(kiocb->private);
310726c3 964 if (bio)
5a72e899 965 ret = bio_poll(bio, iob, flags);
3e08773c
CH
966 rcu_read_unlock();
967
968 return ret;
969}
970EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
971
450b7879 972void update_io_ticks(struct block_device *part, unsigned long now, bool end)
9123bf6f
CH
973{
974 unsigned long stamp;
975again:
8446fe92 976 stamp = READ_ONCE(part->bd_stamp);
d80c228d 977 if (unlikely(time_after(now, stamp))) {
939f9dd0 978 if (likely(try_cmpxchg(&part->bd_stamp, &stamp, now)))
9123bf6f
CH
979 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
980 }
8446fe92
CH
981 if (part->bd_partno) {
982 part = bdev_whole(part);
9123bf6f
CH
983 goto again;
984 }
985}
986
5f275713 987unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
5f0614a5 988 unsigned long start_time)
956d510e 989{
956d510e 990 part_stat_lock();
5f0614a5 991 update_io_ticks(bdev, start_time, false);
5f0614a5 992 part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
956d510e 993 part_stat_unlock();
320ae51f 994
e45c47d1
MS
995 return start_time;
996}
5f0614a5 997EXPORT_SYMBOL(bdev_start_io_acct);
e45c47d1 998
99dfc43e
CH
999/**
1000 * bio_start_io_acct - start I/O accounting for bio based drivers
1001 * @bio: bio to start account for
1002 *
1003 * Returns the start time that should be passed back to bio_end_io_acct().
1004 */
1005unsigned long bio_start_io_acct(struct bio *bio)
7b26410b 1006{
5f275713 1007 return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
7b26410b 1008}
99dfc43e 1009EXPORT_SYMBOL_GPL(bio_start_io_acct);
7b26410b 1010
77e7ffd7 1011void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
5f275713 1012 unsigned int sectors, unsigned long start_time)
956d510e 1013{
956d510e
CH
1014 const int sgrp = op_stat_group(op);
1015 unsigned long now = READ_ONCE(jiffies);
1016 unsigned long duration = now - start_time;
5b18b5a7 1017
956d510e 1018 part_stat_lock();
5f0614a5 1019 update_io_ticks(bdev, now, true);
5f275713
YK
1020 part_stat_inc(bdev, ios[sgrp]);
1021 part_stat_add(bdev, sectors[sgrp], sectors);
5f0614a5
ML
1022 part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1023 part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
320ae51f
JA
1024 part_stat_unlock();
1025}
5f0614a5 1026EXPORT_SYMBOL(bdev_end_io_acct);
7b26410b 1027
99dfc43e 1028void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
5f0614a5 1029 struct block_device *orig_bdev)
7b26410b 1030{
5f275713 1031 bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
7b26410b 1032}
99dfc43e 1033EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
7b26410b 1034
ef9e3fac
KU
1035/**
1036 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1037 * @q : the queue of the device being checked
1038 *
1039 * Description:
1040 * Check if underlying low-level drivers of a device are busy.
1041 * If the drivers want to export their busy state, they must set own
1042 * exporting function using blk_queue_lld_busy() first.
1043 *
1044 * Basically, this function is used only by request stacking drivers
1045 * to stop dispatching requests to underlying devices when underlying
1046 * devices are busy. This behavior helps more I/O merging on the queue
1047 * of the request stacking driver and prevents I/O throughput regression
1048 * on burst I/O load.
1049 *
1050 * Return:
1051 * 0 - Not busy (The request stacking driver should dispatch request)
1052 * 1 - Busy (The request stacking driver should stop dispatching request)
1053 */
1054int blk_lld_busy(struct request_queue *q)
1055{
344e9ffc 1056 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1057 return q->mq_ops->busy(q);
ef9e3fac
KU
1058
1059 return 0;
1060}
1061EXPORT_SYMBOL_GPL(blk_lld_busy);
1062
59c3d45e 1063int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1064{
1065 return queue_work(kblockd_workqueue, work);
1066}
1da177e4
LT
1067EXPORT_SYMBOL(kblockd_schedule_work);
1068
818cd1cb
JA
1069int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1070 unsigned long delay)
1071{
1072 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1073}
1074EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1075
47c122e3
JA
1076void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1077{
1078 struct task_struct *tsk = current;
1079
1080 /*
1081 * If this is a nested plug, don't actually assign it.
1082 */
1083 if (tsk->plug)
1084 return;
1085
bc490f81 1086 plug->mq_list = NULL;
47c122e3
JA
1087 plug->cached_rq = NULL;
1088 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1089 plug->rq_count = 0;
1090 plug->multiple_queues = false;
dc5fc361 1091 plug->has_elevator = false;
47c122e3
JA
1092 INIT_LIST_HEAD(&plug->cb_list);
1093
1094 /*
1095 * Store ordering should not be needed here, since a potential
1096 * preempt will imply a full memory barrier
1097 */
1098 tsk->plug = plug;
1099}
1100
75df7136
SJ
1101/**
1102 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1103 * @plug: The &struct blk_plug that needs to be initialized
1104 *
1105 * Description:
40405851
JM
1106 * blk_start_plug() indicates to the block layer an intent by the caller
1107 * to submit multiple I/O requests in a batch. The block layer may use
1108 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1109 * is called. However, the block layer may choose to submit requests
1110 * before a call to blk_finish_plug() if the number of queued I/Os
1111 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1112 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1113 * the task schedules (see below).
1114 *
75df7136
SJ
1115 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1116 * pending I/O should the task end up blocking between blk_start_plug() and
1117 * blk_finish_plug(). This is important from a performance perspective, but
1118 * also ensures that we don't deadlock. For instance, if the task is blocking
1119 * for a memory allocation, memory reclaim could end up wanting to free a
1120 * page belonging to that request that is currently residing in our private
1121 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1122 * this kind of deadlock.
1123 */
73c10101
JA
1124void blk_start_plug(struct blk_plug *plug)
1125{
47c122e3 1126 blk_start_plug_nr_ios(plug, 1);
73c10101
JA
1127}
1128EXPORT_SYMBOL(blk_start_plug);
1129
74018dc3 1130static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1131{
1132 LIST_HEAD(callbacks);
1133
2a7d5559
SL
1134 while (!list_empty(&plug->cb_list)) {
1135 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1136
2a7d5559
SL
1137 while (!list_empty(&callbacks)) {
1138 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1139 struct blk_plug_cb,
1140 list);
2a7d5559 1141 list_del(&cb->list);
74018dc3 1142 cb->callback(cb, from_schedule);
2a7d5559 1143 }
048c9374
N
1144 }
1145}
1146
9cbb1750
N
1147struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1148 int size)
1149{
1150 struct blk_plug *plug = current->plug;
1151 struct blk_plug_cb *cb;
1152
1153 if (!plug)
1154 return NULL;
1155
1156 list_for_each_entry(cb, &plug->cb_list, list)
1157 if (cb->callback == unplug && cb->data == data)
1158 return cb;
1159
1160 /* Not currently on the callback list */
1161 BUG_ON(size < sizeof(*cb));
1162 cb = kzalloc(size, GFP_ATOMIC);
1163 if (cb) {
1164 cb->data = data;
1165 cb->callback = unplug;
1166 list_add(&cb->list, &plug->cb_list);
1167 }
1168 return cb;
1169}
1170EXPORT_SYMBOL(blk_check_plugged);
1171
aa8dccca 1172void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
73c10101 1173{
b600455d
PB
1174 if (!list_empty(&plug->cb_list))
1175 flush_plug_callbacks(plug, from_schedule);
70904263 1176 blk_mq_flush_plug_list(plug, from_schedule);
c5fc7b93
JA
1177 /*
1178 * Unconditionally flush out cached requests, even if the unplug
1179 * event came from schedule. Since we know hold references to the
1180 * queue for cached requests, we don't want a blocked task holding
1181 * up a queue freeze/quiesce event.
1182 */
1183 if (unlikely(!rq_list_empty(plug->cached_rq)))
47c122e3 1184 blk_mq_free_plug_rqs(plug);
73c10101 1185}
73c10101 1186
40405851
JM
1187/**
1188 * blk_finish_plug - mark the end of a batch of submitted I/O
1189 * @plug: The &struct blk_plug passed to blk_start_plug()
1190 *
1191 * Description:
1192 * Indicate that a batch of I/O submissions is complete. This function
1193 * must be paired with an initial call to blk_start_plug(). The intent
1194 * is to allow the block layer to optimize I/O submission. See the
1195 * documentation for blk_start_plug() for more information.
1196 */
73c10101
JA
1197void blk_finish_plug(struct blk_plug *plug)
1198{
008f75a2 1199 if (plug == current->plug) {
aa8dccca 1200 __blk_flush_plug(plug, false);
008f75a2
CH
1201 current->plug = NULL;
1202 }
73c10101 1203}
88b996cd 1204EXPORT_SYMBOL(blk_finish_plug);
73c10101 1205
71ac860a
ML
1206void blk_io_schedule(void)
1207{
1208 /* Prevent hang_check timer from firing at us during very long I/O */
1209 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1210
1211 if (timeout)
1212 io_schedule_timeout(timeout);
1213 else
1214 io_schedule();
1215}
1216EXPORT_SYMBOL_GPL(blk_io_schedule);
1217
1da177e4
LT
1218int __init blk_dev_init(void)
1219{
16458cf3 1220 BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
ef295ecf 1221 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1222 sizeof_field(struct request, cmd_flags));
ef295ecf 1223 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1224 sizeof_field(struct bio, bi_opf));
9eb55b03 1225
89b90be2
TH
1226 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1227 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1228 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1229 if (!kblockd_workqueue)
1230 panic("Failed to create kblockd\n");
1231
c2789bd4 1232 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1233 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1234
18fbda91 1235 blk_debugfs_root = debugfs_create_dir("block", NULL);
18fbda91 1236
d38ecf93 1237 return 0;
1da177e4 1238}