block: document BLK_STS_AGAIN usage
[linux-block.git] / block / blk-core.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
1da177e4
LT
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
1da177e4
LT
15#include <linux/kernel.h>
16#include <linux/module.h>
1da177e4
LT
17#include <linux/bio.h>
18#include <linux/blkdev.h>
52abca64 19#include <linux/blk-pm.h>
fe45e630 20#include <linux/blk-integrity.h>
1da177e4
LT
21#include <linux/highmem.h>
22#include <linux/mm.h>
cee9a0c4 23#include <linux/pagemap.h>
1da177e4
LT
24#include <linux/kernel_stat.h>
25#include <linux/string.h>
26#include <linux/init.h>
1da177e4
LT
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
faccbd4b 31#include <linux/task_io_accounting_ops.h>
c17bb495 32#include <linux/fault-inject.h>
73c10101 33#include <linux/list_sort.h>
e3c78ca5 34#include <linux/delay.h>
aaf7c680 35#include <linux/ratelimit.h>
6c954667 36#include <linux/pm_runtime.h>
54d4e6ab 37#include <linux/t10-pi.h>
18fbda91 38#include <linux/debugfs.h>
30abb3a6 39#include <linux/bpf.h>
b8e24a93 40#include <linux/psi.h>
82d981d4 41#include <linux/part_stat.h>
71ac860a 42#include <linux/sched/sysctl.h>
a892c8d5 43#include <linux/blk-crypto.h>
55782138
LZ
44
45#define CREATE_TRACE_POINTS
46#include <trace/events/block.h>
1da177e4 47
8324aa91 48#include "blk.h"
2aa7745b 49#include "blk-mq-sched.h"
bca6b067 50#include "blk-pm.h"
672fdcf0 51#include "blk-cgroup.h"
a7b36ee6 52#include "blk-throttle.h"
daaca352 53#include "blk-rq-qos.h"
8324aa91 54
18fbda91 55struct dentry *blk_debugfs_root;
18fbda91 56
d07335e5 57EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 58EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 59EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 60EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 61EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
b357e4a6 62EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
0bfc2455 63
a73f730d
TH
64DEFINE_IDA(blk_queue_ida);
65
1da177e4
LT
66/*
67 * For queue allocation
68 */
6728cb0e 69struct kmem_cache *blk_requestq_cachep;
704b914f 70struct kmem_cache *blk_requestq_srcu_cachep;
1da177e4 71
1da177e4
LT
72/*
73 * Controlling structure to kblockd
74 */
ff856bad 75static struct workqueue_struct *kblockd_workqueue;
1da177e4 76
8814ce8a
BVA
77/**
78 * blk_queue_flag_set - atomically set a queue flag
79 * @flag: flag to be set
80 * @q: request queue
81 */
82void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
83{
57d74df9 84 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
85}
86EXPORT_SYMBOL(blk_queue_flag_set);
87
88/**
89 * blk_queue_flag_clear - atomically clear a queue flag
90 * @flag: flag to be cleared
91 * @q: request queue
92 */
93void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
94{
57d74df9 95 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
96}
97EXPORT_SYMBOL(blk_queue_flag_clear);
98
99/**
100 * blk_queue_flag_test_and_set - atomically test and set a queue flag
101 * @flag: flag to be set
102 * @q: request queue
103 *
104 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
105 * the flag was already set.
106 */
107bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
108{
57d74df9 109 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
110}
111EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
112
e47bc4ed
CK
113#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
114static const char *const blk_op_name[] = {
115 REQ_OP_NAME(READ),
116 REQ_OP_NAME(WRITE),
117 REQ_OP_NAME(FLUSH),
118 REQ_OP_NAME(DISCARD),
119 REQ_OP_NAME(SECURE_ERASE),
120 REQ_OP_NAME(ZONE_RESET),
6e33dbf2 121 REQ_OP_NAME(ZONE_RESET_ALL),
6c1b1da5
AJ
122 REQ_OP_NAME(ZONE_OPEN),
123 REQ_OP_NAME(ZONE_CLOSE),
124 REQ_OP_NAME(ZONE_FINISH),
0512a75b 125 REQ_OP_NAME(ZONE_APPEND),
e47bc4ed 126 REQ_OP_NAME(WRITE_ZEROES),
e47bc4ed
CK
127 REQ_OP_NAME(DRV_IN),
128 REQ_OP_NAME(DRV_OUT),
129};
130#undef REQ_OP_NAME
131
132/**
133 * blk_op_str - Return string XXX in the REQ_OP_XXX.
134 * @op: REQ_OP_XXX.
135 *
136 * Description: Centralize block layer function to convert REQ_OP_XXX into
137 * string format. Useful in the debugging and tracing bio or request. For
138 * invalid REQ_OP_XXX it returns string "UNKNOWN".
139 */
140inline const char *blk_op_str(unsigned int op)
141{
142 const char *op_str = "UNKNOWN";
143
144 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
145 op_str = blk_op_name[op];
146
147 return op_str;
148}
149EXPORT_SYMBOL_GPL(blk_op_str);
150
2a842aca
CH
151static const struct {
152 int errno;
153 const char *name;
154} blk_errors[] = {
155 [BLK_STS_OK] = { 0, "" },
156 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
157 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
158 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
159 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
160 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
161 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
162 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
163 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
164 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 165 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 166 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
7d32c027 167 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
2a842aca 168
4e4cbee9
CH
169 /* device mapper special case, should not leak out: */
170 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
171
3b481d91
KB
172 /* zone device specific errors */
173 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
174 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
175
2a842aca
CH
176 /* everything else not covered above: */
177 [BLK_STS_IOERR] = { -EIO, "I/O" },
178};
179
180blk_status_t errno_to_blk_status(int errno)
181{
182 int i;
183
184 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
185 if (blk_errors[i].errno == errno)
186 return (__force blk_status_t)i;
187 }
188
189 return BLK_STS_IOERR;
190}
191EXPORT_SYMBOL_GPL(errno_to_blk_status);
192
193int blk_status_to_errno(blk_status_t status)
194{
195 int idx = (__force int)status;
196
34bd9c1c 197 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
198 return -EIO;
199 return blk_errors[idx].errno;
200}
201EXPORT_SYMBOL_GPL(blk_status_to_errno);
202
0d7a29a2 203const char *blk_status_to_str(blk_status_t status)
2a842aca
CH
204{
205 int idx = (__force int)status;
206
34bd9c1c 207 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
0d7a29a2
CH
208 return "<null>";
209 return blk_errors[idx].name;
2a842aca
CH
210}
211
1da177e4
LT
212/**
213 * blk_sync_queue - cancel any pending callbacks on a queue
214 * @q: the queue
215 *
216 * Description:
217 * The block layer may perform asynchronous callback activity
218 * on a queue, such as calling the unplug function after a timeout.
219 * A block device may call blk_sync_queue to ensure that any
220 * such activity is cancelled, thus allowing it to release resources
59c51591 221 * that the callbacks might use. The caller must already have made sure
c62b37d9 222 * that its ->submit_bio will not re-add plugging prior to calling
1da177e4
LT
223 * this function.
224 *
da527770 225 * This function does not cancel any asynchronous activity arising
da3dae54 226 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 227 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 228 *
1da177e4
LT
229 */
230void blk_sync_queue(struct request_queue *q)
231{
70ed28b9 232 del_timer_sync(&q->timeout);
4e9b6f20 233 cancel_work_sync(&q->timeout_work);
1da177e4
LT
234}
235EXPORT_SYMBOL(blk_sync_queue);
236
c9254f2d 237/**
cd84a62e 238 * blk_set_pm_only - increment pm_only counter
c9254f2d 239 * @q: request queue pointer
c9254f2d 240 */
cd84a62e 241void blk_set_pm_only(struct request_queue *q)
c9254f2d 242{
cd84a62e 243 atomic_inc(&q->pm_only);
c9254f2d 244}
cd84a62e 245EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 246
cd84a62e 247void blk_clear_pm_only(struct request_queue *q)
c9254f2d 248{
cd84a62e
BVA
249 int pm_only;
250
251 pm_only = atomic_dec_return(&q->pm_only);
252 WARN_ON_ONCE(pm_only < 0);
253 if (pm_only == 0)
254 wake_up_all(&q->mq_freeze_wq);
c9254f2d 255}
cd84a62e 256EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 257
b5bd357c
LC
258/**
259 * blk_put_queue - decrement the request_queue refcount
260 * @q: the request_queue structure to decrement the refcount for
261 *
262 * Decrements the refcount of the request_queue kobject. When this reaches 0
263 * we'll have blk_release_queue() called.
e8c7d14a
LC
264 *
265 * Context: Any context, but the last reference must not be dropped from
266 * atomic context.
b5bd357c 267 */
165125e1 268void blk_put_queue(struct request_queue *q)
483f4afc
AV
269{
270 kobject_put(&q->kobj);
271}
d86e0e83 272EXPORT_SYMBOL(blk_put_queue);
483f4afc 273
8e141f9e 274void blk_queue_start_drain(struct request_queue *q)
aed3ea94 275{
d3cfb2a0
ML
276 /*
277 * When queue DYING flag is set, we need to block new req
278 * entering queue, so we call blk_freeze_queue_start() to
279 * prevent I/O from crossing blk_queue_enter().
280 */
281 blk_freeze_queue_start(q);
344e9ffc 282 if (queue_is_mq(q))
aed3ea94 283 blk_mq_wake_waiters(q);
055f6e18
ML
284 /* Make blk_queue_enter() reexamine the DYING flag. */
285 wake_up_all(&q->mq_freeze_wq);
aed3ea94 286}
8e141f9e 287
c9a929dd
TH
288/**
289 * blk_cleanup_queue - shutdown a request queue
290 * @q: request queue to shutdown
291 *
c246e80d
BVA
292 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
293 * put it. All future requests will be failed immediately with -ENODEV.
e8c7d14a
LC
294 *
295 * Context: can sleep
c94a96ac 296 */
6728cb0e 297void blk_cleanup_queue(struct request_queue *q)
483f4afc 298{
e8c7d14a
LC
299 /* cannot be called from atomic context */
300 might_sleep();
301
bae85c15
BVA
302 WARN_ON_ONCE(blk_queue_registered(q));
303
3f3299d5 304 /* mark @q DYING, no new request or merges will be allowed afterwards */
7a5428dc
CH
305 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
306 blk_queue_start_drain(q);
6ecf23af 307
57d74df9
CH
308 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
309 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
c9a929dd 310
c246e80d
BVA
311 /*
312 * Drain all requests queued before DYING marking. Set DEAD flag to
67ed8b73
BVA
313 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
314 * after draining finished.
c246e80d 315 */
3ef28e83 316 blk_freeze_queue(q);
c57cdf7a 317
daaca352
ML
318 /* cleanup rq qos structures for queue without disk */
319 rq_qos_exit(q);
320
57d74df9 321 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
c9a929dd 322
c9a929dd 323 blk_sync_queue(q);
2a19b28f
ML
324 if (queue_is_mq(q)) {
325 blk_mq_cancel_work_sync(q);
c7e2d94b 326 blk_mq_exit_queue(q);
2a19b28f 327 }
a1ce35fa 328
c3e22192
ML
329 /*
330 * In theory, request pool of sched_tags belongs to request queue.
331 * However, the current implementation requires tag_set for freeing
332 * requests, so free the pool now.
333 *
334 * Queue has become frozen, there can't be any in-queue requests, so
335 * it is safe to free requests now.
336 */
337 mutex_lock(&q->sysfs_lock);
338 if (q->elevator)
1820f4f0 339 blk_mq_sched_free_rqs(q);
c3e22192
ML
340 mutex_unlock(&q->sysfs_lock);
341
c9a929dd 342 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
343 blk_put_queue(q);
344}
1da177e4
LT
345EXPORT_SYMBOL(blk_cleanup_queue);
346
3a0a5299
BVA
347/**
348 * blk_queue_enter() - try to increase q->q_usage_counter
349 * @q: request queue pointer
a4d34da7 350 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
3a0a5299 351 */
9a95e4ef 352int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 353{
a4d34da7 354 const bool pm = flags & BLK_MQ_REQ_PM;
3a0a5299 355
1f14a098 356 while (!blk_try_enter_queue(q, pm)) {
3a0a5299 357 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
358 return -EBUSY;
359
5ed61d3f 360 /*
1f14a098
CH
361 * read pair of barrier in blk_freeze_queue_start(), we need to
362 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
363 * reading .mq_freeze_depth or queue dying flag, otherwise the
364 * following wait may never return if the two reads are
365 * reordered.
5ed61d3f
ML
366 */
367 smp_rmb();
1dc3039b 368 wait_event(q->mq_freeze_wq,
7996a8b5 369 (!q->mq_freeze_depth &&
52abca64 370 blk_pm_resume_queue(pm, q)) ||
1dc3039b 371 blk_queue_dying(q));
3ef28e83
DW
372 if (blk_queue_dying(q))
373 return -ENODEV;
3ef28e83 374 }
1f14a098
CH
375
376 return 0;
3ef28e83
DW
377}
378
c98cb5bb 379int __bio_queue_enter(struct request_queue *q, struct bio *bio)
accea322 380{
a6741536 381 while (!blk_try_enter_queue(q, false)) {
eab4e027
PB
382 struct gendisk *disk = bio->bi_bdev->bd_disk;
383
a6741536 384 if (bio->bi_opf & REQ_NOWAIT) {
8e141f9e 385 if (test_bit(GD_DEAD, &disk->state))
a6741536 386 goto dead;
accea322 387 bio_wouldblock_error(bio);
a6741536
CH
388 return -EBUSY;
389 }
390
391 /*
392 * read pair of barrier in blk_freeze_queue_start(), we need to
393 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
394 * reading .mq_freeze_depth or queue dying flag, otherwise the
395 * following wait may never return if the two reads are
396 * reordered.
397 */
398 smp_rmb();
399 wait_event(q->mq_freeze_wq,
400 (!q->mq_freeze_depth &&
401 blk_pm_resume_queue(false, q)) ||
8e141f9e
CH
402 test_bit(GD_DEAD, &disk->state));
403 if (test_bit(GD_DEAD, &disk->state))
a6741536 404 goto dead;
accea322
CH
405 }
406
a6741536
CH
407 return 0;
408dead:
409 bio_io_error(bio);
410 return -ENODEV;
accea322
CH
411}
412
3ef28e83
DW
413void blk_queue_exit(struct request_queue *q)
414{
415 percpu_ref_put(&q->q_usage_counter);
416}
417
418static void blk_queue_usage_counter_release(struct percpu_ref *ref)
419{
420 struct request_queue *q =
421 container_of(ref, struct request_queue, q_usage_counter);
422
423 wake_up_all(&q->mq_freeze_wq);
424}
425
bca237a5 426static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 427{
bca237a5 428 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
429
430 kblockd_schedule_work(&q->timeout_work);
431}
432
2e3c18d0
TH
433static void blk_timeout_work(struct work_struct *work)
434{
435}
436
704b914f 437struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu)
1946089a 438{
165125e1 439 struct request_queue *q;
338aa96d 440 int ret;
1946089a 441
704b914f
ML
442 q = kmem_cache_alloc_node(blk_get_queue_kmem_cache(alloc_srcu),
443 GFP_KERNEL | __GFP_ZERO, node_id);
1da177e4
LT
444 if (!q)
445 return NULL;
446
704b914f
ML
447 if (alloc_srcu) {
448 blk_queue_flag_set(QUEUE_FLAG_HAS_SRCU, q);
449 if (init_srcu_struct(q->srcu) != 0)
450 goto fail_q;
451 }
452
cbf62af3 453 q->last_merge = NULL;
cbf62af3 454
3d745ea5 455 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
a73f730d 456 if (q->id < 0)
704b914f 457 goto fail_srcu;
a73f730d 458
c495a176 459 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
338aa96d 460 if (ret)
54efd50b
KO
461 goto fail_id;
462
a83b576c
JA
463 q->stats = blk_alloc_queue_stats();
464 if (!q->stats)
edb0872f 465 goto fail_split;
a83b576c 466
5151412d 467 q->node = node_id;
0989a025 468
079a2e3e 469 atomic_set(&q->nr_active_requests_shared_tags, 0);
bccf5e26 470
bca237a5 471 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
2e3c18d0 472 INIT_WORK(&q->timeout_work, blk_timeout_work);
a612fddf 473 INIT_LIST_HEAD(&q->icq_list);
483f4afc 474
8324aa91 475 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 476
85e0cbbb 477 mutex_init(&q->debugfs_mutex);
483f4afc 478 mutex_init(&q->sysfs_lock);
cecf5d87 479 mutex_init(&q->sysfs_dir_lock);
0d945c1f 480 spin_lock_init(&q->queue_lock);
c94a96ac 481
320ae51f 482 init_waitqueue_head(&q->mq_freeze_wq);
7996a8b5 483 mutex_init(&q->mq_freeze_lock);
320ae51f 484
3ef28e83
DW
485 /*
486 * Init percpu_ref in atomic mode so that it's faster to shutdown.
487 * See blk_register_queue() for details.
488 */
489 if (percpu_ref_init(&q->q_usage_counter,
490 blk_queue_usage_counter_release,
491 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
edb0872f 492 goto fail_stats;
f51b802c 493
3d745ea5
CH
494 blk_queue_dma_alignment(q, 511);
495 blk_set_default_limits(&q->limits);
d2a27964 496 q->nr_requests = BLKDEV_DEFAULT_RQ;
3d745ea5 497
1da177e4 498 return q;
a73f730d 499
a83b576c 500fail_stats:
edb0872f 501 blk_free_queue_stats(q->stats);
54efd50b 502fail_split:
338aa96d 503 bioset_exit(&q->bio_split);
a73f730d
TH
504fail_id:
505 ida_simple_remove(&blk_queue_ida, q->id);
704b914f
ML
506fail_srcu:
507 if (alloc_srcu)
508 cleanup_srcu_struct(q->srcu);
a73f730d 509fail_q:
704b914f 510 kmem_cache_free(blk_get_queue_kmem_cache(alloc_srcu), q);
a73f730d 511 return NULL;
1da177e4 512}
1da177e4 513
b5bd357c
LC
514/**
515 * blk_get_queue - increment the request_queue refcount
516 * @q: the request_queue structure to increment the refcount for
517 *
518 * Increment the refcount of the request_queue kobject.
763b5892
LC
519 *
520 * Context: Any context.
b5bd357c 521 */
09ac46c4 522bool blk_get_queue(struct request_queue *q)
1da177e4 523{
3f3299d5 524 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
525 __blk_get_queue(q);
526 return true;
1da177e4
LT
527 }
528
09ac46c4 529 return false;
1da177e4 530}
d86e0e83 531EXPORT_SYMBOL(blk_get_queue);
1da177e4 532
c17bb495
AM
533#ifdef CONFIG_FAIL_MAKE_REQUEST
534
535static DECLARE_FAULT_ATTR(fail_make_request);
536
537static int __init setup_fail_make_request(char *str)
538{
539 return setup_fault_attr(&fail_make_request, str);
540}
541__setup("fail_make_request=", setup_fail_make_request);
542
06c8c691 543bool should_fail_request(struct block_device *part, unsigned int bytes)
c17bb495 544{
8446fe92 545 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
546}
547
548static int __init fail_make_request_debugfs(void)
549{
dd48c085
AM
550 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
551 NULL, &fail_make_request);
552
21f9fcd8 553 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
554}
555
556late_initcall(fail_make_request_debugfs);
c17bb495
AM
557#endif /* CONFIG_FAIL_MAKE_REQUEST */
558
2f9f6221 559static inline bool bio_check_ro(struct bio *bio)
721c7fc7 560{
2f9f6221 561 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
8b2ded1c
MP
562 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
563 return false;
57e95e46
CH
564 pr_warn("Trying to write to read-only block-device %pg\n",
565 bio->bi_bdev);
a32e236e
LT
566 /* Older lvm-tools actually trigger this */
567 return false;
721c7fc7
ID
568 }
569
570 return false;
571}
572
30abb3a6
HM
573static noinline int should_fail_bio(struct bio *bio)
574{
309dca30 575 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
30abb3a6
HM
576 return -EIO;
577 return 0;
578}
579ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
580
52c5e62d
CH
581/*
582 * Check whether this bio extends beyond the end of the device or partition.
583 * This may well happen - the kernel calls bread() without checking the size of
584 * the device, e.g., when mounting a file system.
585 */
2f9f6221 586static inline int bio_check_eod(struct bio *bio)
52c5e62d 587{
2f9f6221 588 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
52c5e62d
CH
589 unsigned int nr_sectors = bio_sectors(bio);
590
591 if (nr_sectors && maxsector &&
592 (nr_sectors > maxsector ||
593 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
ad740780 594 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
069adbac
CH
595 "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
596 current->comm, bio->bi_bdev, bio->bi_opf,
597 bio->bi_iter.bi_sector, nr_sectors, maxsector);
52c5e62d
CH
598 return -EIO;
599 }
600 return 0;
601}
602
74d46992
CH
603/*
604 * Remap block n of partition p to block n+start(p) of the disk.
605 */
2f9f6221 606static int blk_partition_remap(struct bio *bio)
74d46992 607{
309dca30 608 struct block_device *p = bio->bi_bdev;
74d46992 609
52c5e62d 610 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2f9f6221 611 return -EIO;
5eac3eb3 612 if (bio_sectors(bio)) {
8446fe92 613 bio->bi_iter.bi_sector += p->bd_start_sect;
1c02fca6 614 trace_block_bio_remap(bio, p->bd_dev,
29ff57c6 615 bio->bi_iter.bi_sector -
8446fe92 616 p->bd_start_sect);
52c5e62d 617 }
30c5d345 618 bio_set_flag(bio, BIO_REMAPPED);
2f9f6221 619 return 0;
74d46992
CH
620}
621
0512a75b
KB
622/*
623 * Check write append to a zoned block device.
624 */
625static inline blk_status_t blk_check_zone_append(struct request_queue *q,
626 struct bio *bio)
627{
628 sector_t pos = bio->bi_iter.bi_sector;
629 int nr_sectors = bio_sectors(bio);
630
631 /* Only applicable to zoned block devices */
632 if (!blk_queue_is_zoned(q))
633 return BLK_STS_NOTSUPP;
634
635 /* The bio sector must point to the start of a sequential zone */
636 if (pos & (blk_queue_zone_sectors(q) - 1) ||
637 !blk_queue_zone_is_seq(q, pos))
638 return BLK_STS_IOERR;
639
640 /*
641 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
642 * split and could result in non-contiguous sectors being written in
643 * different zones.
644 */
645 if (nr_sectors > q->limits.chunk_sectors)
646 return BLK_STS_IOERR;
647
648 /* Make sure the BIO is small enough and will not get split */
649 if (nr_sectors > q->limits.max_zone_append_sectors)
650 return BLK_STS_IOERR;
651
652 bio->bi_opf |= REQ_NOMERGE;
653
654 return BLK_STS_OK;
655}
656
900e0807
JA
657static void __submit_bio(struct bio *bio)
658{
659 struct gendisk *disk = bio->bi_bdev->bd_disk;
cc9c884d 660
7f36b7d0
ML
661 if (unlikely(!blk_crypto_bio_prep(&bio)))
662 return;
663
664 if (!disk->fops->submit_bio) {
3e08773c 665 blk_mq_submit_bio(bio);
7f36b7d0
ML
666 } else if (likely(bio_queue_enter(bio) == 0)) {
667 disk->fops->submit_bio(bio);
668 blk_queue_exit(disk->queue);
669 }
ac7c5675
CH
670}
671
566acf2d
CH
672/*
673 * The loop in this function may be a bit non-obvious, and so deserves some
674 * explanation:
675 *
676 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
677 * that), so we have a list with a single bio.
678 * - We pretend that we have just taken it off a longer list, so we assign
679 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
680 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
681 * bios through a recursive call to submit_bio_noacct. If it did, we find a
682 * non-NULL value in bio_list and re-enter the loop from the top.
683 * - In this case we really did just take the bio of the top of the list (no
684 * pretending) and so remove it from bio_list, and call into ->submit_bio()
685 * again.
686 *
687 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
688 * bio_list_on_stack[1] contains bios that were submitted before the current
69fe0f29 689 * ->submit_bio, but that haven't been processed yet.
566acf2d 690 */
3e08773c 691static void __submit_bio_noacct(struct bio *bio)
566acf2d
CH
692{
693 struct bio_list bio_list_on_stack[2];
566acf2d
CH
694
695 BUG_ON(bio->bi_next);
696
697 bio_list_init(&bio_list_on_stack[0]);
698 current->bio_list = bio_list_on_stack;
699
700 do {
eab4e027 701 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
566acf2d
CH
702 struct bio_list lower, same;
703
566acf2d
CH
704 /*
705 * Create a fresh bio_list for all subordinate requests.
706 */
707 bio_list_on_stack[1] = bio_list_on_stack[0];
708 bio_list_init(&bio_list_on_stack[0]);
709
3e08773c 710 __submit_bio(bio);
566acf2d
CH
711
712 /*
713 * Sort new bios into those for a lower level and those for the
714 * same level.
715 */
716 bio_list_init(&lower);
717 bio_list_init(&same);
718 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
eab4e027 719 if (q == bdev_get_queue(bio->bi_bdev))
566acf2d
CH
720 bio_list_add(&same, bio);
721 else
722 bio_list_add(&lower, bio);
723
724 /*
725 * Now assemble so we handle the lowest level first.
726 */
727 bio_list_merge(&bio_list_on_stack[0], &lower);
728 bio_list_merge(&bio_list_on_stack[0], &same);
729 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
730 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
731
732 current->bio_list = NULL;
566acf2d
CH
733}
734
3e08773c 735static void __submit_bio_noacct_mq(struct bio *bio)
ff93ea0c 736{
7c792f33 737 struct bio_list bio_list[2] = { };
ff93ea0c 738
7c792f33 739 current->bio_list = bio_list;
ff93ea0c
CH
740
741 do {
3e08773c 742 __submit_bio(bio);
7c792f33 743 } while ((bio = bio_list_pop(&bio_list[0])));
ff93ea0c
CH
744
745 current->bio_list = NULL;
ff93ea0c
CH
746}
747
3f98c753 748void submit_bio_noacct_nocheck(struct bio *bio)
d89d8796 749{
27a84d54 750 /*
566acf2d
CH
751 * We only want one ->submit_bio to be active at a time, else stack
752 * usage with stacked devices could be a problem. Use current->bio_list
753 * to collect a list of requests submited by a ->submit_bio method while
754 * it is active, and then process them after it returned.
27a84d54 755 */
3e08773c 756 if (current->bio_list)
f5fe1b51 757 bio_list_add(&current->bio_list[0], bio);
3e08773c
CH
758 else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
759 __submit_bio_noacct_mq(bio);
760 else
761 __submit_bio_noacct(bio);
d89d8796 762}
3f98c753
ML
763
764/**
765 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
766 * @bio: The bio describing the location in memory and on the device.
767 *
768 * This is a version of submit_bio() that shall only be used for I/O that is
769 * resubmitted to lower level drivers by stacking block drivers. All file
770 * systems and other upper level users of the block layer should use
771 * submit_bio() instead.
772 */
773void submit_bio_noacct(struct bio *bio)
1da177e4 774{
309dca30 775 struct block_device *bdev = bio->bi_bdev;
eab4e027 776 struct request_queue *q = bdev_get_queue(bdev);
4e4cbee9 777 blk_status_t status = BLK_STS_IOERR;
5a473e83 778 struct blk_plug *plug;
1da177e4
LT
779
780 might_sleep();
1da177e4 781
5a473e83
JA
782 plug = blk_mq_plug(q, bio);
783 if (plug && plug->nowait)
784 bio->bi_opf |= REQ_NOWAIT;
785
03a07c92 786 /*
b0beb280 787 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
021a2446 788 * if queue does not support NOWAIT.
03a07c92 789 */
021a2446 790 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
b0beb280 791 goto not_supported;
03a07c92 792
30abb3a6 793 if (should_fail_bio(bio))
5a7bbad2 794 goto end_io;
2f9f6221
CH
795 if (unlikely(bio_check_ro(bio)))
796 goto end_io;
3a905c37
CH
797 if (!bio_flagged(bio, BIO_REMAPPED)) {
798 if (unlikely(bio_check_eod(bio)))
799 goto end_io;
800 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
801 goto end_io;
802 }
2056a782 803
5a7bbad2 804 /*
ed00aabd
CH
805 * Filter flush bio's early so that bio based drivers without flush
806 * support don't have to worry about them.
5a7bbad2 807 */
f3a8ab7d 808 if (op_is_flush(bio->bi_opf) &&
c888a8f9 809 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 810 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
e439ab71 811 if (!bio_sectors(bio)) {
4e4cbee9 812 status = BLK_STS_OK;
51fd77bd
JA
813 goto end_io;
814 }
5a7bbad2 815 }
5ddfe969 816
d04c406f 817 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
6ce913fe 818 bio_clear_polled(bio);
d04c406f 819
288dab8a
CH
820 switch (bio_op(bio)) {
821 case REQ_OP_DISCARD:
70200574 822 if (!bdev_max_discard_sectors(bdev))
288dab8a
CH
823 goto not_supported;
824 break;
825 case REQ_OP_SECURE_ERASE:
44abff2c 826 if (!bdev_max_secure_erase_sectors(bdev))
288dab8a
CH
827 goto not_supported;
828 break;
0512a75b
KB
829 case REQ_OP_ZONE_APPEND:
830 status = blk_check_zone_append(q, bio);
831 if (status != BLK_STS_OK)
832 goto end_io;
833 break;
2d253440 834 case REQ_OP_ZONE_RESET:
6c1b1da5
AJ
835 case REQ_OP_ZONE_OPEN:
836 case REQ_OP_ZONE_CLOSE:
837 case REQ_OP_ZONE_FINISH:
74d46992 838 if (!blk_queue_is_zoned(q))
2d253440 839 goto not_supported;
288dab8a 840 break;
6e33dbf2
CK
841 case REQ_OP_ZONE_RESET_ALL:
842 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
843 goto not_supported;
844 break;
a6f0788e 845 case REQ_OP_WRITE_ZEROES:
74d46992 846 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
847 goto not_supported;
848 break;
288dab8a
CH
849 default:
850 break;
5a7bbad2 851 }
01edede4 852
b781d8db 853 if (blk_throtl_bio(bio))
3f98c753 854 return;
db18a53e
CH
855
856 blk_cgroup_bio_start(bio);
857 blkcg_bio_issue_init(bio);
27a84d54 858
fbbaf700 859 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
e8a676d6 860 trace_block_bio_queue(bio);
fbbaf700
N
861 /* Now that enqueuing has been traced, we need to trace
862 * completion as well.
863 */
864 bio_set_flag(bio, BIO_TRACE_COMPLETION);
865 }
3f98c753 866 submit_bio_noacct_nocheck(bio);
d24c670e 867 return;
a7384677 868
288dab8a 869not_supported:
4e4cbee9 870 status = BLK_STS_NOTSUPP;
a7384677 871end_io:
4e4cbee9 872 bio->bi_status = status;
4246a0b6 873 bio_endio(bio);
d89d8796 874}
ed00aabd 875EXPORT_SYMBOL(submit_bio_noacct);
1da177e4
LT
876
877/**
710027a4 878 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
879 * @bio: The &struct bio which describes the I/O
880 *
3fdd4086
CH
881 * submit_bio() is used to submit I/O requests to block devices. It is passed a
882 * fully set up &struct bio that describes the I/O that needs to be done. The
309dca30 883 * bio will be send to the device described by the bi_bdev field.
1da177e4 884 *
3fdd4086
CH
885 * The success/failure status of the request, along with notification of
886 * completion, is delivered asynchronously through the ->bi_end_io() callback
887 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
888 * been called.
1da177e4 889 */
3e08773c 890void submit_bio(struct bio *bio)
1da177e4 891{
d3f77dfd 892 if (blkcg_punt_bio_submit(bio))
3e08773c 893 return;
d3f77dfd 894
a3e7689b
CH
895 if (bio_op(bio) == REQ_OP_READ) {
896 task_io_account_read(bio->bi_iter.bi_size);
897 count_vm_events(PGPGIN, bio_sectors(bio));
898 } else if (bio_op(bio) == REQ_OP_WRITE) {
899 count_vm_events(PGPGOUT, bio_sectors(bio));
1da177e4
LT
900 }
901
b8e24a93 902 /*
760f83ea
CH
903 * If we're reading data that is part of the userspace workingset, count
904 * submission time as memory stall. When the device is congested, or
905 * the submitting cgroup IO-throttled, submission can be a significant
906 * part of overall IO time.
b8e24a93 907 */
760f83ea
CH
908 if (unlikely(bio_op(bio) == REQ_OP_READ &&
909 bio_flagged(bio, BIO_WORKINGSET))) {
910 unsigned long pflags;
b8e24a93 911
760f83ea 912 psi_memstall_enter(&pflags);
3e08773c 913 submit_bio_noacct(bio);
b8e24a93 914 psi_memstall_leave(&pflags);
3e08773c 915 return;
760f83ea
CH
916 }
917
3e08773c 918 submit_bio_noacct(bio);
1da177e4 919}
1da177e4
LT
920EXPORT_SYMBOL(submit_bio);
921
3e08773c
CH
922/**
923 * bio_poll - poll for BIO completions
924 * @bio: bio to poll for
e30028ac 925 * @iob: batches of IO
3e08773c
CH
926 * @flags: BLK_POLL_* flags that control the behavior
927 *
928 * Poll for completions on queue associated with the bio. Returns number of
929 * completed entries found.
930 *
931 * Note: the caller must either be the context that submitted @bio, or
932 * be in a RCU critical section to prevent freeing of @bio.
933 */
5a72e899 934int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
3e08773c 935{
859897c3 936 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3e08773c 937 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
69fe0f29 938 int ret = 0;
3e08773c
CH
939
940 if (cookie == BLK_QC_T_NONE ||
941 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
942 return 0;
943
aa8dccca 944 blk_flush_plug(current->plug, false);
3e08773c
CH
945
946 if (blk_queue_enter(q, BLK_MQ_REQ_NOWAIT))
947 return 0;
69fe0f29 948 if (queue_is_mq(q)) {
5a72e899 949 ret = blk_mq_poll(q, cookie, iob, flags);
69fe0f29
ML
950 } else {
951 struct gendisk *disk = q->disk;
952
953 if (disk && disk->fops->poll_bio)
954 ret = disk->fops->poll_bio(bio, iob, flags);
955 }
3e08773c
CH
956 blk_queue_exit(q);
957 return ret;
958}
959EXPORT_SYMBOL_GPL(bio_poll);
960
961/*
962 * Helper to implement file_operations.iopoll. Requires the bio to be stored
963 * in iocb->private, and cleared before freeing the bio.
964 */
5a72e899
JA
965int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
966 unsigned int flags)
3e08773c
CH
967{
968 struct bio *bio;
969 int ret = 0;
970
971 /*
972 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
973 * point to a freshly allocated bio at this point. If that happens
974 * we have a few cases to consider:
975 *
976 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
977 * simply nothing in this case
978 * 2) the bio points to a not poll enabled device. bio_poll will catch
979 * this and return 0
980 * 3) the bio points to a poll capable device, including but not
981 * limited to the one that the original bio pointed to. In this
982 * case we will call into the actual poll method and poll for I/O,
983 * even if we don't need to, but it won't cause harm either.
984 *
985 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
986 * is still allocated. Because partitions hold a reference to the whole
987 * device bdev and thus disk, the disk is also still valid. Grabbing
988 * a reference to the queue in bio_poll() ensures the hctxs and requests
989 * are still valid as well.
990 */
991 rcu_read_lock();
992 bio = READ_ONCE(kiocb->private);
993 if (bio && bio->bi_bdev)
5a72e899 994 ret = bio_poll(bio, iob, flags);
3e08773c
CH
995 rcu_read_unlock();
996
997 return ret;
998}
999EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
1000
450b7879 1001void update_io_ticks(struct block_device *part, unsigned long now, bool end)
9123bf6f
CH
1002{
1003 unsigned long stamp;
1004again:
8446fe92 1005 stamp = READ_ONCE(part->bd_stamp);
d80c228d 1006 if (unlikely(time_after(now, stamp))) {
8446fe92 1007 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
9123bf6f
CH
1008 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1009 }
8446fe92
CH
1010 if (part->bd_partno) {
1011 part = bdev_whole(part);
9123bf6f
CH
1012 goto again;
1013 }
1014}
1015
5f0614a5
ML
1016unsigned long bdev_start_io_acct(struct block_device *bdev,
1017 unsigned int sectors, unsigned int op,
1018 unsigned long start_time)
956d510e 1019{
956d510e 1020 const int sgrp = op_stat_group(op);
956d510e
CH
1021
1022 part_stat_lock();
5f0614a5
ML
1023 update_io_ticks(bdev, start_time, false);
1024 part_stat_inc(bdev, ios[sgrp]);
1025 part_stat_add(bdev, sectors[sgrp], sectors);
1026 part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
956d510e 1027 part_stat_unlock();
320ae51f 1028
e45c47d1
MS
1029 return start_time;
1030}
5f0614a5 1031EXPORT_SYMBOL(bdev_start_io_acct);
e45c47d1
MS
1032
1033/**
1034 * bio_start_io_acct_time - start I/O accounting for bio based drivers
1035 * @bio: bio to start account for
1036 * @start_time: start time that should be passed back to bio_end_io_acct().
1037 */
1038void bio_start_io_acct_time(struct bio *bio, unsigned long start_time)
1039{
5f0614a5
ML
1040 bdev_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1041 bio_op(bio), start_time);
956d510e 1042}
e45c47d1 1043EXPORT_SYMBOL_GPL(bio_start_io_acct_time);
7b26410b 1044
99dfc43e
CH
1045/**
1046 * bio_start_io_acct - start I/O accounting for bio based drivers
1047 * @bio: bio to start account for
1048 *
1049 * Returns the start time that should be passed back to bio_end_io_acct().
1050 */
1051unsigned long bio_start_io_acct(struct bio *bio)
7b26410b 1052{
5f0614a5
ML
1053 return bdev_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1054 bio_op(bio), jiffies);
7b26410b 1055}
99dfc43e 1056EXPORT_SYMBOL_GPL(bio_start_io_acct);
7b26410b 1057
5f0614a5
ML
1058void bdev_end_io_acct(struct block_device *bdev, unsigned int op,
1059 unsigned long start_time)
956d510e 1060{
956d510e
CH
1061 const int sgrp = op_stat_group(op);
1062 unsigned long now = READ_ONCE(jiffies);
1063 unsigned long duration = now - start_time;
5b18b5a7 1064
956d510e 1065 part_stat_lock();
5f0614a5
ML
1066 update_io_ticks(bdev, now, true);
1067 part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1068 part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
320ae51f
JA
1069 part_stat_unlock();
1070}
5f0614a5 1071EXPORT_SYMBOL(bdev_end_io_acct);
7b26410b 1072
99dfc43e 1073void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
5f0614a5 1074 struct block_device *orig_bdev)
7b26410b 1075{
5f0614a5 1076 bdev_end_io_acct(orig_bdev, bio_op(bio), start_time);
7b26410b 1077}
99dfc43e 1078EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
7b26410b 1079
ef9e3fac
KU
1080/**
1081 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1082 * @q : the queue of the device being checked
1083 *
1084 * Description:
1085 * Check if underlying low-level drivers of a device are busy.
1086 * If the drivers want to export their busy state, they must set own
1087 * exporting function using blk_queue_lld_busy() first.
1088 *
1089 * Basically, this function is used only by request stacking drivers
1090 * to stop dispatching requests to underlying devices when underlying
1091 * devices are busy. This behavior helps more I/O merging on the queue
1092 * of the request stacking driver and prevents I/O throughput regression
1093 * on burst I/O load.
1094 *
1095 * Return:
1096 * 0 - Not busy (The request stacking driver should dispatch request)
1097 * 1 - Busy (The request stacking driver should stop dispatching request)
1098 */
1099int blk_lld_busy(struct request_queue *q)
1100{
344e9ffc 1101 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1102 return q->mq_ops->busy(q);
ef9e3fac
KU
1103
1104 return 0;
1105}
1106EXPORT_SYMBOL_GPL(blk_lld_busy);
1107
59c3d45e 1108int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1109{
1110 return queue_work(kblockd_workqueue, work);
1111}
1da177e4
LT
1112EXPORT_SYMBOL(kblockd_schedule_work);
1113
818cd1cb
JA
1114int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1115 unsigned long delay)
1116{
1117 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1118}
1119EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1120
47c122e3
JA
1121void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1122{
1123 struct task_struct *tsk = current;
1124
1125 /*
1126 * If this is a nested plug, don't actually assign it.
1127 */
1128 if (tsk->plug)
1129 return;
1130
bc490f81 1131 plug->mq_list = NULL;
47c122e3
JA
1132 plug->cached_rq = NULL;
1133 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1134 plug->rq_count = 0;
1135 plug->multiple_queues = false;
dc5fc361 1136 plug->has_elevator = false;
47c122e3
JA
1137 plug->nowait = false;
1138 INIT_LIST_HEAD(&plug->cb_list);
1139
1140 /*
1141 * Store ordering should not be needed here, since a potential
1142 * preempt will imply a full memory barrier
1143 */
1144 tsk->plug = plug;
1145}
1146
75df7136
SJ
1147/**
1148 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1149 * @plug: The &struct blk_plug that needs to be initialized
1150 *
1151 * Description:
40405851
JM
1152 * blk_start_plug() indicates to the block layer an intent by the caller
1153 * to submit multiple I/O requests in a batch. The block layer may use
1154 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1155 * is called. However, the block layer may choose to submit requests
1156 * before a call to blk_finish_plug() if the number of queued I/Os
1157 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1158 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1159 * the task schedules (see below).
1160 *
75df7136
SJ
1161 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1162 * pending I/O should the task end up blocking between blk_start_plug() and
1163 * blk_finish_plug(). This is important from a performance perspective, but
1164 * also ensures that we don't deadlock. For instance, if the task is blocking
1165 * for a memory allocation, memory reclaim could end up wanting to free a
1166 * page belonging to that request that is currently residing in our private
1167 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1168 * this kind of deadlock.
1169 */
73c10101
JA
1170void blk_start_plug(struct blk_plug *plug)
1171{
47c122e3 1172 blk_start_plug_nr_ios(plug, 1);
73c10101
JA
1173}
1174EXPORT_SYMBOL(blk_start_plug);
1175
74018dc3 1176static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1177{
1178 LIST_HEAD(callbacks);
1179
2a7d5559
SL
1180 while (!list_empty(&plug->cb_list)) {
1181 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1182
2a7d5559
SL
1183 while (!list_empty(&callbacks)) {
1184 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1185 struct blk_plug_cb,
1186 list);
2a7d5559 1187 list_del(&cb->list);
74018dc3 1188 cb->callback(cb, from_schedule);
2a7d5559 1189 }
048c9374
N
1190 }
1191}
1192
9cbb1750
N
1193struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1194 int size)
1195{
1196 struct blk_plug *plug = current->plug;
1197 struct blk_plug_cb *cb;
1198
1199 if (!plug)
1200 return NULL;
1201
1202 list_for_each_entry(cb, &plug->cb_list, list)
1203 if (cb->callback == unplug && cb->data == data)
1204 return cb;
1205
1206 /* Not currently on the callback list */
1207 BUG_ON(size < sizeof(*cb));
1208 cb = kzalloc(size, GFP_ATOMIC);
1209 if (cb) {
1210 cb->data = data;
1211 cb->callback = unplug;
1212 list_add(&cb->list, &plug->cb_list);
1213 }
1214 return cb;
1215}
1216EXPORT_SYMBOL(blk_check_plugged);
1217
aa8dccca 1218void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
73c10101 1219{
b600455d
PB
1220 if (!list_empty(&plug->cb_list))
1221 flush_plug_callbacks(plug, from_schedule);
bc490f81 1222 if (!rq_list_empty(plug->mq_list))
320ae51f 1223 blk_mq_flush_plug_list(plug, from_schedule);
c5fc7b93
JA
1224 /*
1225 * Unconditionally flush out cached requests, even if the unplug
1226 * event came from schedule. Since we know hold references to the
1227 * queue for cached requests, we don't want a blocked task holding
1228 * up a queue freeze/quiesce event.
1229 */
1230 if (unlikely(!rq_list_empty(plug->cached_rq)))
47c122e3 1231 blk_mq_free_plug_rqs(plug);
73c10101 1232}
73c10101 1233
40405851
JM
1234/**
1235 * blk_finish_plug - mark the end of a batch of submitted I/O
1236 * @plug: The &struct blk_plug passed to blk_start_plug()
1237 *
1238 * Description:
1239 * Indicate that a batch of I/O submissions is complete. This function
1240 * must be paired with an initial call to blk_start_plug(). The intent
1241 * is to allow the block layer to optimize I/O submission. See the
1242 * documentation for blk_start_plug() for more information.
1243 */
73c10101
JA
1244void blk_finish_plug(struct blk_plug *plug)
1245{
008f75a2 1246 if (plug == current->plug) {
aa8dccca 1247 __blk_flush_plug(plug, false);
008f75a2
CH
1248 current->plug = NULL;
1249 }
73c10101 1250}
88b996cd 1251EXPORT_SYMBOL(blk_finish_plug);
73c10101 1252
71ac860a
ML
1253void blk_io_schedule(void)
1254{
1255 /* Prevent hang_check timer from firing at us during very long I/O */
1256 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1257
1258 if (timeout)
1259 io_schedule_timeout(timeout);
1260 else
1261 io_schedule();
1262}
1263EXPORT_SYMBOL_GPL(blk_io_schedule);
1264
1da177e4
LT
1265int __init blk_dev_init(void)
1266{
ef295ecf
CH
1267 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1268 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1269 sizeof_field(struct request, cmd_flags));
ef295ecf 1270 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1271 sizeof_field(struct bio, bi_opf));
704b914f
ML
1272 BUILD_BUG_ON(ALIGN(offsetof(struct request_queue, srcu),
1273 __alignof__(struct request_queue)) !=
1274 sizeof(struct request_queue));
9eb55b03 1275
89b90be2
TH
1276 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1277 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1278 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1279 if (!kblockd_workqueue)
1280 panic("Failed to create kblockd\n");
1281
c2789bd4 1282 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1283 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1284
704b914f
ML
1285 blk_requestq_srcu_cachep = kmem_cache_create("request_queue_srcu",
1286 sizeof(struct request_queue) +
1287 sizeof(struct srcu_struct), 0, SLAB_PANIC, NULL);
1288
18fbda91 1289 blk_debugfs_root = debugfs_create_dir("block", NULL);
18fbda91 1290
d38ecf93 1291 return 0;
1da177e4 1292}