block: add a bdev_discard_granularity helper
[linux-block.git] / block / blk-core.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
1da177e4
LT
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
1da177e4
LT
15#include <linux/kernel.h>
16#include <linux/module.h>
1da177e4
LT
17#include <linux/bio.h>
18#include <linux/blkdev.h>
52abca64 19#include <linux/blk-pm.h>
fe45e630 20#include <linux/blk-integrity.h>
1da177e4
LT
21#include <linux/highmem.h>
22#include <linux/mm.h>
cee9a0c4 23#include <linux/pagemap.h>
1da177e4
LT
24#include <linux/kernel_stat.h>
25#include <linux/string.h>
26#include <linux/init.h>
1da177e4
LT
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
faccbd4b 31#include <linux/task_io_accounting_ops.h>
c17bb495 32#include <linux/fault-inject.h>
73c10101 33#include <linux/list_sort.h>
e3c78ca5 34#include <linux/delay.h>
aaf7c680 35#include <linux/ratelimit.h>
6c954667 36#include <linux/pm_runtime.h>
54d4e6ab 37#include <linux/t10-pi.h>
18fbda91 38#include <linux/debugfs.h>
30abb3a6 39#include <linux/bpf.h>
b8e24a93 40#include <linux/psi.h>
82d981d4 41#include <linux/part_stat.h>
71ac860a 42#include <linux/sched/sysctl.h>
a892c8d5 43#include <linux/blk-crypto.h>
55782138
LZ
44
45#define CREATE_TRACE_POINTS
46#include <trace/events/block.h>
1da177e4 47
8324aa91 48#include "blk.h"
2aa7745b 49#include "blk-mq-sched.h"
bca6b067 50#include "blk-pm.h"
672fdcf0 51#include "blk-cgroup.h"
a7b36ee6 52#include "blk-throttle.h"
daaca352 53#include "blk-rq-qos.h"
8324aa91 54
18fbda91 55struct dentry *blk_debugfs_root;
18fbda91 56
d07335e5 57EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 58EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 59EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 60EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 61EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
b357e4a6 62EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
0bfc2455 63
a73f730d
TH
64DEFINE_IDA(blk_queue_ida);
65
1da177e4
LT
66/*
67 * For queue allocation
68 */
6728cb0e 69struct kmem_cache *blk_requestq_cachep;
704b914f 70struct kmem_cache *blk_requestq_srcu_cachep;
1da177e4 71
1da177e4
LT
72/*
73 * Controlling structure to kblockd
74 */
ff856bad 75static struct workqueue_struct *kblockd_workqueue;
1da177e4 76
8814ce8a
BVA
77/**
78 * blk_queue_flag_set - atomically set a queue flag
79 * @flag: flag to be set
80 * @q: request queue
81 */
82void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
83{
57d74df9 84 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
85}
86EXPORT_SYMBOL(blk_queue_flag_set);
87
88/**
89 * blk_queue_flag_clear - atomically clear a queue flag
90 * @flag: flag to be cleared
91 * @q: request queue
92 */
93void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
94{
57d74df9 95 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
96}
97EXPORT_SYMBOL(blk_queue_flag_clear);
98
99/**
100 * blk_queue_flag_test_and_set - atomically test and set a queue flag
101 * @flag: flag to be set
102 * @q: request queue
103 *
104 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
105 * the flag was already set.
106 */
107bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
108{
57d74df9 109 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
110}
111EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
112
e47bc4ed
CK
113#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
114static const char *const blk_op_name[] = {
115 REQ_OP_NAME(READ),
116 REQ_OP_NAME(WRITE),
117 REQ_OP_NAME(FLUSH),
118 REQ_OP_NAME(DISCARD),
119 REQ_OP_NAME(SECURE_ERASE),
120 REQ_OP_NAME(ZONE_RESET),
6e33dbf2 121 REQ_OP_NAME(ZONE_RESET_ALL),
6c1b1da5
AJ
122 REQ_OP_NAME(ZONE_OPEN),
123 REQ_OP_NAME(ZONE_CLOSE),
124 REQ_OP_NAME(ZONE_FINISH),
0512a75b 125 REQ_OP_NAME(ZONE_APPEND),
e47bc4ed 126 REQ_OP_NAME(WRITE_ZEROES),
e47bc4ed
CK
127 REQ_OP_NAME(DRV_IN),
128 REQ_OP_NAME(DRV_OUT),
129};
130#undef REQ_OP_NAME
131
132/**
133 * blk_op_str - Return string XXX in the REQ_OP_XXX.
134 * @op: REQ_OP_XXX.
135 *
136 * Description: Centralize block layer function to convert REQ_OP_XXX into
137 * string format. Useful in the debugging and tracing bio or request. For
138 * invalid REQ_OP_XXX it returns string "UNKNOWN".
139 */
140inline const char *blk_op_str(unsigned int op)
141{
142 const char *op_str = "UNKNOWN";
143
144 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
145 op_str = blk_op_name[op];
146
147 return op_str;
148}
149EXPORT_SYMBOL_GPL(blk_op_str);
150
2a842aca
CH
151static const struct {
152 int errno;
153 const char *name;
154} blk_errors[] = {
155 [BLK_STS_OK] = { 0, "" },
156 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
157 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
158 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
159 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
160 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
161 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
162 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
163 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
164 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 165 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 166 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
7d32c027 167 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
2a842aca 168
4e4cbee9
CH
169 /* device mapper special case, should not leak out: */
170 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
171
3b481d91
KB
172 /* zone device specific errors */
173 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
174 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
175
2a842aca
CH
176 /* everything else not covered above: */
177 [BLK_STS_IOERR] = { -EIO, "I/O" },
178};
179
180blk_status_t errno_to_blk_status(int errno)
181{
182 int i;
183
184 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
185 if (blk_errors[i].errno == errno)
186 return (__force blk_status_t)i;
187 }
188
189 return BLK_STS_IOERR;
190}
191EXPORT_SYMBOL_GPL(errno_to_blk_status);
192
193int blk_status_to_errno(blk_status_t status)
194{
195 int idx = (__force int)status;
196
34bd9c1c 197 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
198 return -EIO;
199 return blk_errors[idx].errno;
200}
201EXPORT_SYMBOL_GPL(blk_status_to_errno);
202
0d7a29a2 203const char *blk_status_to_str(blk_status_t status)
2a842aca
CH
204{
205 int idx = (__force int)status;
206
34bd9c1c 207 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
0d7a29a2
CH
208 return "<null>";
209 return blk_errors[idx].name;
2a842aca
CH
210}
211
1da177e4
LT
212/**
213 * blk_sync_queue - cancel any pending callbacks on a queue
214 * @q: the queue
215 *
216 * Description:
217 * The block layer may perform asynchronous callback activity
218 * on a queue, such as calling the unplug function after a timeout.
219 * A block device may call blk_sync_queue to ensure that any
220 * such activity is cancelled, thus allowing it to release resources
59c51591 221 * that the callbacks might use. The caller must already have made sure
c62b37d9 222 * that its ->submit_bio will not re-add plugging prior to calling
1da177e4
LT
223 * this function.
224 *
da527770 225 * This function does not cancel any asynchronous activity arising
da3dae54 226 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 227 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 228 *
1da177e4
LT
229 */
230void blk_sync_queue(struct request_queue *q)
231{
70ed28b9 232 del_timer_sync(&q->timeout);
4e9b6f20 233 cancel_work_sync(&q->timeout_work);
1da177e4
LT
234}
235EXPORT_SYMBOL(blk_sync_queue);
236
c9254f2d 237/**
cd84a62e 238 * blk_set_pm_only - increment pm_only counter
c9254f2d 239 * @q: request queue pointer
c9254f2d 240 */
cd84a62e 241void blk_set_pm_only(struct request_queue *q)
c9254f2d 242{
cd84a62e 243 atomic_inc(&q->pm_only);
c9254f2d 244}
cd84a62e 245EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 246
cd84a62e 247void blk_clear_pm_only(struct request_queue *q)
c9254f2d 248{
cd84a62e
BVA
249 int pm_only;
250
251 pm_only = atomic_dec_return(&q->pm_only);
252 WARN_ON_ONCE(pm_only < 0);
253 if (pm_only == 0)
254 wake_up_all(&q->mq_freeze_wq);
c9254f2d 255}
cd84a62e 256EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 257
b5bd357c
LC
258/**
259 * blk_put_queue - decrement the request_queue refcount
260 * @q: the request_queue structure to decrement the refcount for
261 *
262 * Decrements the refcount of the request_queue kobject. When this reaches 0
263 * we'll have blk_release_queue() called.
e8c7d14a
LC
264 *
265 * Context: Any context, but the last reference must not be dropped from
266 * atomic context.
b5bd357c 267 */
165125e1 268void blk_put_queue(struct request_queue *q)
483f4afc
AV
269{
270 kobject_put(&q->kobj);
271}
d86e0e83 272EXPORT_SYMBOL(blk_put_queue);
483f4afc 273
8e141f9e 274void blk_queue_start_drain(struct request_queue *q)
aed3ea94 275{
d3cfb2a0
ML
276 /*
277 * When queue DYING flag is set, we need to block new req
278 * entering queue, so we call blk_freeze_queue_start() to
279 * prevent I/O from crossing blk_queue_enter().
280 */
281 blk_freeze_queue_start(q);
344e9ffc 282 if (queue_is_mq(q))
aed3ea94 283 blk_mq_wake_waiters(q);
055f6e18
ML
284 /* Make blk_queue_enter() reexamine the DYING flag. */
285 wake_up_all(&q->mq_freeze_wq);
aed3ea94 286}
8e141f9e 287
c9a929dd
TH
288/**
289 * blk_cleanup_queue - shutdown a request queue
290 * @q: request queue to shutdown
291 *
c246e80d
BVA
292 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
293 * put it. All future requests will be failed immediately with -ENODEV.
e8c7d14a
LC
294 *
295 * Context: can sleep
c94a96ac 296 */
6728cb0e 297void blk_cleanup_queue(struct request_queue *q)
483f4afc 298{
e8c7d14a
LC
299 /* cannot be called from atomic context */
300 might_sleep();
301
bae85c15
BVA
302 WARN_ON_ONCE(blk_queue_registered(q));
303
3f3299d5 304 /* mark @q DYING, no new request or merges will be allowed afterwards */
7a5428dc
CH
305 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
306 blk_queue_start_drain(q);
6ecf23af 307
57d74df9
CH
308 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
309 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
c9a929dd 310
c246e80d
BVA
311 /*
312 * Drain all requests queued before DYING marking. Set DEAD flag to
67ed8b73
BVA
313 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
314 * after draining finished.
c246e80d 315 */
3ef28e83 316 blk_freeze_queue(q);
c57cdf7a 317
daaca352
ML
318 /* cleanup rq qos structures for queue without disk */
319 rq_qos_exit(q);
320
57d74df9 321 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
c9a929dd 322
c9a929dd 323 blk_sync_queue(q);
2a19b28f
ML
324 if (queue_is_mq(q)) {
325 blk_mq_cancel_work_sync(q);
c7e2d94b 326 blk_mq_exit_queue(q);
2a19b28f 327 }
a1ce35fa 328
c3e22192
ML
329 /*
330 * In theory, request pool of sched_tags belongs to request queue.
331 * However, the current implementation requires tag_set for freeing
332 * requests, so free the pool now.
333 *
334 * Queue has become frozen, there can't be any in-queue requests, so
335 * it is safe to free requests now.
336 */
337 mutex_lock(&q->sysfs_lock);
338 if (q->elevator)
1820f4f0 339 blk_mq_sched_free_rqs(q);
c3e22192
ML
340 mutex_unlock(&q->sysfs_lock);
341
c9a929dd 342 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
343 blk_put_queue(q);
344}
1da177e4
LT
345EXPORT_SYMBOL(blk_cleanup_queue);
346
3a0a5299
BVA
347/**
348 * blk_queue_enter() - try to increase q->q_usage_counter
349 * @q: request queue pointer
a4d34da7 350 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
3a0a5299 351 */
9a95e4ef 352int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 353{
a4d34da7 354 const bool pm = flags & BLK_MQ_REQ_PM;
3a0a5299 355
1f14a098 356 while (!blk_try_enter_queue(q, pm)) {
3a0a5299 357 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
358 return -EBUSY;
359
5ed61d3f 360 /*
1f14a098
CH
361 * read pair of barrier in blk_freeze_queue_start(), we need to
362 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
363 * reading .mq_freeze_depth or queue dying flag, otherwise the
364 * following wait may never return if the two reads are
365 * reordered.
5ed61d3f
ML
366 */
367 smp_rmb();
1dc3039b 368 wait_event(q->mq_freeze_wq,
7996a8b5 369 (!q->mq_freeze_depth &&
52abca64 370 blk_pm_resume_queue(pm, q)) ||
1dc3039b 371 blk_queue_dying(q));
3ef28e83
DW
372 if (blk_queue_dying(q))
373 return -ENODEV;
3ef28e83 374 }
1f14a098
CH
375
376 return 0;
3ef28e83
DW
377}
378
c98cb5bb 379int __bio_queue_enter(struct request_queue *q, struct bio *bio)
accea322 380{
a6741536 381 while (!blk_try_enter_queue(q, false)) {
eab4e027
PB
382 struct gendisk *disk = bio->bi_bdev->bd_disk;
383
a6741536 384 if (bio->bi_opf & REQ_NOWAIT) {
8e141f9e 385 if (test_bit(GD_DEAD, &disk->state))
a6741536 386 goto dead;
accea322 387 bio_wouldblock_error(bio);
a6741536
CH
388 return -EBUSY;
389 }
390
391 /*
392 * read pair of barrier in blk_freeze_queue_start(), we need to
393 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
394 * reading .mq_freeze_depth or queue dying flag, otherwise the
395 * following wait may never return if the two reads are
396 * reordered.
397 */
398 smp_rmb();
399 wait_event(q->mq_freeze_wq,
400 (!q->mq_freeze_depth &&
401 blk_pm_resume_queue(false, q)) ||
8e141f9e
CH
402 test_bit(GD_DEAD, &disk->state));
403 if (test_bit(GD_DEAD, &disk->state))
a6741536 404 goto dead;
accea322
CH
405 }
406
a6741536
CH
407 return 0;
408dead:
409 bio_io_error(bio);
410 return -ENODEV;
accea322
CH
411}
412
3ef28e83
DW
413void blk_queue_exit(struct request_queue *q)
414{
415 percpu_ref_put(&q->q_usage_counter);
416}
417
418static void blk_queue_usage_counter_release(struct percpu_ref *ref)
419{
420 struct request_queue *q =
421 container_of(ref, struct request_queue, q_usage_counter);
422
423 wake_up_all(&q->mq_freeze_wq);
424}
425
bca237a5 426static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 427{
bca237a5 428 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
429
430 kblockd_schedule_work(&q->timeout_work);
431}
432
2e3c18d0
TH
433static void blk_timeout_work(struct work_struct *work)
434{
435}
436
704b914f 437struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu)
1946089a 438{
165125e1 439 struct request_queue *q;
338aa96d 440 int ret;
1946089a 441
704b914f
ML
442 q = kmem_cache_alloc_node(blk_get_queue_kmem_cache(alloc_srcu),
443 GFP_KERNEL | __GFP_ZERO, node_id);
1da177e4
LT
444 if (!q)
445 return NULL;
446
704b914f
ML
447 if (alloc_srcu) {
448 blk_queue_flag_set(QUEUE_FLAG_HAS_SRCU, q);
449 if (init_srcu_struct(q->srcu) != 0)
450 goto fail_q;
451 }
452
cbf62af3 453 q->last_merge = NULL;
cbf62af3 454
3d745ea5 455 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
a73f730d 456 if (q->id < 0)
704b914f 457 goto fail_srcu;
a73f730d 458
c495a176 459 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
338aa96d 460 if (ret)
54efd50b
KO
461 goto fail_id;
462
a83b576c
JA
463 q->stats = blk_alloc_queue_stats();
464 if (!q->stats)
edb0872f 465 goto fail_split;
a83b576c 466
5151412d 467 q->node = node_id;
0989a025 468
079a2e3e 469 atomic_set(&q->nr_active_requests_shared_tags, 0);
bccf5e26 470
bca237a5 471 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
2e3c18d0 472 INIT_WORK(&q->timeout_work, blk_timeout_work);
a612fddf 473 INIT_LIST_HEAD(&q->icq_list);
483f4afc 474
8324aa91 475 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 476
85e0cbbb 477 mutex_init(&q->debugfs_mutex);
483f4afc 478 mutex_init(&q->sysfs_lock);
cecf5d87 479 mutex_init(&q->sysfs_dir_lock);
0d945c1f 480 spin_lock_init(&q->queue_lock);
c94a96ac 481
320ae51f 482 init_waitqueue_head(&q->mq_freeze_wq);
7996a8b5 483 mutex_init(&q->mq_freeze_lock);
320ae51f 484
3ef28e83
DW
485 /*
486 * Init percpu_ref in atomic mode so that it's faster to shutdown.
487 * See blk_register_queue() for details.
488 */
489 if (percpu_ref_init(&q->q_usage_counter,
490 blk_queue_usage_counter_release,
491 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
edb0872f 492 goto fail_stats;
f51b802c 493
3d745ea5
CH
494 blk_queue_dma_alignment(q, 511);
495 blk_set_default_limits(&q->limits);
d2a27964 496 q->nr_requests = BLKDEV_DEFAULT_RQ;
3d745ea5 497
1da177e4 498 return q;
a73f730d 499
a83b576c 500fail_stats:
edb0872f 501 blk_free_queue_stats(q->stats);
54efd50b 502fail_split:
338aa96d 503 bioset_exit(&q->bio_split);
a73f730d
TH
504fail_id:
505 ida_simple_remove(&blk_queue_ida, q->id);
704b914f
ML
506fail_srcu:
507 if (alloc_srcu)
508 cleanup_srcu_struct(q->srcu);
a73f730d 509fail_q:
704b914f 510 kmem_cache_free(blk_get_queue_kmem_cache(alloc_srcu), q);
a73f730d 511 return NULL;
1da177e4 512}
1da177e4 513
b5bd357c
LC
514/**
515 * blk_get_queue - increment the request_queue refcount
516 * @q: the request_queue structure to increment the refcount for
517 *
518 * Increment the refcount of the request_queue kobject.
763b5892
LC
519 *
520 * Context: Any context.
b5bd357c 521 */
09ac46c4 522bool blk_get_queue(struct request_queue *q)
1da177e4 523{
3f3299d5 524 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
525 __blk_get_queue(q);
526 return true;
1da177e4
LT
527 }
528
09ac46c4 529 return false;
1da177e4 530}
d86e0e83 531EXPORT_SYMBOL(blk_get_queue);
1da177e4 532
c17bb495
AM
533#ifdef CONFIG_FAIL_MAKE_REQUEST
534
535static DECLARE_FAULT_ATTR(fail_make_request);
536
537static int __init setup_fail_make_request(char *str)
538{
539 return setup_fault_attr(&fail_make_request, str);
540}
541__setup("fail_make_request=", setup_fail_make_request);
542
06c8c691 543bool should_fail_request(struct block_device *part, unsigned int bytes)
c17bb495 544{
8446fe92 545 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
546}
547
548static int __init fail_make_request_debugfs(void)
549{
dd48c085
AM
550 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
551 NULL, &fail_make_request);
552
21f9fcd8 553 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
554}
555
556late_initcall(fail_make_request_debugfs);
c17bb495
AM
557#endif /* CONFIG_FAIL_MAKE_REQUEST */
558
2f9f6221 559static inline bool bio_check_ro(struct bio *bio)
721c7fc7 560{
2f9f6221 561 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
8b2ded1c
MP
562 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
563 return false;
57e95e46
CH
564 pr_warn("Trying to write to read-only block-device %pg\n",
565 bio->bi_bdev);
a32e236e
LT
566 /* Older lvm-tools actually trigger this */
567 return false;
721c7fc7
ID
568 }
569
570 return false;
571}
572
30abb3a6
HM
573static noinline int should_fail_bio(struct bio *bio)
574{
309dca30 575 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
30abb3a6
HM
576 return -EIO;
577 return 0;
578}
579ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
580
52c5e62d
CH
581/*
582 * Check whether this bio extends beyond the end of the device or partition.
583 * This may well happen - the kernel calls bread() without checking the size of
584 * the device, e.g., when mounting a file system.
585 */
2f9f6221 586static inline int bio_check_eod(struct bio *bio)
52c5e62d 587{
2f9f6221 588 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
52c5e62d
CH
589 unsigned int nr_sectors = bio_sectors(bio);
590
591 if (nr_sectors && maxsector &&
592 (nr_sectors > maxsector ||
593 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
ad740780
CH
594 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
595 "%pg: rw=%d, want=%llu, limit=%llu\n",
596 current->comm,
597 bio->bi_bdev, bio->bi_opf,
598 bio_end_sector(bio), maxsector);
52c5e62d
CH
599 return -EIO;
600 }
601 return 0;
602}
603
74d46992
CH
604/*
605 * Remap block n of partition p to block n+start(p) of the disk.
606 */
2f9f6221 607static int blk_partition_remap(struct bio *bio)
74d46992 608{
309dca30 609 struct block_device *p = bio->bi_bdev;
74d46992 610
52c5e62d 611 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2f9f6221 612 return -EIO;
5eac3eb3 613 if (bio_sectors(bio)) {
8446fe92 614 bio->bi_iter.bi_sector += p->bd_start_sect;
1c02fca6 615 trace_block_bio_remap(bio, p->bd_dev,
29ff57c6 616 bio->bi_iter.bi_sector -
8446fe92 617 p->bd_start_sect);
52c5e62d 618 }
30c5d345 619 bio_set_flag(bio, BIO_REMAPPED);
2f9f6221 620 return 0;
74d46992
CH
621}
622
0512a75b
KB
623/*
624 * Check write append to a zoned block device.
625 */
626static inline blk_status_t blk_check_zone_append(struct request_queue *q,
627 struct bio *bio)
628{
629 sector_t pos = bio->bi_iter.bi_sector;
630 int nr_sectors = bio_sectors(bio);
631
632 /* Only applicable to zoned block devices */
633 if (!blk_queue_is_zoned(q))
634 return BLK_STS_NOTSUPP;
635
636 /* The bio sector must point to the start of a sequential zone */
637 if (pos & (blk_queue_zone_sectors(q) - 1) ||
638 !blk_queue_zone_is_seq(q, pos))
639 return BLK_STS_IOERR;
640
641 /*
642 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
643 * split and could result in non-contiguous sectors being written in
644 * different zones.
645 */
646 if (nr_sectors > q->limits.chunk_sectors)
647 return BLK_STS_IOERR;
648
649 /* Make sure the BIO is small enough and will not get split */
650 if (nr_sectors > q->limits.max_zone_append_sectors)
651 return BLK_STS_IOERR;
652
653 bio->bi_opf |= REQ_NOMERGE;
654
655 return BLK_STS_OK;
656}
657
900e0807
JA
658static void __submit_bio(struct bio *bio)
659{
660 struct gendisk *disk = bio->bi_bdev->bd_disk;
cc9c884d 661
7f36b7d0
ML
662 if (unlikely(!blk_crypto_bio_prep(&bio)))
663 return;
664
665 if (!disk->fops->submit_bio) {
3e08773c 666 blk_mq_submit_bio(bio);
7f36b7d0
ML
667 } else if (likely(bio_queue_enter(bio) == 0)) {
668 disk->fops->submit_bio(bio);
669 blk_queue_exit(disk->queue);
670 }
ac7c5675
CH
671}
672
566acf2d
CH
673/*
674 * The loop in this function may be a bit non-obvious, and so deserves some
675 * explanation:
676 *
677 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
678 * that), so we have a list with a single bio.
679 * - We pretend that we have just taken it off a longer list, so we assign
680 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
681 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
682 * bios through a recursive call to submit_bio_noacct. If it did, we find a
683 * non-NULL value in bio_list and re-enter the loop from the top.
684 * - In this case we really did just take the bio of the top of the list (no
685 * pretending) and so remove it from bio_list, and call into ->submit_bio()
686 * again.
687 *
688 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
689 * bio_list_on_stack[1] contains bios that were submitted before the current
69fe0f29 690 * ->submit_bio, but that haven't been processed yet.
566acf2d 691 */
3e08773c 692static void __submit_bio_noacct(struct bio *bio)
566acf2d
CH
693{
694 struct bio_list bio_list_on_stack[2];
566acf2d
CH
695
696 BUG_ON(bio->bi_next);
697
698 bio_list_init(&bio_list_on_stack[0]);
699 current->bio_list = bio_list_on_stack;
700
701 do {
eab4e027 702 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
566acf2d
CH
703 struct bio_list lower, same;
704
566acf2d
CH
705 /*
706 * Create a fresh bio_list for all subordinate requests.
707 */
708 bio_list_on_stack[1] = bio_list_on_stack[0];
709 bio_list_init(&bio_list_on_stack[0]);
710
3e08773c 711 __submit_bio(bio);
566acf2d
CH
712
713 /*
714 * Sort new bios into those for a lower level and those for the
715 * same level.
716 */
717 bio_list_init(&lower);
718 bio_list_init(&same);
719 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
eab4e027 720 if (q == bdev_get_queue(bio->bi_bdev))
566acf2d
CH
721 bio_list_add(&same, bio);
722 else
723 bio_list_add(&lower, bio);
724
725 /*
726 * Now assemble so we handle the lowest level first.
727 */
728 bio_list_merge(&bio_list_on_stack[0], &lower);
729 bio_list_merge(&bio_list_on_stack[0], &same);
730 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
731 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
732
733 current->bio_list = NULL;
566acf2d
CH
734}
735
3e08773c 736static void __submit_bio_noacct_mq(struct bio *bio)
ff93ea0c 737{
7c792f33 738 struct bio_list bio_list[2] = { };
ff93ea0c 739
7c792f33 740 current->bio_list = bio_list;
ff93ea0c
CH
741
742 do {
3e08773c 743 __submit_bio(bio);
7c792f33 744 } while ((bio = bio_list_pop(&bio_list[0])));
ff93ea0c
CH
745
746 current->bio_list = NULL;
ff93ea0c
CH
747}
748
3f98c753 749void submit_bio_noacct_nocheck(struct bio *bio)
d89d8796 750{
27a84d54 751 /*
566acf2d
CH
752 * We only want one ->submit_bio to be active at a time, else stack
753 * usage with stacked devices could be a problem. Use current->bio_list
754 * to collect a list of requests submited by a ->submit_bio method while
755 * it is active, and then process them after it returned.
27a84d54 756 */
3e08773c 757 if (current->bio_list)
f5fe1b51 758 bio_list_add(&current->bio_list[0], bio);
3e08773c
CH
759 else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
760 __submit_bio_noacct_mq(bio);
761 else
762 __submit_bio_noacct(bio);
d89d8796 763}
3f98c753
ML
764
765/**
766 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
767 * @bio: The bio describing the location in memory and on the device.
768 *
769 * This is a version of submit_bio() that shall only be used for I/O that is
770 * resubmitted to lower level drivers by stacking block drivers. All file
771 * systems and other upper level users of the block layer should use
772 * submit_bio() instead.
773 */
774void submit_bio_noacct(struct bio *bio)
1da177e4 775{
309dca30 776 struct block_device *bdev = bio->bi_bdev;
eab4e027 777 struct request_queue *q = bdev_get_queue(bdev);
4e4cbee9 778 blk_status_t status = BLK_STS_IOERR;
5a473e83 779 struct blk_plug *plug;
1da177e4
LT
780
781 might_sleep();
1da177e4 782
5a473e83
JA
783 plug = blk_mq_plug(q, bio);
784 if (plug && plug->nowait)
785 bio->bi_opf |= REQ_NOWAIT;
786
03a07c92 787 /*
b0beb280 788 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
021a2446 789 * if queue does not support NOWAIT.
03a07c92 790 */
021a2446 791 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
b0beb280 792 goto not_supported;
03a07c92 793
30abb3a6 794 if (should_fail_bio(bio))
5a7bbad2 795 goto end_io;
2f9f6221
CH
796 if (unlikely(bio_check_ro(bio)))
797 goto end_io;
3a905c37
CH
798 if (!bio_flagged(bio, BIO_REMAPPED)) {
799 if (unlikely(bio_check_eod(bio)))
800 goto end_io;
801 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
802 goto end_io;
803 }
2056a782 804
5a7bbad2 805 /*
ed00aabd
CH
806 * Filter flush bio's early so that bio based drivers without flush
807 * support don't have to worry about them.
5a7bbad2 808 */
f3a8ab7d 809 if (op_is_flush(bio->bi_opf) &&
c888a8f9 810 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 811 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
e439ab71 812 if (!bio_sectors(bio)) {
4e4cbee9 813 status = BLK_STS_OK;
51fd77bd
JA
814 goto end_io;
815 }
5a7bbad2 816 }
5ddfe969 817
d04c406f 818 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
6ce913fe 819 bio_clear_polled(bio);
d04c406f 820
288dab8a
CH
821 switch (bio_op(bio)) {
822 case REQ_OP_DISCARD:
70200574 823 if (!bdev_max_discard_sectors(bdev))
288dab8a
CH
824 goto not_supported;
825 break;
826 case REQ_OP_SECURE_ERASE:
827 if (!blk_queue_secure_erase(q))
828 goto not_supported;
829 break;
0512a75b
KB
830 case REQ_OP_ZONE_APPEND:
831 status = blk_check_zone_append(q, bio);
832 if (status != BLK_STS_OK)
833 goto end_io;
834 break;
2d253440 835 case REQ_OP_ZONE_RESET:
6c1b1da5
AJ
836 case REQ_OP_ZONE_OPEN:
837 case REQ_OP_ZONE_CLOSE:
838 case REQ_OP_ZONE_FINISH:
74d46992 839 if (!blk_queue_is_zoned(q))
2d253440 840 goto not_supported;
288dab8a 841 break;
6e33dbf2
CK
842 case REQ_OP_ZONE_RESET_ALL:
843 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
844 goto not_supported;
845 break;
a6f0788e 846 case REQ_OP_WRITE_ZEROES:
74d46992 847 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
848 goto not_supported;
849 break;
288dab8a
CH
850 default:
851 break;
5a7bbad2 852 }
01edede4 853
b781d8db 854 if (blk_throtl_bio(bio))
3f98c753 855 return;
db18a53e
CH
856
857 blk_cgroup_bio_start(bio);
858 blkcg_bio_issue_init(bio);
27a84d54 859
fbbaf700 860 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
e8a676d6 861 trace_block_bio_queue(bio);
fbbaf700
N
862 /* Now that enqueuing has been traced, we need to trace
863 * completion as well.
864 */
865 bio_set_flag(bio, BIO_TRACE_COMPLETION);
866 }
3f98c753 867 submit_bio_noacct_nocheck(bio);
d24c670e 868 return;
a7384677 869
288dab8a 870not_supported:
4e4cbee9 871 status = BLK_STS_NOTSUPP;
a7384677 872end_io:
4e4cbee9 873 bio->bi_status = status;
4246a0b6 874 bio_endio(bio);
d89d8796 875}
ed00aabd 876EXPORT_SYMBOL(submit_bio_noacct);
1da177e4
LT
877
878/**
710027a4 879 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
880 * @bio: The &struct bio which describes the I/O
881 *
3fdd4086
CH
882 * submit_bio() is used to submit I/O requests to block devices. It is passed a
883 * fully set up &struct bio that describes the I/O that needs to be done. The
309dca30 884 * bio will be send to the device described by the bi_bdev field.
1da177e4 885 *
3fdd4086
CH
886 * The success/failure status of the request, along with notification of
887 * completion, is delivered asynchronously through the ->bi_end_io() callback
888 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
889 * been called.
1da177e4 890 */
3e08773c 891void submit_bio(struct bio *bio)
1da177e4 892{
d3f77dfd 893 if (blkcg_punt_bio_submit(bio))
3e08773c 894 return;
d3f77dfd 895
bf2de6f5
JA
896 /*
897 * If it's a regular read/write or a barrier with data attached,
898 * go through the normal accounting stuff before submission.
899 */
e2a60da7 900 if (bio_has_data(bio)) {
73bd66d9 901 unsigned int count = bio_sectors(bio);
4363ac7c 902
a8ebb056 903 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
904 count_vm_events(PGPGOUT, count);
905 } else {
4f024f37 906 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
907 count_vm_events(PGPGIN, count);
908 }
1da177e4
LT
909 }
910
b8e24a93 911 /*
760f83ea
CH
912 * If we're reading data that is part of the userspace workingset, count
913 * submission time as memory stall. When the device is congested, or
914 * the submitting cgroup IO-throttled, submission can be a significant
915 * part of overall IO time.
b8e24a93 916 */
760f83ea
CH
917 if (unlikely(bio_op(bio) == REQ_OP_READ &&
918 bio_flagged(bio, BIO_WORKINGSET))) {
919 unsigned long pflags;
b8e24a93 920
760f83ea 921 psi_memstall_enter(&pflags);
3e08773c 922 submit_bio_noacct(bio);
b8e24a93 923 psi_memstall_leave(&pflags);
3e08773c 924 return;
760f83ea
CH
925 }
926
3e08773c 927 submit_bio_noacct(bio);
1da177e4 928}
1da177e4
LT
929EXPORT_SYMBOL(submit_bio);
930
3e08773c
CH
931/**
932 * bio_poll - poll for BIO completions
933 * @bio: bio to poll for
e30028ac 934 * @iob: batches of IO
3e08773c
CH
935 * @flags: BLK_POLL_* flags that control the behavior
936 *
937 * Poll for completions on queue associated with the bio. Returns number of
938 * completed entries found.
939 *
940 * Note: the caller must either be the context that submitted @bio, or
941 * be in a RCU critical section to prevent freeing of @bio.
942 */
5a72e899 943int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
3e08773c 944{
859897c3 945 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3e08773c 946 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
69fe0f29 947 int ret = 0;
3e08773c
CH
948
949 if (cookie == BLK_QC_T_NONE ||
950 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
951 return 0;
952
aa8dccca 953 blk_flush_plug(current->plug, false);
3e08773c
CH
954
955 if (blk_queue_enter(q, BLK_MQ_REQ_NOWAIT))
956 return 0;
69fe0f29 957 if (queue_is_mq(q)) {
5a72e899 958 ret = blk_mq_poll(q, cookie, iob, flags);
69fe0f29
ML
959 } else {
960 struct gendisk *disk = q->disk;
961
962 if (disk && disk->fops->poll_bio)
963 ret = disk->fops->poll_bio(bio, iob, flags);
964 }
3e08773c
CH
965 blk_queue_exit(q);
966 return ret;
967}
968EXPORT_SYMBOL_GPL(bio_poll);
969
970/*
971 * Helper to implement file_operations.iopoll. Requires the bio to be stored
972 * in iocb->private, and cleared before freeing the bio.
973 */
5a72e899
JA
974int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
975 unsigned int flags)
3e08773c
CH
976{
977 struct bio *bio;
978 int ret = 0;
979
980 /*
981 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
982 * point to a freshly allocated bio at this point. If that happens
983 * we have a few cases to consider:
984 *
985 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
986 * simply nothing in this case
987 * 2) the bio points to a not poll enabled device. bio_poll will catch
988 * this and return 0
989 * 3) the bio points to a poll capable device, including but not
990 * limited to the one that the original bio pointed to. In this
991 * case we will call into the actual poll method and poll for I/O,
992 * even if we don't need to, but it won't cause harm either.
993 *
994 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
995 * is still allocated. Because partitions hold a reference to the whole
996 * device bdev and thus disk, the disk is also still valid. Grabbing
997 * a reference to the queue in bio_poll() ensures the hctxs and requests
998 * are still valid as well.
999 */
1000 rcu_read_lock();
1001 bio = READ_ONCE(kiocb->private);
1002 if (bio && bio->bi_bdev)
5a72e899 1003 ret = bio_poll(bio, iob, flags);
3e08773c
CH
1004 rcu_read_unlock();
1005
1006 return ret;
1007}
1008EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
1009
450b7879 1010void update_io_ticks(struct block_device *part, unsigned long now, bool end)
9123bf6f
CH
1011{
1012 unsigned long stamp;
1013again:
8446fe92 1014 stamp = READ_ONCE(part->bd_stamp);
d80c228d 1015 if (unlikely(time_after(now, stamp))) {
8446fe92 1016 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
9123bf6f
CH
1017 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1018 }
8446fe92
CH
1019 if (part->bd_partno) {
1020 part = bdev_whole(part);
9123bf6f
CH
1021 goto again;
1022 }
1023}
1024
8446fe92 1025static unsigned long __part_start_io_acct(struct block_device *part,
e45c47d1
MS
1026 unsigned int sectors, unsigned int op,
1027 unsigned long start_time)
956d510e 1028{
956d510e 1029 const int sgrp = op_stat_group(op);
956d510e
CH
1030
1031 part_stat_lock();
e45c47d1 1032 update_io_ticks(part, start_time, false);
956d510e
CH
1033 part_stat_inc(part, ios[sgrp]);
1034 part_stat_add(part, sectors[sgrp], sectors);
1035 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1036 part_stat_unlock();
320ae51f 1037
e45c47d1
MS
1038 return start_time;
1039}
1040
1041/**
1042 * bio_start_io_acct_time - start I/O accounting for bio based drivers
1043 * @bio: bio to start account for
1044 * @start_time: start time that should be passed back to bio_end_io_acct().
1045 */
1046void bio_start_io_acct_time(struct bio *bio, unsigned long start_time)
1047{
1048 __part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1049 bio_op(bio), start_time);
956d510e 1050}
e45c47d1 1051EXPORT_SYMBOL_GPL(bio_start_io_acct_time);
7b26410b 1052
99dfc43e
CH
1053/**
1054 * bio_start_io_acct - start I/O accounting for bio based drivers
1055 * @bio: bio to start account for
1056 *
1057 * Returns the start time that should be passed back to bio_end_io_acct().
1058 */
1059unsigned long bio_start_io_acct(struct bio *bio)
7b26410b 1060{
e45c47d1
MS
1061 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1062 bio_op(bio), jiffies);
7b26410b 1063}
99dfc43e 1064EXPORT_SYMBOL_GPL(bio_start_io_acct);
7b26410b
SL
1065
1066unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1067 unsigned int op)
1068{
e45c47d1 1069 return __part_start_io_acct(disk->part0, sectors, op, jiffies);
7b26410b 1070}
956d510e
CH
1071EXPORT_SYMBOL(disk_start_io_acct);
1072
8446fe92 1073static void __part_end_io_acct(struct block_device *part, unsigned int op,
7b26410b 1074 unsigned long start_time)
956d510e 1075{
956d510e
CH
1076 const int sgrp = op_stat_group(op);
1077 unsigned long now = READ_ONCE(jiffies);
1078 unsigned long duration = now - start_time;
5b18b5a7 1079
956d510e
CH
1080 part_stat_lock();
1081 update_io_ticks(part, now, true);
1082 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1083 part_stat_local_dec(part, in_flight[op_is_write(op)]);
320ae51f
JA
1084 part_stat_unlock();
1085}
7b26410b 1086
99dfc43e
CH
1087void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1088 struct block_device *orig_bdev)
7b26410b 1089{
99dfc43e 1090 __part_end_io_acct(orig_bdev, bio_op(bio), start_time);
7b26410b 1091}
99dfc43e 1092EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
7b26410b
SL
1093
1094void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1095 unsigned long start_time)
1096{
8446fe92 1097 __part_end_io_acct(disk->part0, op, start_time);
7b26410b 1098}
956d510e 1099EXPORT_SYMBOL(disk_end_io_acct);
320ae51f 1100
ef9e3fac
KU
1101/**
1102 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1103 * @q : the queue of the device being checked
1104 *
1105 * Description:
1106 * Check if underlying low-level drivers of a device are busy.
1107 * If the drivers want to export their busy state, they must set own
1108 * exporting function using blk_queue_lld_busy() first.
1109 *
1110 * Basically, this function is used only by request stacking drivers
1111 * to stop dispatching requests to underlying devices when underlying
1112 * devices are busy. This behavior helps more I/O merging on the queue
1113 * of the request stacking driver and prevents I/O throughput regression
1114 * on burst I/O load.
1115 *
1116 * Return:
1117 * 0 - Not busy (The request stacking driver should dispatch request)
1118 * 1 - Busy (The request stacking driver should stop dispatching request)
1119 */
1120int blk_lld_busy(struct request_queue *q)
1121{
344e9ffc 1122 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1123 return q->mq_ops->busy(q);
ef9e3fac
KU
1124
1125 return 0;
1126}
1127EXPORT_SYMBOL_GPL(blk_lld_busy);
1128
59c3d45e 1129int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1130{
1131 return queue_work(kblockd_workqueue, work);
1132}
1da177e4
LT
1133EXPORT_SYMBOL(kblockd_schedule_work);
1134
818cd1cb
JA
1135int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1136 unsigned long delay)
1137{
1138 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1139}
1140EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1141
47c122e3
JA
1142void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1143{
1144 struct task_struct *tsk = current;
1145
1146 /*
1147 * If this is a nested plug, don't actually assign it.
1148 */
1149 if (tsk->plug)
1150 return;
1151
bc490f81 1152 plug->mq_list = NULL;
47c122e3
JA
1153 plug->cached_rq = NULL;
1154 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1155 plug->rq_count = 0;
1156 plug->multiple_queues = false;
dc5fc361 1157 plug->has_elevator = false;
47c122e3
JA
1158 plug->nowait = false;
1159 INIT_LIST_HEAD(&plug->cb_list);
1160
1161 /*
1162 * Store ordering should not be needed here, since a potential
1163 * preempt will imply a full memory barrier
1164 */
1165 tsk->plug = plug;
1166}
1167
75df7136
SJ
1168/**
1169 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1170 * @plug: The &struct blk_plug that needs to be initialized
1171 *
1172 * Description:
40405851
JM
1173 * blk_start_plug() indicates to the block layer an intent by the caller
1174 * to submit multiple I/O requests in a batch. The block layer may use
1175 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1176 * is called. However, the block layer may choose to submit requests
1177 * before a call to blk_finish_plug() if the number of queued I/Os
1178 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1179 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1180 * the task schedules (see below).
1181 *
75df7136
SJ
1182 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1183 * pending I/O should the task end up blocking between blk_start_plug() and
1184 * blk_finish_plug(). This is important from a performance perspective, but
1185 * also ensures that we don't deadlock. For instance, if the task is blocking
1186 * for a memory allocation, memory reclaim could end up wanting to free a
1187 * page belonging to that request that is currently residing in our private
1188 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1189 * this kind of deadlock.
1190 */
73c10101
JA
1191void blk_start_plug(struct blk_plug *plug)
1192{
47c122e3 1193 blk_start_plug_nr_ios(plug, 1);
73c10101
JA
1194}
1195EXPORT_SYMBOL(blk_start_plug);
1196
74018dc3 1197static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1198{
1199 LIST_HEAD(callbacks);
1200
2a7d5559
SL
1201 while (!list_empty(&plug->cb_list)) {
1202 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1203
2a7d5559
SL
1204 while (!list_empty(&callbacks)) {
1205 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1206 struct blk_plug_cb,
1207 list);
2a7d5559 1208 list_del(&cb->list);
74018dc3 1209 cb->callback(cb, from_schedule);
2a7d5559 1210 }
048c9374
N
1211 }
1212}
1213
9cbb1750
N
1214struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1215 int size)
1216{
1217 struct blk_plug *plug = current->plug;
1218 struct blk_plug_cb *cb;
1219
1220 if (!plug)
1221 return NULL;
1222
1223 list_for_each_entry(cb, &plug->cb_list, list)
1224 if (cb->callback == unplug && cb->data == data)
1225 return cb;
1226
1227 /* Not currently on the callback list */
1228 BUG_ON(size < sizeof(*cb));
1229 cb = kzalloc(size, GFP_ATOMIC);
1230 if (cb) {
1231 cb->data = data;
1232 cb->callback = unplug;
1233 list_add(&cb->list, &plug->cb_list);
1234 }
1235 return cb;
1236}
1237EXPORT_SYMBOL(blk_check_plugged);
1238
aa8dccca 1239void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
73c10101 1240{
b600455d
PB
1241 if (!list_empty(&plug->cb_list))
1242 flush_plug_callbacks(plug, from_schedule);
bc490f81 1243 if (!rq_list_empty(plug->mq_list))
320ae51f 1244 blk_mq_flush_plug_list(plug, from_schedule);
c5fc7b93
JA
1245 /*
1246 * Unconditionally flush out cached requests, even if the unplug
1247 * event came from schedule. Since we know hold references to the
1248 * queue for cached requests, we don't want a blocked task holding
1249 * up a queue freeze/quiesce event.
1250 */
1251 if (unlikely(!rq_list_empty(plug->cached_rq)))
47c122e3 1252 blk_mq_free_plug_rqs(plug);
73c10101 1253}
73c10101 1254
40405851
JM
1255/**
1256 * blk_finish_plug - mark the end of a batch of submitted I/O
1257 * @plug: The &struct blk_plug passed to blk_start_plug()
1258 *
1259 * Description:
1260 * Indicate that a batch of I/O submissions is complete. This function
1261 * must be paired with an initial call to blk_start_plug(). The intent
1262 * is to allow the block layer to optimize I/O submission. See the
1263 * documentation for blk_start_plug() for more information.
1264 */
73c10101
JA
1265void blk_finish_plug(struct blk_plug *plug)
1266{
008f75a2 1267 if (plug == current->plug) {
aa8dccca 1268 __blk_flush_plug(plug, false);
008f75a2
CH
1269 current->plug = NULL;
1270 }
73c10101 1271}
88b996cd 1272EXPORT_SYMBOL(blk_finish_plug);
73c10101 1273
71ac860a
ML
1274void blk_io_schedule(void)
1275{
1276 /* Prevent hang_check timer from firing at us during very long I/O */
1277 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1278
1279 if (timeout)
1280 io_schedule_timeout(timeout);
1281 else
1282 io_schedule();
1283}
1284EXPORT_SYMBOL_GPL(blk_io_schedule);
1285
1da177e4
LT
1286int __init blk_dev_init(void)
1287{
ef295ecf
CH
1288 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1289 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1290 sizeof_field(struct request, cmd_flags));
ef295ecf 1291 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1292 sizeof_field(struct bio, bi_opf));
704b914f
ML
1293 BUILD_BUG_ON(ALIGN(offsetof(struct request_queue, srcu),
1294 __alignof__(struct request_queue)) !=
1295 sizeof(struct request_queue));
9eb55b03 1296
89b90be2
TH
1297 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1298 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1299 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1300 if (!kblockd_workqueue)
1301 panic("Failed to create kblockd\n");
1302
c2789bd4 1303 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1304 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1305
704b914f
ML
1306 blk_requestq_srcu_cachep = kmem_cache_create("request_queue_srcu",
1307 sizeof(struct request_queue) +
1308 sizeof(struct srcu_struct), 0, SLAB_PANIC, NULL);
1309
18fbda91 1310 blk_debugfs_root = debugfs_create_dir("block", NULL);
18fbda91 1311
d38ecf93 1312 return 0;
1da177e4 1313}