dcssblk: remove the end of device check in dcssblk_submit_bio
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
1da177e4
LT
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
1da177e4
LT
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/backing-dev.h>
18#include <linux/bio.h>
19#include <linux/blkdev.h>
320ae51f 20#include <linux/blk-mq.h>
52abca64 21#include <linux/blk-pm.h>
1da177e4
LT
22#include <linux/highmem.h>
23#include <linux/mm.h>
cee9a0c4 24#include <linux/pagemap.h>
1da177e4
LT
25#include <linux/kernel_stat.h>
26#include <linux/string.h>
27#include <linux/init.h>
1da177e4
LT
28#include <linux/completion.h>
29#include <linux/slab.h>
30#include <linux/swap.h>
31#include <linux/writeback.h>
faccbd4b 32#include <linux/task_io_accounting_ops.h>
c17bb495 33#include <linux/fault-inject.h>
73c10101 34#include <linux/list_sort.h>
e3c78ca5 35#include <linux/delay.h>
aaf7c680 36#include <linux/ratelimit.h>
6c954667 37#include <linux/pm_runtime.h>
eea8f41c 38#include <linux/blk-cgroup.h>
54d4e6ab 39#include <linux/t10-pi.h>
18fbda91 40#include <linux/debugfs.h>
30abb3a6 41#include <linux/bpf.h>
b8e24a93 42#include <linux/psi.h>
71ac860a 43#include <linux/sched/sysctl.h>
a892c8d5 44#include <linux/blk-crypto.h>
55782138
LZ
45
46#define CREATE_TRACE_POINTS
47#include <trace/events/block.h>
1da177e4 48
8324aa91 49#include "blk.h"
43a5e4e2 50#include "blk-mq.h"
bd166ef1 51#include "blk-mq-sched.h"
bca6b067 52#include "blk-pm.h"
c1c80384 53#include "blk-rq-qos.h"
8324aa91 54
18fbda91 55struct dentry *blk_debugfs_root;
18fbda91 56
d07335e5 57EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 58EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 59EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 60EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 61EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 62
a73f730d
TH
63DEFINE_IDA(blk_queue_ida);
64
1da177e4
LT
65/*
66 * For queue allocation
67 */
6728cb0e 68struct kmem_cache *blk_requestq_cachep;
1da177e4 69
1da177e4
LT
70/*
71 * Controlling structure to kblockd
72 */
ff856bad 73static struct workqueue_struct *kblockd_workqueue;
1da177e4 74
8814ce8a
BVA
75/**
76 * blk_queue_flag_set - atomically set a queue flag
77 * @flag: flag to be set
78 * @q: request queue
79 */
80void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81{
57d74df9 82 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
83}
84EXPORT_SYMBOL(blk_queue_flag_set);
85
86/**
87 * blk_queue_flag_clear - atomically clear a queue flag
88 * @flag: flag to be cleared
89 * @q: request queue
90 */
91void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92{
57d74df9 93 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
94}
95EXPORT_SYMBOL(blk_queue_flag_clear);
96
97/**
98 * blk_queue_flag_test_and_set - atomically test and set a queue flag
99 * @flag: flag to be set
100 * @q: request queue
101 *
102 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
103 * the flag was already set.
104 */
105bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
106{
57d74df9 107 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
108}
109EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
110
2a4aa30c 111void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 112{
1afb20f3
FT
113 memset(rq, 0, sizeof(*rq));
114
1da177e4 115 INIT_LIST_HEAD(&rq->queuelist);
63a71386 116 rq->q = q;
a2dec7b3 117 rq->__sector = (sector_t) -1;
2e662b65
JA
118 INIT_HLIST_NODE(&rq->hash);
119 RB_CLEAR_NODE(&rq->rb_node);
e44a6a23
XT
120 rq->tag = BLK_MQ_NO_TAG;
121 rq->internal_tag = BLK_MQ_NO_TAG;
522a7775 122 rq->start_time_ns = ktime_get_ns();
09e099d4 123 rq->part = NULL;
b554db14 124 refcount_set(&rq->ref, 1);
a892c8d5 125 blk_crypto_rq_set_defaults(rq);
1da177e4 126}
2a4aa30c 127EXPORT_SYMBOL(blk_rq_init);
1da177e4 128
e47bc4ed
CK
129#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
130static const char *const blk_op_name[] = {
131 REQ_OP_NAME(READ),
132 REQ_OP_NAME(WRITE),
133 REQ_OP_NAME(FLUSH),
134 REQ_OP_NAME(DISCARD),
135 REQ_OP_NAME(SECURE_ERASE),
136 REQ_OP_NAME(ZONE_RESET),
6e33dbf2 137 REQ_OP_NAME(ZONE_RESET_ALL),
6c1b1da5
AJ
138 REQ_OP_NAME(ZONE_OPEN),
139 REQ_OP_NAME(ZONE_CLOSE),
140 REQ_OP_NAME(ZONE_FINISH),
0512a75b 141 REQ_OP_NAME(ZONE_APPEND),
e47bc4ed
CK
142 REQ_OP_NAME(WRITE_SAME),
143 REQ_OP_NAME(WRITE_ZEROES),
144 REQ_OP_NAME(SCSI_IN),
145 REQ_OP_NAME(SCSI_OUT),
146 REQ_OP_NAME(DRV_IN),
147 REQ_OP_NAME(DRV_OUT),
148};
149#undef REQ_OP_NAME
150
151/**
152 * blk_op_str - Return string XXX in the REQ_OP_XXX.
153 * @op: REQ_OP_XXX.
154 *
155 * Description: Centralize block layer function to convert REQ_OP_XXX into
156 * string format. Useful in the debugging and tracing bio or request. For
157 * invalid REQ_OP_XXX it returns string "UNKNOWN".
158 */
159inline const char *blk_op_str(unsigned int op)
160{
161 const char *op_str = "UNKNOWN";
162
163 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
164 op_str = blk_op_name[op];
165
166 return op_str;
167}
168EXPORT_SYMBOL_GPL(blk_op_str);
169
2a842aca
CH
170static const struct {
171 int errno;
172 const char *name;
173} blk_errors[] = {
174 [BLK_STS_OK] = { 0, "" },
175 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
176 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
177 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
178 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
179 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
180 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
181 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
182 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
183 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 184 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 185 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 186
4e4cbee9
CH
187 /* device mapper special case, should not leak out: */
188 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
189
3b481d91
KB
190 /* zone device specific errors */
191 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
192 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
193
2a842aca
CH
194 /* everything else not covered above: */
195 [BLK_STS_IOERR] = { -EIO, "I/O" },
196};
197
198blk_status_t errno_to_blk_status(int errno)
199{
200 int i;
201
202 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
203 if (blk_errors[i].errno == errno)
204 return (__force blk_status_t)i;
205 }
206
207 return BLK_STS_IOERR;
208}
209EXPORT_SYMBOL_GPL(errno_to_blk_status);
210
211int blk_status_to_errno(blk_status_t status)
212{
213 int idx = (__force int)status;
214
34bd9c1c 215 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
216 return -EIO;
217 return blk_errors[idx].errno;
218}
219EXPORT_SYMBOL_GPL(blk_status_to_errno);
220
178cc590
CH
221static void print_req_error(struct request *req, blk_status_t status,
222 const char *caller)
2a842aca
CH
223{
224 int idx = (__force int)status;
225
34bd9c1c 226 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
227 return;
228
178cc590 229 printk_ratelimited(KERN_ERR
b0e5168a
CK
230 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
231 "phys_seg %u prio class %u\n",
178cc590 232 caller, blk_errors[idx].name,
b0e5168a
CK
233 req->rq_disk ? req->rq_disk->disk_name : "?",
234 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
235 req->cmd_flags & ~REQ_OP_MASK,
236 req->nr_phys_segments,
237 IOPRIO_PRIO_CLASS(req->ioprio));
2a842aca
CH
238}
239
5bb23a68 240static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 241 unsigned int nbytes, blk_status_t error)
1da177e4 242{
78d8e58a 243 if (error)
4e4cbee9 244 bio->bi_status = error;
797e7dbb 245
e8064021 246 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 247 bio_set_flag(bio, BIO_QUIET);
08bafc03 248
f79ea416 249 bio_advance(bio, nbytes);
7ba1ba12 250
0512a75b
KB
251 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
252 /*
253 * Partial zone append completions cannot be supported as the
254 * BIO fragments may end up not being written sequentially.
255 */
256 if (bio->bi_iter.bi_size)
257 bio->bi_status = BLK_STS_IOERR;
258 else
259 bio->bi_iter.bi_sector = rq->__sector;
260 }
261
143a87f4 262 /* don't actually finish bio if it's part of flush sequence */
e8064021 263 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 264 bio_endio(bio);
1da177e4 265}
1da177e4 266
1da177e4
LT
267void blk_dump_rq_flags(struct request *rq, char *msg)
268{
aebf526b
CH
269 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
270 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 271 (unsigned long long) rq->cmd_flags);
1da177e4 272
83096ebf
TH
273 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
274 (unsigned long long)blk_rq_pos(rq),
275 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
276 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
277 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 278}
1da177e4
LT
279EXPORT_SYMBOL(blk_dump_rq_flags);
280
1da177e4
LT
281/**
282 * blk_sync_queue - cancel any pending callbacks on a queue
283 * @q: the queue
284 *
285 * Description:
286 * The block layer may perform asynchronous callback activity
287 * on a queue, such as calling the unplug function after a timeout.
288 * A block device may call blk_sync_queue to ensure that any
289 * such activity is cancelled, thus allowing it to release resources
59c51591 290 * that the callbacks might use. The caller must already have made sure
c62b37d9 291 * that its ->submit_bio will not re-add plugging prior to calling
1da177e4
LT
292 * this function.
293 *
da527770 294 * This function does not cancel any asynchronous activity arising
da3dae54 295 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 296 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 297 *
1da177e4
LT
298 */
299void blk_sync_queue(struct request_queue *q)
300{
70ed28b9 301 del_timer_sync(&q->timeout);
4e9b6f20 302 cancel_work_sync(&q->timeout_work);
1da177e4
LT
303}
304EXPORT_SYMBOL(blk_sync_queue);
305
c9254f2d 306/**
cd84a62e 307 * blk_set_pm_only - increment pm_only counter
c9254f2d 308 * @q: request queue pointer
c9254f2d 309 */
cd84a62e 310void blk_set_pm_only(struct request_queue *q)
c9254f2d 311{
cd84a62e 312 atomic_inc(&q->pm_only);
c9254f2d 313}
cd84a62e 314EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 315
cd84a62e 316void blk_clear_pm_only(struct request_queue *q)
c9254f2d 317{
cd84a62e
BVA
318 int pm_only;
319
320 pm_only = atomic_dec_return(&q->pm_only);
321 WARN_ON_ONCE(pm_only < 0);
322 if (pm_only == 0)
323 wake_up_all(&q->mq_freeze_wq);
c9254f2d 324}
cd84a62e 325EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 326
b5bd357c
LC
327/**
328 * blk_put_queue - decrement the request_queue refcount
329 * @q: the request_queue structure to decrement the refcount for
330 *
331 * Decrements the refcount of the request_queue kobject. When this reaches 0
332 * we'll have blk_release_queue() called.
e8c7d14a
LC
333 *
334 * Context: Any context, but the last reference must not be dropped from
335 * atomic context.
b5bd357c 336 */
165125e1 337void blk_put_queue(struct request_queue *q)
483f4afc
AV
338{
339 kobject_put(&q->kobj);
340}
d86e0e83 341EXPORT_SYMBOL(blk_put_queue);
483f4afc 342
aed3ea94
JA
343void blk_set_queue_dying(struct request_queue *q)
344{
8814ce8a 345 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
aed3ea94 346
d3cfb2a0
ML
347 /*
348 * When queue DYING flag is set, we need to block new req
349 * entering queue, so we call blk_freeze_queue_start() to
350 * prevent I/O from crossing blk_queue_enter().
351 */
352 blk_freeze_queue_start(q);
353
344e9ffc 354 if (queue_is_mq(q))
aed3ea94 355 blk_mq_wake_waiters(q);
055f6e18
ML
356
357 /* Make blk_queue_enter() reexamine the DYING flag. */
358 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
359}
360EXPORT_SYMBOL_GPL(blk_set_queue_dying);
361
c9a929dd
TH
362/**
363 * blk_cleanup_queue - shutdown a request queue
364 * @q: request queue to shutdown
365 *
c246e80d
BVA
366 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
367 * put it. All future requests will be failed immediately with -ENODEV.
e8c7d14a
LC
368 *
369 * Context: can sleep
c94a96ac 370 */
6728cb0e 371void blk_cleanup_queue(struct request_queue *q)
483f4afc 372{
e8c7d14a
LC
373 /* cannot be called from atomic context */
374 might_sleep();
375
bae85c15
BVA
376 WARN_ON_ONCE(blk_queue_registered(q));
377
3f3299d5 378 /* mark @q DYING, no new request or merges will be allowed afterwards */
aed3ea94 379 blk_set_queue_dying(q);
6ecf23af 380
57d74df9
CH
381 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
382 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
c9a929dd 383
c246e80d
BVA
384 /*
385 * Drain all requests queued before DYING marking. Set DEAD flag to
67ed8b73
BVA
386 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
387 * after draining finished.
c246e80d 388 */
3ef28e83 389 blk_freeze_queue(q);
c57cdf7a
ML
390
391 rq_qos_exit(q);
392
57d74df9 393 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
c9a929dd 394
5a48fc14
DW
395 /* for synchronous bio-based driver finish in-flight integrity i/o */
396 blk_flush_integrity();
397
c9a929dd 398 /* @q won't process any more request, flush async actions */
dc3b17cc 399 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
400 blk_sync_queue(q);
401
344e9ffc 402 if (queue_is_mq(q))
c7e2d94b 403 blk_mq_exit_queue(q);
a1ce35fa 404
c3e22192
ML
405 /*
406 * In theory, request pool of sched_tags belongs to request queue.
407 * However, the current implementation requires tag_set for freeing
408 * requests, so free the pool now.
409 *
410 * Queue has become frozen, there can't be any in-queue requests, so
411 * it is safe to free requests now.
412 */
413 mutex_lock(&q->sysfs_lock);
414 if (q->elevator)
415 blk_mq_sched_free_requests(q);
416 mutex_unlock(&q->sysfs_lock);
417
3ef28e83 418 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 419
c9a929dd 420 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
421 blk_put_queue(q);
422}
1da177e4
LT
423EXPORT_SYMBOL(blk_cleanup_queue);
424
3a0a5299
BVA
425/**
426 * blk_queue_enter() - try to increase q->q_usage_counter
427 * @q: request queue pointer
a4d34da7 428 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
3a0a5299 429 */
9a95e4ef 430int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 431{
a4d34da7 432 const bool pm = flags & BLK_MQ_REQ_PM;
3a0a5299 433
3ef28e83 434 while (true) {
3a0a5299 435 bool success = false;
3ef28e83 436
818e0fa2 437 rcu_read_lock();
3a0a5299
BVA
438 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
439 /*
cd84a62e
BVA
440 * The code that increments the pm_only counter is
441 * responsible for ensuring that that counter is
442 * globally visible before the queue is unfrozen.
3a0a5299 443 */
52abca64
AS
444 if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
445 !blk_queue_pm_only(q)) {
3a0a5299
BVA
446 success = true;
447 } else {
448 percpu_ref_put(&q->q_usage_counter);
449 }
450 }
818e0fa2 451 rcu_read_unlock();
3a0a5299
BVA
452
453 if (success)
3ef28e83
DW
454 return 0;
455
3a0a5299 456 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
457 return -EBUSY;
458
5ed61d3f 459 /*
1671d522 460 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 461 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
462 * .q_usage_counter and reading .mq_freeze_depth or
463 * queue dying flag, otherwise the following wait may
464 * never return if the two reads are reordered.
5ed61d3f
ML
465 */
466 smp_rmb();
467
1dc3039b 468 wait_event(q->mq_freeze_wq,
7996a8b5 469 (!q->mq_freeze_depth &&
52abca64 470 blk_pm_resume_queue(pm, q)) ||
1dc3039b 471 blk_queue_dying(q));
3ef28e83
DW
472 if (blk_queue_dying(q))
473 return -ENODEV;
3ef28e83
DW
474 }
475}
476
accea322
CH
477static inline int bio_queue_enter(struct bio *bio)
478{
479 struct request_queue *q = bio->bi_disk->queue;
480 bool nowait = bio->bi_opf & REQ_NOWAIT;
481 int ret;
482
483 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
484 if (unlikely(ret)) {
485 if (nowait && !blk_queue_dying(q))
486 bio_wouldblock_error(bio);
487 else
488 bio_io_error(bio);
489 }
490
491 return ret;
492}
493
3ef28e83
DW
494void blk_queue_exit(struct request_queue *q)
495{
496 percpu_ref_put(&q->q_usage_counter);
497}
498
499static void blk_queue_usage_counter_release(struct percpu_ref *ref)
500{
501 struct request_queue *q =
502 container_of(ref, struct request_queue, q_usage_counter);
503
504 wake_up_all(&q->mq_freeze_wq);
505}
506
bca237a5 507static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 508{
bca237a5 509 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
510
511 kblockd_schedule_work(&q->timeout_work);
512}
513
2e3c18d0
TH
514static void blk_timeout_work(struct work_struct *work)
515{
516}
517
c62b37d9 518struct request_queue *blk_alloc_queue(int node_id)
1946089a 519{
165125e1 520 struct request_queue *q;
338aa96d 521 int ret;
1946089a 522
8324aa91 523 q = kmem_cache_alloc_node(blk_requestq_cachep,
3d745ea5 524 GFP_KERNEL | __GFP_ZERO, node_id);
1da177e4
LT
525 if (!q)
526 return NULL;
527
cbf62af3 528 q->last_merge = NULL;
cbf62af3 529
3d745ea5 530 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
a73f730d 531 if (q->id < 0)
3d2936f4 532 goto fail_q;
a73f730d 533
338aa96d
KO
534 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
535 if (ret)
54efd50b
KO
536 goto fail_id;
537
aef33c2f 538 q->backing_dev_info = bdi_alloc(node_id);
d03f6cdc
JK
539 if (!q->backing_dev_info)
540 goto fail_split;
541
a83b576c
JA
542 q->stats = blk_alloc_queue_stats();
543 if (!q->stats)
544 goto fail_stats;
545
5151412d 546 q->node = node_id;
0989a025 547
bccf5e26
JG
548 atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
549
bca237a5
KC
550 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
551 laptop_mode_timer_fn, 0);
552 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
2e3c18d0 553 INIT_WORK(&q->timeout_work, blk_timeout_work);
a612fddf 554 INIT_LIST_HEAD(&q->icq_list);
4eef3049 555#ifdef CONFIG_BLK_CGROUP
e8989fae 556 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 557#endif
483f4afc 558
8324aa91 559 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 560
85e0cbbb 561 mutex_init(&q->debugfs_mutex);
483f4afc 562 mutex_init(&q->sysfs_lock);
cecf5d87 563 mutex_init(&q->sysfs_dir_lock);
0d945c1f 564 spin_lock_init(&q->queue_lock);
c94a96ac 565
320ae51f 566 init_waitqueue_head(&q->mq_freeze_wq);
7996a8b5 567 mutex_init(&q->mq_freeze_lock);
320ae51f 568
3ef28e83
DW
569 /*
570 * Init percpu_ref in atomic mode so that it's faster to shutdown.
571 * See blk_register_queue() for details.
572 */
573 if (percpu_ref_init(&q->q_usage_counter,
574 blk_queue_usage_counter_release,
575 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 576 goto fail_bdi;
f51b802c 577
3ef28e83
DW
578 if (blkcg_init_queue(q))
579 goto fail_ref;
580
3d745ea5
CH
581 blk_queue_dma_alignment(q, 511);
582 blk_set_default_limits(&q->limits);
c62b37d9 583 q->nr_requests = BLKDEV_MAX_RQ;
3d745ea5 584
1da177e4 585 return q;
a73f730d 586
3ef28e83
DW
587fail_ref:
588 percpu_ref_exit(&q->q_usage_counter);
fff4996b 589fail_bdi:
a83b576c
JA
590 blk_free_queue_stats(q->stats);
591fail_stats:
d03f6cdc 592 bdi_put(q->backing_dev_info);
54efd50b 593fail_split:
338aa96d 594 bioset_exit(&q->bio_split);
a73f730d
TH
595fail_id:
596 ida_simple_remove(&blk_queue_ida, q->id);
597fail_q:
598 kmem_cache_free(blk_requestq_cachep, q);
599 return NULL;
1da177e4 600}
3d745ea5 601EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 602
b5bd357c
LC
603/**
604 * blk_get_queue - increment the request_queue refcount
605 * @q: the request_queue structure to increment the refcount for
606 *
607 * Increment the refcount of the request_queue kobject.
763b5892
LC
608 *
609 * Context: Any context.
b5bd357c 610 */
09ac46c4 611bool blk_get_queue(struct request_queue *q)
1da177e4 612{
3f3299d5 613 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
614 __blk_get_queue(q);
615 return true;
1da177e4
LT
616 }
617
09ac46c4 618 return false;
1da177e4 619}
d86e0e83 620EXPORT_SYMBOL(blk_get_queue);
1da177e4 621
a1ce35fa
JA
622/**
623 * blk_get_request - allocate a request
624 * @q: request queue to allocate a request for
625 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
626 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1da177e4 627 */
a1ce35fa
JA
628struct request *blk_get_request(struct request_queue *q, unsigned int op,
629 blk_mq_req_flags_t flags)
1da177e4 630{
a1ce35fa 631 struct request *req;
1da177e4 632
a1ce35fa 633 WARN_ON_ONCE(op & REQ_NOWAIT);
a4d34da7 634 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
1da177e4 635
a1ce35fa
JA
636 req = blk_mq_alloc_request(q, op, flags);
637 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
638 q->mq_ops->initialize_rq_fn(req);
1da177e4 639
a1ce35fa 640 return req;
1da177e4 641}
a1ce35fa 642EXPORT_SYMBOL(blk_get_request);
1da177e4 643
1da177e4
LT
644void blk_put_request(struct request *req)
645{
a1ce35fa 646 blk_mq_free_request(req);
1da177e4 647}
1da177e4
LT
648EXPORT_SYMBOL(blk_put_request);
649
52c5e62d 650static void handle_bad_sector(struct bio *bio, sector_t maxsector)
1da177e4
LT
651{
652 char b[BDEVNAME_SIZE];
653
f4ac712e
TH
654 pr_info_ratelimited("attempt to access beyond end of device\n"
655 "%s: rw=%d, want=%llu, limit=%llu\n",
656 bio_devname(bio, b), bio->bi_opf,
657 bio_end_sector(bio), maxsector);
1da177e4
LT
658}
659
c17bb495
AM
660#ifdef CONFIG_FAIL_MAKE_REQUEST
661
662static DECLARE_FAULT_ATTR(fail_make_request);
663
664static int __init setup_fail_make_request(char *str)
665{
666 return setup_fault_attr(&fail_make_request, str);
667}
668__setup("fail_make_request=", setup_fail_make_request);
669
8446fe92 670static bool should_fail_request(struct block_device *part, unsigned int bytes)
c17bb495 671{
8446fe92 672 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
673}
674
675static int __init fail_make_request_debugfs(void)
676{
dd48c085
AM
677 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
678 NULL, &fail_make_request);
679
21f9fcd8 680 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
681}
682
683late_initcall(fail_make_request_debugfs);
684
685#else /* CONFIG_FAIL_MAKE_REQUEST */
686
8446fe92 687static inline bool should_fail_request(struct block_device *part,
b2c9cd37 688 unsigned int bytes)
c17bb495 689{
b2c9cd37 690 return false;
c17bb495
AM
691}
692
693#endif /* CONFIG_FAIL_MAKE_REQUEST */
694
8446fe92 695static inline bool bio_check_ro(struct bio *bio, struct block_device *part)
721c7fc7 696{
52f019d4 697 if (op_is_write(bio_op(bio)) && bdev_read_only(part)) {
721c7fc7
ID
698 char b[BDEVNAME_SIZE];
699
8b2ded1c
MP
700 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
701 return false;
702
a32e236e 703 WARN_ONCE(1,
c8178674 704 "Trying to write to read-only block-device %s (partno %d)\n",
8446fe92 705 bio_devname(bio, b), part->bd_partno);
a32e236e
LT
706 /* Older lvm-tools actually trigger this */
707 return false;
721c7fc7
ID
708 }
709
710 return false;
711}
712
30abb3a6
HM
713static noinline int should_fail_bio(struct bio *bio)
714{
8446fe92 715 if (should_fail_request(bio->bi_disk->part0, bio->bi_iter.bi_size))
30abb3a6
HM
716 return -EIO;
717 return 0;
718}
719ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
720
52c5e62d
CH
721/*
722 * Check whether this bio extends beyond the end of the device or partition.
723 * This may well happen - the kernel calls bread() without checking the size of
724 * the device, e.g., when mounting a file system.
725 */
726static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
727{
728 unsigned int nr_sectors = bio_sectors(bio);
729
730 if (nr_sectors && maxsector &&
731 (nr_sectors > maxsector ||
732 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
733 handle_bad_sector(bio, maxsector);
734 return -EIO;
735 }
736 return 0;
737}
738
74d46992
CH
739/*
740 * Remap block n of partition p to block n+start(p) of the disk.
741 */
742static inline int blk_partition_remap(struct bio *bio)
743{
8446fe92 744 struct block_device *p;
52c5e62d 745 int ret = -EIO;
74d46992 746
721c7fc7
ID
747 rcu_read_lock();
748 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
52c5e62d
CH
749 if (unlikely(!p))
750 goto out;
751 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
752 goto out;
753 if (unlikely(bio_check_ro(bio, p)))
721c7fc7 754 goto out;
721c7fc7 755
5eac3eb3 756 if (bio_sectors(bio)) {
8446fe92 757 if (bio_check_eod(bio, bdev_nr_sectors(p)))
52c5e62d 758 goto out;
8446fe92 759 bio->bi_iter.bi_sector += p->bd_start_sect;
1c02fca6 760 trace_block_bio_remap(bio, p->bd_dev,
29ff57c6 761 bio->bi_iter.bi_sector -
8446fe92 762 p->bd_start_sect);
52c5e62d 763 }
c04fa44b 764 bio->bi_partno = 0;
52c5e62d 765 ret = 0;
721c7fc7
ID
766out:
767 rcu_read_unlock();
74d46992
CH
768 return ret;
769}
770
0512a75b
KB
771/*
772 * Check write append to a zoned block device.
773 */
774static inline blk_status_t blk_check_zone_append(struct request_queue *q,
775 struct bio *bio)
776{
777 sector_t pos = bio->bi_iter.bi_sector;
778 int nr_sectors = bio_sectors(bio);
779
780 /* Only applicable to zoned block devices */
781 if (!blk_queue_is_zoned(q))
782 return BLK_STS_NOTSUPP;
783
784 /* The bio sector must point to the start of a sequential zone */
785 if (pos & (blk_queue_zone_sectors(q) - 1) ||
786 !blk_queue_zone_is_seq(q, pos))
787 return BLK_STS_IOERR;
788
789 /*
790 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
791 * split and could result in non-contiguous sectors being written in
792 * different zones.
793 */
794 if (nr_sectors > q->limits.chunk_sectors)
795 return BLK_STS_IOERR;
796
797 /* Make sure the BIO is small enough and will not get split */
798 if (nr_sectors > q->limits.max_zone_append_sectors)
799 return BLK_STS_IOERR;
800
801 bio->bi_opf |= REQ_NOMERGE;
802
803 return BLK_STS_OK;
804}
805
ed00aabd 806static noinline_for_stack bool submit_bio_checks(struct bio *bio)
1da177e4 807{
833f84e2 808 struct request_queue *q = bio->bi_disk->queue;
4e4cbee9 809 blk_status_t status = BLK_STS_IOERR;
5a473e83 810 struct blk_plug *plug;
1da177e4
LT
811
812 might_sleep();
1da177e4 813
5a473e83
JA
814 plug = blk_mq_plug(q, bio);
815 if (plug && plug->nowait)
816 bio->bi_opf |= REQ_NOWAIT;
817
03a07c92 818 /*
b0beb280 819 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
021a2446 820 * if queue does not support NOWAIT.
03a07c92 821 */
021a2446 822 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
b0beb280 823 goto not_supported;
03a07c92 824
30abb3a6 825 if (should_fail_bio(bio))
5a7bbad2 826 goto end_io;
2056a782 827
52c5e62d
CH
828 if (bio->bi_partno) {
829 if (unlikely(blk_partition_remap(bio)))
721c7fc7
ID
830 goto end_io;
831 } else {
8446fe92 832 if (unlikely(bio_check_ro(bio, bio->bi_disk->part0)))
52c5e62d
CH
833 goto end_io;
834 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
721c7fc7
ID
835 goto end_io;
836 }
2056a782 837
5a7bbad2 838 /*
ed00aabd
CH
839 * Filter flush bio's early so that bio based drivers without flush
840 * support don't have to worry about them.
5a7bbad2 841 */
f3a8ab7d 842 if (op_is_flush(bio->bi_opf) &&
c888a8f9 843 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 844 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
e439ab71 845 if (!bio_sectors(bio)) {
4e4cbee9 846 status = BLK_STS_OK;
51fd77bd
JA
847 goto end_io;
848 }
5a7bbad2 849 }
5ddfe969 850
d04c406f
CH
851 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
852 bio->bi_opf &= ~REQ_HIPRI;
853
288dab8a
CH
854 switch (bio_op(bio)) {
855 case REQ_OP_DISCARD:
856 if (!blk_queue_discard(q))
857 goto not_supported;
858 break;
859 case REQ_OP_SECURE_ERASE:
860 if (!blk_queue_secure_erase(q))
861 goto not_supported;
862 break;
863 case REQ_OP_WRITE_SAME:
74d46992 864 if (!q->limits.max_write_same_sectors)
288dab8a 865 goto not_supported;
58886785 866 break;
0512a75b
KB
867 case REQ_OP_ZONE_APPEND:
868 status = blk_check_zone_append(q, bio);
869 if (status != BLK_STS_OK)
870 goto end_io;
871 break;
2d253440 872 case REQ_OP_ZONE_RESET:
6c1b1da5
AJ
873 case REQ_OP_ZONE_OPEN:
874 case REQ_OP_ZONE_CLOSE:
875 case REQ_OP_ZONE_FINISH:
74d46992 876 if (!blk_queue_is_zoned(q))
2d253440 877 goto not_supported;
288dab8a 878 break;
6e33dbf2
CK
879 case REQ_OP_ZONE_RESET_ALL:
880 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
881 goto not_supported;
882 break;
a6f0788e 883 case REQ_OP_WRITE_ZEROES:
74d46992 884 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
885 goto not_supported;
886 break;
288dab8a
CH
887 default:
888 break;
5a7bbad2 889 }
01edede4 890
7f4b35d1 891 /*
3e82c348
CH
892 * Various block parts want %current->io_context, so allocate it up
893 * front rather than dealing with lots of pain to allocate it only
894 * where needed. This may fail and the block layer knows how to live
895 * with it.
7f4b35d1 896 */
3e82c348
CH
897 if (unlikely(!current->io_context))
898 create_task_io_context(current, GFP_ATOMIC, q->node);
7f4b35d1 899
db18a53e
CH
900 if (blk_throtl_bio(bio)) {
901 blkcg_bio_issue_init(bio);
ae118896 902 return false;
db18a53e
CH
903 }
904
905 blk_cgroup_bio_start(bio);
906 blkcg_bio_issue_init(bio);
27a84d54 907
fbbaf700 908 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
e8a676d6 909 trace_block_bio_queue(bio);
fbbaf700
N
910 /* Now that enqueuing has been traced, we need to trace
911 * completion as well.
912 */
913 bio_set_flag(bio, BIO_TRACE_COMPLETION);
914 }
27a84d54 915 return true;
a7384677 916
288dab8a 917not_supported:
4e4cbee9 918 status = BLK_STS_NOTSUPP;
a7384677 919end_io:
4e4cbee9 920 bio->bi_status = status;
4246a0b6 921 bio_endio(bio);
27a84d54 922 return false;
1da177e4
LT
923}
924
ed00aabd 925static blk_qc_t __submit_bio(struct bio *bio)
ac7c5675 926{
c62b37d9 927 struct gendisk *disk = bio->bi_disk;
ac7c5675
CH
928 blk_qc_t ret = BLK_QC_T_NONE;
929
930 if (blk_crypto_bio_prep(&bio)) {
c62b37d9
CH
931 if (!disk->fops->submit_bio)
932 return blk_mq_submit_bio(bio);
933 ret = disk->fops->submit_bio(bio);
ac7c5675 934 }
c62b37d9 935 blk_queue_exit(disk->queue);
ac7c5675
CH
936 return ret;
937}
938
566acf2d
CH
939/*
940 * The loop in this function may be a bit non-obvious, and so deserves some
941 * explanation:
942 *
943 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
944 * that), so we have a list with a single bio.
945 * - We pretend that we have just taken it off a longer list, so we assign
946 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
947 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
948 * bios through a recursive call to submit_bio_noacct. If it did, we find a
949 * non-NULL value in bio_list and re-enter the loop from the top.
950 * - In this case we really did just take the bio of the top of the list (no
951 * pretending) and so remove it from bio_list, and call into ->submit_bio()
952 * again.
953 *
954 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
955 * bio_list_on_stack[1] contains bios that were submitted before the current
956 * ->submit_bio_bio, but that haven't been processed yet.
957 */
958static blk_qc_t __submit_bio_noacct(struct bio *bio)
959{
960 struct bio_list bio_list_on_stack[2];
961 blk_qc_t ret = BLK_QC_T_NONE;
962
963 BUG_ON(bio->bi_next);
964
965 bio_list_init(&bio_list_on_stack[0]);
966 current->bio_list = bio_list_on_stack;
967
968 do {
969 struct request_queue *q = bio->bi_disk->queue;
970 struct bio_list lower, same;
971
972 if (unlikely(bio_queue_enter(bio) != 0))
973 continue;
974
975 /*
976 * Create a fresh bio_list for all subordinate requests.
977 */
978 bio_list_on_stack[1] = bio_list_on_stack[0];
979 bio_list_init(&bio_list_on_stack[0]);
980
981 ret = __submit_bio(bio);
982
983 /*
984 * Sort new bios into those for a lower level and those for the
985 * same level.
986 */
987 bio_list_init(&lower);
988 bio_list_init(&same);
989 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
990 if (q == bio->bi_disk->queue)
991 bio_list_add(&same, bio);
992 else
993 bio_list_add(&lower, bio);
994
995 /*
996 * Now assemble so we handle the lowest level first.
997 */
998 bio_list_merge(&bio_list_on_stack[0], &lower);
999 bio_list_merge(&bio_list_on_stack[0], &same);
1000 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1001 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
1002
1003 current->bio_list = NULL;
1004 return ret;
1005}
1006
ff93ea0c
CH
1007static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1008{
7c792f33 1009 struct bio_list bio_list[2] = { };
ff93ea0c
CH
1010 blk_qc_t ret = BLK_QC_T_NONE;
1011
7c792f33 1012 current->bio_list = bio_list;
ff93ea0c
CH
1013
1014 do {
0e6e255e 1015 struct gendisk *disk = bio->bi_disk;
ff93ea0c
CH
1016
1017 if (unlikely(bio_queue_enter(bio) != 0))
1018 continue;
1019
1020 if (!blk_crypto_bio_prep(&bio)) {
1021 blk_queue_exit(disk->queue);
1022 ret = BLK_QC_T_NONE;
1023 continue;
1024 }
1025
1026 ret = blk_mq_submit_bio(bio);
7c792f33 1027 } while ((bio = bio_list_pop(&bio_list[0])));
ff93ea0c
CH
1028
1029 current->bio_list = NULL;
1030 return ret;
1031}
1032
27a84d54 1033/**
ed00aabd 1034 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
27a84d54
CH
1035 * @bio: The bio describing the location in memory and on the device.
1036 *
3fdd4086
CH
1037 * This is a version of submit_bio() that shall only be used for I/O that is
1038 * resubmitted to lower level drivers by stacking block drivers. All file
1039 * systems and other upper level users of the block layer should use
1040 * submit_bio() instead.
d89d8796 1041 */
ed00aabd 1042blk_qc_t submit_bio_noacct(struct bio *bio)
d89d8796 1043{
ed00aabd 1044 if (!submit_bio_checks(bio))
566acf2d 1045 return BLK_QC_T_NONE;
27a84d54
CH
1046
1047 /*
566acf2d
CH
1048 * We only want one ->submit_bio to be active at a time, else stack
1049 * usage with stacked devices could be a problem. Use current->bio_list
1050 * to collect a list of requests submited by a ->submit_bio method while
1051 * it is active, and then process them after it returned.
27a84d54 1052 */
bddd87c7 1053 if (current->bio_list) {
f5fe1b51 1054 bio_list_add(&current->bio_list[0], bio);
566acf2d 1055 return BLK_QC_T_NONE;
d89d8796 1056 }
27a84d54 1057
ff93ea0c
CH
1058 if (!bio->bi_disk->fops->submit_bio)
1059 return __submit_bio_noacct_mq(bio);
566acf2d 1060 return __submit_bio_noacct(bio);
d89d8796 1061}
ed00aabd 1062EXPORT_SYMBOL(submit_bio_noacct);
1da177e4
LT
1063
1064/**
710027a4 1065 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1066 * @bio: The &struct bio which describes the I/O
1067 *
3fdd4086
CH
1068 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1069 * fully set up &struct bio that describes the I/O that needs to be done. The
1070 * bio will be send to the device described by the bi_disk and bi_partno fields.
1da177e4 1071 *
3fdd4086
CH
1072 * The success/failure status of the request, along with notification of
1073 * completion, is delivered asynchronously through the ->bi_end_io() callback
1074 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1075 * been called.
1da177e4 1076 */
4e49ea4a 1077blk_qc_t submit_bio(struct bio *bio)
1da177e4 1078{
d3f77dfd
TH
1079 if (blkcg_punt_bio_submit(bio))
1080 return BLK_QC_T_NONE;
1081
bf2de6f5
JA
1082 /*
1083 * If it's a regular read/write or a barrier with data attached,
1084 * go through the normal accounting stuff before submission.
1085 */
e2a60da7 1086 if (bio_has_data(bio)) {
4363ac7c
MP
1087 unsigned int count;
1088
95fe6c1a 1089 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
7c5a0dcf 1090 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
4363ac7c
MP
1091 else
1092 count = bio_sectors(bio);
1093
a8ebb056 1094 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
1095 count_vm_events(PGPGOUT, count);
1096 } else {
4f024f37 1097 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1098 count_vm_events(PGPGIN, count);
1099 }
1100
1101 if (unlikely(block_dump)) {
1102 char b[BDEVNAME_SIZE];
8dcbdc74 1103 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1104 current->comm, task_pid_nr(current),
a8ebb056 1105 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 1106 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 1107 bio_devname(bio, b), count);
bf2de6f5 1108 }
1da177e4
LT
1109 }
1110
b8e24a93 1111 /*
760f83ea
CH
1112 * If we're reading data that is part of the userspace workingset, count
1113 * submission time as memory stall. When the device is congested, or
1114 * the submitting cgroup IO-throttled, submission can be a significant
1115 * part of overall IO time.
b8e24a93 1116 */
760f83ea
CH
1117 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1118 bio_flagged(bio, BIO_WORKINGSET))) {
1119 unsigned long pflags;
1120 blk_qc_t ret;
b8e24a93 1121
760f83ea 1122 psi_memstall_enter(&pflags);
ed00aabd 1123 ret = submit_bio_noacct(bio);
b8e24a93
JW
1124 psi_memstall_leave(&pflags);
1125
760f83ea
CH
1126 return ret;
1127 }
1128
ed00aabd 1129 return submit_bio_noacct(bio);
1da177e4 1130}
1da177e4
LT
1131EXPORT_SYMBOL(submit_bio);
1132
82124d60 1133/**
bf4e6b4e 1134 * blk_cloned_rq_check_limits - Helper function to check a cloned request
0d720318 1135 * for the new queue limits
82124d60
KU
1136 * @q: the queue
1137 * @rq: the request being checked
1138 *
1139 * Description:
1140 * @rq may have been made based on weaker limitations of upper-level queues
1141 * in request stacking drivers, and it may violate the limitation of @q.
1142 * Since the block layer and the underlying device driver trust @rq
1143 * after it is inserted to @q, it should be checked against @q before
1144 * the insertion using this generic function.
1145 *
82124d60 1146 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
1147 * limits when retrying requests on other queues. Those requests need
1148 * to be checked against the new queue limits again during dispatch.
82124d60 1149 */
143d2600 1150static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
bf4e6b4e 1151 struct request *rq)
82124d60 1152{
8327cce5
RS
1153 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1154
1155 if (blk_rq_sectors(rq) > max_sectors) {
1156 /*
1157 * SCSI device does not have a good way to return if
1158 * Write Same/Zero is actually supported. If a device rejects
1159 * a non-read/write command (discard, write same,etc.) the
1160 * low-level device driver will set the relevant queue limit to
1161 * 0 to prevent blk-lib from issuing more of the offending
1162 * operations. Commands queued prior to the queue limit being
1163 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1164 * errors being propagated to upper layers.
1165 */
1166 if (max_sectors == 0)
1167 return BLK_STS_NOTSUPP;
1168
61939b12 1169 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
8327cce5 1170 __func__, blk_rq_sectors(rq), max_sectors);
143d2600 1171 return BLK_STS_IOERR;
82124d60
KU
1172 }
1173
1174 /*
1175 * queue's settings related to segment counting like q->bounce_pfn
1176 * may differ from that of other stacking queues.
1177 * Recalculate it to check the request correctly on this queue's
1178 * limitation.
1179 */
e9cd19c0 1180 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
8a78362c 1181 if (rq->nr_phys_segments > queue_max_segments(q)) {
61939b12
JP
1182 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1183 __func__, rq->nr_phys_segments, queue_max_segments(q));
143d2600 1184 return BLK_STS_IOERR;
82124d60
KU
1185 }
1186
143d2600 1187 return BLK_STS_OK;
82124d60 1188}
82124d60
KU
1189
1190/**
1191 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1192 * @q: the queue to submit the request
1193 * @rq: the request being queued
1194 */
2a842aca 1195blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60 1196{
8327cce5
RS
1197 blk_status_t ret;
1198
1199 ret = blk_cloned_rq_check_limits(q, rq);
1200 if (ret != BLK_STS_OK)
1201 return ret;
82124d60 1202
b2c9cd37 1203 if (rq->rq_disk &&
8446fe92 1204 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 1205 return BLK_STS_IOERR;
82124d60 1206
a892c8d5
ST
1207 if (blk_crypto_insert_cloned_request(rq))
1208 return BLK_STS_IOERR;
1209
a1ce35fa 1210 if (blk_queue_io_stat(q))
b5af37ab 1211 blk_account_io_start(rq);
82124d60
KU
1212
1213 /*
a1ce35fa
JA
1214 * Since we have a scheduler attached on the top device,
1215 * bypass a potential scheduler on the bottom device for
1216 * insert.
82124d60 1217 */
fd9c40f6 1218 return blk_mq_request_issue_directly(rq, true);
82124d60
KU
1219}
1220EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1221
80a761fd
TH
1222/**
1223 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1224 * @rq: request to examine
1225 *
1226 * Description:
1227 * A request could be merge of IOs which require different failure
1228 * handling. This function determines the number of bytes which
1229 * can be failed from the beginning of the request without
1230 * crossing into area which need to be retried further.
1231 *
1232 * Return:
1233 * The number of bytes to fail.
80a761fd
TH
1234 */
1235unsigned int blk_rq_err_bytes(const struct request *rq)
1236{
1237 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1238 unsigned int bytes = 0;
1239 struct bio *bio;
1240
e8064021 1241 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
1242 return blk_rq_bytes(rq);
1243
1244 /*
1245 * Currently the only 'mixing' which can happen is between
1246 * different fastfail types. We can safely fail portions
1247 * which have all the failfast bits that the first one has -
1248 * the ones which are at least as eager to fail as the first
1249 * one.
1250 */
1251 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 1252 if ((bio->bi_opf & ff) != ff)
80a761fd 1253 break;
4f024f37 1254 bytes += bio->bi_iter.bi_size;
80a761fd
TH
1255 }
1256
1257 /* this could lead to infinite loop */
1258 BUG_ON(blk_rq_bytes(rq) && !bytes);
1259 return bytes;
1260}
1261EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1262
8446fe92
CH
1263static void update_io_ticks(struct block_device *part, unsigned long now,
1264 bool end)
9123bf6f
CH
1265{
1266 unsigned long stamp;
1267again:
8446fe92 1268 stamp = READ_ONCE(part->bd_stamp);
9123bf6f 1269 if (unlikely(stamp != now)) {
8446fe92 1270 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
9123bf6f
CH
1271 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1272 }
8446fe92
CH
1273 if (part->bd_partno) {
1274 part = bdev_whole(part);
9123bf6f
CH
1275 goto again;
1276 }
1277}
1278
f1394b79 1279static void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 1280{
ecb6186c 1281 if (req->part && blk_do_io_stat(req)) {
ddcf35d3 1282 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1283
112f158f 1284 part_stat_lock();
8446fe92 1285 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
bc58ba94
JA
1286 part_stat_unlock();
1287 }
1288}
1289
522a7775 1290void blk_account_io_done(struct request *req, u64 now)
bc58ba94 1291{
bc58ba94 1292 /*
dd4c133f
TH
1293 * Account IO completion. flush_rq isn't accounted as a
1294 * normal IO on queueing nor completion. Accounting the
1295 * containing request is enough.
bc58ba94 1296 */
ecb6186c
LG
1297 if (req->part && blk_do_io_stat(req) &&
1298 !(req->rq_flags & RQF_FLUSH_SEQ)) {
ddcf35d3 1299 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1300
112f158f 1301 part_stat_lock();
8446fe92
CH
1302 update_io_ticks(req->part, jiffies, true);
1303 part_stat_inc(req->part, ios[sgrp]);
1304 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
524f9ffd 1305 part_stat_unlock();
bc58ba94
JA
1306 }
1307}
1308
b5af37ab 1309void blk_account_io_start(struct request *rq)
320ae51f 1310{
320ae51f
JA
1311 if (!blk_do_io_stat(rq))
1312 return;
1313
b5af37ab 1314 rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
524f9ffd 1315
112f158f 1316 part_stat_lock();
76268f3a 1317 update_io_ticks(rq->part, jiffies, false);
320ae51f
JA
1318 part_stat_unlock();
1319}
320ae51f 1320
8446fe92 1321static unsigned long __part_start_io_acct(struct block_device *part,
7b26410b 1322 unsigned int sectors, unsigned int op)
956d510e 1323{
956d510e
CH
1324 const int sgrp = op_stat_group(op);
1325 unsigned long now = READ_ONCE(jiffies);
1326
1327 part_stat_lock();
1328 update_io_ticks(part, now, false);
1329 part_stat_inc(part, ios[sgrp]);
1330 part_stat_add(part, sectors[sgrp], sectors);
1331 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1332 part_stat_unlock();
320ae51f 1333
956d510e
CH
1334 return now;
1335}
7b26410b 1336
8446fe92 1337unsigned long part_start_io_acct(struct gendisk *disk, struct block_device **part,
7b26410b
SL
1338 struct bio *bio)
1339{
1340 *part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector);
1341
1342 return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio));
1343}
1344EXPORT_SYMBOL_GPL(part_start_io_acct);
1345
1346unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1347 unsigned int op)
1348{
8446fe92 1349 return __part_start_io_acct(disk->part0, sectors, op);
7b26410b 1350}
956d510e
CH
1351EXPORT_SYMBOL(disk_start_io_acct);
1352
8446fe92 1353static void __part_end_io_acct(struct block_device *part, unsigned int op,
7b26410b 1354 unsigned long start_time)
956d510e 1355{
956d510e
CH
1356 const int sgrp = op_stat_group(op);
1357 unsigned long now = READ_ONCE(jiffies);
1358 unsigned long duration = now - start_time;
5b18b5a7 1359
956d510e
CH
1360 part_stat_lock();
1361 update_io_ticks(part, now, true);
1362 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1363 part_stat_local_dec(part, in_flight[op_is_write(op)]);
320ae51f
JA
1364 part_stat_unlock();
1365}
7b26410b 1366
8446fe92 1367void part_end_io_acct(struct block_device *part, struct bio *bio,
7b26410b
SL
1368 unsigned long start_time)
1369{
1370 __part_end_io_acct(part, bio_op(bio), start_time);
7b26410b
SL
1371}
1372EXPORT_SYMBOL_GPL(part_end_io_acct);
1373
1374void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1375 unsigned long start_time)
1376{
8446fe92 1377 __part_end_io_acct(disk->part0, op, start_time);
7b26410b 1378}
956d510e 1379EXPORT_SYMBOL(disk_end_io_acct);
320ae51f 1380
ef71de8b
CH
1381/*
1382 * Steal bios from a request and add them to a bio list.
1383 * The request must not have been partially completed before.
1384 */
1385void blk_steal_bios(struct bio_list *list, struct request *rq)
1386{
1387 if (rq->bio) {
1388 if (list->tail)
1389 list->tail->bi_next = rq->bio;
1390 else
1391 list->head = rq->bio;
1392 list->tail = rq->biotail;
1393
1394 rq->bio = NULL;
1395 rq->biotail = NULL;
1396 }
1397
1398 rq->__data_len = 0;
1399}
1400EXPORT_SYMBOL_GPL(blk_steal_bios);
1401
3bcddeac 1402/**
2e60e022 1403 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1404 * @req: the request being processed
2a842aca 1405 * @error: block status code
8ebf9756 1406 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1407 *
1408 * Description:
8ebf9756
RD
1409 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1410 * the request structure even if @req doesn't have leftover.
1411 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1412 *
1413 * This special helper function is only for request stacking drivers
1414 * (e.g. request-based dm) so that they can handle partial completion.
3a211b71 1415 * Actual device drivers should use blk_mq_end_request instead.
2e60e022
TH
1416 *
1417 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1418 * %false return from this function.
3bcddeac 1419 *
1954e9a9
BVA
1420 * Note:
1421 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1422 * blk_rq_bytes() and in blk_update_request().
1423 *
3bcddeac 1424 * Return:
2e60e022
TH
1425 * %false - this request doesn't have any more data
1426 * %true - this request has more data
3bcddeac 1427 **/
2a842aca
CH
1428bool blk_update_request(struct request *req, blk_status_t error,
1429 unsigned int nr_bytes)
1da177e4 1430{
f79ea416 1431 int total_bytes;
1da177e4 1432
2a842aca 1433 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 1434
2e60e022
TH
1435 if (!req->bio)
1436 return false;
1437
54d4e6ab
MG
1438#ifdef CONFIG_BLK_DEV_INTEGRITY
1439 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1440 error == BLK_STS_OK)
1441 req->q->integrity.profile->complete_fn(req, nr_bytes);
1442#endif
1443
2a842aca
CH
1444 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1445 !(req->rq_flags & RQF_QUIET)))
178cc590 1446 print_req_error(req, error, __func__);
1da177e4 1447
bc58ba94 1448 blk_account_io_completion(req, nr_bytes);
d72d904a 1449
f79ea416
KO
1450 total_bytes = 0;
1451 while (req->bio) {
1452 struct bio *bio = req->bio;
4f024f37 1453 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 1454
9c24c10a 1455 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 1456 req->bio = bio->bi_next;
1da177e4 1457
fbbaf700
N
1458 /* Completion has already been traced */
1459 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 1460 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 1461
f79ea416
KO
1462 total_bytes += bio_bytes;
1463 nr_bytes -= bio_bytes;
1da177e4 1464
f79ea416
KO
1465 if (!nr_bytes)
1466 break;
1da177e4
LT
1467 }
1468
1469 /*
1470 * completely done
1471 */
2e60e022
TH
1472 if (!req->bio) {
1473 /*
1474 * Reset counters so that the request stacking driver
1475 * can find how many bytes remain in the request
1476 * later.
1477 */
a2dec7b3 1478 req->__data_len = 0;
2e60e022
TH
1479 return false;
1480 }
1da177e4 1481
a2dec7b3 1482 req->__data_len -= total_bytes;
2e46e8b2
TH
1483
1484 /* update sector only for requests with clear definition of sector */
57292b58 1485 if (!blk_rq_is_passthrough(req))
a2dec7b3 1486 req->__sector += total_bytes >> 9;
2e46e8b2 1487
80a761fd 1488 /* mixed attributes always follow the first bio */
e8064021 1489 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 1490 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 1491 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
1492 }
1493
ed6565e7
CH
1494 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1495 /*
1496 * If total number of sectors is less than the first segment
1497 * size, something has gone terribly wrong.
1498 */
1499 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1500 blk_dump_rq_flags(req, "request botched");
1501 req->__data_len = blk_rq_cur_bytes(req);
1502 }
2e46e8b2 1503
ed6565e7 1504 /* recalculate the number of segments */
e9cd19c0 1505 req->nr_phys_segments = blk_recalc_rq_segments(req);
ed6565e7 1506 }
2e46e8b2 1507
2e60e022 1508 return true;
1da177e4 1509}
2e60e022 1510EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 1511
2d4dc890
IL
1512#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1513/**
1514 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1515 * @rq: the request to be flushed
1516 *
1517 * Description:
1518 * Flush all pages in @rq.
1519 */
1520void rq_flush_dcache_pages(struct request *rq)
1521{
1522 struct req_iterator iter;
7988613b 1523 struct bio_vec bvec;
2d4dc890
IL
1524
1525 rq_for_each_segment(bvec, rq, iter)
7988613b 1526 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1527}
1528EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1529#endif
1530
ef9e3fac
KU
1531/**
1532 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1533 * @q : the queue of the device being checked
1534 *
1535 * Description:
1536 * Check if underlying low-level drivers of a device are busy.
1537 * If the drivers want to export their busy state, they must set own
1538 * exporting function using blk_queue_lld_busy() first.
1539 *
1540 * Basically, this function is used only by request stacking drivers
1541 * to stop dispatching requests to underlying devices when underlying
1542 * devices are busy. This behavior helps more I/O merging on the queue
1543 * of the request stacking driver and prevents I/O throughput regression
1544 * on burst I/O load.
1545 *
1546 * Return:
1547 * 0 - Not busy (The request stacking driver should dispatch request)
1548 * 1 - Busy (The request stacking driver should stop dispatching request)
1549 */
1550int blk_lld_busy(struct request_queue *q)
1551{
344e9ffc 1552 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1553 return q->mq_ops->busy(q);
ef9e3fac
KU
1554
1555 return 0;
1556}
1557EXPORT_SYMBOL_GPL(blk_lld_busy);
1558
78d8e58a
MS
1559/**
1560 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1561 * @rq: the clone request to be cleaned up
1562 *
1563 * Description:
1564 * Free all bios in @rq for a cloned request.
1565 */
1566void blk_rq_unprep_clone(struct request *rq)
1567{
1568 struct bio *bio;
1569
1570 while ((bio = rq->bio) != NULL) {
1571 rq->bio = bio->bi_next;
1572
1573 bio_put(bio);
1574 }
1575}
1576EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1577
78d8e58a
MS
1578/**
1579 * blk_rq_prep_clone - Helper function to setup clone request
1580 * @rq: the request to be setup
1581 * @rq_src: original request to be cloned
1582 * @bs: bio_set that bios for clone are allocated from
1583 * @gfp_mask: memory allocation mask for bio
1584 * @bio_ctr: setup function to be called for each clone bio.
1585 * Returns %0 for success, non %0 for failure.
1586 * @data: private data to be passed to @bio_ctr
1587 *
1588 * Description:
1589 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
78d8e58a
MS
1590 * Also, pages which the original bios are pointing to are not copied
1591 * and the cloned bios just point same pages.
1592 * So cloned bios must be completed before original bios, which means
1593 * the caller must complete @rq before @rq_src.
1594 */
1595int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1596 struct bio_set *bs, gfp_t gfp_mask,
1597 int (*bio_ctr)(struct bio *, struct bio *, void *),
1598 void *data)
1599{
1600 struct bio *bio, *bio_src;
1601
1602 if (!bs)
f4f8154a 1603 bs = &fs_bio_set;
78d8e58a
MS
1604
1605 __rq_for_each_bio(bio_src, rq_src) {
1606 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1607 if (!bio)
1608 goto free_and_out;
1609
1610 if (bio_ctr && bio_ctr(bio, bio_src, data))
1611 goto free_and_out;
1612
1613 if (rq->bio) {
1614 rq->biotail->bi_next = bio;
1615 rq->biotail = bio;
93f221ae 1616 } else {
78d8e58a 1617 rq->bio = rq->biotail = bio;
93f221ae
EB
1618 }
1619 bio = NULL;
78d8e58a
MS
1620 }
1621
361301a2
GJ
1622 /* Copy attributes of the original request to the clone request. */
1623 rq->__sector = blk_rq_pos(rq_src);
1624 rq->__data_len = blk_rq_bytes(rq_src);
1625 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1626 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1627 rq->special_vec = rq_src->special_vec;
1628 }
1629 rq->nr_phys_segments = rq_src->nr_phys_segments;
1630 rq->ioprio = rq_src->ioprio;
78d8e58a 1631
93f221ae
EB
1632 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1633 goto free_and_out;
78d8e58a
MS
1634
1635 return 0;
1636
1637free_and_out:
1638 if (bio)
1639 bio_put(bio);
1640 blk_rq_unprep_clone(rq);
1641
1642 return -ENOMEM;
b0fd271d
KU
1643}
1644EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1645
59c3d45e 1646int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1647{
1648 return queue_work(kblockd_workqueue, work);
1649}
1da177e4
LT
1650EXPORT_SYMBOL(kblockd_schedule_work);
1651
818cd1cb
JA
1652int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1653 unsigned long delay)
1654{
1655 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1656}
1657EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1658
75df7136
SJ
1659/**
1660 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1661 * @plug: The &struct blk_plug that needs to be initialized
1662 *
1663 * Description:
40405851
JM
1664 * blk_start_plug() indicates to the block layer an intent by the caller
1665 * to submit multiple I/O requests in a batch. The block layer may use
1666 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1667 * is called. However, the block layer may choose to submit requests
1668 * before a call to blk_finish_plug() if the number of queued I/Os
1669 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1670 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1671 * the task schedules (see below).
1672 *
75df7136
SJ
1673 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1674 * pending I/O should the task end up blocking between blk_start_plug() and
1675 * blk_finish_plug(). This is important from a performance perspective, but
1676 * also ensures that we don't deadlock. For instance, if the task is blocking
1677 * for a memory allocation, memory reclaim could end up wanting to free a
1678 * page belonging to that request that is currently residing in our private
1679 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1680 * this kind of deadlock.
1681 */
73c10101
JA
1682void blk_start_plug(struct blk_plug *plug)
1683{
1684 struct task_struct *tsk = current;
1685
dd6cf3e1
SL
1686 /*
1687 * If this is a nested plug, don't actually assign it.
1688 */
1689 if (tsk->plug)
1690 return;
1691
320ae51f 1692 INIT_LIST_HEAD(&plug->mq_list);
048c9374 1693 INIT_LIST_HEAD(&plug->cb_list);
5f0ed774 1694 plug->rq_count = 0;
ce5b009c 1695 plug->multiple_queues = false;
5a473e83 1696 plug->nowait = false;
5f0ed774 1697
73c10101 1698 /*
dd6cf3e1
SL
1699 * Store ordering should not be needed here, since a potential
1700 * preempt will imply a full memory barrier
73c10101 1701 */
dd6cf3e1 1702 tsk->plug = plug;
73c10101
JA
1703}
1704EXPORT_SYMBOL(blk_start_plug);
1705
74018dc3 1706static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1707{
1708 LIST_HEAD(callbacks);
1709
2a7d5559
SL
1710 while (!list_empty(&plug->cb_list)) {
1711 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1712
2a7d5559
SL
1713 while (!list_empty(&callbacks)) {
1714 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1715 struct blk_plug_cb,
1716 list);
2a7d5559 1717 list_del(&cb->list);
74018dc3 1718 cb->callback(cb, from_schedule);
2a7d5559 1719 }
048c9374
N
1720 }
1721}
1722
9cbb1750
N
1723struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1724 int size)
1725{
1726 struct blk_plug *plug = current->plug;
1727 struct blk_plug_cb *cb;
1728
1729 if (!plug)
1730 return NULL;
1731
1732 list_for_each_entry(cb, &plug->cb_list, list)
1733 if (cb->callback == unplug && cb->data == data)
1734 return cb;
1735
1736 /* Not currently on the callback list */
1737 BUG_ON(size < sizeof(*cb));
1738 cb = kzalloc(size, GFP_ATOMIC);
1739 if (cb) {
1740 cb->data = data;
1741 cb->callback = unplug;
1742 list_add(&cb->list, &plug->cb_list);
1743 }
1744 return cb;
1745}
1746EXPORT_SYMBOL(blk_check_plugged);
1747
49cac01e 1748void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101 1749{
74018dc3 1750 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
1751
1752 if (!list_empty(&plug->mq_list))
1753 blk_mq_flush_plug_list(plug, from_schedule);
73c10101 1754}
73c10101 1755
40405851
JM
1756/**
1757 * blk_finish_plug - mark the end of a batch of submitted I/O
1758 * @plug: The &struct blk_plug passed to blk_start_plug()
1759 *
1760 * Description:
1761 * Indicate that a batch of I/O submissions is complete. This function
1762 * must be paired with an initial call to blk_start_plug(). The intent
1763 * is to allow the block layer to optimize I/O submission. See the
1764 * documentation for blk_start_plug() for more information.
1765 */
73c10101
JA
1766void blk_finish_plug(struct blk_plug *plug)
1767{
dd6cf3e1
SL
1768 if (plug != current->plug)
1769 return;
f6603783 1770 blk_flush_plug_list(plug, false);
73c10101 1771
dd6cf3e1 1772 current->plug = NULL;
73c10101 1773}
88b996cd 1774EXPORT_SYMBOL(blk_finish_plug);
73c10101 1775
71ac860a
ML
1776void blk_io_schedule(void)
1777{
1778 /* Prevent hang_check timer from firing at us during very long I/O */
1779 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1780
1781 if (timeout)
1782 io_schedule_timeout(timeout);
1783 else
1784 io_schedule();
1785}
1786EXPORT_SYMBOL_GPL(blk_io_schedule);
1787
1da177e4
LT
1788int __init blk_dev_init(void)
1789{
ef295ecf
CH
1790 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1791 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1792 sizeof_field(struct request, cmd_flags));
ef295ecf 1793 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1794 sizeof_field(struct bio, bi_opf));
9eb55b03 1795
89b90be2
TH
1796 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1797 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1798 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1799 if (!kblockd_workqueue)
1800 panic("Failed to create kblockd\n");
1801
c2789bd4 1802 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1803 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1804
18fbda91 1805 blk_debugfs_root = debugfs_create_dir("block", NULL);
18fbda91 1806
d38ecf93 1807 return 0;
1da177e4 1808}