block: merge blk_invoke_request_fn() into __blk_run_queue()
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
2056a782 29#include <linux/blktrace_api.h>
c17bb495 30#include <linux/fault-inject.h>
5f3ea37c 31#include <trace/block.h>
1da177e4 32
8324aa91
JA
33#include "blk.h"
34
0bfc2455
IM
35DEFINE_TRACE(block_plug);
36DEFINE_TRACE(block_unplug_io);
37DEFINE_TRACE(block_unplug_timer);
38DEFINE_TRACE(block_getrq);
39DEFINE_TRACE(block_sleeprq);
40DEFINE_TRACE(block_rq_requeue);
41DEFINE_TRACE(block_bio_backmerge);
42DEFINE_TRACE(block_bio_frontmerge);
43DEFINE_TRACE(block_bio_queue);
44DEFINE_TRACE(block_rq_complete);
45DEFINE_TRACE(block_remap); /* Also used in drivers/md/dm.c */
46EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
47
165125e1 48static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
49
50/*
51 * For the allocated request tables
52 */
5ece6c52 53static struct kmem_cache *request_cachep;
1da177e4
LT
54
55/*
56 * For queue allocation
57 */
6728cb0e 58struct kmem_cache *blk_requestq_cachep;
1da177e4 59
1da177e4
LT
60/*
61 * Controlling structure to kblockd
62 */
ff856bad 63static struct workqueue_struct *kblockd_workqueue;
1da177e4 64
26b8256e
JA
65static void drive_stat_acct(struct request *rq, int new_io)
66{
28f13702 67 struct hd_struct *part;
26b8256e 68 int rw = rq_data_dir(rq);
c9959059 69 int cpu;
26b8256e 70
26308eab 71 if (!blk_fs_request(rq) || !blk_do_io_stat(rq))
26b8256e
JA
72 return;
73
074a7aca 74 cpu = part_stat_lock();
e71bf0d0 75 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
c9959059 76
28f13702 77 if (!new_io)
074a7aca 78 part_stat_inc(cpu, part, merges[rw]);
28f13702 79 else {
074a7aca
TH
80 part_round_stats(cpu, part);
81 part_inc_in_flight(part);
26b8256e 82 }
e71bf0d0 83
074a7aca 84 part_stat_unlock();
26b8256e
JA
85}
86
8324aa91 87void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
88{
89 int nr;
90
91 nr = q->nr_requests - (q->nr_requests / 8) + 1;
92 if (nr > q->nr_requests)
93 nr = q->nr_requests;
94 q->nr_congestion_on = nr;
95
96 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
97 if (nr < 1)
98 nr = 1;
99 q->nr_congestion_off = nr;
100}
101
1da177e4
LT
102/**
103 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
104 * @bdev: device
105 *
106 * Locates the passed device's request queue and returns the address of its
107 * backing_dev_info
108 *
109 * Will return NULL if the request queue cannot be located.
110 */
111struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
112{
113 struct backing_dev_info *ret = NULL;
165125e1 114 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
115
116 if (q)
117 ret = &q->backing_dev_info;
118 return ret;
119}
1da177e4
LT
120EXPORT_SYMBOL(blk_get_backing_dev_info);
121
2a4aa30c 122void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 123{
1afb20f3
FT
124 memset(rq, 0, sizeof(*rq));
125
1da177e4 126 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 127 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 128 rq->cpu = -1;
63a71386
JA
129 rq->q = q;
130 rq->sector = rq->hard_sector = (sector_t) -1;
2e662b65
JA
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 133 rq->cmd = rq->__cmd;
e2494e1b 134 rq->cmd_len = BLK_MAX_CDB;
63a71386 135 rq->tag = -1;
1da177e4 136 rq->ref_count = 1;
1da177e4 137}
2a4aa30c 138EXPORT_SYMBOL(blk_rq_init);
1da177e4 139
5bb23a68
N
140static void req_bio_endio(struct request *rq, struct bio *bio,
141 unsigned int nbytes, int error)
1da177e4 142{
165125e1 143 struct request_queue *q = rq->q;
797e7dbb 144
5bb23a68
N
145 if (&q->bar_rq != rq) {
146 if (error)
147 clear_bit(BIO_UPTODATE, &bio->bi_flags);
148 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
149 error = -EIO;
797e7dbb 150
5bb23a68 151 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 152 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 153 __func__, nbytes, bio->bi_size);
5bb23a68
N
154 nbytes = bio->bi_size;
155 }
797e7dbb 156
08bafc03
KM
157 if (unlikely(rq->cmd_flags & REQ_QUIET))
158 set_bit(BIO_QUIET, &bio->bi_flags);
159
5bb23a68
N
160 bio->bi_size -= nbytes;
161 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
162
163 if (bio_integrity(bio))
164 bio_integrity_advance(bio, nbytes);
165
5bb23a68 166 if (bio->bi_size == 0)
6712ecf8 167 bio_endio(bio, error);
5bb23a68
N
168 } else {
169
170 /*
171 * Okay, this is the barrier request in progress, just
172 * record the error;
173 */
174 if (error && !q->orderr)
175 q->orderr = error;
176 }
1da177e4 177}
1da177e4 178
1da177e4
LT
179void blk_dump_rq_flags(struct request *rq, char *msg)
180{
181 int bit;
182
6728cb0e 183 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
184 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
185 rq->cmd_flags);
1da177e4 186
6728cb0e
JA
187 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
188 (unsigned long long)rq->sector,
189 rq->nr_sectors,
190 rq->current_nr_sectors);
191 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
192 rq->bio, rq->biotail,
193 rq->buffer, rq->data,
194 rq->data_len);
1da177e4 195
4aff5e23 196 if (blk_pc_request(rq)) {
6728cb0e 197 printk(KERN_INFO " cdb: ");
d34c87e4 198 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
199 printk("%02x ", rq->cmd[bit]);
200 printk("\n");
201 }
202}
1da177e4
LT
203EXPORT_SYMBOL(blk_dump_rq_flags);
204
1da177e4
LT
205/*
206 * "plug" the device if there are no outstanding requests: this will
207 * force the transfer to start only after we have put all the requests
208 * on the list.
209 *
210 * This is called with interrupts off and no requests on the queue and
211 * with the queue lock held.
212 */
165125e1 213void blk_plug_device(struct request_queue *q)
1da177e4
LT
214{
215 WARN_ON(!irqs_disabled());
216
217 /*
218 * don't plug a stopped queue, it must be paired with blk_start_queue()
219 * which will restart the queueing
220 */
7daac490 221 if (blk_queue_stopped(q))
1da177e4
LT
222 return;
223
e48ec690 224 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 225 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 226 trace_block_plug(q);
2056a782 227 }
1da177e4 228}
1da177e4
LT
229EXPORT_SYMBOL(blk_plug_device);
230
6c5e0c4d
JA
231/**
232 * blk_plug_device_unlocked - plug a device without queue lock held
233 * @q: The &struct request_queue to plug
234 *
235 * Description:
236 * Like @blk_plug_device(), but grabs the queue lock and disables
237 * interrupts.
238 **/
239void blk_plug_device_unlocked(struct request_queue *q)
240{
241 unsigned long flags;
242
243 spin_lock_irqsave(q->queue_lock, flags);
244 blk_plug_device(q);
245 spin_unlock_irqrestore(q->queue_lock, flags);
246}
247EXPORT_SYMBOL(blk_plug_device_unlocked);
248
1da177e4
LT
249/*
250 * remove the queue from the plugged list, if present. called with
251 * queue lock held and interrupts disabled.
252 */
165125e1 253int blk_remove_plug(struct request_queue *q)
1da177e4
LT
254{
255 WARN_ON(!irqs_disabled());
256
e48ec690 257 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
258 return 0;
259
260 del_timer(&q->unplug_timer);
261 return 1;
262}
1da177e4
LT
263EXPORT_SYMBOL(blk_remove_plug);
264
265/*
266 * remove the plug and let it rip..
267 */
165125e1 268void __generic_unplug_device(struct request_queue *q)
1da177e4 269{
7daac490 270 if (unlikely(blk_queue_stopped(q)))
1da177e4 271 return;
a31a9738 272 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
273 return;
274
22e2c507 275 q->request_fn(q);
1da177e4 276}
1da177e4
LT
277
278/**
279 * generic_unplug_device - fire a request queue
165125e1 280 * @q: The &struct request_queue in question
1da177e4
LT
281 *
282 * Description:
283 * Linux uses plugging to build bigger requests queues before letting
284 * the device have at them. If a queue is plugged, the I/O scheduler
285 * is still adding and merging requests on the queue. Once the queue
286 * gets unplugged, the request_fn defined for the queue is invoked and
287 * transfers started.
288 **/
165125e1 289void generic_unplug_device(struct request_queue *q)
1da177e4 290{
dbaf2c00
JA
291 if (blk_queue_plugged(q)) {
292 spin_lock_irq(q->queue_lock);
293 __generic_unplug_device(q);
294 spin_unlock_irq(q->queue_lock);
295 }
1da177e4
LT
296}
297EXPORT_SYMBOL(generic_unplug_device);
298
299static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
300 struct page *page)
301{
165125e1 302 struct request_queue *q = bdi->unplug_io_data;
1da177e4 303
2ad8b1ef 304 blk_unplug(q);
1da177e4
LT
305}
306
86db1e29 307void blk_unplug_work(struct work_struct *work)
1da177e4 308{
165125e1
JA
309 struct request_queue *q =
310 container_of(work, struct request_queue, unplug_work);
1da177e4 311
5f3ea37c 312 trace_block_unplug_io(q);
1da177e4
LT
313 q->unplug_fn(q);
314}
315
86db1e29 316void blk_unplug_timeout(unsigned long data)
1da177e4 317{
165125e1 318 struct request_queue *q = (struct request_queue *)data;
1da177e4 319
5f3ea37c 320 trace_block_unplug_timer(q);
18887ad9 321 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
322}
323
2ad8b1ef
AB
324void blk_unplug(struct request_queue *q)
325{
326 /*
327 * devices don't necessarily have an ->unplug_fn defined
328 */
329 if (q->unplug_fn) {
5f3ea37c 330 trace_block_unplug_io(q);
2ad8b1ef
AB
331 q->unplug_fn(q);
332 }
333}
334EXPORT_SYMBOL(blk_unplug);
335
1da177e4
LT
336/**
337 * blk_start_queue - restart a previously stopped queue
165125e1 338 * @q: The &struct request_queue in question
1da177e4
LT
339 *
340 * Description:
341 * blk_start_queue() will clear the stop flag on the queue, and call
342 * the request_fn for the queue if it was in a stopped state when
343 * entered. Also see blk_stop_queue(). Queue lock must be held.
344 **/
165125e1 345void blk_start_queue(struct request_queue *q)
1da177e4 346{
a038e253
PBG
347 WARN_ON(!irqs_disabled());
348
75ad23bc 349 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
a538cd03 350 __blk_run_queue(q);
1da177e4 351}
1da177e4
LT
352EXPORT_SYMBOL(blk_start_queue);
353
354/**
355 * blk_stop_queue - stop a queue
165125e1 356 * @q: The &struct request_queue in question
1da177e4
LT
357 *
358 * Description:
359 * The Linux block layer assumes that a block driver will consume all
360 * entries on the request queue when the request_fn strategy is called.
361 * Often this will not happen, because of hardware limitations (queue
362 * depth settings). If a device driver gets a 'queue full' response,
363 * or if it simply chooses not to queue more I/O at one point, it can
364 * call this function to prevent the request_fn from being called until
365 * the driver has signalled it's ready to go again. This happens by calling
366 * blk_start_queue() to restart queue operations. Queue lock must be held.
367 **/
165125e1 368void blk_stop_queue(struct request_queue *q)
1da177e4
LT
369{
370 blk_remove_plug(q);
75ad23bc 371 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
372}
373EXPORT_SYMBOL(blk_stop_queue);
374
375/**
376 * blk_sync_queue - cancel any pending callbacks on a queue
377 * @q: the queue
378 *
379 * Description:
380 * The block layer may perform asynchronous callback activity
381 * on a queue, such as calling the unplug function after a timeout.
382 * A block device may call blk_sync_queue to ensure that any
383 * such activity is cancelled, thus allowing it to release resources
59c51591 384 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
385 * that its ->make_request_fn will not re-add plugging prior to calling
386 * this function.
387 *
388 */
389void blk_sync_queue(struct request_queue *q)
390{
391 del_timer_sync(&q->unplug_timer);
70ed28b9 392 del_timer_sync(&q->timeout);
64d01dc9 393 cancel_work_sync(&q->unplug_work);
1da177e4
LT
394}
395EXPORT_SYMBOL(blk_sync_queue);
396
397/**
80a4b58e 398 * __blk_run_queue - run a single device queue
1da177e4 399 * @q: The queue to run
80a4b58e
JA
400 *
401 * Description:
402 * See @blk_run_queue. This variant must be called with the queue lock
403 * held and interrupts disabled.
404 *
1da177e4 405 */
75ad23bc 406void __blk_run_queue(struct request_queue *q)
1da177e4 407{
1da177e4 408 blk_remove_plug(q);
dac07ec1 409
a538cd03
TH
410 if (unlikely(blk_queue_stopped(q)))
411 return;
412
413 if (elv_queue_empty(q))
414 return;
415
dac07ec1
JA
416 /*
417 * Only recurse once to avoid overrunning the stack, let the unplug
418 * handling reinvoke the handler shortly if we already got there.
419 */
a538cd03
TH
420 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
421 q->request_fn(q);
422 queue_flag_clear(QUEUE_FLAG_REENTER, q);
423 } else {
424 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
425 kblockd_schedule_work(q, &q->unplug_work);
426 }
75ad23bc
NP
427}
428EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 429
75ad23bc
NP
430/**
431 * blk_run_queue - run a single device queue
432 * @q: The queue to run
80a4b58e
JA
433 *
434 * Description:
435 * Invoke request handling on this queue, if it has pending work to do.
436 * May be used to restart queueing when a request has completed. Also
437 * See @blk_start_queueing.
438 *
75ad23bc
NP
439 */
440void blk_run_queue(struct request_queue *q)
441{
442 unsigned long flags;
443
444 spin_lock_irqsave(q->queue_lock, flags);
445 __blk_run_queue(q);
1da177e4
LT
446 spin_unlock_irqrestore(q->queue_lock, flags);
447}
448EXPORT_SYMBOL(blk_run_queue);
449
165125e1 450void blk_put_queue(struct request_queue *q)
483f4afc
AV
451{
452 kobject_put(&q->kobj);
453}
483f4afc 454
6728cb0e 455void blk_cleanup_queue(struct request_queue *q)
483f4afc 456{
e3335de9
JA
457 /*
458 * We know we have process context here, so we can be a little
459 * cautious and ensure that pending block actions on this device
460 * are done before moving on. Going into this function, we should
461 * not have processes doing IO to this device.
462 */
463 blk_sync_queue(q);
464
483f4afc 465 mutex_lock(&q->sysfs_lock);
75ad23bc 466 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
467 mutex_unlock(&q->sysfs_lock);
468
469 if (q->elevator)
470 elevator_exit(q->elevator);
471
472 blk_put_queue(q);
473}
1da177e4
LT
474EXPORT_SYMBOL(blk_cleanup_queue);
475
165125e1 476static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
477{
478 struct request_list *rl = &q->rq;
479
1faa16d2
JA
480 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
481 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 482 rl->elvpriv = 0;
1faa16d2
JA
483 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
484 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 485
1946089a
CL
486 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
487 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
488
489 if (!rl->rq_pool)
490 return -ENOMEM;
491
492 return 0;
493}
494
165125e1 495struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 496{
1946089a
CL
497 return blk_alloc_queue_node(gfp_mask, -1);
498}
499EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 500
165125e1 501struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 502{
165125e1 503 struct request_queue *q;
e0bf68dd 504 int err;
1946089a 505
8324aa91 506 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 507 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
508 if (!q)
509 return NULL;
510
e0bf68dd
PZ
511 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
512 q->backing_dev_info.unplug_io_data = q;
513 err = bdi_init(&q->backing_dev_info);
514 if (err) {
8324aa91 515 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
516 return NULL;
517 }
518
1da177e4 519 init_timer(&q->unplug_timer);
242f9dcb
JA
520 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
521 INIT_LIST_HEAD(&q->timeout_list);
713ada9b 522 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 523
8324aa91 524 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 525
483f4afc 526 mutex_init(&q->sysfs_lock);
e7e72bf6 527 spin_lock_init(&q->__queue_lock);
483f4afc 528
1da177e4
LT
529 return q;
530}
1946089a 531EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
532
533/**
534 * blk_init_queue - prepare a request queue for use with a block device
535 * @rfn: The function to be called to process requests that have been
536 * placed on the queue.
537 * @lock: Request queue spin lock
538 *
539 * Description:
540 * If a block device wishes to use the standard request handling procedures,
541 * which sorts requests and coalesces adjacent requests, then it must
542 * call blk_init_queue(). The function @rfn will be called when there
543 * are requests on the queue that need to be processed. If the device
544 * supports plugging, then @rfn may not be called immediately when requests
545 * are available on the queue, but may be called at some time later instead.
546 * Plugged queues are generally unplugged when a buffer belonging to one
547 * of the requests on the queue is needed, or due to memory pressure.
548 *
549 * @rfn is not required, or even expected, to remove all requests off the
550 * queue, but only as many as it can handle at a time. If it does leave
551 * requests on the queue, it is responsible for arranging that the requests
552 * get dealt with eventually.
553 *
554 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
555 * request queue; this lock will be taken also from interrupt context, so irq
556 * disabling is needed for it.
1da177e4 557 *
710027a4 558 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
559 * it didn't succeed.
560 *
561 * Note:
562 * blk_init_queue() must be paired with a blk_cleanup_queue() call
563 * when the block device is deactivated (such as at module unload).
564 **/
1946089a 565
165125e1 566struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 567{
1946089a
CL
568 return blk_init_queue_node(rfn, lock, -1);
569}
570EXPORT_SYMBOL(blk_init_queue);
571
165125e1 572struct request_queue *
1946089a
CL
573blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
574{
165125e1 575 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
576
577 if (!q)
578 return NULL;
579
1946089a 580 q->node = node_id;
8669aafd 581 if (blk_init_free_list(q)) {
8324aa91 582 kmem_cache_free(blk_requestq_cachep, q);
8669aafd
AV
583 return NULL;
584 }
1da177e4 585
152587de 586 /*
587 * if caller didn't supply a lock, they get per-queue locking with
588 * our embedded lock
589 */
e7e72bf6 590 if (!lock)
152587de 591 lock = &q->__queue_lock;
152587de 592
1da177e4 593 q->request_fn = rfn;
1da177e4
LT
594 q->prep_rq_fn = NULL;
595 q->unplug_fn = generic_unplug_device;
bc58ba94 596 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
597 q->queue_lock = lock;
598
f3b144aa
JA
599 /*
600 * This also sets hw/phys segments, boundary and size
601 */
1da177e4 602 blk_queue_make_request(q, __make_request);
1da177e4 603
44ec9542
AS
604 q->sg_reserved_size = INT_MAX;
605
abf54393
FT
606 blk_set_cmd_filter_defaults(&q->cmd_filter);
607
1da177e4
LT
608 /*
609 * all done
610 */
611 if (!elevator_init(q, NULL)) {
612 blk_queue_congestion_threshold(q);
613 return q;
614 }
615
8669aafd 616 blk_put_queue(q);
1da177e4
LT
617 return NULL;
618}
1946089a 619EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 620
165125e1 621int blk_get_queue(struct request_queue *q)
1da177e4 622{
fde6ad22 623 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 624 kobject_get(&q->kobj);
1da177e4
LT
625 return 0;
626 }
627
628 return 1;
629}
1da177e4 630
165125e1 631static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 632{
4aff5e23 633 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 634 elv_put_request(q, rq);
1da177e4
LT
635 mempool_free(rq, q->rq.rq_pool);
636}
637
1ea25ecb 638static struct request *
42dad764 639blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
640{
641 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
642
643 if (!rq)
644 return NULL;
645
2a4aa30c 646 blk_rq_init(q, rq);
1afb20f3 647
42dad764 648 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 649
cb98fc8b 650 if (priv) {
cb78b285 651 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
652 mempool_free(rq, q->rq.rq_pool);
653 return NULL;
654 }
4aff5e23 655 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 656 }
1da177e4 657
cb98fc8b 658 return rq;
1da177e4
LT
659}
660
661/*
662 * ioc_batching returns true if the ioc is a valid batching request and
663 * should be given priority access to a request.
664 */
165125e1 665static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
666{
667 if (!ioc)
668 return 0;
669
670 /*
671 * Make sure the process is able to allocate at least 1 request
672 * even if the batch times out, otherwise we could theoretically
673 * lose wakeups.
674 */
675 return ioc->nr_batch_requests == q->nr_batching ||
676 (ioc->nr_batch_requests > 0
677 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
678}
679
680/*
681 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
682 * will cause the process to be a "batcher" on all queues in the system. This
683 * is the behaviour we want though - once it gets a wakeup it should be given
684 * a nice run.
685 */
165125e1 686static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
687{
688 if (!ioc || ioc_batching(q, ioc))
689 return;
690
691 ioc->nr_batch_requests = q->nr_batching;
692 ioc->last_waited = jiffies;
693}
694
1faa16d2 695static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
696{
697 struct request_list *rl = &q->rq;
698
1faa16d2
JA
699 if (rl->count[sync] < queue_congestion_off_threshold(q))
700 blk_clear_queue_congested(q, sync);
1da177e4 701
1faa16d2
JA
702 if (rl->count[sync] + 1 <= q->nr_requests) {
703 if (waitqueue_active(&rl->wait[sync]))
704 wake_up(&rl->wait[sync]);
1da177e4 705
1faa16d2 706 blk_clear_queue_full(q, sync);
1da177e4
LT
707 }
708}
709
710/*
711 * A request has just been released. Account for it, update the full and
712 * congestion status, wake up any waiters. Called under q->queue_lock.
713 */
1faa16d2 714static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
715{
716 struct request_list *rl = &q->rq;
717
1faa16d2 718 rl->count[sync]--;
cb98fc8b
TH
719 if (priv)
720 rl->elvpriv--;
1da177e4 721
1faa16d2 722 __freed_request(q, sync);
1da177e4 723
1faa16d2
JA
724 if (unlikely(rl->starved[sync ^ 1]))
725 __freed_request(q, sync ^ 1);
1da177e4
LT
726}
727
1da177e4 728/*
d6344532
NP
729 * Get a free request, queue_lock must be held.
730 * Returns NULL on failure, with queue_lock held.
731 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 732 */
165125e1 733static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 734 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
735{
736 struct request *rq = NULL;
737 struct request_list *rl = &q->rq;
88ee5ef1 738 struct io_context *ioc = NULL;
1faa16d2 739 const bool is_sync = rw_is_sync(rw_flags) != 0;
88ee5ef1
JA
740 int may_queue, priv;
741
7749a8d4 742 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
743 if (may_queue == ELV_MQUEUE_NO)
744 goto rq_starved;
745
1faa16d2
JA
746 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
747 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 748 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
749 /*
750 * The queue will fill after this allocation, so set
751 * it as full, and mark this process as "batching".
752 * This process will be allowed to complete a batch of
753 * requests, others will be blocked.
754 */
1faa16d2 755 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 756 ioc_set_batching(q, ioc);
1faa16d2 757 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
758 } else {
759 if (may_queue != ELV_MQUEUE_MUST
760 && !ioc_batching(q, ioc)) {
761 /*
762 * The queue is full and the allocating
763 * process is not a "batcher", and not
764 * exempted by the IO scheduler
765 */
766 goto out;
767 }
768 }
1da177e4 769 }
1faa16d2 770 blk_set_queue_congested(q, is_sync);
1da177e4
LT
771 }
772
082cf69e
JA
773 /*
774 * Only allow batching queuers to allocate up to 50% over the defined
775 * limit of requests, otherwise we could have thousands of requests
776 * allocated with any setting of ->nr_requests
777 */
1faa16d2 778 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 779 goto out;
fd782a4a 780
1faa16d2
JA
781 rl->count[is_sync]++;
782 rl->starved[is_sync] = 0;
cb98fc8b 783
64521d1a 784 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
785 if (priv)
786 rl->elvpriv++;
787
42dad764
JM
788 if (blk_queue_io_stat(q))
789 rw_flags |= REQ_IO_STAT;
1da177e4
LT
790 spin_unlock_irq(q->queue_lock);
791
7749a8d4 792 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 793 if (unlikely(!rq)) {
1da177e4
LT
794 /*
795 * Allocation failed presumably due to memory. Undo anything
796 * we might have messed up.
797 *
798 * Allocating task should really be put onto the front of the
799 * wait queue, but this is pretty rare.
800 */
801 spin_lock_irq(q->queue_lock);
1faa16d2 802 freed_request(q, is_sync, priv);
1da177e4
LT
803
804 /*
805 * in the very unlikely event that allocation failed and no
806 * requests for this direction was pending, mark us starved
807 * so that freeing of a request in the other direction will
808 * notice us. another possible fix would be to split the
809 * rq mempool into READ and WRITE
810 */
811rq_starved:
1faa16d2
JA
812 if (unlikely(rl->count[is_sync] == 0))
813 rl->starved[is_sync] = 1;
1da177e4 814
1da177e4
LT
815 goto out;
816 }
817
88ee5ef1
JA
818 /*
819 * ioc may be NULL here, and ioc_batching will be false. That's
820 * OK, if the queue is under the request limit then requests need
821 * not count toward the nr_batch_requests limit. There will always
822 * be some limit enforced by BLK_BATCH_TIME.
823 */
1da177e4
LT
824 if (ioc_batching(q, ioc))
825 ioc->nr_batch_requests--;
6728cb0e 826
1faa16d2 827 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 828out:
1da177e4
LT
829 return rq;
830}
831
832/*
833 * No available requests for this queue, unplug the device and wait for some
834 * requests to become available.
d6344532
NP
835 *
836 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 837 */
165125e1 838static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 839 struct bio *bio)
1da177e4 840{
1faa16d2 841 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
842 struct request *rq;
843
7749a8d4 844 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
845 while (!rq) {
846 DEFINE_WAIT(wait);
05caf8db 847 struct io_context *ioc;
1da177e4
LT
848 struct request_list *rl = &q->rq;
849
1faa16d2 850 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
851 TASK_UNINTERRUPTIBLE);
852
1faa16d2 853 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 854
05caf8db
ZY
855 __generic_unplug_device(q);
856 spin_unlock_irq(q->queue_lock);
857 io_schedule();
1da177e4 858
05caf8db
ZY
859 /*
860 * After sleeping, we become a "batching" process and
861 * will be able to allocate at least one request, and
862 * up to a big batch of them for a small period time.
863 * See ioc_batching, ioc_set_batching
864 */
865 ioc = current_io_context(GFP_NOIO, q->node);
866 ioc_set_batching(q, ioc);
d6344532 867
05caf8db 868 spin_lock_irq(q->queue_lock);
1faa16d2 869 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
870
871 rq = get_request(q, rw_flags, bio, GFP_NOIO);
872 };
1da177e4
LT
873
874 return rq;
875}
876
165125e1 877struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
878{
879 struct request *rq;
880
881 BUG_ON(rw != READ && rw != WRITE);
882
d6344532
NP
883 spin_lock_irq(q->queue_lock);
884 if (gfp_mask & __GFP_WAIT) {
22e2c507 885 rq = get_request_wait(q, rw, NULL);
d6344532 886 } else {
22e2c507 887 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
888 if (!rq)
889 spin_unlock_irq(q->queue_lock);
890 }
891 /* q->queue_lock is unlocked at this point */
1da177e4
LT
892
893 return rq;
894}
1da177e4
LT
895EXPORT_SYMBOL(blk_get_request);
896
dc72ef4a
JA
897/**
898 * blk_start_queueing - initiate dispatch of requests to device
899 * @q: request queue to kick into gear
900 *
901 * This is basically a helper to remove the need to know whether a queue
902 * is plugged or not if someone just wants to initiate dispatch of requests
80a4b58e
JA
903 * for this queue. Should be used to start queueing on a device outside
904 * of ->request_fn() context. Also see @blk_run_queue.
dc72ef4a
JA
905 *
906 * The queue lock must be held with interrupts disabled.
907 */
165125e1 908void blk_start_queueing(struct request_queue *q)
dc72ef4a 909{
336c3d8c
EO
910 if (!blk_queue_plugged(q)) {
911 if (unlikely(blk_queue_stopped(q)))
912 return;
dc72ef4a 913 q->request_fn(q);
336c3d8c 914 } else
dc72ef4a
JA
915 __generic_unplug_device(q);
916}
917EXPORT_SYMBOL(blk_start_queueing);
918
1da177e4
LT
919/**
920 * blk_requeue_request - put a request back on queue
921 * @q: request queue where request should be inserted
922 * @rq: request to be inserted
923 *
924 * Description:
925 * Drivers often keep queueing requests until the hardware cannot accept
926 * more, when that condition happens we need to put the request back
927 * on the queue. Must be called with queue lock held.
928 */
165125e1 929void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 930{
242f9dcb
JA
931 blk_delete_timer(rq);
932 blk_clear_rq_complete(rq);
5f3ea37c 933 trace_block_rq_requeue(q, rq);
2056a782 934
1da177e4
LT
935 if (blk_rq_tagged(rq))
936 blk_queue_end_tag(q, rq);
937
938 elv_requeue_request(q, rq);
939}
1da177e4
LT
940EXPORT_SYMBOL(blk_requeue_request);
941
942/**
710027a4 943 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
944 * @q: request queue where request should be inserted
945 * @rq: request to be inserted
946 * @at_head: insert request at head or tail of queue
947 * @data: private data
1da177e4
LT
948 *
949 * Description:
950 * Many block devices need to execute commands asynchronously, so they don't
951 * block the whole kernel from preemption during request execution. This is
952 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
953 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
954 * be scheduled for actual execution by the request queue.
1da177e4
LT
955 *
956 * We have the option of inserting the head or the tail of the queue.
957 * Typically we use the tail for new ioctls and so forth. We use the head
958 * of the queue for things like a QUEUE_FULL message from a device, or a
959 * host that is unable to accept a particular command.
960 */
165125e1 961void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 962 int at_head, void *data)
1da177e4 963{
867d1191 964 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
965 unsigned long flags;
966
967 /*
968 * tell I/O scheduler that this isn't a regular read/write (ie it
969 * must not attempt merges on this) and that it acts as a soft
970 * barrier
971 */
4aff5e23
JA
972 rq->cmd_type = REQ_TYPE_SPECIAL;
973 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
974
975 rq->special = data;
976
977 spin_lock_irqsave(q->queue_lock, flags);
978
979 /*
980 * If command is tagged, release the tag
981 */
867d1191
TH
982 if (blk_rq_tagged(rq))
983 blk_queue_end_tag(q, rq);
1da177e4 984
b238b3d4 985 drive_stat_acct(rq, 1);
867d1191 986 __elv_add_request(q, rq, where, 0);
dc72ef4a 987 blk_start_queueing(q);
1da177e4
LT
988 spin_unlock_irqrestore(q->queue_lock, flags);
989}
1da177e4
LT
990EXPORT_SYMBOL(blk_insert_request);
991
1da177e4
LT
992/*
993 * add-request adds a request to the linked list.
994 * queue lock is held and interrupts disabled, as we muck with the
995 * request queue list.
996 */
6728cb0e 997static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 998{
b238b3d4 999 drive_stat_acct(req, 1);
1da177e4 1000
1da177e4
LT
1001 /*
1002 * elevator indicated where it wants this request to be
1003 * inserted at elevator_merge time
1004 */
1005 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1006}
6728cb0e 1007
074a7aca
TH
1008static void part_round_stats_single(int cpu, struct hd_struct *part,
1009 unsigned long now)
1010{
1011 if (now == part->stamp)
1012 return;
1013
1014 if (part->in_flight) {
1015 __part_stat_add(cpu, part, time_in_queue,
1016 part->in_flight * (now - part->stamp));
1017 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1018 }
1019 part->stamp = now;
1020}
1021
1022/**
496aa8a9
RD
1023 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1024 * @cpu: cpu number for stats access
1025 * @part: target partition
1da177e4
LT
1026 *
1027 * The average IO queue length and utilisation statistics are maintained
1028 * by observing the current state of the queue length and the amount of
1029 * time it has been in this state for.
1030 *
1031 * Normally, that accounting is done on IO completion, but that can result
1032 * in more than a second's worth of IO being accounted for within any one
1033 * second, leading to >100% utilisation. To deal with that, we call this
1034 * function to do a round-off before returning the results when reading
1035 * /proc/diskstats. This accounts immediately for all queue usage up to
1036 * the current jiffies and restarts the counters again.
1037 */
c9959059 1038void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1039{
1040 unsigned long now = jiffies;
1041
074a7aca
TH
1042 if (part->partno)
1043 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1044 part_round_stats_single(cpu, part, now);
6f2576af 1045}
074a7aca 1046EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1047
1da177e4
LT
1048/*
1049 * queue lock must be held
1050 */
165125e1 1051void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1052{
1da177e4
LT
1053 if (unlikely(!q))
1054 return;
1055 if (unlikely(--req->ref_count))
1056 return;
1057
8922e16c
TH
1058 elv_completed_request(q, req);
1059
1cd96c24
BH
1060 /* this is a bio leak */
1061 WARN_ON(req->bio != NULL);
1062
1da177e4
LT
1063 /*
1064 * Request may not have originated from ll_rw_blk. if not,
1065 * it didn't come out of our reserved rq pools
1066 */
49171e5c 1067 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1068 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1069 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1070
1da177e4 1071 BUG_ON(!list_empty(&req->queuelist));
9817064b 1072 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1073
1074 blk_free_request(q, req);
1faa16d2 1075 freed_request(q, is_sync, priv);
1da177e4
LT
1076 }
1077}
6e39b69e
MC
1078EXPORT_SYMBOL_GPL(__blk_put_request);
1079
1da177e4
LT
1080void blk_put_request(struct request *req)
1081{
8922e16c 1082 unsigned long flags;
165125e1 1083 struct request_queue *q = req->q;
8922e16c 1084
52a93ba8
FT
1085 spin_lock_irqsave(q->queue_lock, flags);
1086 __blk_put_request(q, req);
1087 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1088}
1da177e4
LT
1089EXPORT_SYMBOL(blk_put_request);
1090
86db1e29 1091void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1092{
c7c22e4d 1093 req->cpu = bio->bi_comp_cpu;
4aff5e23 1094 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
1095
1096 /*
1097 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1098 */
6000a368
MC
1099 if (bio_rw_ahead(bio))
1100 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1101 REQ_FAILFAST_DRIVER);
1102 if (bio_failfast_dev(bio))
1103 req->cmd_flags |= REQ_FAILFAST_DEV;
1104 if (bio_failfast_transport(bio))
1105 req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1106 if (bio_failfast_driver(bio))
1107 req->cmd_flags |= REQ_FAILFAST_DRIVER;
52d9e675
TH
1108
1109 /*
1110 * REQ_BARRIER implies no merging, but lets make it explicit
1111 */
fb2dce86 1112 if (unlikely(bio_discard(bio))) {
e17fc0a1
DW
1113 req->cmd_flags |= REQ_DISCARD;
1114 if (bio_barrier(bio))
1115 req->cmd_flags |= REQ_SOFTBARRIER;
fb2dce86 1116 req->q->prepare_discard_fn(req->q, req);
e17fc0a1
DW
1117 } else if (unlikely(bio_barrier(bio)))
1118 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 1119
b31dc66a 1120 if (bio_sync(bio))
4aff5e23 1121 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
1122 if (bio_rw_meta(bio))
1123 req->cmd_flags |= REQ_RW_META;
aeb6fafb
JA
1124 if (bio_noidle(bio))
1125 req->cmd_flags |= REQ_NOIDLE;
b31dc66a 1126
52d9e675
TH
1127 req->errors = 0;
1128 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 1129 req->ioprio = bio_prio(bio);
52d9e675 1130 req->start_time = jiffies;
bc1c56fd 1131 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1132}
1133
644b2d99
JA
1134/*
1135 * Only disabling plugging for non-rotational devices if it does tagging
1136 * as well, otherwise we do need the proper merging
1137 */
1138static inline bool queue_should_plug(struct request_queue *q)
1139{
1140 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1141}
1142
165125e1 1143static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1144{
450991bc 1145 struct request *req;
a7384677 1146 int el_ret, nr_sectors;
51da90fc
JA
1147 const unsigned short prio = bio_prio(bio);
1148 const int sync = bio_sync(bio);
213d9417 1149 const int unplug = bio_unplug(bio);
7749a8d4 1150 int rw_flags;
1da177e4 1151
1da177e4 1152 nr_sectors = bio_sectors(bio);
1da177e4
LT
1153
1154 /*
1155 * low level driver can indicate that it wants pages above a
1156 * certain limit bounced to low memory (ie for highmem, or even
1157 * ISA dma in theory)
1158 */
1159 blk_queue_bounce(q, &bio);
1160
1da177e4
LT
1161 spin_lock_irq(q->queue_lock);
1162
a7384677 1163 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1da177e4
LT
1164 goto get_rq;
1165
1166 el_ret = elv_merge(q, &req, bio);
1167 switch (el_ret) {
6728cb0e
JA
1168 case ELEVATOR_BACK_MERGE:
1169 BUG_ON(!rq_mergeable(req));
1da177e4 1170
6728cb0e
JA
1171 if (!ll_back_merge_fn(q, req, bio))
1172 break;
1da177e4 1173
5f3ea37c 1174 trace_block_bio_backmerge(q, bio);
2056a782 1175
6728cb0e
JA
1176 req->biotail->bi_next = bio;
1177 req->biotail = bio;
1178 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1179 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1180 if (!blk_rq_cpu_valid(req))
1181 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1182 drive_stat_acct(req, 0);
1183 if (!attempt_back_merge(q, req))
1184 elv_merged_request(q, req, el_ret);
1185 goto out;
1da177e4 1186
6728cb0e
JA
1187 case ELEVATOR_FRONT_MERGE:
1188 BUG_ON(!rq_mergeable(req));
1da177e4 1189
6728cb0e
JA
1190 if (!ll_front_merge_fn(q, req, bio))
1191 break;
1da177e4 1192
5f3ea37c 1193 trace_block_bio_frontmerge(q, bio);
2056a782 1194
6728cb0e
JA
1195 bio->bi_next = req->bio;
1196 req->bio = bio;
1da177e4 1197
6728cb0e
JA
1198 /*
1199 * may not be valid. if the low level driver said
1200 * it didn't need a bounce buffer then it better
1201 * not touch req->buffer either...
1202 */
1203 req->buffer = bio_data(bio);
1204 req->current_nr_sectors = bio_cur_sectors(bio);
1205 req->hard_cur_sectors = req->current_nr_sectors;
1206 req->sector = req->hard_sector = bio->bi_sector;
1207 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1208 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1209 if (!blk_rq_cpu_valid(req))
1210 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1211 drive_stat_acct(req, 0);
1212 if (!attempt_front_merge(q, req))
1213 elv_merged_request(q, req, el_ret);
1214 goto out;
1215
1216 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1217 default:
1218 ;
1da177e4
LT
1219 }
1220
450991bc 1221get_rq:
7749a8d4
JA
1222 /*
1223 * This sync check and mask will be re-done in init_request_from_bio(),
1224 * but we need to set it earlier to expose the sync flag to the
1225 * rq allocator and io schedulers.
1226 */
1227 rw_flags = bio_data_dir(bio);
1228 if (sync)
1229 rw_flags |= REQ_RW_SYNC;
1230
1da177e4 1231 /*
450991bc 1232 * Grab a free request. This is might sleep but can not fail.
d6344532 1233 * Returns with the queue unlocked.
450991bc 1234 */
7749a8d4 1235 req = get_request_wait(q, rw_flags, bio);
d6344532 1236
450991bc
NP
1237 /*
1238 * After dropping the lock and possibly sleeping here, our request
1239 * may now be mergeable after it had proven unmergeable (above).
1240 * We don't worry about that case for efficiency. It won't happen
1241 * often, and the elevators are able to handle it.
1da177e4 1242 */
52d9e675 1243 init_request_from_bio(req, bio);
1da177e4 1244
450991bc 1245 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1246 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1247 bio_flagged(bio, BIO_CPU_AFFINE))
1248 req->cpu = blk_cpu_to_group(smp_processor_id());
644b2d99 1249 if (queue_should_plug(q) && elv_queue_empty(q))
450991bc 1250 blk_plug_device(q);
1da177e4
LT
1251 add_request(q, req);
1252out:
644b2d99 1253 if (unplug || !queue_should_plug(q))
1da177e4 1254 __generic_unplug_device(q);
1da177e4
LT
1255 spin_unlock_irq(q->queue_lock);
1256 return 0;
1da177e4
LT
1257}
1258
1259/*
1260 * If bio->bi_dev is a partition, remap the location
1261 */
1262static inline void blk_partition_remap(struct bio *bio)
1263{
1264 struct block_device *bdev = bio->bi_bdev;
1265
bf2de6f5 1266 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1267 struct hd_struct *p = bdev->bd_part;
1268
1da177e4
LT
1269 bio->bi_sector += p->start_sect;
1270 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1271
5f3ea37c 1272 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
c7149d6b
AB
1273 bdev->bd_dev, bio->bi_sector,
1274 bio->bi_sector - p->start_sect);
1da177e4
LT
1275 }
1276}
1277
1da177e4
LT
1278static void handle_bad_sector(struct bio *bio)
1279{
1280 char b[BDEVNAME_SIZE];
1281
1282 printk(KERN_INFO "attempt to access beyond end of device\n");
1283 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1284 bdevname(bio->bi_bdev, b),
1285 bio->bi_rw,
1286 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1287 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1288
1289 set_bit(BIO_EOF, &bio->bi_flags);
1290}
1291
c17bb495
AM
1292#ifdef CONFIG_FAIL_MAKE_REQUEST
1293
1294static DECLARE_FAULT_ATTR(fail_make_request);
1295
1296static int __init setup_fail_make_request(char *str)
1297{
1298 return setup_fault_attr(&fail_make_request, str);
1299}
1300__setup("fail_make_request=", setup_fail_make_request);
1301
1302static int should_fail_request(struct bio *bio)
1303{
eddb2e26
TH
1304 struct hd_struct *part = bio->bi_bdev->bd_part;
1305
1306 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1307 return should_fail(&fail_make_request, bio->bi_size);
1308
1309 return 0;
1310}
1311
1312static int __init fail_make_request_debugfs(void)
1313{
1314 return init_fault_attr_dentries(&fail_make_request,
1315 "fail_make_request");
1316}
1317
1318late_initcall(fail_make_request_debugfs);
1319
1320#else /* CONFIG_FAIL_MAKE_REQUEST */
1321
1322static inline int should_fail_request(struct bio *bio)
1323{
1324 return 0;
1325}
1326
1327#endif /* CONFIG_FAIL_MAKE_REQUEST */
1328
c07e2b41
JA
1329/*
1330 * Check whether this bio extends beyond the end of the device.
1331 */
1332static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1333{
1334 sector_t maxsector;
1335
1336 if (!nr_sectors)
1337 return 0;
1338
1339 /* Test device or partition size, when known. */
1340 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1341 if (maxsector) {
1342 sector_t sector = bio->bi_sector;
1343
1344 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1345 /*
1346 * This may well happen - the kernel calls bread()
1347 * without checking the size of the device, e.g., when
1348 * mounting a device.
1349 */
1350 handle_bad_sector(bio);
1351 return 1;
1352 }
1353 }
1354
1355 return 0;
1356}
1357
1da177e4 1358/**
710027a4 1359 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1360 * @bio: The bio describing the location in memory and on the device.
1361 *
1362 * generic_make_request() is used to make I/O requests of block
1363 * devices. It is passed a &struct bio, which describes the I/O that needs
1364 * to be done.
1365 *
1366 * generic_make_request() does not return any status. The
1367 * success/failure status of the request, along with notification of
1368 * completion, is delivered asynchronously through the bio->bi_end_io
1369 * function described (one day) else where.
1370 *
1371 * The caller of generic_make_request must make sure that bi_io_vec
1372 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1373 * set to describe the device address, and the
1374 * bi_end_io and optionally bi_private are set to describe how
1375 * completion notification should be signaled.
1376 *
1377 * generic_make_request and the drivers it calls may use bi_next if this
1378 * bio happens to be merged with someone else, and may change bi_dev and
1379 * bi_sector for remaps as it sees fit. So the values of these fields
1380 * should NOT be depended on after the call to generic_make_request.
1381 */
d89d8796 1382static inline void __generic_make_request(struct bio *bio)
1da177e4 1383{
165125e1 1384 struct request_queue *q;
5ddfe969 1385 sector_t old_sector;
1da177e4 1386 int ret, nr_sectors = bio_sectors(bio);
2056a782 1387 dev_t old_dev;
51fd77bd 1388 int err = -EIO;
1da177e4
LT
1389
1390 might_sleep();
1da177e4 1391
c07e2b41
JA
1392 if (bio_check_eod(bio, nr_sectors))
1393 goto end_io;
1da177e4
LT
1394
1395 /*
1396 * Resolve the mapping until finished. (drivers are
1397 * still free to implement/resolve their own stacking
1398 * by explicitly returning 0)
1399 *
1400 * NOTE: we don't repeat the blk_size check for each new device.
1401 * Stacking drivers are expected to know what they are doing.
1402 */
5ddfe969 1403 old_sector = -1;
2056a782 1404 old_dev = 0;
1da177e4
LT
1405 do {
1406 char b[BDEVNAME_SIZE];
1407
1408 q = bdev_get_queue(bio->bi_bdev);
a7384677 1409 if (unlikely(!q)) {
1da177e4
LT
1410 printk(KERN_ERR
1411 "generic_make_request: Trying to access "
1412 "nonexistent block-device %s (%Lu)\n",
1413 bdevname(bio->bi_bdev, b),
1414 (long long) bio->bi_sector);
a7384677 1415 goto end_io;
1da177e4
LT
1416 }
1417
4fa253f3 1418 if (unlikely(nr_sectors > q->max_hw_sectors)) {
6728cb0e 1419 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1da177e4
LT
1420 bdevname(bio->bi_bdev, b),
1421 bio_sectors(bio),
1422 q->max_hw_sectors);
1423 goto end_io;
1424 }
1425
fde6ad22 1426 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1427 goto end_io;
1428
c17bb495
AM
1429 if (should_fail_request(bio))
1430 goto end_io;
1431
1da177e4
LT
1432 /*
1433 * If this device has partitions, remap block n
1434 * of partition p to block n+start(p) of the disk.
1435 */
1436 blk_partition_remap(bio);
1437
7ba1ba12
MP
1438 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1439 goto end_io;
1440
5ddfe969 1441 if (old_sector != -1)
5f3ea37c 1442 trace_block_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 1443 old_sector);
2056a782 1444
5f3ea37c 1445 trace_block_bio_queue(q, bio);
2056a782 1446
5ddfe969 1447 old_sector = bio->bi_sector;
2056a782
JA
1448 old_dev = bio->bi_bdev->bd_dev;
1449
c07e2b41
JA
1450 if (bio_check_eod(bio, nr_sectors))
1451 goto end_io;
a7384677
TH
1452
1453 if (bio_discard(bio) && !q->prepare_discard_fn) {
51fd77bd
JA
1454 err = -EOPNOTSUPP;
1455 goto end_io;
1456 }
cec0707e
JA
1457 if (bio_barrier(bio) && bio_has_data(bio) &&
1458 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1459 err = -EOPNOTSUPP;
1460 goto end_io;
1461 }
5ddfe969 1462
1da177e4
LT
1463 ret = q->make_request_fn(q, bio);
1464 } while (ret);
a7384677
TH
1465
1466 return;
1467
1468end_io:
1469 bio_endio(bio, err);
1da177e4
LT
1470}
1471
d89d8796
NB
1472/*
1473 * We only want one ->make_request_fn to be active at a time,
1474 * else stack usage with stacked devices could be a problem.
1475 * So use current->bio_{list,tail} to keep a list of requests
1476 * submited by a make_request_fn function.
1477 * current->bio_tail is also used as a flag to say if
1478 * generic_make_request is currently active in this task or not.
1479 * If it is NULL, then no make_request is active. If it is non-NULL,
1480 * then a make_request is active, and new requests should be added
1481 * at the tail
1482 */
1483void generic_make_request(struct bio *bio)
1484{
1485 if (current->bio_tail) {
1486 /* make_request is active */
1487 *(current->bio_tail) = bio;
1488 bio->bi_next = NULL;
1489 current->bio_tail = &bio->bi_next;
1490 return;
1491 }
1492 /* following loop may be a bit non-obvious, and so deserves some
1493 * explanation.
1494 * Before entering the loop, bio->bi_next is NULL (as all callers
1495 * ensure that) so we have a list with a single bio.
1496 * We pretend that we have just taken it off a longer list, so
1497 * we assign bio_list to the next (which is NULL) and bio_tail
1498 * to &bio_list, thus initialising the bio_list of new bios to be
1499 * added. __generic_make_request may indeed add some more bios
1500 * through a recursive call to generic_make_request. If it
1501 * did, we find a non-NULL value in bio_list and re-enter the loop
1502 * from the top. In this case we really did just take the bio
1503 * of the top of the list (no pretending) and so fixup bio_list and
1504 * bio_tail or bi_next, and call into __generic_make_request again.
1505 *
1506 * The loop was structured like this to make only one call to
1507 * __generic_make_request (which is important as it is large and
1508 * inlined) and to keep the structure simple.
1509 */
1510 BUG_ON(bio->bi_next);
1511 do {
1512 current->bio_list = bio->bi_next;
1513 if (bio->bi_next == NULL)
1514 current->bio_tail = &current->bio_list;
1515 else
1516 bio->bi_next = NULL;
1517 __generic_make_request(bio);
1518 bio = current->bio_list;
1519 } while (bio);
1520 current->bio_tail = NULL; /* deactivate */
1521}
1da177e4
LT
1522EXPORT_SYMBOL(generic_make_request);
1523
1524/**
710027a4 1525 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1526 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1527 * @bio: The &struct bio which describes the I/O
1528 *
1529 * submit_bio() is very similar in purpose to generic_make_request(), and
1530 * uses that function to do most of the work. Both are fairly rough
710027a4 1531 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1532 *
1533 */
1534void submit_bio(int rw, struct bio *bio)
1535{
1536 int count = bio_sectors(bio);
1537
22e2c507 1538 bio->bi_rw |= rw;
1da177e4 1539
bf2de6f5
JA
1540 /*
1541 * If it's a regular read/write or a barrier with data attached,
1542 * go through the normal accounting stuff before submission.
1543 */
a9c701e5 1544 if (bio_has_data(bio)) {
bf2de6f5
JA
1545 if (rw & WRITE) {
1546 count_vm_events(PGPGOUT, count);
1547 } else {
1548 task_io_account_read(bio->bi_size);
1549 count_vm_events(PGPGIN, count);
1550 }
1551
1552 if (unlikely(block_dump)) {
1553 char b[BDEVNAME_SIZE];
1554 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1555 current->comm, task_pid_nr(current),
bf2de6f5
JA
1556 (rw & WRITE) ? "WRITE" : "READ",
1557 (unsigned long long)bio->bi_sector,
6728cb0e 1558 bdevname(bio->bi_bdev, b));
bf2de6f5 1559 }
1da177e4
LT
1560 }
1561
1562 generic_make_request(bio);
1563}
1da177e4
LT
1564EXPORT_SYMBOL(submit_bio);
1565
82124d60
KU
1566/**
1567 * blk_rq_check_limits - Helper function to check a request for the queue limit
1568 * @q: the queue
1569 * @rq: the request being checked
1570 *
1571 * Description:
1572 * @rq may have been made based on weaker limitations of upper-level queues
1573 * in request stacking drivers, and it may violate the limitation of @q.
1574 * Since the block layer and the underlying device driver trust @rq
1575 * after it is inserted to @q, it should be checked against @q before
1576 * the insertion using this generic function.
1577 *
1578 * This function should also be useful for request stacking drivers
1579 * in some cases below, so export this fuction.
1580 * Request stacking drivers like request-based dm may change the queue
1581 * limits while requests are in the queue (e.g. dm's table swapping).
1582 * Such request stacking drivers should check those requests agaist
1583 * the new queue limits again when they dispatch those requests,
1584 * although such checkings are also done against the old queue limits
1585 * when submitting requests.
1586 */
1587int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1588{
1589 if (rq->nr_sectors > q->max_sectors ||
1590 rq->data_len > q->max_hw_sectors << 9) {
1591 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1592 return -EIO;
1593 }
1594
1595 /*
1596 * queue's settings related to segment counting like q->bounce_pfn
1597 * may differ from that of other stacking queues.
1598 * Recalculate it to check the request correctly on this queue's
1599 * limitation.
1600 */
1601 blk_recalc_rq_segments(rq);
1602 if (rq->nr_phys_segments > q->max_phys_segments ||
1603 rq->nr_phys_segments > q->max_hw_segments) {
1604 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1605 return -EIO;
1606 }
1607
1608 return 0;
1609}
1610EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1611
1612/**
1613 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1614 * @q: the queue to submit the request
1615 * @rq: the request being queued
1616 */
1617int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1618{
1619 unsigned long flags;
1620
1621 if (blk_rq_check_limits(q, rq))
1622 return -EIO;
1623
1624#ifdef CONFIG_FAIL_MAKE_REQUEST
1625 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1626 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1627 return -EIO;
1628#endif
1629
1630 spin_lock_irqsave(q->queue_lock, flags);
1631
1632 /*
1633 * Submitting request must be dequeued before calling this function
1634 * because it will be linked to another request_queue
1635 */
1636 BUG_ON(blk_queued_rq(rq));
1637
1638 drive_stat_acct(rq, 1);
1639 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1640
1641 spin_unlock_irqrestore(q->queue_lock, flags);
1642
1643 return 0;
1644}
1645EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1646
53a08807
TH
1647/**
1648 * blkdev_dequeue_request - dequeue request and start timeout timer
1649 * @req: request to dequeue
1650 *
1651 * Dequeue @req and start timeout timer on it. This hands off the
1652 * request to the driver.
1653 *
1654 * Block internal functions which don't want to start timer should
1655 * call elv_dequeue_request().
1656 */
1657void blkdev_dequeue_request(struct request *req)
1658{
1659 elv_dequeue_request(req->q, req);
1660
1661 /*
1662 * We are now handing the request to the hardware, add the
1663 * timeout handler.
1664 */
1665 blk_add_timer(req);
1666}
1667EXPORT_SYMBOL(blkdev_dequeue_request);
1668
bc58ba94
JA
1669static void blk_account_io_completion(struct request *req, unsigned int bytes)
1670{
26308eab 1671 if (!blk_do_io_stat(req))
bc58ba94
JA
1672 return;
1673
1674 if (blk_fs_request(req)) {
1675 const int rw = rq_data_dir(req);
1676 struct hd_struct *part;
1677 int cpu;
1678
1679 cpu = part_stat_lock();
1680 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1681 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1682 part_stat_unlock();
1683 }
1684}
1685
1686static void blk_account_io_done(struct request *req)
1687{
26308eab 1688 if (!blk_do_io_stat(req))
bc58ba94
JA
1689 return;
1690
1691 /*
1692 * Account IO completion. bar_rq isn't accounted as a normal
1693 * IO on queueing nor completion. Accounting the containing
1694 * request is enough.
1695 */
1696 if (blk_fs_request(req) && req != &req->q->bar_rq) {
1697 unsigned long duration = jiffies - req->start_time;
1698 const int rw = rq_data_dir(req);
1699 struct hd_struct *part;
1700 int cpu;
1701
1702 cpu = part_stat_lock();
26308eab 1703 part = disk_map_sector_rcu(req->rq_disk, req->sector);
bc58ba94
JA
1704
1705 part_stat_inc(cpu, part, ios[rw]);
1706 part_stat_add(cpu, part, ticks[rw], duration);
1707 part_round_stats(cpu, part);
1708 part_dec_in_flight(part);
1709
1710 part_stat_unlock();
1711 }
1712}
1713
3bcddeac
KU
1714/**
1715 * __end_that_request_first - end I/O on a request
1716 * @req: the request being processed
710027a4 1717 * @error: %0 for success, < %0 for error
3bcddeac
KU
1718 * @nr_bytes: number of bytes to complete
1719 *
1720 * Description:
1721 * Ends I/O on a number of bytes attached to @req, and sets it up
1722 * for the next range of segments (if any) in the cluster.
1723 *
1724 * Return:
710027a4
RD
1725 * %0 - we are done with this request, call end_that_request_last()
1726 * %1 - still buffers pending for this request
3bcddeac 1727 **/
5450d3e1 1728static int __end_that_request_first(struct request *req, int error,
1da177e4
LT
1729 int nr_bytes)
1730{
5450d3e1 1731 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1732 struct bio *bio;
1733
5f3ea37c 1734 trace_block_rq_complete(req->q, req);
2056a782 1735
1da177e4 1736 /*
924cec77
TH
1737 * For fs requests, rq is just carrier of independent bio's
1738 * and each partial completion should be handled separately.
1739 * Reset per-request error on each partial completion.
1740 *
1741 * TODO: tj: This is too subtle. It would be better to let
1742 * low level drivers do what they see fit.
1da177e4 1743 */
924cec77 1744 if (blk_fs_request(req))
1da177e4
LT
1745 req->errors = 0;
1746
6728cb0e
JA
1747 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1748 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4
LT
1749 req->rq_disk ? req->rq_disk->disk_name : "?",
1750 (unsigned long long)req->sector);
1751 }
1752
bc58ba94 1753 blk_account_io_completion(req, nr_bytes);
d72d904a 1754
1da177e4
LT
1755 total_bytes = bio_nbytes = 0;
1756 while ((bio = req->bio) != NULL) {
1757 int nbytes;
1758
1759 if (nr_bytes >= bio->bi_size) {
1760 req->bio = bio->bi_next;
1761 nbytes = bio->bi_size;
5bb23a68 1762 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
1763 next_idx = 0;
1764 bio_nbytes = 0;
1765 } else {
1766 int idx = bio->bi_idx + next_idx;
1767
1768 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1769 blk_dump_rq_flags(req, "__end_that");
6728cb0e 1770 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
24c03d47 1771 __func__, bio->bi_idx, bio->bi_vcnt);
1da177e4
LT
1772 break;
1773 }
1774
1775 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1776 BIO_BUG_ON(nbytes > bio->bi_size);
1777
1778 /*
1779 * not a complete bvec done
1780 */
1781 if (unlikely(nbytes > nr_bytes)) {
1782 bio_nbytes += nr_bytes;
1783 total_bytes += nr_bytes;
1784 break;
1785 }
1786
1787 /*
1788 * advance to the next vector
1789 */
1790 next_idx++;
1791 bio_nbytes += nbytes;
1792 }
1793
1794 total_bytes += nbytes;
1795 nr_bytes -= nbytes;
1796
6728cb0e
JA
1797 bio = req->bio;
1798 if (bio) {
1da177e4
LT
1799 /*
1800 * end more in this run, or just return 'not-done'
1801 */
1802 if (unlikely(nr_bytes <= 0))
1803 break;
1804 }
1805 }
1806
1807 /*
1808 * completely done
1809 */
1810 if (!req->bio)
1811 return 0;
1812
1813 /*
1814 * if the request wasn't completed, update state
1815 */
1816 if (bio_nbytes) {
5bb23a68 1817 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
1818 bio->bi_idx += next_idx;
1819 bio_iovec(bio)->bv_offset += nr_bytes;
1820 bio_iovec(bio)->bv_len -= nr_bytes;
1821 }
1822
1823 blk_recalc_rq_sectors(req, total_bytes >> 9);
1824 blk_recalc_rq_segments(req);
1825 return 1;
1826}
1827
1da177e4
LT
1828/*
1829 * queue lock must be held
1830 */
5450d3e1 1831static void end_that_request_last(struct request *req, int error)
1da177e4 1832{
b8286239
KU
1833 if (blk_rq_tagged(req))
1834 blk_queue_end_tag(req->q, req);
1835
1836 if (blk_queued_rq(req))
53a08807 1837 elv_dequeue_request(req->q, req);
1da177e4
LT
1838
1839 if (unlikely(laptop_mode) && blk_fs_request(req))
1840 laptop_io_completion();
1841
e78042e5
MA
1842 blk_delete_timer(req);
1843
bc58ba94 1844 blk_account_io_done(req);
b8286239 1845
1da177e4 1846 if (req->end_io)
8ffdc655 1847 req->end_io(req, error);
b8286239
KU
1848 else {
1849 if (blk_bidi_rq(req))
1850 __blk_put_request(req->next_rq->q, req->next_rq);
1851
1da177e4 1852 __blk_put_request(req->q, req);
b8286239 1853 }
1da177e4
LT
1854}
1855
3b11313a
KU
1856/**
1857 * blk_rq_bytes - Returns bytes left to complete in the entire request
5d87a052 1858 * @rq: the request being processed
3b11313a
KU
1859 **/
1860unsigned int blk_rq_bytes(struct request *rq)
a0cd1285
JA
1861{
1862 if (blk_fs_request(rq))
1863 return rq->hard_nr_sectors << 9;
1864
1865 return rq->data_len;
1866}
3b11313a
KU
1867EXPORT_SYMBOL_GPL(blk_rq_bytes);
1868
1869/**
1870 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
5d87a052 1871 * @rq: the request being processed
3b11313a
KU
1872 **/
1873unsigned int blk_rq_cur_bytes(struct request *rq)
1874{
1875 if (blk_fs_request(rq))
1876 return rq->current_nr_sectors << 9;
1877
1878 if (rq->bio)
1879 return rq->bio->bi_size;
1880
1881 return rq->data_len;
1882}
1883EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
a0cd1285 1884
a0cd1285
JA
1885/**
1886 * end_request - end I/O on the current segment of the request
8f731f7d 1887 * @req: the request being processed
710027a4 1888 * @uptodate: error value or %0/%1 uptodate flag
a0cd1285
JA
1889 *
1890 * Description:
1891 * Ends I/O on the current segment of a request. If that is the only
1892 * remaining segment, the request is also completed and freed.
1893 *
710027a4
RD
1894 * This is a remnant of how older block drivers handled I/O completions.
1895 * Modern drivers typically end I/O on the full request in one go, unless
a0cd1285
JA
1896 * they have a residual value to account for. For that case this function
1897 * isn't really useful, unless the residual just happens to be the
1898 * full current segment. In other words, don't use this function in new
d00e29fd 1899 * code. Use blk_end_request() or __blk_end_request() to end a request.
a0cd1285
JA
1900 **/
1901void end_request(struct request *req, int uptodate)
1902{
d00e29fd
KU
1903 int error = 0;
1904
1905 if (uptodate <= 0)
1906 error = uptodate ? uptodate : -EIO;
1907
1908 __blk_end_request(req, error, req->hard_cur_sectors << 9);
a0cd1285 1909}
1da177e4
LT
1910EXPORT_SYMBOL(end_request);
1911
32fab448
KU
1912static int end_that_request_data(struct request *rq, int error,
1913 unsigned int nr_bytes, unsigned int bidi_bytes)
1914{
1915 if (rq->bio) {
1916 if (__end_that_request_first(rq, error, nr_bytes))
1917 return 1;
1918
1919 /* Bidi request must be completed as a whole */
1920 if (blk_bidi_rq(rq) &&
1921 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1922 return 1;
1923 }
1924
1925 return 0;
1926}
1927
336cdb40 1928/**
e19a3ab0
KU
1929 * blk_end_io - Generic end_io function to complete a request.
1930 * @rq: the request being processed
710027a4 1931 * @error: %0 for success, < %0 for error
e3a04fe3
KU
1932 * @nr_bytes: number of bytes to complete @rq
1933 * @bidi_bytes: number of bytes to complete @rq->next_rq
e19a3ab0
KU
1934 * @drv_callback: function called between completion of bios in the request
1935 * and completion of the request.
710027a4 1936 * If the callback returns non %0, this helper returns without
e19a3ab0 1937 * completion of the request.
336cdb40
KU
1938 *
1939 * Description:
e3a04fe3 1940 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
336cdb40
KU
1941 * If @rq has leftover, sets it up for the next range of segments.
1942 *
1943 * Return:
710027a4
RD
1944 * %0 - we are done with this request
1945 * %1 - this request is not freed yet, it still has pending buffers.
336cdb40 1946 **/
22b13210
JA
1947static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1948 unsigned int bidi_bytes,
1949 int (drv_callback)(struct request *))
336cdb40
KU
1950{
1951 struct request_queue *q = rq->q;
1952 unsigned long flags = 0UL;
336cdb40 1953
32fab448
KU
1954 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1955 return 1;
336cdb40 1956
e19a3ab0
KU
1957 /* Special feature for tricky drivers */
1958 if (drv_callback && drv_callback(rq))
1959 return 1;
1960
336cdb40
KU
1961 add_disk_randomness(rq->rq_disk);
1962
1963 spin_lock_irqsave(q->queue_lock, flags);
b8286239 1964 end_that_request_last(rq, error);
336cdb40
KU
1965 spin_unlock_irqrestore(q->queue_lock, flags);
1966
1967 return 0;
1968}
e19a3ab0
KU
1969
1970/**
1971 * blk_end_request - Helper function for drivers to complete the request.
1972 * @rq: the request being processed
710027a4 1973 * @error: %0 for success, < %0 for error
e19a3ab0
KU
1974 * @nr_bytes: number of bytes to complete
1975 *
1976 * Description:
1977 * Ends I/O on a number of bytes attached to @rq.
1978 * If @rq has leftover, sets it up for the next range of segments.
1979 *
1980 * Return:
710027a4
RD
1981 * %0 - we are done with this request
1982 * %1 - still buffers pending for this request
e19a3ab0 1983 **/
22b13210 1984int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 1985{
e3a04fe3 1986 return blk_end_io(rq, error, nr_bytes, 0, NULL);
e19a3ab0 1987}
336cdb40
KU
1988EXPORT_SYMBOL_GPL(blk_end_request);
1989
1990/**
1991 * __blk_end_request - Helper function for drivers to complete the request.
1992 * @rq: the request being processed
710027a4 1993 * @error: %0 for success, < %0 for error
336cdb40
KU
1994 * @nr_bytes: number of bytes to complete
1995 *
1996 * Description:
1997 * Must be called with queue lock held unlike blk_end_request().
1998 *
1999 * Return:
710027a4
RD
2000 * %0 - we are done with this request
2001 * %1 - still buffers pending for this request
336cdb40 2002 **/
22b13210 2003int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
336cdb40 2004{
60540161 2005 if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
051cc395 2006 return 1;
336cdb40
KU
2007
2008 add_disk_randomness(rq->rq_disk);
2009
b8286239 2010 end_that_request_last(rq, error);
336cdb40
KU
2011
2012 return 0;
2013}
2014EXPORT_SYMBOL_GPL(__blk_end_request);
2015
e3a04fe3
KU
2016/**
2017 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
2018 * @rq: the bidi request being processed
710027a4 2019 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2020 * @nr_bytes: number of bytes to complete @rq
2021 * @bidi_bytes: number of bytes to complete @rq->next_rq
2022 *
2023 * Description:
2024 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2025 *
2026 * Return:
710027a4
RD
2027 * %0 - we are done with this request
2028 * %1 - still buffers pending for this request
e3a04fe3 2029 **/
22b13210
JA
2030int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
2031 unsigned int bidi_bytes)
e3a04fe3
KU
2032{
2033 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
2034}
2035EXPORT_SYMBOL_GPL(blk_end_bidi_request);
2036
32fab448
KU
2037/**
2038 * blk_update_request - Special helper function for request stacking drivers
2039 * @rq: the request being processed
2040 * @error: %0 for success, < %0 for error
2041 * @nr_bytes: number of bytes to complete @rq
2042 *
2043 * Description:
2044 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
2045 * the request structure even if @rq doesn't have leftover.
2046 * If @rq has leftover, sets it up for the next range of segments.
2047 *
2048 * This special helper function is only for request stacking drivers
2049 * (e.g. request-based dm) so that they can handle partial completion.
2050 * Actual device drivers should use blk_end_request instead.
2051 */
2052void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
2053{
2054 if (!end_that_request_data(rq, error, nr_bytes, 0)) {
2055 /*
2056 * These members are not updated in end_that_request_data()
2057 * when all bios are completed.
2058 * Update them so that the request stacking driver can find
2059 * how many bytes remain in the request later.
2060 */
2061 rq->nr_sectors = rq->hard_nr_sectors = 0;
2062 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
2063 }
2064}
2065EXPORT_SYMBOL_GPL(blk_update_request);
2066
e19a3ab0
KU
2067/**
2068 * blk_end_request_callback - Special helper function for tricky drivers
2069 * @rq: the request being processed
710027a4 2070 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2071 * @nr_bytes: number of bytes to complete
2072 * @drv_callback: function called between completion of bios in the request
2073 * and completion of the request.
710027a4 2074 * If the callback returns non %0, this helper returns without
e19a3ab0
KU
2075 * completion of the request.
2076 *
2077 * Description:
2078 * Ends I/O on a number of bytes attached to @rq.
2079 * If @rq has leftover, sets it up for the next range of segments.
2080 *
2081 * This special helper function is used only for existing tricky drivers.
2082 * (e.g. cdrom_newpc_intr() of ide-cd)
2083 * This interface will be removed when such drivers are rewritten.
2084 * Don't use this interface in other places anymore.
2085 *
2086 * Return:
710027a4
RD
2087 * %0 - we are done with this request
2088 * %1 - this request is not freed yet.
2089 * this request still has pending buffers or
2090 * the driver doesn't want to finish this request yet.
e19a3ab0 2091 **/
22b13210
JA
2092int blk_end_request_callback(struct request *rq, int error,
2093 unsigned int nr_bytes,
e19a3ab0
KU
2094 int (drv_callback)(struct request *))
2095{
e3a04fe3 2096 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
e19a3ab0
KU
2097}
2098EXPORT_SYMBOL_GPL(blk_end_request_callback);
2099
86db1e29
JA
2100void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2101 struct bio *bio)
1da177e4 2102{
d628eaef
DW
2103 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2104 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
4aff5e23 2105 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4 2106
fb2dce86
DW
2107 if (bio_has_data(bio)) {
2108 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2109 rq->buffer = bio_data(bio);
2110 }
1da177e4
LT
2111 rq->current_nr_sectors = bio_cur_sectors(bio);
2112 rq->hard_cur_sectors = rq->current_nr_sectors;
2113 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
0e75f906 2114 rq->data_len = bio->bi_size;
1da177e4
LT
2115
2116 rq->bio = rq->biotail = bio;
1da177e4 2117
66846572
N
2118 if (bio->bi_bdev)
2119 rq->rq_disk = bio->bi_bdev->bd_disk;
2120}
1da177e4 2121
ef9e3fac
KU
2122/**
2123 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2124 * @q : the queue of the device being checked
2125 *
2126 * Description:
2127 * Check if underlying low-level drivers of a device are busy.
2128 * If the drivers want to export their busy state, they must set own
2129 * exporting function using blk_queue_lld_busy() first.
2130 *
2131 * Basically, this function is used only by request stacking drivers
2132 * to stop dispatching requests to underlying devices when underlying
2133 * devices are busy. This behavior helps more I/O merging on the queue
2134 * of the request stacking driver and prevents I/O throughput regression
2135 * on burst I/O load.
2136 *
2137 * Return:
2138 * 0 - Not busy (The request stacking driver should dispatch request)
2139 * 1 - Busy (The request stacking driver should stop dispatching request)
2140 */
2141int blk_lld_busy(struct request_queue *q)
2142{
2143 if (q->lld_busy_fn)
2144 return q->lld_busy_fn(q);
2145
2146 return 0;
2147}
2148EXPORT_SYMBOL_GPL(blk_lld_busy);
2149
18887ad9 2150int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2151{
2152 return queue_work(kblockd_workqueue, work);
2153}
1da177e4
LT
2154EXPORT_SYMBOL(kblockd_schedule_work);
2155
1da177e4
LT
2156int __init blk_dev_init(void)
2157{
2158 kblockd_workqueue = create_workqueue("kblockd");
2159 if (!kblockd_workqueue)
2160 panic("Failed to create kblockd\n");
2161
2162 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2163 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2164
8324aa91 2165 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2166 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2167
d38ecf93 2168 return 0;
1da177e4 2169}
1da177e4 2170