blk-mq: replace and kill blk_mq_request_issue_directly
[linux-block.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
30abb3a6 37#include <linux/bpf.h>
55782138
LZ
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/block.h>
1da177e4 41
8324aa91 42#include "blk.h"
43a5e4e2 43#include "blk-mq.h"
bd166ef1 44#include "blk-mq-sched.h"
bca6b067 45#include "blk-pm.h"
c1c80384 46#include "blk-rq-qos.h"
8324aa91 47
18fbda91
OS
48#ifdef CONFIG_DEBUG_FS
49struct dentry *blk_debugfs_root;
50#endif
51
d07335e5 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 55EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 56EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 57
a73f730d
TH
58DEFINE_IDA(blk_queue_ida);
59
1da177e4
LT
60/*
61 * For queue allocation
62 */
6728cb0e 63struct kmem_cache *blk_requestq_cachep;
1da177e4 64
1da177e4
LT
65/*
66 * Controlling structure to kblockd
67 */
ff856bad 68static struct workqueue_struct *kblockd_workqueue;
1da177e4 69
8814ce8a
BVA
70/**
71 * blk_queue_flag_set - atomically set a queue flag
72 * @flag: flag to be set
73 * @q: request queue
74 */
75void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
76{
57d74df9 77 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
78}
79EXPORT_SYMBOL(blk_queue_flag_set);
80
81/**
82 * blk_queue_flag_clear - atomically clear a queue flag
83 * @flag: flag to be cleared
84 * @q: request queue
85 */
86void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
87{
57d74df9 88 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
89}
90EXPORT_SYMBOL(blk_queue_flag_clear);
91
92/**
93 * blk_queue_flag_test_and_set - atomically test and set a queue flag
94 * @flag: flag to be set
95 * @q: request queue
96 *
97 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
98 * the flag was already set.
99 */
100bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
101{
57d74df9 102 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
103}
104EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
105
2a4aa30c 106void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 107{
1afb20f3
FT
108 memset(rq, 0, sizeof(*rq));
109
1da177e4 110 INIT_LIST_HEAD(&rq->queuelist);
63a71386 111 rq->q = q;
a2dec7b3 112 rq->__sector = (sector_t) -1;
2e662b65
JA
113 INIT_HLIST_NODE(&rq->hash);
114 RB_CLEAR_NODE(&rq->rb_node);
63a71386 115 rq->tag = -1;
bd166ef1 116 rq->internal_tag = -1;
522a7775 117 rq->start_time_ns = ktime_get_ns();
09e099d4 118 rq->part = NULL;
1da177e4 119}
2a4aa30c 120EXPORT_SYMBOL(blk_rq_init);
1da177e4 121
2a842aca
CH
122static const struct {
123 int errno;
124 const char *name;
125} blk_errors[] = {
126 [BLK_STS_OK] = { 0, "" },
127 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
128 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
129 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
130 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
131 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
132 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
133 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
134 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
135 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 136 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 137 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 138
4e4cbee9
CH
139 /* device mapper special case, should not leak out: */
140 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
141
2a842aca
CH
142 /* everything else not covered above: */
143 [BLK_STS_IOERR] = { -EIO, "I/O" },
144};
145
146blk_status_t errno_to_blk_status(int errno)
147{
148 int i;
149
150 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
151 if (blk_errors[i].errno == errno)
152 return (__force blk_status_t)i;
153 }
154
155 return BLK_STS_IOERR;
156}
157EXPORT_SYMBOL_GPL(errno_to_blk_status);
158
159int blk_status_to_errno(blk_status_t status)
160{
161 int idx = (__force int)status;
162
34bd9c1c 163 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
164 return -EIO;
165 return blk_errors[idx].errno;
166}
167EXPORT_SYMBOL_GPL(blk_status_to_errno);
168
169static void print_req_error(struct request *req, blk_status_t status)
170{
171 int idx = (__force int)status;
172
34bd9c1c 173 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
174 return;
175
2149da07
BS
176 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu flags %x\n",
177 __func__, blk_errors[idx].name,
178 req->rq_disk ? req->rq_disk->disk_name : "?",
179 (unsigned long long)blk_rq_pos(req),
180 req->cmd_flags);
2a842aca
CH
181}
182
5bb23a68 183static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 184 unsigned int nbytes, blk_status_t error)
1da177e4 185{
78d8e58a 186 if (error)
4e4cbee9 187 bio->bi_status = error;
797e7dbb 188
e8064021 189 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 190 bio_set_flag(bio, BIO_QUIET);
08bafc03 191
f79ea416 192 bio_advance(bio, nbytes);
7ba1ba12 193
143a87f4 194 /* don't actually finish bio if it's part of flush sequence */
e8064021 195 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 196 bio_endio(bio);
1da177e4 197}
1da177e4 198
1da177e4
LT
199void blk_dump_rq_flags(struct request *rq, char *msg)
200{
aebf526b
CH
201 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
202 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 203 (unsigned long long) rq->cmd_flags);
1da177e4 204
83096ebf
TH
205 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
206 (unsigned long long)blk_rq_pos(rq),
207 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
208 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
209 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 210}
1da177e4
LT
211EXPORT_SYMBOL(blk_dump_rq_flags);
212
1da177e4
LT
213/**
214 * blk_sync_queue - cancel any pending callbacks on a queue
215 * @q: the queue
216 *
217 * Description:
218 * The block layer may perform asynchronous callback activity
219 * on a queue, such as calling the unplug function after a timeout.
220 * A block device may call blk_sync_queue to ensure that any
221 * such activity is cancelled, thus allowing it to release resources
59c51591 222 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
223 * that its ->make_request_fn will not re-add plugging prior to calling
224 * this function.
225 *
da527770 226 * This function does not cancel any asynchronous activity arising
da3dae54 227 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 228 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 229 *
1da177e4
LT
230 */
231void blk_sync_queue(struct request_queue *q)
232{
70ed28b9 233 del_timer_sync(&q->timeout);
4e9b6f20 234 cancel_work_sync(&q->timeout_work);
f04c1fe7 235
344e9ffc 236 if (queue_is_mq(q)) {
f04c1fe7
ML
237 struct blk_mq_hw_ctx *hctx;
238 int i;
239
aba7afc5 240 cancel_delayed_work_sync(&q->requeue_work);
21c6e939 241 queue_for_each_hw_ctx(q, hctx, i)
9f993737 242 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7 243 }
1da177e4
LT
244}
245EXPORT_SYMBOL(blk_sync_queue);
246
c9254f2d 247/**
cd84a62e 248 * blk_set_pm_only - increment pm_only counter
c9254f2d 249 * @q: request queue pointer
c9254f2d 250 */
cd84a62e 251void blk_set_pm_only(struct request_queue *q)
c9254f2d 252{
cd84a62e 253 atomic_inc(&q->pm_only);
c9254f2d 254}
cd84a62e 255EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 256
cd84a62e 257void blk_clear_pm_only(struct request_queue *q)
c9254f2d 258{
cd84a62e
BVA
259 int pm_only;
260
261 pm_only = atomic_dec_return(&q->pm_only);
262 WARN_ON_ONCE(pm_only < 0);
263 if (pm_only == 0)
264 wake_up_all(&q->mq_freeze_wq);
c9254f2d 265}
cd84a62e 266EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 267
165125e1 268void blk_put_queue(struct request_queue *q)
483f4afc
AV
269{
270 kobject_put(&q->kobj);
271}
d86e0e83 272EXPORT_SYMBOL(blk_put_queue);
483f4afc 273
aed3ea94
JA
274void blk_set_queue_dying(struct request_queue *q)
275{
8814ce8a 276 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
aed3ea94 277
d3cfb2a0
ML
278 /*
279 * When queue DYING flag is set, we need to block new req
280 * entering queue, so we call blk_freeze_queue_start() to
281 * prevent I/O from crossing blk_queue_enter().
282 */
283 blk_freeze_queue_start(q);
284
344e9ffc 285 if (queue_is_mq(q))
aed3ea94 286 blk_mq_wake_waiters(q);
055f6e18
ML
287
288 /* Make blk_queue_enter() reexamine the DYING flag. */
289 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
290}
291EXPORT_SYMBOL_GPL(blk_set_queue_dying);
292
4cf6324b
BVA
293/* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
294void blk_exit_queue(struct request_queue *q)
295{
296 /*
297 * Since the I/O scheduler exit code may access cgroup information,
298 * perform I/O scheduler exit before disassociating from the block
299 * cgroup controller.
300 */
301 if (q->elevator) {
302 ioc_clear_queue(q);
303 elevator_exit(q, q->elevator);
304 q->elevator = NULL;
305 }
306
307 /*
308 * Remove all references to @q from the block cgroup controller before
309 * restoring @q->queue_lock to avoid that restoring this pointer causes
310 * e.g. blkcg_print_blkgs() to crash.
311 */
312 blkcg_exit_queue(q);
313
314 /*
315 * Since the cgroup code may dereference the @q->backing_dev_info
316 * pointer, only decrease its reference count after having removed the
317 * association with the block cgroup controller.
318 */
319 bdi_put(q->backing_dev_info);
320}
321
c9a929dd
TH
322/**
323 * blk_cleanup_queue - shutdown a request queue
324 * @q: request queue to shutdown
325 *
c246e80d
BVA
326 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
327 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 328 */
6728cb0e 329void blk_cleanup_queue(struct request_queue *q)
483f4afc 330{
3f3299d5 331 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 332 mutex_lock(&q->sysfs_lock);
aed3ea94 333 blk_set_queue_dying(q);
6ecf23af 334
57d74df9
CH
335 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
336 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
337 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
338 mutex_unlock(&q->sysfs_lock);
339
c246e80d
BVA
340 /*
341 * Drain all requests queued before DYING marking. Set DEAD flag to
342 * prevent that q->request_fn() gets invoked after draining finished.
343 */
3ef28e83 344 blk_freeze_queue(q);
c57cdf7a
ML
345
346 rq_qos_exit(q);
347
57d74df9 348 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
c9a929dd 349
c2856ae2
ML
350 /*
351 * make sure all in-progress dispatch are completed because
352 * blk_freeze_queue() can only complete all requests, and
353 * dispatch may still be in-progress since we dispatch requests
1311326c
ML
354 * from more than one contexts.
355 *
8dc765d4
ML
356 * We rely on driver to deal with the race in case that queue
357 * initialization isn't done.
c2856ae2 358 */
344e9ffc 359 if (queue_is_mq(q) && blk_queue_init_done(q))
c2856ae2
ML
360 blk_mq_quiesce_queue(q);
361
5a48fc14
DW
362 /* for synchronous bio-based driver finish in-flight integrity i/o */
363 blk_flush_integrity();
364
c9a929dd 365 /* @q won't process any more request, flush async actions */
dc3b17cc 366 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
367 blk_sync_queue(q);
368
a063057d
BVA
369 /*
370 * I/O scheduler exit is only safe after the sysfs scheduler attribute
371 * has been removed.
372 */
373 WARN_ON_ONCE(q->kobj.state_in_sysfs);
374
4cf6324b 375 blk_exit_queue(q);
a063057d 376
344e9ffc 377 if (queue_is_mq(q))
45a9c9d9 378 blk_mq_free_queue(q);
a1ce35fa 379
3ef28e83 380 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 381
c9a929dd 382 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
383 blk_put_queue(q);
384}
1da177e4
LT
385EXPORT_SYMBOL(blk_cleanup_queue);
386
165125e1 387struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 388{
6d469642 389 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
390}
391EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 392
3a0a5299
BVA
393/**
394 * blk_queue_enter() - try to increase q->q_usage_counter
395 * @q: request queue pointer
396 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
397 */
9a95e4ef 398int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 399{
cd84a62e 400 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
3a0a5299 401
3ef28e83 402 while (true) {
3a0a5299 403 bool success = false;
3ef28e83 404
818e0fa2 405 rcu_read_lock();
3a0a5299
BVA
406 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
407 /*
cd84a62e
BVA
408 * The code that increments the pm_only counter is
409 * responsible for ensuring that that counter is
410 * globally visible before the queue is unfrozen.
3a0a5299 411 */
cd84a62e 412 if (pm || !blk_queue_pm_only(q)) {
3a0a5299
BVA
413 success = true;
414 } else {
415 percpu_ref_put(&q->q_usage_counter);
416 }
417 }
818e0fa2 418 rcu_read_unlock();
3a0a5299
BVA
419
420 if (success)
3ef28e83
DW
421 return 0;
422
3a0a5299 423 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
424 return -EBUSY;
425
5ed61d3f 426 /*
1671d522 427 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 428 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
429 * .q_usage_counter and reading .mq_freeze_depth or
430 * queue dying flag, otherwise the following wait may
431 * never return if the two reads are reordered.
5ed61d3f
ML
432 */
433 smp_rmb();
434
1dc3039b
AJ
435 wait_event(q->mq_freeze_wq,
436 (atomic_read(&q->mq_freeze_depth) == 0 &&
0d25bd07
BVA
437 (pm || (blk_pm_request_resume(q),
438 !blk_queue_pm_only(q)))) ||
1dc3039b 439 blk_queue_dying(q));
3ef28e83
DW
440 if (blk_queue_dying(q))
441 return -ENODEV;
3ef28e83
DW
442 }
443}
444
445void blk_queue_exit(struct request_queue *q)
446{
447 percpu_ref_put(&q->q_usage_counter);
448}
449
450static void blk_queue_usage_counter_release(struct percpu_ref *ref)
451{
452 struct request_queue *q =
453 container_of(ref, struct request_queue, q_usage_counter);
454
455 wake_up_all(&q->mq_freeze_wq);
456}
457
bca237a5 458static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 459{
bca237a5 460 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
461
462 kblockd_schedule_work(&q->timeout_work);
463}
464
498f6650
BVA
465/**
466 * blk_alloc_queue_node - allocate a request queue
467 * @gfp_mask: memory allocation flags
468 * @node_id: NUMA node to allocate memory from
498f6650 469 */
6d469642 470struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 471{
165125e1 472 struct request_queue *q;
338aa96d 473 int ret;
1946089a 474
8324aa91 475 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 476 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
477 if (!q)
478 return NULL;
479
cbf62af3
CH
480 INIT_LIST_HEAD(&q->queue_head);
481 q->last_merge = NULL;
cbf62af3 482
00380a40 483 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 484 if (q->id < 0)
3d2936f4 485 goto fail_q;
a73f730d 486
338aa96d
KO
487 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
488 if (ret)
54efd50b
KO
489 goto fail_id;
490
d03f6cdc
JK
491 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
492 if (!q->backing_dev_info)
493 goto fail_split;
494
a83b576c
JA
495 q->stats = blk_alloc_queue_stats();
496 if (!q->stats)
497 goto fail_stats;
498
dc3b17cc 499 q->backing_dev_info->ra_pages =
09cbfeaf 500 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
501 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
502 q->backing_dev_info->name = "block";
5151412d 503 q->node = node_id;
0989a025 504
bca237a5
KC
505 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
506 laptop_mode_timer_fn, 0);
507 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
4e9b6f20 508 INIT_WORK(&q->timeout_work, NULL);
a612fddf 509 INIT_LIST_HEAD(&q->icq_list);
4eef3049 510#ifdef CONFIG_BLK_CGROUP
e8989fae 511 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 512#endif
483f4afc 513
8324aa91 514 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 515
5acb3cc2
WL
516#ifdef CONFIG_BLK_DEV_IO_TRACE
517 mutex_init(&q->blk_trace_mutex);
518#endif
483f4afc 519 mutex_init(&q->sysfs_lock);
0d945c1f 520 spin_lock_init(&q->queue_lock);
c94a96ac 521
320ae51f
JA
522 init_waitqueue_head(&q->mq_freeze_wq);
523
3ef28e83
DW
524 /*
525 * Init percpu_ref in atomic mode so that it's faster to shutdown.
526 * See blk_register_queue() for details.
527 */
528 if (percpu_ref_init(&q->q_usage_counter,
529 blk_queue_usage_counter_release,
530 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 531 goto fail_bdi;
f51b802c 532
3ef28e83
DW
533 if (blkcg_init_queue(q))
534 goto fail_ref;
535
1da177e4 536 return q;
a73f730d 537
3ef28e83
DW
538fail_ref:
539 percpu_ref_exit(&q->q_usage_counter);
fff4996b 540fail_bdi:
a83b576c
JA
541 blk_free_queue_stats(q->stats);
542fail_stats:
d03f6cdc 543 bdi_put(q->backing_dev_info);
54efd50b 544fail_split:
338aa96d 545 bioset_exit(&q->bio_split);
a73f730d
TH
546fail_id:
547 ida_simple_remove(&blk_queue_ida, q->id);
548fail_q:
549 kmem_cache_free(blk_requestq_cachep, q);
550 return NULL;
1da177e4 551}
1946089a 552EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4 553
09ac46c4 554bool blk_get_queue(struct request_queue *q)
1da177e4 555{
3f3299d5 556 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
557 __blk_get_queue(q);
558 return true;
1da177e4
LT
559 }
560
09ac46c4 561 return false;
1da177e4 562}
d86e0e83 563EXPORT_SYMBOL(blk_get_queue);
1da177e4 564
a1ce35fa
JA
565/**
566 * blk_get_request - allocate a request
567 * @q: request queue to allocate a request for
568 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
569 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1da177e4 570 */
a1ce35fa
JA
571struct request *blk_get_request(struct request_queue *q, unsigned int op,
572 blk_mq_req_flags_t flags)
1da177e4 573{
a1ce35fa 574 struct request *req;
1da177e4 575
a1ce35fa
JA
576 WARN_ON_ONCE(op & REQ_NOWAIT);
577 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1da177e4 578
a1ce35fa
JA
579 req = blk_mq_alloc_request(q, op, flags);
580 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
581 q->mq_ops->initialize_rq_fn(req);
1da177e4 582
a1ce35fa 583 return req;
1da177e4 584}
a1ce35fa 585EXPORT_SYMBOL(blk_get_request);
1da177e4 586
1da177e4
LT
587void blk_put_request(struct request *req)
588{
a1ce35fa 589 blk_mq_free_request(req);
1da177e4 590}
1da177e4
LT
591EXPORT_SYMBOL(blk_put_request);
592
320ae51f
JA
593bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
594 struct bio *bio)
73c10101 595{
1eff9d32 596 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 597
73c10101
JA
598 if (!ll_back_merge_fn(q, req, bio))
599 return false;
600
8c1cf6bb 601 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
602
603 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
604 blk_rq_set_mixed_merge(req);
605
606 req->biotail->bi_next = bio;
607 req->biotail = bio;
4f024f37 608 req->__data_len += bio->bi_iter.bi_size;
73c10101 609
320ae51f 610 blk_account_io_start(req, false);
73c10101
JA
611 return true;
612}
613
320ae51f
JA
614bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
615 struct bio *bio)
73c10101 616{
1eff9d32 617 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 618
73c10101
JA
619 if (!ll_front_merge_fn(q, req, bio))
620 return false;
621
8c1cf6bb 622 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
623
624 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
625 blk_rq_set_mixed_merge(req);
626
73c10101
JA
627 bio->bi_next = req->bio;
628 req->bio = bio;
629
4f024f37
KO
630 req->__sector = bio->bi_iter.bi_sector;
631 req->__data_len += bio->bi_iter.bi_size;
73c10101 632
320ae51f 633 blk_account_io_start(req, false);
73c10101
JA
634 return true;
635}
636
1e739730
CH
637bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
638 struct bio *bio)
639{
640 unsigned short segments = blk_rq_nr_discard_segments(req);
641
642 if (segments >= queue_max_discard_segments(q))
643 goto no_merge;
644 if (blk_rq_sectors(req) + bio_sectors(bio) >
645 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
646 goto no_merge;
647
648 req->biotail->bi_next = bio;
649 req->biotail = bio;
650 req->__data_len += bio->bi_iter.bi_size;
1e739730
CH
651 req->nr_phys_segments = segments + 1;
652
653 blk_account_io_start(req, false);
654 return true;
655no_merge:
656 req_set_nomerge(q, req);
657 return false;
658}
659
bd87b589 660/**
320ae51f 661 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
662 * @q: request_queue new bio is being queued at
663 * @bio: new bio being queued
664 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
665 * @same_queue_rq: pointer to &struct request that gets filled in when
666 * another request associated with @q is found on the plug list
667 * (optional, may be %NULL)
bd87b589
TH
668 *
669 * Determine whether @bio being queued on @q can be merged with a request
670 * on %current's plugged list. Returns %true if merge was successful,
671 * otherwise %false.
672 *
07c2bd37
TH
673 * Plugging coalesces IOs from the same issuer for the same purpose without
674 * going through @q->queue_lock. As such it's more of an issuing mechanism
675 * than scheduling, and the request, while may have elvpriv data, is not
676 * added on the elevator at this point. In addition, we don't have
677 * reliable access to the elevator outside queue lock. Only check basic
678 * merging parameters without querying the elevator.
da41a589
RE
679 *
680 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 681 */
320ae51f 682bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f 683 struct request **same_queue_rq)
73c10101
JA
684{
685 struct blk_plug *plug;
686 struct request *rq;
92f399c7 687 struct list_head *plug_list;
73c10101 688
bd87b589 689 plug = current->plug;
73c10101 690 if (!plug)
34fe7c05 691 return false;
73c10101 692
a1ce35fa 693 plug_list = &plug->mq_list;
92f399c7
SL
694
695 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 696 bool merged = false;
73c10101 697
5f0ed774 698 if (rq->q == q && same_queue_rq) {
5b3f341f
SL
699 /*
700 * Only blk-mq multiple hardware queues case checks the
701 * rq in the same queue, there should be only one such
702 * rq in a queue
703 **/
5f0ed774 704 *same_queue_rq = rq;
5b3f341f 705 }
56ebdaf2 706
07c2bd37 707 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
708 continue;
709
34fe7c05
CH
710 switch (blk_try_merge(rq, bio)) {
711 case ELEVATOR_BACK_MERGE:
712 merged = bio_attempt_back_merge(q, rq, bio);
713 break;
714 case ELEVATOR_FRONT_MERGE:
715 merged = bio_attempt_front_merge(q, rq, bio);
716 break;
1e739730
CH
717 case ELEVATOR_DISCARD_MERGE:
718 merged = bio_attempt_discard_merge(q, rq, bio);
719 break;
34fe7c05
CH
720 default:
721 break;
73c10101 722 }
34fe7c05
CH
723
724 if (merged)
725 return true;
73c10101 726 }
34fe7c05
CH
727
728 return false;
73c10101
JA
729}
730
da8d7f07 731void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 732{
1eff9d32 733 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 734 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 735
4f024f37 736 req->__sector = bio->bi_iter.bi_sector;
20578bdf 737 req->ioprio = bio_prio(bio);
cb6934f8 738 req->write_hint = bio->bi_write_hint;
bc1c56fd 739 blk_rq_bio_prep(req->q, req, bio);
52d9e675 740}
da8d7f07 741EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 742
52c5e62d 743static void handle_bad_sector(struct bio *bio, sector_t maxsector)
1da177e4
LT
744{
745 char b[BDEVNAME_SIZE];
746
747 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 748 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 749 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 750 (unsigned long long)bio_end_sector(bio),
52c5e62d 751 (long long)maxsector);
1da177e4
LT
752}
753
c17bb495
AM
754#ifdef CONFIG_FAIL_MAKE_REQUEST
755
756static DECLARE_FAULT_ATTR(fail_make_request);
757
758static int __init setup_fail_make_request(char *str)
759{
760 return setup_fault_attr(&fail_make_request, str);
761}
762__setup("fail_make_request=", setup_fail_make_request);
763
b2c9cd37 764static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 765{
b2c9cd37 766 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
767}
768
769static int __init fail_make_request_debugfs(void)
770{
dd48c085
AM
771 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
772 NULL, &fail_make_request);
773
21f9fcd8 774 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
775}
776
777late_initcall(fail_make_request_debugfs);
778
779#else /* CONFIG_FAIL_MAKE_REQUEST */
780
b2c9cd37
AM
781static inline bool should_fail_request(struct hd_struct *part,
782 unsigned int bytes)
c17bb495 783{
b2c9cd37 784 return false;
c17bb495
AM
785}
786
787#endif /* CONFIG_FAIL_MAKE_REQUEST */
788
721c7fc7
ID
789static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
790{
b089cfd9
JA
791 const int op = bio_op(bio);
792
8b2ded1c 793 if (part->policy && op_is_write(op)) {
721c7fc7
ID
794 char b[BDEVNAME_SIZE];
795
8b2ded1c
MP
796 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
797 return false;
798
a32e236e 799 WARN_ONCE(1,
721c7fc7
ID
800 "generic_make_request: Trying to write "
801 "to read-only block-device %s (partno %d)\n",
802 bio_devname(bio, b), part->partno);
a32e236e
LT
803 /* Older lvm-tools actually trigger this */
804 return false;
721c7fc7
ID
805 }
806
807 return false;
808}
809
30abb3a6
HM
810static noinline int should_fail_bio(struct bio *bio)
811{
812 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
813 return -EIO;
814 return 0;
815}
816ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
817
52c5e62d
CH
818/*
819 * Check whether this bio extends beyond the end of the device or partition.
820 * This may well happen - the kernel calls bread() without checking the size of
821 * the device, e.g., when mounting a file system.
822 */
823static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
824{
825 unsigned int nr_sectors = bio_sectors(bio);
826
827 if (nr_sectors && maxsector &&
828 (nr_sectors > maxsector ||
829 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
830 handle_bad_sector(bio, maxsector);
831 return -EIO;
832 }
833 return 0;
834}
835
74d46992
CH
836/*
837 * Remap block n of partition p to block n+start(p) of the disk.
838 */
839static inline int blk_partition_remap(struct bio *bio)
840{
841 struct hd_struct *p;
52c5e62d 842 int ret = -EIO;
74d46992 843
721c7fc7
ID
844 rcu_read_lock();
845 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
52c5e62d
CH
846 if (unlikely(!p))
847 goto out;
848 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
849 goto out;
850 if (unlikely(bio_check_ro(bio, p)))
721c7fc7 851 goto out;
721c7fc7 852
74d46992
CH
853 /*
854 * Zone reset does not include bi_size so bio_sectors() is always 0.
855 * Include a test for the reset op code and perform the remap if needed.
856 */
52c5e62d
CH
857 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
858 if (bio_check_eod(bio, part_nr_sects_read(p)))
859 goto out;
860 bio->bi_iter.bi_sector += p->start_sect;
52c5e62d
CH
861 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
862 bio->bi_iter.bi_sector - p->start_sect);
863 }
c04fa44b 864 bio->bi_partno = 0;
52c5e62d 865 ret = 0;
721c7fc7
ID
866out:
867 rcu_read_unlock();
74d46992
CH
868 return ret;
869}
870
27a84d54
CH
871static noinline_for_stack bool
872generic_make_request_checks(struct bio *bio)
1da177e4 873{
165125e1 874 struct request_queue *q;
5a7bbad2 875 int nr_sectors = bio_sectors(bio);
4e4cbee9 876 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 877 char b[BDEVNAME_SIZE];
1da177e4
LT
878
879 might_sleep();
1da177e4 880
74d46992 881 q = bio->bi_disk->queue;
5a7bbad2
CH
882 if (unlikely(!q)) {
883 printk(KERN_ERR
884 "generic_make_request: Trying to access "
885 "nonexistent block-device %s (%Lu)\n",
74d46992 886 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
887 goto end_io;
888 }
c17bb495 889
03a07c92
GR
890 /*
891 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
892 * if queue is not a request based queue.
893 */
344e9ffc 894 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
03a07c92
GR
895 goto not_supported;
896
30abb3a6 897 if (should_fail_bio(bio))
5a7bbad2 898 goto end_io;
2056a782 899
52c5e62d
CH
900 if (bio->bi_partno) {
901 if (unlikely(blk_partition_remap(bio)))
721c7fc7
ID
902 goto end_io;
903 } else {
52c5e62d
CH
904 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
905 goto end_io;
906 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
721c7fc7
ID
907 goto end_io;
908 }
2056a782 909
5a7bbad2
CH
910 /*
911 * Filter flush bio's early so that make_request based
912 * drivers without flush support don't have to worry
913 * about them.
914 */
f3a8ab7d 915 if (op_is_flush(bio->bi_opf) &&
c888a8f9 916 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 917 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 918 if (!nr_sectors) {
4e4cbee9 919 status = BLK_STS_OK;
51fd77bd
JA
920 goto end_io;
921 }
5a7bbad2 922 }
5ddfe969 923
288dab8a
CH
924 switch (bio_op(bio)) {
925 case REQ_OP_DISCARD:
926 if (!blk_queue_discard(q))
927 goto not_supported;
928 break;
929 case REQ_OP_SECURE_ERASE:
930 if (!blk_queue_secure_erase(q))
931 goto not_supported;
932 break;
933 case REQ_OP_WRITE_SAME:
74d46992 934 if (!q->limits.max_write_same_sectors)
288dab8a 935 goto not_supported;
58886785 936 break;
2d253440 937 case REQ_OP_ZONE_RESET:
74d46992 938 if (!blk_queue_is_zoned(q))
2d253440 939 goto not_supported;
288dab8a 940 break;
a6f0788e 941 case REQ_OP_WRITE_ZEROES:
74d46992 942 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
943 goto not_supported;
944 break;
288dab8a
CH
945 default:
946 break;
5a7bbad2 947 }
01edede4 948
7f4b35d1
TH
949 /*
950 * Various block parts want %current->io_context and lazy ioc
951 * allocation ends up trading a lot of pain for a small amount of
952 * memory. Just allocate it upfront. This may fail and block
953 * layer knows how to live with it.
954 */
955 create_io_context(GFP_ATOMIC, q->node);
956
ae118896
TH
957 if (!blkcg_bio_issue_check(q, bio))
958 return false;
27a84d54 959
fbbaf700
N
960 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
961 trace_block_bio_queue(q, bio);
962 /* Now that enqueuing has been traced, we need to trace
963 * completion as well.
964 */
965 bio_set_flag(bio, BIO_TRACE_COMPLETION);
966 }
27a84d54 967 return true;
a7384677 968
288dab8a 969not_supported:
4e4cbee9 970 status = BLK_STS_NOTSUPP;
a7384677 971end_io:
4e4cbee9 972 bio->bi_status = status;
4246a0b6 973 bio_endio(bio);
27a84d54 974 return false;
1da177e4
LT
975}
976
27a84d54
CH
977/**
978 * generic_make_request - hand a buffer to its device driver for I/O
979 * @bio: The bio describing the location in memory and on the device.
980 *
981 * generic_make_request() is used to make I/O requests of block
982 * devices. It is passed a &struct bio, which describes the I/O that needs
983 * to be done.
984 *
985 * generic_make_request() does not return any status. The
986 * success/failure status of the request, along with notification of
987 * completion, is delivered asynchronously through the bio->bi_end_io
988 * function described (one day) else where.
989 *
990 * The caller of generic_make_request must make sure that bi_io_vec
991 * are set to describe the memory buffer, and that bi_dev and bi_sector are
992 * set to describe the device address, and the
993 * bi_end_io and optionally bi_private are set to describe how
994 * completion notification should be signaled.
995 *
996 * generic_make_request and the drivers it calls may use bi_next if this
997 * bio happens to be merged with someone else, and may resubmit the bio to
998 * a lower device by calling into generic_make_request recursively, which
999 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 1000 */
dece1635 1001blk_qc_t generic_make_request(struct bio *bio)
d89d8796 1002{
f5fe1b51
N
1003 /*
1004 * bio_list_on_stack[0] contains bios submitted by the current
1005 * make_request_fn.
1006 * bio_list_on_stack[1] contains bios that were submitted before
1007 * the current make_request_fn, but that haven't been processed
1008 * yet.
1009 */
1010 struct bio_list bio_list_on_stack[2];
37f9579f
BVA
1011 blk_mq_req_flags_t flags = 0;
1012 struct request_queue *q = bio->bi_disk->queue;
dece1635 1013 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 1014
37f9579f
BVA
1015 if (bio->bi_opf & REQ_NOWAIT)
1016 flags = BLK_MQ_REQ_NOWAIT;
cd4a4ae4
JA
1017 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
1018 blk_queue_enter_live(q);
1019 else if (blk_queue_enter(q, flags) < 0) {
37f9579f
BVA
1020 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
1021 bio_wouldblock_error(bio);
1022 else
1023 bio_io_error(bio);
1024 return ret;
1025 }
1026
27a84d54 1027 if (!generic_make_request_checks(bio))
dece1635 1028 goto out;
27a84d54
CH
1029
1030 /*
1031 * We only want one ->make_request_fn to be active at a time, else
1032 * stack usage with stacked devices could be a problem. So use
1033 * current->bio_list to keep a list of requests submited by a
1034 * make_request_fn function. current->bio_list is also used as a
1035 * flag to say if generic_make_request is currently active in this
1036 * task or not. If it is NULL, then no make_request is active. If
1037 * it is non-NULL, then a make_request is active, and new requests
1038 * should be added at the tail
1039 */
bddd87c7 1040 if (current->bio_list) {
f5fe1b51 1041 bio_list_add(&current->bio_list[0], bio);
dece1635 1042 goto out;
d89d8796 1043 }
27a84d54 1044
d89d8796
NB
1045 /* following loop may be a bit non-obvious, and so deserves some
1046 * explanation.
1047 * Before entering the loop, bio->bi_next is NULL (as all callers
1048 * ensure that) so we have a list with a single bio.
1049 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1050 * we assign bio_list to a pointer to the bio_list_on_stack,
1051 * thus initialising the bio_list of new bios to be
27a84d54 1052 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1053 * through a recursive call to generic_make_request. If it
1054 * did, we find a non-NULL value in bio_list and re-enter the loop
1055 * from the top. In this case we really did just take the bio
bddd87c7 1056 * of the top of the list (no pretending) and so remove it from
27a84d54 1057 * bio_list, and call into ->make_request() again.
d89d8796
NB
1058 */
1059 BUG_ON(bio->bi_next);
f5fe1b51
N
1060 bio_list_init(&bio_list_on_stack[0]);
1061 current->bio_list = bio_list_on_stack;
d89d8796 1062 do {
37f9579f
BVA
1063 bool enter_succeeded = true;
1064
1065 if (unlikely(q != bio->bi_disk->queue)) {
1066 if (q)
1067 blk_queue_exit(q);
1068 q = bio->bi_disk->queue;
1069 flags = 0;
1070 if (bio->bi_opf & REQ_NOWAIT)
1071 flags = BLK_MQ_REQ_NOWAIT;
1072 if (blk_queue_enter(q, flags) < 0) {
1073 enter_succeeded = false;
1074 q = NULL;
1075 }
1076 }
27a84d54 1077
37f9579f 1078 if (enter_succeeded) {
79bd9959
N
1079 struct bio_list lower, same;
1080
1081 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
1082 bio_list_on_stack[1] = bio_list_on_stack[0];
1083 bio_list_init(&bio_list_on_stack[0]);
dece1635 1084 ret = q->make_request_fn(q, bio);
3ef28e83 1085
79bd9959
N
1086 /* sort new bios into those for a lower level
1087 * and those for the same level
1088 */
1089 bio_list_init(&lower);
1090 bio_list_init(&same);
f5fe1b51 1091 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 1092 if (q == bio->bi_disk->queue)
79bd9959
N
1093 bio_list_add(&same, bio);
1094 else
1095 bio_list_add(&lower, bio);
1096 /* now assemble so we handle the lowest level first */
f5fe1b51
N
1097 bio_list_merge(&bio_list_on_stack[0], &lower);
1098 bio_list_merge(&bio_list_on_stack[0], &same);
1099 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 1100 } else {
03a07c92
GR
1101 if (unlikely(!blk_queue_dying(q) &&
1102 (bio->bi_opf & REQ_NOWAIT)))
1103 bio_wouldblock_error(bio);
1104 else
1105 bio_io_error(bio);
3ef28e83 1106 }
f5fe1b51 1107 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 1108 } while (bio);
bddd87c7 1109 current->bio_list = NULL; /* deactivate */
dece1635
JA
1110
1111out:
37f9579f
BVA
1112 if (q)
1113 blk_queue_exit(q);
dece1635 1114 return ret;
d89d8796 1115}
1da177e4
LT
1116EXPORT_SYMBOL(generic_make_request);
1117
f421e1d9
CH
1118/**
1119 * direct_make_request - hand a buffer directly to its device driver for I/O
1120 * @bio: The bio describing the location in memory and on the device.
1121 *
1122 * This function behaves like generic_make_request(), but does not protect
1123 * against recursion. Must only be used if the called driver is known
1124 * to not call generic_make_request (or direct_make_request) again from
1125 * its make_request function. (Calling direct_make_request again from
1126 * a workqueue is perfectly fine as that doesn't recurse).
1127 */
1128blk_qc_t direct_make_request(struct bio *bio)
1129{
1130 struct request_queue *q = bio->bi_disk->queue;
1131 bool nowait = bio->bi_opf & REQ_NOWAIT;
1132 blk_qc_t ret;
1133
1134 if (!generic_make_request_checks(bio))
1135 return BLK_QC_T_NONE;
1136
3a0a5299 1137 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
f421e1d9
CH
1138 if (nowait && !blk_queue_dying(q))
1139 bio->bi_status = BLK_STS_AGAIN;
1140 else
1141 bio->bi_status = BLK_STS_IOERR;
1142 bio_endio(bio);
1143 return BLK_QC_T_NONE;
1144 }
1145
1146 ret = q->make_request_fn(q, bio);
1147 blk_queue_exit(q);
1148 return ret;
1149}
1150EXPORT_SYMBOL_GPL(direct_make_request);
1151
1da177e4 1152/**
710027a4 1153 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1154 * @bio: The &struct bio which describes the I/O
1155 *
1156 * submit_bio() is very similar in purpose to generic_make_request(), and
1157 * uses that function to do most of the work. Both are fairly rough
710027a4 1158 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1159 *
1160 */
4e49ea4a 1161blk_qc_t submit_bio(struct bio *bio)
1da177e4 1162{
bf2de6f5
JA
1163 /*
1164 * If it's a regular read/write or a barrier with data attached,
1165 * go through the normal accounting stuff before submission.
1166 */
e2a60da7 1167 if (bio_has_data(bio)) {
4363ac7c
MP
1168 unsigned int count;
1169
95fe6c1a 1170 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
7c5a0dcf 1171 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
4363ac7c
MP
1172 else
1173 count = bio_sectors(bio);
1174
a8ebb056 1175 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
1176 count_vm_events(PGPGOUT, count);
1177 } else {
4f024f37 1178 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1179 count_vm_events(PGPGIN, count);
1180 }
1181
1182 if (unlikely(block_dump)) {
1183 char b[BDEVNAME_SIZE];
8dcbdc74 1184 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1185 current->comm, task_pid_nr(current),
a8ebb056 1186 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 1187 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 1188 bio_devname(bio, b), count);
bf2de6f5 1189 }
1da177e4
LT
1190 }
1191
dece1635 1192 return generic_make_request(bio);
1da177e4 1193}
1da177e4
LT
1194EXPORT_SYMBOL(submit_bio);
1195
82124d60 1196/**
bf4e6b4e
HR
1197 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1198 * for new the queue limits
82124d60
KU
1199 * @q: the queue
1200 * @rq: the request being checked
1201 *
1202 * Description:
1203 * @rq may have been made based on weaker limitations of upper-level queues
1204 * in request stacking drivers, and it may violate the limitation of @q.
1205 * Since the block layer and the underlying device driver trust @rq
1206 * after it is inserted to @q, it should be checked against @q before
1207 * the insertion using this generic function.
1208 *
82124d60 1209 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
1210 * limits when retrying requests on other queues. Those requests need
1211 * to be checked against the new queue limits again during dispatch.
82124d60 1212 */
bf4e6b4e
HR
1213static int blk_cloned_rq_check_limits(struct request_queue *q,
1214 struct request *rq)
82124d60 1215{
8fe0d473 1216 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
1217 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1218 return -EIO;
1219 }
1220
1221 /*
1222 * queue's settings related to segment counting like q->bounce_pfn
1223 * may differ from that of other stacking queues.
1224 * Recalculate it to check the request correctly on this queue's
1225 * limitation.
1226 */
1227 blk_recalc_rq_segments(rq);
8a78362c 1228 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1229 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1230 return -EIO;
1231 }
1232
1233 return 0;
1234}
82124d60
KU
1235
1236/**
1237 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1238 * @q: the queue to submit the request
1239 * @rq: the request being queued
1240 */
2a842aca 1241blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60 1242{
d6a51a97
JW
1243 blk_qc_t unused;
1244
bf4e6b4e 1245 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 1246 return BLK_STS_IOERR;
82124d60 1247
b2c9cd37
AM
1248 if (rq->rq_disk &&
1249 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 1250 return BLK_STS_IOERR;
82124d60 1251
a1ce35fa
JA
1252 if (blk_queue_io_stat(q))
1253 blk_account_io_start(rq, true);
82124d60
KU
1254
1255 /*
a1ce35fa
JA
1256 * Since we have a scheduler attached on the top device,
1257 * bypass a potential scheduler on the bottom device for
1258 * insert.
82124d60 1259 */
d6a51a97 1260 return blk_mq_try_issue_directly(rq->mq_hctx, rq, &unused, true, true);
82124d60
KU
1261}
1262EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1263
80a761fd
TH
1264/**
1265 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1266 * @rq: request to examine
1267 *
1268 * Description:
1269 * A request could be merge of IOs which require different failure
1270 * handling. This function determines the number of bytes which
1271 * can be failed from the beginning of the request without
1272 * crossing into area which need to be retried further.
1273 *
1274 * Return:
1275 * The number of bytes to fail.
80a761fd
TH
1276 */
1277unsigned int blk_rq_err_bytes(const struct request *rq)
1278{
1279 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1280 unsigned int bytes = 0;
1281 struct bio *bio;
1282
e8064021 1283 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
1284 return blk_rq_bytes(rq);
1285
1286 /*
1287 * Currently the only 'mixing' which can happen is between
1288 * different fastfail types. We can safely fail portions
1289 * which have all the failfast bits that the first one has -
1290 * the ones which are at least as eager to fail as the first
1291 * one.
1292 */
1293 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 1294 if ((bio->bi_opf & ff) != ff)
80a761fd 1295 break;
4f024f37 1296 bytes += bio->bi_iter.bi_size;
80a761fd
TH
1297 }
1298
1299 /* this could lead to infinite loop */
1300 BUG_ON(blk_rq_bytes(rq) && !bytes);
1301 return bytes;
1302}
1303EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1304
320ae51f 1305void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 1306{
c2553b58 1307 if (blk_do_io_stat(req)) {
ddcf35d3 1308 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1309 struct hd_struct *part;
bc58ba94 1310
112f158f 1311 part_stat_lock();
09e099d4 1312 part = req->part;
112f158f 1313 part_stat_add(part, sectors[sgrp], bytes >> 9);
bc58ba94
JA
1314 part_stat_unlock();
1315 }
1316}
1317
522a7775 1318void blk_account_io_done(struct request *req, u64 now)
bc58ba94 1319{
bc58ba94 1320 /*
dd4c133f
TH
1321 * Account IO completion. flush_rq isn't accounted as a
1322 * normal IO on queueing nor completion. Accounting the
1323 * containing request is enough.
bc58ba94 1324 */
e8064021 1325 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
ddcf35d3 1326 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1327 struct hd_struct *part;
bc58ba94 1328
112f158f 1329 part_stat_lock();
09e099d4 1330 part = req->part;
bc58ba94 1331
5b18b5a7 1332 update_io_ticks(part, jiffies);
112f158f
MS
1333 part_stat_inc(part, ios[sgrp]);
1334 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
5b18b5a7 1335 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
ddcf35d3 1336 part_dec_in_flight(req->q, part, rq_data_dir(req));
bc58ba94 1337
6c23a968 1338 hd_struct_put(part);
bc58ba94
JA
1339 part_stat_unlock();
1340 }
1341}
1342
320ae51f
JA
1343void blk_account_io_start(struct request *rq, bool new_io)
1344{
1345 struct hd_struct *part;
1346 int rw = rq_data_dir(rq);
320ae51f
JA
1347
1348 if (!blk_do_io_stat(rq))
1349 return;
1350
112f158f 1351 part_stat_lock();
320ae51f
JA
1352
1353 if (!new_io) {
1354 part = rq->part;
112f158f 1355 part_stat_inc(part, merges[rw]);
320ae51f
JA
1356 } else {
1357 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1358 if (!hd_struct_try_get(part)) {
1359 /*
1360 * The partition is already being removed,
1361 * the request will be accounted on the disk only
1362 *
1363 * We take a reference on disk->part0 although that
1364 * partition will never be deleted, so we can treat
1365 * it as any other partition.
1366 */
1367 part = &rq->rq_disk->part0;
1368 hd_struct_get(part);
1369 }
d62e26b3 1370 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
1371 rq->part = part;
1372 }
1373
5b18b5a7
MP
1374 update_io_ticks(part, jiffies);
1375
320ae51f
JA
1376 part_stat_unlock();
1377}
1378
ef71de8b
CH
1379/*
1380 * Steal bios from a request and add them to a bio list.
1381 * The request must not have been partially completed before.
1382 */
1383void blk_steal_bios(struct bio_list *list, struct request *rq)
1384{
1385 if (rq->bio) {
1386 if (list->tail)
1387 list->tail->bi_next = rq->bio;
1388 else
1389 list->head = rq->bio;
1390 list->tail = rq->biotail;
1391
1392 rq->bio = NULL;
1393 rq->biotail = NULL;
1394 }
1395
1396 rq->__data_len = 0;
1397}
1398EXPORT_SYMBOL_GPL(blk_steal_bios);
1399
3bcddeac 1400/**
2e60e022 1401 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1402 * @req: the request being processed
2a842aca 1403 * @error: block status code
8ebf9756 1404 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1405 *
1406 * Description:
8ebf9756
RD
1407 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1408 * the request structure even if @req doesn't have leftover.
1409 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1410 *
1411 * This special helper function is only for request stacking drivers
1412 * (e.g. request-based dm) so that they can handle partial completion.
1413 * Actual device drivers should use blk_end_request instead.
1414 *
1415 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1416 * %false return from this function.
3bcddeac 1417 *
1954e9a9
BVA
1418 * Note:
1419 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1420 * blk_rq_bytes() and in blk_update_request().
1421 *
3bcddeac 1422 * Return:
2e60e022
TH
1423 * %false - this request doesn't have any more data
1424 * %true - this request has more data
3bcddeac 1425 **/
2a842aca
CH
1426bool blk_update_request(struct request *req, blk_status_t error,
1427 unsigned int nr_bytes)
1da177e4 1428{
f79ea416 1429 int total_bytes;
1da177e4 1430
2a842aca 1431 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 1432
2e60e022
TH
1433 if (!req->bio)
1434 return false;
1435
2a842aca
CH
1436 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1437 !(req->rq_flags & RQF_QUIET)))
1438 print_req_error(req, error);
1da177e4 1439
bc58ba94 1440 blk_account_io_completion(req, nr_bytes);
d72d904a 1441
f79ea416
KO
1442 total_bytes = 0;
1443 while (req->bio) {
1444 struct bio *bio = req->bio;
4f024f37 1445 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 1446
9c24c10a 1447 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 1448 req->bio = bio->bi_next;
1da177e4 1449
fbbaf700
N
1450 /* Completion has already been traced */
1451 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 1452 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 1453
f79ea416
KO
1454 total_bytes += bio_bytes;
1455 nr_bytes -= bio_bytes;
1da177e4 1456
f79ea416
KO
1457 if (!nr_bytes)
1458 break;
1da177e4
LT
1459 }
1460
1461 /*
1462 * completely done
1463 */
2e60e022
TH
1464 if (!req->bio) {
1465 /*
1466 * Reset counters so that the request stacking driver
1467 * can find how many bytes remain in the request
1468 * later.
1469 */
a2dec7b3 1470 req->__data_len = 0;
2e60e022
TH
1471 return false;
1472 }
1da177e4 1473
a2dec7b3 1474 req->__data_len -= total_bytes;
2e46e8b2
TH
1475
1476 /* update sector only for requests with clear definition of sector */
57292b58 1477 if (!blk_rq_is_passthrough(req))
a2dec7b3 1478 req->__sector += total_bytes >> 9;
2e46e8b2 1479
80a761fd 1480 /* mixed attributes always follow the first bio */
e8064021 1481 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 1482 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 1483 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
1484 }
1485
ed6565e7
CH
1486 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1487 /*
1488 * If total number of sectors is less than the first segment
1489 * size, something has gone terribly wrong.
1490 */
1491 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1492 blk_dump_rq_flags(req, "request botched");
1493 req->__data_len = blk_rq_cur_bytes(req);
1494 }
2e46e8b2 1495
ed6565e7
CH
1496 /* recalculate the number of segments */
1497 blk_recalc_rq_segments(req);
1498 }
2e46e8b2 1499
2e60e022 1500 return true;
1da177e4 1501}
2e60e022 1502EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 1503
86db1e29
JA
1504void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1505 struct bio *bio)
1da177e4 1506{
b4f42e28 1507 if (bio_has_data(bio))
fb2dce86 1508 rq->nr_phys_segments = bio_phys_segments(q, bio);
445251d0
JA
1509 else if (bio_op(bio) == REQ_OP_DISCARD)
1510 rq->nr_phys_segments = 1;
b4f42e28 1511
4f024f37 1512 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 1513 rq->bio = rq->biotail = bio;
1da177e4 1514
74d46992
CH
1515 if (bio->bi_disk)
1516 rq->rq_disk = bio->bi_disk;
66846572 1517}
1da177e4 1518
2d4dc890
IL
1519#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1520/**
1521 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1522 * @rq: the request to be flushed
1523 *
1524 * Description:
1525 * Flush all pages in @rq.
1526 */
1527void rq_flush_dcache_pages(struct request *rq)
1528{
1529 struct req_iterator iter;
7988613b 1530 struct bio_vec bvec;
2d4dc890
IL
1531
1532 rq_for_each_segment(bvec, rq, iter)
7988613b 1533 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1534}
1535EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1536#endif
1537
ef9e3fac
KU
1538/**
1539 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1540 * @q : the queue of the device being checked
1541 *
1542 * Description:
1543 * Check if underlying low-level drivers of a device are busy.
1544 * If the drivers want to export their busy state, they must set own
1545 * exporting function using blk_queue_lld_busy() first.
1546 *
1547 * Basically, this function is used only by request stacking drivers
1548 * to stop dispatching requests to underlying devices when underlying
1549 * devices are busy. This behavior helps more I/O merging on the queue
1550 * of the request stacking driver and prevents I/O throughput regression
1551 * on burst I/O load.
1552 *
1553 * Return:
1554 * 0 - Not busy (The request stacking driver should dispatch request)
1555 * 1 - Busy (The request stacking driver should stop dispatching request)
1556 */
1557int blk_lld_busy(struct request_queue *q)
1558{
344e9ffc 1559 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1560 return q->mq_ops->busy(q);
ef9e3fac
KU
1561
1562 return 0;
1563}
1564EXPORT_SYMBOL_GPL(blk_lld_busy);
1565
78d8e58a
MS
1566/**
1567 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1568 * @rq: the clone request to be cleaned up
1569 *
1570 * Description:
1571 * Free all bios in @rq for a cloned request.
1572 */
1573void blk_rq_unprep_clone(struct request *rq)
1574{
1575 struct bio *bio;
1576
1577 while ((bio = rq->bio) != NULL) {
1578 rq->bio = bio->bi_next;
1579
1580 bio_put(bio);
1581 }
1582}
1583EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1584
1585/*
1586 * Copy attributes of the original request to the clone request.
1587 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1588 */
1589static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d 1590{
b0fd271d
KU
1591 dst->__sector = blk_rq_pos(src);
1592 dst->__data_len = blk_rq_bytes(src);
297ba57d
BVA
1593 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1594 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1595 dst->special_vec = src->special_vec;
1596 }
b0fd271d
KU
1597 dst->nr_phys_segments = src->nr_phys_segments;
1598 dst->ioprio = src->ioprio;
1599 dst->extra_len = src->extra_len;
78d8e58a
MS
1600}
1601
1602/**
1603 * blk_rq_prep_clone - Helper function to setup clone request
1604 * @rq: the request to be setup
1605 * @rq_src: original request to be cloned
1606 * @bs: bio_set that bios for clone are allocated from
1607 * @gfp_mask: memory allocation mask for bio
1608 * @bio_ctr: setup function to be called for each clone bio.
1609 * Returns %0 for success, non %0 for failure.
1610 * @data: private data to be passed to @bio_ctr
1611 *
1612 * Description:
1613 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1614 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1615 * are not copied, and copying such parts is the caller's responsibility.
1616 * Also, pages which the original bios are pointing to are not copied
1617 * and the cloned bios just point same pages.
1618 * So cloned bios must be completed before original bios, which means
1619 * the caller must complete @rq before @rq_src.
1620 */
1621int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1622 struct bio_set *bs, gfp_t gfp_mask,
1623 int (*bio_ctr)(struct bio *, struct bio *, void *),
1624 void *data)
1625{
1626 struct bio *bio, *bio_src;
1627
1628 if (!bs)
f4f8154a 1629 bs = &fs_bio_set;
78d8e58a
MS
1630
1631 __rq_for_each_bio(bio_src, rq_src) {
1632 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1633 if (!bio)
1634 goto free_and_out;
1635
1636 if (bio_ctr && bio_ctr(bio, bio_src, data))
1637 goto free_and_out;
1638
1639 if (rq->bio) {
1640 rq->biotail->bi_next = bio;
1641 rq->biotail = bio;
1642 } else
1643 rq->bio = rq->biotail = bio;
1644 }
1645
1646 __blk_rq_prep_clone(rq, rq_src);
1647
1648 return 0;
1649
1650free_and_out:
1651 if (bio)
1652 bio_put(bio);
1653 blk_rq_unprep_clone(rq);
1654
1655 return -ENOMEM;
b0fd271d
KU
1656}
1657EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1658
59c3d45e 1659int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1660{
1661 return queue_work(kblockd_workqueue, work);
1662}
1da177e4
LT
1663EXPORT_SYMBOL(kblockd_schedule_work);
1664
ee63cfa7
JA
1665int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1666{
1667 return queue_work_on(cpu, kblockd_workqueue, work);
1668}
1669EXPORT_SYMBOL(kblockd_schedule_work_on);
1670
818cd1cb
JA
1671int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1672 unsigned long delay)
1673{
1674 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1675}
1676EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1677
75df7136
SJ
1678/**
1679 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1680 * @plug: The &struct blk_plug that needs to be initialized
1681 *
1682 * Description:
1683 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1684 * pending I/O should the task end up blocking between blk_start_plug() and
1685 * blk_finish_plug(). This is important from a performance perspective, but
1686 * also ensures that we don't deadlock. For instance, if the task is blocking
1687 * for a memory allocation, memory reclaim could end up wanting to free a
1688 * page belonging to that request that is currently residing in our private
1689 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1690 * this kind of deadlock.
1691 */
73c10101
JA
1692void blk_start_plug(struct blk_plug *plug)
1693{
1694 struct task_struct *tsk = current;
1695
dd6cf3e1
SL
1696 /*
1697 * If this is a nested plug, don't actually assign it.
1698 */
1699 if (tsk->plug)
1700 return;
1701
320ae51f 1702 INIT_LIST_HEAD(&plug->mq_list);
048c9374 1703 INIT_LIST_HEAD(&plug->cb_list);
5f0ed774 1704 plug->rq_count = 0;
ce5b009c 1705 plug->multiple_queues = false;
5f0ed774 1706
73c10101 1707 /*
dd6cf3e1
SL
1708 * Store ordering should not be needed here, since a potential
1709 * preempt will imply a full memory barrier
73c10101 1710 */
dd6cf3e1 1711 tsk->plug = plug;
73c10101
JA
1712}
1713EXPORT_SYMBOL(blk_start_plug);
1714
74018dc3 1715static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1716{
1717 LIST_HEAD(callbacks);
1718
2a7d5559
SL
1719 while (!list_empty(&plug->cb_list)) {
1720 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1721
2a7d5559
SL
1722 while (!list_empty(&callbacks)) {
1723 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1724 struct blk_plug_cb,
1725 list);
2a7d5559 1726 list_del(&cb->list);
74018dc3 1727 cb->callback(cb, from_schedule);
2a7d5559 1728 }
048c9374
N
1729 }
1730}
1731
9cbb1750
N
1732struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1733 int size)
1734{
1735 struct blk_plug *plug = current->plug;
1736 struct blk_plug_cb *cb;
1737
1738 if (!plug)
1739 return NULL;
1740
1741 list_for_each_entry(cb, &plug->cb_list, list)
1742 if (cb->callback == unplug && cb->data == data)
1743 return cb;
1744
1745 /* Not currently on the callback list */
1746 BUG_ON(size < sizeof(*cb));
1747 cb = kzalloc(size, GFP_ATOMIC);
1748 if (cb) {
1749 cb->data = data;
1750 cb->callback = unplug;
1751 list_add(&cb->list, &plug->cb_list);
1752 }
1753 return cb;
1754}
1755EXPORT_SYMBOL(blk_check_plugged);
1756
49cac01e 1757void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101 1758{
74018dc3 1759 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
1760
1761 if (!list_empty(&plug->mq_list))
1762 blk_mq_flush_plug_list(plug, from_schedule);
73c10101 1763}
73c10101
JA
1764
1765void blk_finish_plug(struct blk_plug *plug)
1766{
dd6cf3e1
SL
1767 if (plug != current->plug)
1768 return;
f6603783 1769 blk_flush_plug_list(plug, false);
73c10101 1770
dd6cf3e1 1771 current->plug = NULL;
73c10101 1772}
88b996cd 1773EXPORT_SYMBOL(blk_finish_plug);
73c10101 1774
1da177e4
LT
1775int __init blk_dev_init(void)
1776{
ef295ecf
CH
1777 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1778 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 1779 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
1780 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1781 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 1782
89b90be2
TH
1783 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1784 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1785 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1786 if (!kblockd_workqueue)
1787 panic("Failed to create kblockd\n");
1788
c2789bd4 1789 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1790 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1791
18fbda91
OS
1792#ifdef CONFIG_DEBUG_FS
1793 blk_debugfs_root = debugfs_create_dir("block", NULL);
1794#endif
1795
d38ecf93 1796 return 0;
1da177e4 1797}