block: remove the lock argument to blk_alloc_queue_node
[linux-block.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
30abb3a6 37#include <linux/bpf.h>
55782138
LZ
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/block.h>
1da177e4 41
8324aa91 42#include "blk.h"
43a5e4e2 43#include "blk-mq.h"
bd166ef1 44#include "blk-mq-sched.h"
bca6b067 45#include "blk-pm.h"
c1c80384 46#include "blk-rq-qos.h"
8324aa91 47
18fbda91
OS
48#ifdef CONFIG_DEBUG_FS
49struct dentry *blk_debugfs_root;
50#endif
51
d07335e5 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 55EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 56EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 57
a73f730d
TH
58DEFINE_IDA(blk_queue_ida);
59
1da177e4
LT
60/*
61 * For queue allocation
62 */
6728cb0e 63struct kmem_cache *blk_requestq_cachep;
1da177e4 64
1da177e4
LT
65/*
66 * Controlling structure to kblockd
67 */
ff856bad 68static struct workqueue_struct *kblockd_workqueue;
1da177e4 69
8814ce8a
BVA
70/**
71 * blk_queue_flag_set - atomically set a queue flag
72 * @flag: flag to be set
73 * @q: request queue
74 */
75void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
76{
57d74df9 77 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
78}
79EXPORT_SYMBOL(blk_queue_flag_set);
80
81/**
82 * blk_queue_flag_clear - atomically clear a queue flag
83 * @flag: flag to be cleared
84 * @q: request queue
85 */
86void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
87{
57d74df9 88 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
89}
90EXPORT_SYMBOL(blk_queue_flag_clear);
91
92/**
93 * blk_queue_flag_test_and_set - atomically test and set a queue flag
94 * @flag: flag to be set
95 * @q: request queue
96 *
97 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
98 * the flag was already set.
99 */
100bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
101{
57d74df9 102 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
103}
104EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
105
2a4aa30c 106void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 107{
1afb20f3
FT
108 memset(rq, 0, sizeof(*rq));
109
1da177e4 110 INIT_LIST_HEAD(&rq->queuelist);
63a71386 111 rq->q = q;
a2dec7b3 112 rq->__sector = (sector_t) -1;
2e662b65
JA
113 INIT_HLIST_NODE(&rq->hash);
114 RB_CLEAR_NODE(&rq->rb_node);
63a71386 115 rq->tag = -1;
bd166ef1 116 rq->internal_tag = -1;
522a7775 117 rq->start_time_ns = ktime_get_ns();
09e099d4 118 rq->part = NULL;
1da177e4 119}
2a4aa30c 120EXPORT_SYMBOL(blk_rq_init);
1da177e4 121
2a842aca
CH
122static const struct {
123 int errno;
124 const char *name;
125} blk_errors[] = {
126 [BLK_STS_OK] = { 0, "" },
127 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
128 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
129 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
130 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
131 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
132 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
133 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
134 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
135 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 136 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 137 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 138
4e4cbee9
CH
139 /* device mapper special case, should not leak out: */
140 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
141
2a842aca
CH
142 /* everything else not covered above: */
143 [BLK_STS_IOERR] = { -EIO, "I/O" },
144};
145
146blk_status_t errno_to_blk_status(int errno)
147{
148 int i;
149
150 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
151 if (blk_errors[i].errno == errno)
152 return (__force blk_status_t)i;
153 }
154
155 return BLK_STS_IOERR;
156}
157EXPORT_SYMBOL_GPL(errno_to_blk_status);
158
159int blk_status_to_errno(blk_status_t status)
160{
161 int idx = (__force int)status;
162
34bd9c1c 163 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
164 return -EIO;
165 return blk_errors[idx].errno;
166}
167EXPORT_SYMBOL_GPL(blk_status_to_errno);
168
169static void print_req_error(struct request *req, blk_status_t status)
170{
171 int idx = (__force int)status;
172
34bd9c1c 173 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
174 return;
175
176 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
177 __func__, blk_errors[idx].name, req->rq_disk ?
178 req->rq_disk->disk_name : "?",
179 (unsigned long long)blk_rq_pos(req));
180}
181
5bb23a68 182static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 183 unsigned int nbytes, blk_status_t error)
1da177e4 184{
78d8e58a 185 if (error)
4e4cbee9 186 bio->bi_status = error;
797e7dbb 187
e8064021 188 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 189 bio_set_flag(bio, BIO_QUIET);
08bafc03 190
f79ea416 191 bio_advance(bio, nbytes);
7ba1ba12 192
143a87f4 193 /* don't actually finish bio if it's part of flush sequence */
e8064021 194 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 195 bio_endio(bio);
1da177e4 196}
1da177e4 197
1da177e4
LT
198void blk_dump_rq_flags(struct request *rq, char *msg)
199{
aebf526b
CH
200 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
201 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 202 (unsigned long long) rq->cmd_flags);
1da177e4 203
83096ebf
TH
204 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
205 (unsigned long long)blk_rq_pos(rq),
206 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
207 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
208 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 209}
1da177e4
LT
210EXPORT_SYMBOL(blk_dump_rq_flags);
211
1da177e4
LT
212/**
213 * blk_sync_queue - cancel any pending callbacks on a queue
214 * @q: the queue
215 *
216 * Description:
217 * The block layer may perform asynchronous callback activity
218 * on a queue, such as calling the unplug function after a timeout.
219 * A block device may call blk_sync_queue to ensure that any
220 * such activity is cancelled, thus allowing it to release resources
59c51591 221 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
222 * that its ->make_request_fn will not re-add plugging prior to calling
223 * this function.
224 *
da527770 225 * This function does not cancel any asynchronous activity arising
da3dae54 226 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 227 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 228 *
1da177e4
LT
229 */
230void blk_sync_queue(struct request_queue *q)
231{
70ed28b9 232 del_timer_sync(&q->timeout);
4e9b6f20 233 cancel_work_sync(&q->timeout_work);
f04c1fe7
ML
234
235 if (q->mq_ops) {
236 struct blk_mq_hw_ctx *hctx;
237 int i;
238
aba7afc5 239 cancel_delayed_work_sync(&q->requeue_work);
21c6e939 240 queue_for_each_hw_ctx(q, hctx, i)
9f993737 241 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7 242 }
1da177e4
LT
243}
244EXPORT_SYMBOL(blk_sync_queue);
245
c9254f2d 246/**
cd84a62e 247 * blk_set_pm_only - increment pm_only counter
c9254f2d 248 * @q: request queue pointer
c9254f2d 249 */
cd84a62e 250void blk_set_pm_only(struct request_queue *q)
c9254f2d 251{
cd84a62e 252 atomic_inc(&q->pm_only);
c9254f2d 253}
cd84a62e 254EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 255
cd84a62e 256void blk_clear_pm_only(struct request_queue *q)
c9254f2d 257{
cd84a62e
BVA
258 int pm_only;
259
260 pm_only = atomic_dec_return(&q->pm_only);
261 WARN_ON_ONCE(pm_only < 0);
262 if (pm_only == 0)
263 wake_up_all(&q->mq_freeze_wq);
c9254f2d 264}
cd84a62e 265EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 266
165125e1 267void blk_put_queue(struct request_queue *q)
483f4afc
AV
268{
269 kobject_put(&q->kobj);
270}
d86e0e83 271EXPORT_SYMBOL(blk_put_queue);
483f4afc 272
aed3ea94
JA
273void blk_set_queue_dying(struct request_queue *q)
274{
8814ce8a 275 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
aed3ea94 276
d3cfb2a0
ML
277 /*
278 * When queue DYING flag is set, we need to block new req
279 * entering queue, so we call blk_freeze_queue_start() to
280 * prevent I/O from crossing blk_queue_enter().
281 */
282 blk_freeze_queue_start(q);
283
aed3ea94
JA
284 if (q->mq_ops)
285 blk_mq_wake_waiters(q);
055f6e18
ML
286
287 /* Make blk_queue_enter() reexamine the DYING flag. */
288 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
289}
290EXPORT_SYMBOL_GPL(blk_set_queue_dying);
291
4cf6324b
BVA
292/* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
293void blk_exit_queue(struct request_queue *q)
294{
295 /*
296 * Since the I/O scheduler exit code may access cgroup information,
297 * perform I/O scheduler exit before disassociating from the block
298 * cgroup controller.
299 */
300 if (q->elevator) {
301 ioc_clear_queue(q);
302 elevator_exit(q, q->elevator);
303 q->elevator = NULL;
304 }
305
306 /*
307 * Remove all references to @q from the block cgroup controller before
308 * restoring @q->queue_lock to avoid that restoring this pointer causes
309 * e.g. blkcg_print_blkgs() to crash.
310 */
311 blkcg_exit_queue(q);
312
313 /*
314 * Since the cgroup code may dereference the @q->backing_dev_info
315 * pointer, only decrease its reference count after having removed the
316 * association with the block cgroup controller.
317 */
318 bdi_put(q->backing_dev_info);
319}
320
c9a929dd
TH
321/**
322 * blk_cleanup_queue - shutdown a request queue
323 * @q: request queue to shutdown
324 *
c246e80d
BVA
325 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
326 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 327 */
6728cb0e 328void blk_cleanup_queue(struct request_queue *q)
483f4afc 329{
c9a929dd 330 spinlock_t *lock = q->queue_lock;
e3335de9 331
3f3299d5 332 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 333 mutex_lock(&q->sysfs_lock);
aed3ea94 334 blk_set_queue_dying(q);
6ecf23af 335
57d74df9
CH
336 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
337 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
338 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
339 mutex_unlock(&q->sysfs_lock);
340
c246e80d
BVA
341 /*
342 * Drain all requests queued before DYING marking. Set DEAD flag to
343 * prevent that q->request_fn() gets invoked after draining finished.
344 */
3ef28e83 345 blk_freeze_queue(q);
c57cdf7a
ML
346
347 rq_qos_exit(q);
348
57d74df9 349 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
c9a929dd 350
c2856ae2
ML
351 /*
352 * make sure all in-progress dispatch are completed because
353 * blk_freeze_queue() can only complete all requests, and
354 * dispatch may still be in-progress since we dispatch requests
1311326c
ML
355 * from more than one contexts.
356 *
357 * No need to quiesce queue if it isn't initialized yet since
358 * blk_freeze_queue() should be enough for cases of passthrough
359 * request.
c2856ae2 360 */
1311326c 361 if (q->mq_ops && blk_queue_init_done(q))
c2856ae2
ML
362 blk_mq_quiesce_queue(q);
363
5a48fc14
DW
364 /* for synchronous bio-based driver finish in-flight integrity i/o */
365 blk_flush_integrity();
366
c9a929dd 367 /* @q won't process any more request, flush async actions */
dc3b17cc 368 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
369 blk_sync_queue(q);
370
a063057d
BVA
371 /*
372 * I/O scheduler exit is only safe after the sysfs scheduler attribute
373 * has been removed.
374 */
375 WARN_ON_ONCE(q->kobj.state_in_sysfs);
376
4cf6324b 377 blk_exit_queue(q);
a063057d 378
45a9c9d9
BVA
379 if (q->mq_ops)
380 blk_mq_free_queue(q);
a1ce35fa 381
3ef28e83 382 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 383
5e5cfac0
AH
384 spin_lock_irq(lock);
385 if (q->queue_lock != &q->__queue_lock)
386 q->queue_lock = &q->__queue_lock;
387 spin_unlock_irq(lock);
388
c9a929dd 389 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
390 blk_put_queue(q);
391}
1da177e4
LT
392EXPORT_SYMBOL(blk_cleanup_queue);
393
165125e1 394struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 395{
6d469642 396 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
397}
398EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 399
3a0a5299
BVA
400/**
401 * blk_queue_enter() - try to increase q->q_usage_counter
402 * @q: request queue pointer
403 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
404 */
9a95e4ef 405int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 406{
cd84a62e 407 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
3a0a5299 408
3ef28e83 409 while (true) {
3a0a5299 410 bool success = false;
3ef28e83 411
818e0fa2 412 rcu_read_lock();
3a0a5299
BVA
413 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
414 /*
cd84a62e
BVA
415 * The code that increments the pm_only counter is
416 * responsible for ensuring that that counter is
417 * globally visible before the queue is unfrozen.
3a0a5299 418 */
cd84a62e 419 if (pm || !blk_queue_pm_only(q)) {
3a0a5299
BVA
420 success = true;
421 } else {
422 percpu_ref_put(&q->q_usage_counter);
423 }
424 }
818e0fa2 425 rcu_read_unlock();
3a0a5299
BVA
426
427 if (success)
3ef28e83
DW
428 return 0;
429
3a0a5299 430 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
431 return -EBUSY;
432
5ed61d3f 433 /*
1671d522 434 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 435 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
436 * .q_usage_counter and reading .mq_freeze_depth or
437 * queue dying flag, otherwise the following wait may
438 * never return if the two reads are reordered.
5ed61d3f
ML
439 */
440 smp_rmb();
441
1dc3039b
AJ
442 wait_event(q->mq_freeze_wq,
443 (atomic_read(&q->mq_freeze_depth) == 0 &&
0d25bd07
BVA
444 (pm || (blk_pm_request_resume(q),
445 !blk_queue_pm_only(q)))) ||
1dc3039b 446 blk_queue_dying(q));
3ef28e83
DW
447 if (blk_queue_dying(q))
448 return -ENODEV;
3ef28e83
DW
449 }
450}
451
452void blk_queue_exit(struct request_queue *q)
453{
454 percpu_ref_put(&q->q_usage_counter);
455}
456
457static void blk_queue_usage_counter_release(struct percpu_ref *ref)
458{
459 struct request_queue *q =
460 container_of(ref, struct request_queue, q_usage_counter);
461
462 wake_up_all(&q->mq_freeze_wq);
463}
464
bca237a5 465static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 466{
bca237a5 467 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
468
469 kblockd_schedule_work(&q->timeout_work);
470}
471
498f6650
BVA
472/**
473 * blk_alloc_queue_node - allocate a request queue
474 * @gfp_mask: memory allocation flags
475 * @node_id: NUMA node to allocate memory from
498f6650 476 */
6d469642 477struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 478{
165125e1 479 struct request_queue *q;
338aa96d 480 int ret;
1946089a 481
8324aa91 482 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 483 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
484 if (!q)
485 return NULL;
486
cbf62af3
CH
487 INIT_LIST_HEAD(&q->queue_head);
488 q->last_merge = NULL;
cbf62af3 489
00380a40 490 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 491 if (q->id < 0)
3d2936f4 492 goto fail_q;
a73f730d 493
338aa96d
KO
494 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
495 if (ret)
54efd50b
KO
496 goto fail_id;
497
d03f6cdc
JK
498 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
499 if (!q->backing_dev_info)
500 goto fail_split;
501
a83b576c
JA
502 q->stats = blk_alloc_queue_stats();
503 if (!q->stats)
504 goto fail_stats;
505
dc3b17cc 506 q->backing_dev_info->ra_pages =
09cbfeaf 507 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
508 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
509 q->backing_dev_info->name = "block";
5151412d 510 q->node = node_id;
0989a025 511
bca237a5
KC
512 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
513 laptop_mode_timer_fn, 0);
514 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
4e9b6f20 515 INIT_WORK(&q->timeout_work, NULL);
a612fddf 516 INIT_LIST_HEAD(&q->icq_list);
4eef3049 517#ifdef CONFIG_BLK_CGROUP
e8989fae 518 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 519#endif
483f4afc 520
8324aa91 521 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 522
5acb3cc2
WL
523#ifdef CONFIG_BLK_DEV_IO_TRACE
524 mutex_init(&q->blk_trace_mutex);
525#endif
483f4afc 526 mutex_init(&q->sysfs_lock);
e7e72bf6 527 spin_lock_init(&q->__queue_lock);
6d469642 528 q->queue_lock = &q->__queue_lock;
c94a96ac 529
320ae51f
JA
530 init_waitqueue_head(&q->mq_freeze_wq);
531
3ef28e83
DW
532 /*
533 * Init percpu_ref in atomic mode so that it's faster to shutdown.
534 * See blk_register_queue() for details.
535 */
536 if (percpu_ref_init(&q->q_usage_counter,
537 blk_queue_usage_counter_release,
538 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 539 goto fail_bdi;
f51b802c 540
3ef28e83
DW
541 if (blkcg_init_queue(q))
542 goto fail_ref;
543
1da177e4 544 return q;
a73f730d 545
3ef28e83
DW
546fail_ref:
547 percpu_ref_exit(&q->q_usage_counter);
fff4996b 548fail_bdi:
a83b576c
JA
549 blk_free_queue_stats(q->stats);
550fail_stats:
d03f6cdc 551 bdi_put(q->backing_dev_info);
54efd50b 552fail_split:
338aa96d 553 bioset_exit(&q->bio_split);
a73f730d
TH
554fail_id:
555 ida_simple_remove(&blk_queue_ida, q->id);
556fail_q:
557 kmem_cache_free(blk_requestq_cachep, q);
558 return NULL;
1da177e4 559}
1946089a 560EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4 561
09ac46c4 562bool blk_get_queue(struct request_queue *q)
1da177e4 563{
3f3299d5 564 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
565 __blk_get_queue(q);
566 return true;
1da177e4
LT
567 }
568
09ac46c4 569 return false;
1da177e4 570}
d86e0e83 571EXPORT_SYMBOL(blk_get_queue);
1da177e4 572
a1ce35fa
JA
573/**
574 * blk_get_request - allocate a request
575 * @q: request queue to allocate a request for
576 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
577 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1da177e4 578 */
a1ce35fa
JA
579struct request *blk_get_request(struct request_queue *q, unsigned int op,
580 blk_mq_req_flags_t flags)
1da177e4 581{
a1ce35fa 582 struct request *req;
1da177e4 583
a1ce35fa
JA
584 WARN_ON_ONCE(op & REQ_NOWAIT);
585 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1da177e4 586
a1ce35fa
JA
587 req = blk_mq_alloc_request(q, op, flags);
588 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
589 q->mq_ops->initialize_rq_fn(req);
1da177e4 590
a1ce35fa 591 return req;
1da177e4 592}
a1ce35fa 593EXPORT_SYMBOL(blk_get_request);
1da177e4 594
a1ce35fa
JA
595static void part_round_stats_single(struct request_queue *q, int cpu,
596 struct hd_struct *part, unsigned long now,
597 unsigned int inflight)
1da177e4 598{
a1ce35fa
JA
599 if (inflight) {
600 __part_stat_add(cpu, part, time_in_queue,
601 inflight * (now - part->stamp));
602 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1da177e4 603 }
a1ce35fa 604 part->stamp = now;
074a7aca
TH
605}
606
607/**
496aa8a9 608 * part_round_stats() - Round off the performance stats on a struct disk_stats.
d62e26b3 609 * @q: target block queue
496aa8a9
RD
610 * @cpu: cpu number for stats access
611 * @part: target partition
1da177e4
LT
612 *
613 * The average IO queue length and utilisation statistics are maintained
614 * by observing the current state of the queue length and the amount of
615 * time it has been in this state for.
616 *
617 * Normally, that accounting is done on IO completion, but that can result
618 * in more than a second's worth of IO being accounted for within any one
619 * second, leading to >100% utilisation. To deal with that, we call this
620 * function to do a round-off before returning the results when reading
621 * /proc/diskstats. This accounts immediately for all queue usage up to
622 * the current jiffies and restarts the counters again.
623 */
d62e26b3 624void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
6f2576af 625{
b8d62b3a 626 struct hd_struct *part2 = NULL;
6f2576af 627 unsigned long now = jiffies;
b8d62b3a
JA
628 unsigned int inflight[2];
629 int stats = 0;
630
631 if (part->stamp != now)
632 stats |= 1;
633
634 if (part->partno) {
635 part2 = &part_to_disk(part)->part0;
636 if (part2->stamp != now)
637 stats |= 2;
638 }
639
640 if (!stats)
641 return;
642
643 part_in_flight(q, part, inflight);
6f2576af 644
b8d62b3a
JA
645 if (stats & 2)
646 part_round_stats_single(q, cpu, part2, now, inflight[1]);
647 if (stats & 1)
648 part_round_stats_single(q, cpu, part, now, inflight[0]);
6f2576af 649}
074a7aca 650EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 651
1da177e4
LT
652void blk_put_request(struct request *req)
653{
a1ce35fa 654 blk_mq_free_request(req);
1da177e4 655}
1da177e4
LT
656EXPORT_SYMBOL(blk_put_request);
657
320ae51f
JA
658bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
659 struct bio *bio)
73c10101 660{
1eff9d32 661 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 662
73c10101
JA
663 if (!ll_back_merge_fn(q, req, bio))
664 return false;
665
8c1cf6bb 666 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
667
668 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
669 blk_rq_set_mixed_merge(req);
670
671 req->biotail->bi_next = bio;
672 req->biotail = bio;
4f024f37 673 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
674 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
675
320ae51f 676 blk_account_io_start(req, false);
73c10101
JA
677 return true;
678}
679
320ae51f
JA
680bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
681 struct bio *bio)
73c10101 682{
1eff9d32 683 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 684
73c10101
JA
685 if (!ll_front_merge_fn(q, req, bio))
686 return false;
687
8c1cf6bb 688 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
689
690 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
691 blk_rq_set_mixed_merge(req);
692
73c10101
JA
693 bio->bi_next = req->bio;
694 req->bio = bio;
695
4f024f37
KO
696 req->__sector = bio->bi_iter.bi_sector;
697 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
698 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
699
320ae51f 700 blk_account_io_start(req, false);
73c10101
JA
701 return true;
702}
703
1e739730
CH
704bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
705 struct bio *bio)
706{
707 unsigned short segments = blk_rq_nr_discard_segments(req);
708
709 if (segments >= queue_max_discard_segments(q))
710 goto no_merge;
711 if (blk_rq_sectors(req) + bio_sectors(bio) >
712 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
713 goto no_merge;
714
715 req->biotail->bi_next = bio;
716 req->biotail = bio;
717 req->__data_len += bio->bi_iter.bi_size;
718 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
719 req->nr_phys_segments = segments + 1;
720
721 blk_account_io_start(req, false);
722 return true;
723no_merge:
724 req_set_nomerge(q, req);
725 return false;
726}
727
bd87b589 728/**
320ae51f 729 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
730 * @q: request_queue new bio is being queued at
731 * @bio: new bio being queued
732 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
733 * @same_queue_rq: pointer to &struct request that gets filled in when
734 * another request associated with @q is found on the plug list
735 * (optional, may be %NULL)
bd87b589
TH
736 *
737 * Determine whether @bio being queued on @q can be merged with a request
738 * on %current's plugged list. Returns %true if merge was successful,
739 * otherwise %false.
740 *
07c2bd37
TH
741 * Plugging coalesces IOs from the same issuer for the same purpose without
742 * going through @q->queue_lock. As such it's more of an issuing mechanism
743 * than scheduling, and the request, while may have elvpriv data, is not
744 * added on the elevator at this point. In addition, we don't have
745 * reliable access to the elevator outside queue lock. Only check basic
746 * merging parameters without querying the elevator.
da41a589
RE
747 *
748 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 749 */
320ae51f 750bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
751 unsigned int *request_count,
752 struct request **same_queue_rq)
73c10101
JA
753{
754 struct blk_plug *plug;
755 struct request *rq;
92f399c7 756 struct list_head *plug_list;
73c10101 757
bd87b589 758 plug = current->plug;
73c10101 759 if (!plug)
34fe7c05 760 return false;
56ebdaf2 761 *request_count = 0;
73c10101 762
a1ce35fa 763 plug_list = &plug->mq_list;
92f399c7
SL
764
765 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 766 bool merged = false;
73c10101 767
5b3f341f 768 if (rq->q == q) {
1b2e19f1 769 (*request_count)++;
5b3f341f
SL
770 /*
771 * Only blk-mq multiple hardware queues case checks the
772 * rq in the same queue, there should be only one such
773 * rq in a queue
774 **/
775 if (same_queue_rq)
776 *same_queue_rq = rq;
777 }
56ebdaf2 778
07c2bd37 779 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
780 continue;
781
34fe7c05
CH
782 switch (blk_try_merge(rq, bio)) {
783 case ELEVATOR_BACK_MERGE:
784 merged = bio_attempt_back_merge(q, rq, bio);
785 break;
786 case ELEVATOR_FRONT_MERGE:
787 merged = bio_attempt_front_merge(q, rq, bio);
788 break;
1e739730
CH
789 case ELEVATOR_DISCARD_MERGE:
790 merged = bio_attempt_discard_merge(q, rq, bio);
791 break;
34fe7c05
CH
792 default:
793 break;
73c10101 794 }
34fe7c05
CH
795
796 if (merged)
797 return true;
73c10101 798 }
34fe7c05
CH
799
800 return false;
73c10101
JA
801}
802
0809e3ac
JM
803unsigned int blk_plug_queued_count(struct request_queue *q)
804{
805 struct blk_plug *plug;
806 struct request *rq;
807 struct list_head *plug_list;
808 unsigned int ret = 0;
809
810 plug = current->plug;
811 if (!plug)
812 goto out;
813
a1ce35fa 814 plug_list = &plug->mq_list;
0809e3ac
JM
815 list_for_each_entry(rq, plug_list, queuelist) {
816 if (rq->q == q)
817 ret++;
818 }
819out:
820 return ret;
821}
822
da8d7f07 823void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 824{
0be0dee6
BVA
825 struct io_context *ioc = rq_ioc(bio);
826
1eff9d32 827 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 828 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 829
4f024f37 830 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
831 if (ioprio_valid(bio_prio(bio)))
832 req->ioprio = bio_prio(bio);
0be0dee6
BVA
833 else if (ioc)
834 req->ioprio = ioc->ioprio;
835 else
836 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
cb6934f8 837 req->write_hint = bio->bi_write_hint;
bc1c56fd 838 blk_rq_bio_prep(req->q, req, bio);
52d9e675 839}
da8d7f07 840EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 841
52c5e62d 842static void handle_bad_sector(struct bio *bio, sector_t maxsector)
1da177e4
LT
843{
844 char b[BDEVNAME_SIZE];
845
846 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 847 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 848 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 849 (unsigned long long)bio_end_sector(bio),
52c5e62d 850 (long long)maxsector);
1da177e4
LT
851}
852
c17bb495
AM
853#ifdef CONFIG_FAIL_MAKE_REQUEST
854
855static DECLARE_FAULT_ATTR(fail_make_request);
856
857static int __init setup_fail_make_request(char *str)
858{
859 return setup_fault_attr(&fail_make_request, str);
860}
861__setup("fail_make_request=", setup_fail_make_request);
862
b2c9cd37 863static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 864{
b2c9cd37 865 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
866}
867
868static int __init fail_make_request_debugfs(void)
869{
dd48c085
AM
870 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
871 NULL, &fail_make_request);
872
21f9fcd8 873 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
874}
875
876late_initcall(fail_make_request_debugfs);
877
878#else /* CONFIG_FAIL_MAKE_REQUEST */
879
b2c9cd37
AM
880static inline bool should_fail_request(struct hd_struct *part,
881 unsigned int bytes)
c17bb495 882{
b2c9cd37 883 return false;
c17bb495
AM
884}
885
886#endif /* CONFIG_FAIL_MAKE_REQUEST */
887
721c7fc7
ID
888static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
889{
b089cfd9
JA
890 const int op = bio_op(bio);
891
8b2ded1c 892 if (part->policy && op_is_write(op)) {
721c7fc7
ID
893 char b[BDEVNAME_SIZE];
894
8b2ded1c
MP
895 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
896 return false;
897
a32e236e 898 WARN_ONCE(1,
721c7fc7
ID
899 "generic_make_request: Trying to write "
900 "to read-only block-device %s (partno %d)\n",
901 bio_devname(bio, b), part->partno);
a32e236e
LT
902 /* Older lvm-tools actually trigger this */
903 return false;
721c7fc7
ID
904 }
905
906 return false;
907}
908
30abb3a6
HM
909static noinline int should_fail_bio(struct bio *bio)
910{
911 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
912 return -EIO;
913 return 0;
914}
915ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
916
52c5e62d
CH
917/*
918 * Check whether this bio extends beyond the end of the device or partition.
919 * This may well happen - the kernel calls bread() without checking the size of
920 * the device, e.g., when mounting a file system.
921 */
922static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
923{
924 unsigned int nr_sectors = bio_sectors(bio);
925
926 if (nr_sectors && maxsector &&
927 (nr_sectors > maxsector ||
928 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
929 handle_bad_sector(bio, maxsector);
930 return -EIO;
931 }
932 return 0;
933}
934
74d46992
CH
935/*
936 * Remap block n of partition p to block n+start(p) of the disk.
937 */
938static inline int blk_partition_remap(struct bio *bio)
939{
940 struct hd_struct *p;
52c5e62d 941 int ret = -EIO;
74d46992 942
721c7fc7
ID
943 rcu_read_lock();
944 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
52c5e62d
CH
945 if (unlikely(!p))
946 goto out;
947 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
948 goto out;
949 if (unlikely(bio_check_ro(bio, p)))
721c7fc7 950 goto out;
721c7fc7 951
74d46992
CH
952 /*
953 * Zone reset does not include bi_size so bio_sectors() is always 0.
954 * Include a test for the reset op code and perform the remap if needed.
955 */
52c5e62d
CH
956 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
957 if (bio_check_eod(bio, part_nr_sects_read(p)))
958 goto out;
959 bio->bi_iter.bi_sector += p->start_sect;
52c5e62d
CH
960 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
961 bio->bi_iter.bi_sector - p->start_sect);
962 }
c04fa44b 963 bio->bi_partno = 0;
52c5e62d 964 ret = 0;
721c7fc7
ID
965out:
966 rcu_read_unlock();
74d46992
CH
967 return ret;
968}
969
27a84d54
CH
970static noinline_for_stack bool
971generic_make_request_checks(struct bio *bio)
1da177e4 972{
165125e1 973 struct request_queue *q;
5a7bbad2 974 int nr_sectors = bio_sectors(bio);
4e4cbee9 975 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 976 char b[BDEVNAME_SIZE];
1da177e4
LT
977
978 might_sleep();
1da177e4 979
74d46992 980 q = bio->bi_disk->queue;
5a7bbad2
CH
981 if (unlikely(!q)) {
982 printk(KERN_ERR
983 "generic_make_request: Trying to access "
984 "nonexistent block-device %s (%Lu)\n",
74d46992 985 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
986 goto end_io;
987 }
c17bb495 988
03a07c92
GR
989 /*
990 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
991 * if queue is not a request based queue.
992 */
03a07c92
GR
993 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
994 goto not_supported;
995
30abb3a6 996 if (should_fail_bio(bio))
5a7bbad2 997 goto end_io;
2056a782 998
52c5e62d
CH
999 if (bio->bi_partno) {
1000 if (unlikely(blk_partition_remap(bio)))
721c7fc7
ID
1001 goto end_io;
1002 } else {
52c5e62d
CH
1003 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
1004 goto end_io;
1005 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
721c7fc7
ID
1006 goto end_io;
1007 }
2056a782 1008
5a7bbad2
CH
1009 /*
1010 * Filter flush bio's early so that make_request based
1011 * drivers without flush support don't have to worry
1012 * about them.
1013 */
f3a8ab7d 1014 if (op_is_flush(bio->bi_opf) &&
c888a8f9 1015 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 1016 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 1017 if (!nr_sectors) {
4e4cbee9 1018 status = BLK_STS_OK;
51fd77bd
JA
1019 goto end_io;
1020 }
5a7bbad2 1021 }
5ddfe969 1022
288dab8a
CH
1023 switch (bio_op(bio)) {
1024 case REQ_OP_DISCARD:
1025 if (!blk_queue_discard(q))
1026 goto not_supported;
1027 break;
1028 case REQ_OP_SECURE_ERASE:
1029 if (!blk_queue_secure_erase(q))
1030 goto not_supported;
1031 break;
1032 case REQ_OP_WRITE_SAME:
74d46992 1033 if (!q->limits.max_write_same_sectors)
288dab8a 1034 goto not_supported;
58886785 1035 break;
2d253440 1036 case REQ_OP_ZONE_RESET:
74d46992 1037 if (!blk_queue_is_zoned(q))
2d253440 1038 goto not_supported;
288dab8a 1039 break;
a6f0788e 1040 case REQ_OP_WRITE_ZEROES:
74d46992 1041 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
1042 goto not_supported;
1043 break;
288dab8a
CH
1044 default:
1045 break;
5a7bbad2 1046 }
01edede4 1047
7f4b35d1
TH
1048 /*
1049 * Various block parts want %current->io_context and lazy ioc
1050 * allocation ends up trading a lot of pain for a small amount of
1051 * memory. Just allocate it upfront. This may fail and block
1052 * layer knows how to live with it.
1053 */
1054 create_io_context(GFP_ATOMIC, q->node);
1055
ae118896
TH
1056 if (!blkcg_bio_issue_check(q, bio))
1057 return false;
27a84d54 1058
fbbaf700
N
1059 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1060 trace_block_bio_queue(q, bio);
1061 /* Now that enqueuing has been traced, we need to trace
1062 * completion as well.
1063 */
1064 bio_set_flag(bio, BIO_TRACE_COMPLETION);
1065 }
27a84d54 1066 return true;
a7384677 1067
288dab8a 1068not_supported:
4e4cbee9 1069 status = BLK_STS_NOTSUPP;
a7384677 1070end_io:
4e4cbee9 1071 bio->bi_status = status;
4246a0b6 1072 bio_endio(bio);
27a84d54 1073 return false;
1da177e4
LT
1074}
1075
27a84d54
CH
1076/**
1077 * generic_make_request - hand a buffer to its device driver for I/O
1078 * @bio: The bio describing the location in memory and on the device.
1079 *
1080 * generic_make_request() is used to make I/O requests of block
1081 * devices. It is passed a &struct bio, which describes the I/O that needs
1082 * to be done.
1083 *
1084 * generic_make_request() does not return any status. The
1085 * success/failure status of the request, along with notification of
1086 * completion, is delivered asynchronously through the bio->bi_end_io
1087 * function described (one day) else where.
1088 *
1089 * The caller of generic_make_request must make sure that bi_io_vec
1090 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1091 * set to describe the device address, and the
1092 * bi_end_io and optionally bi_private are set to describe how
1093 * completion notification should be signaled.
1094 *
1095 * generic_make_request and the drivers it calls may use bi_next if this
1096 * bio happens to be merged with someone else, and may resubmit the bio to
1097 * a lower device by calling into generic_make_request recursively, which
1098 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 1099 */
dece1635 1100blk_qc_t generic_make_request(struct bio *bio)
d89d8796 1101{
f5fe1b51
N
1102 /*
1103 * bio_list_on_stack[0] contains bios submitted by the current
1104 * make_request_fn.
1105 * bio_list_on_stack[1] contains bios that were submitted before
1106 * the current make_request_fn, but that haven't been processed
1107 * yet.
1108 */
1109 struct bio_list bio_list_on_stack[2];
37f9579f
BVA
1110 blk_mq_req_flags_t flags = 0;
1111 struct request_queue *q = bio->bi_disk->queue;
dece1635 1112 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 1113
37f9579f
BVA
1114 if (bio->bi_opf & REQ_NOWAIT)
1115 flags = BLK_MQ_REQ_NOWAIT;
cd4a4ae4
JA
1116 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
1117 blk_queue_enter_live(q);
1118 else if (blk_queue_enter(q, flags) < 0) {
37f9579f
BVA
1119 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
1120 bio_wouldblock_error(bio);
1121 else
1122 bio_io_error(bio);
1123 return ret;
1124 }
1125
27a84d54 1126 if (!generic_make_request_checks(bio))
dece1635 1127 goto out;
27a84d54
CH
1128
1129 /*
1130 * We only want one ->make_request_fn to be active at a time, else
1131 * stack usage with stacked devices could be a problem. So use
1132 * current->bio_list to keep a list of requests submited by a
1133 * make_request_fn function. current->bio_list is also used as a
1134 * flag to say if generic_make_request is currently active in this
1135 * task or not. If it is NULL, then no make_request is active. If
1136 * it is non-NULL, then a make_request is active, and new requests
1137 * should be added at the tail
1138 */
bddd87c7 1139 if (current->bio_list) {
f5fe1b51 1140 bio_list_add(&current->bio_list[0], bio);
dece1635 1141 goto out;
d89d8796 1142 }
27a84d54 1143
d89d8796
NB
1144 /* following loop may be a bit non-obvious, and so deserves some
1145 * explanation.
1146 * Before entering the loop, bio->bi_next is NULL (as all callers
1147 * ensure that) so we have a list with a single bio.
1148 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1149 * we assign bio_list to a pointer to the bio_list_on_stack,
1150 * thus initialising the bio_list of new bios to be
27a84d54 1151 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1152 * through a recursive call to generic_make_request. If it
1153 * did, we find a non-NULL value in bio_list and re-enter the loop
1154 * from the top. In this case we really did just take the bio
bddd87c7 1155 * of the top of the list (no pretending) and so remove it from
27a84d54 1156 * bio_list, and call into ->make_request() again.
d89d8796
NB
1157 */
1158 BUG_ON(bio->bi_next);
f5fe1b51
N
1159 bio_list_init(&bio_list_on_stack[0]);
1160 current->bio_list = bio_list_on_stack;
d89d8796 1161 do {
37f9579f
BVA
1162 bool enter_succeeded = true;
1163
1164 if (unlikely(q != bio->bi_disk->queue)) {
1165 if (q)
1166 blk_queue_exit(q);
1167 q = bio->bi_disk->queue;
1168 flags = 0;
1169 if (bio->bi_opf & REQ_NOWAIT)
1170 flags = BLK_MQ_REQ_NOWAIT;
1171 if (blk_queue_enter(q, flags) < 0) {
1172 enter_succeeded = false;
1173 q = NULL;
1174 }
1175 }
27a84d54 1176
37f9579f 1177 if (enter_succeeded) {
79bd9959
N
1178 struct bio_list lower, same;
1179
1180 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
1181 bio_list_on_stack[1] = bio_list_on_stack[0];
1182 bio_list_init(&bio_list_on_stack[0]);
dece1635 1183 ret = q->make_request_fn(q, bio);
3ef28e83 1184
79bd9959
N
1185 /* sort new bios into those for a lower level
1186 * and those for the same level
1187 */
1188 bio_list_init(&lower);
1189 bio_list_init(&same);
f5fe1b51 1190 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 1191 if (q == bio->bi_disk->queue)
79bd9959
N
1192 bio_list_add(&same, bio);
1193 else
1194 bio_list_add(&lower, bio);
1195 /* now assemble so we handle the lowest level first */
f5fe1b51
N
1196 bio_list_merge(&bio_list_on_stack[0], &lower);
1197 bio_list_merge(&bio_list_on_stack[0], &same);
1198 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 1199 } else {
03a07c92
GR
1200 if (unlikely(!blk_queue_dying(q) &&
1201 (bio->bi_opf & REQ_NOWAIT)))
1202 bio_wouldblock_error(bio);
1203 else
1204 bio_io_error(bio);
3ef28e83 1205 }
f5fe1b51 1206 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 1207 } while (bio);
bddd87c7 1208 current->bio_list = NULL; /* deactivate */
dece1635
JA
1209
1210out:
37f9579f
BVA
1211 if (q)
1212 blk_queue_exit(q);
dece1635 1213 return ret;
d89d8796 1214}
1da177e4
LT
1215EXPORT_SYMBOL(generic_make_request);
1216
f421e1d9
CH
1217/**
1218 * direct_make_request - hand a buffer directly to its device driver for I/O
1219 * @bio: The bio describing the location in memory and on the device.
1220 *
1221 * This function behaves like generic_make_request(), but does not protect
1222 * against recursion. Must only be used if the called driver is known
1223 * to not call generic_make_request (or direct_make_request) again from
1224 * its make_request function. (Calling direct_make_request again from
1225 * a workqueue is perfectly fine as that doesn't recurse).
1226 */
1227blk_qc_t direct_make_request(struct bio *bio)
1228{
1229 struct request_queue *q = bio->bi_disk->queue;
1230 bool nowait = bio->bi_opf & REQ_NOWAIT;
1231 blk_qc_t ret;
1232
1233 if (!generic_make_request_checks(bio))
1234 return BLK_QC_T_NONE;
1235
3a0a5299 1236 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
f421e1d9
CH
1237 if (nowait && !blk_queue_dying(q))
1238 bio->bi_status = BLK_STS_AGAIN;
1239 else
1240 bio->bi_status = BLK_STS_IOERR;
1241 bio_endio(bio);
1242 return BLK_QC_T_NONE;
1243 }
1244
1245 ret = q->make_request_fn(q, bio);
1246 blk_queue_exit(q);
1247 return ret;
1248}
1249EXPORT_SYMBOL_GPL(direct_make_request);
1250
1da177e4 1251/**
710027a4 1252 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1253 * @bio: The &struct bio which describes the I/O
1254 *
1255 * submit_bio() is very similar in purpose to generic_make_request(), and
1256 * uses that function to do most of the work. Both are fairly rough
710027a4 1257 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1258 *
1259 */
4e49ea4a 1260blk_qc_t submit_bio(struct bio *bio)
1da177e4 1261{
bf2de6f5
JA
1262 /*
1263 * If it's a regular read/write or a barrier with data attached,
1264 * go through the normal accounting stuff before submission.
1265 */
e2a60da7 1266 if (bio_has_data(bio)) {
4363ac7c
MP
1267 unsigned int count;
1268
95fe6c1a 1269 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
7c5a0dcf 1270 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
4363ac7c
MP
1271 else
1272 count = bio_sectors(bio);
1273
a8ebb056 1274 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
1275 count_vm_events(PGPGOUT, count);
1276 } else {
4f024f37 1277 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1278 count_vm_events(PGPGIN, count);
1279 }
1280
1281 if (unlikely(block_dump)) {
1282 char b[BDEVNAME_SIZE];
8dcbdc74 1283 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1284 current->comm, task_pid_nr(current),
a8ebb056 1285 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 1286 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 1287 bio_devname(bio, b), count);
bf2de6f5 1288 }
1da177e4
LT
1289 }
1290
dece1635 1291 return generic_make_request(bio);
1da177e4 1292}
1da177e4
LT
1293EXPORT_SYMBOL(submit_bio);
1294
ea435e1b
CH
1295bool blk_poll(struct request_queue *q, blk_qc_t cookie)
1296{
1297 if (!q->poll_fn || !blk_qc_t_valid(cookie))
1298 return false;
1299
1300 if (current->plug)
1301 blk_flush_plug_list(current->plug, false);
1302 return q->poll_fn(q, cookie);
1303}
1304EXPORT_SYMBOL_GPL(blk_poll);
1305
82124d60 1306/**
bf4e6b4e
HR
1307 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1308 * for new the queue limits
82124d60
KU
1309 * @q: the queue
1310 * @rq: the request being checked
1311 *
1312 * Description:
1313 * @rq may have been made based on weaker limitations of upper-level queues
1314 * in request stacking drivers, and it may violate the limitation of @q.
1315 * Since the block layer and the underlying device driver trust @rq
1316 * after it is inserted to @q, it should be checked against @q before
1317 * the insertion using this generic function.
1318 *
82124d60 1319 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
1320 * limits when retrying requests on other queues. Those requests need
1321 * to be checked against the new queue limits again during dispatch.
82124d60 1322 */
bf4e6b4e
HR
1323static int blk_cloned_rq_check_limits(struct request_queue *q,
1324 struct request *rq)
82124d60 1325{
8fe0d473 1326 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
1327 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1328 return -EIO;
1329 }
1330
1331 /*
1332 * queue's settings related to segment counting like q->bounce_pfn
1333 * may differ from that of other stacking queues.
1334 * Recalculate it to check the request correctly on this queue's
1335 * limitation.
1336 */
1337 blk_recalc_rq_segments(rq);
8a78362c 1338 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1339 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1340 return -EIO;
1341 }
1342
1343 return 0;
1344}
82124d60
KU
1345
1346/**
1347 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1348 * @q: the queue to submit the request
1349 * @rq: the request being queued
1350 */
2a842aca 1351blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60 1352{
bf4e6b4e 1353 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 1354 return BLK_STS_IOERR;
82124d60 1355
b2c9cd37
AM
1356 if (rq->rq_disk &&
1357 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 1358 return BLK_STS_IOERR;
82124d60 1359
a1ce35fa
JA
1360 if (blk_queue_io_stat(q))
1361 blk_account_io_start(rq, true);
82124d60
KU
1362
1363 /*
a1ce35fa
JA
1364 * Since we have a scheduler attached on the top device,
1365 * bypass a potential scheduler on the bottom device for
1366 * insert.
82124d60 1367 */
a1ce35fa 1368 return blk_mq_request_issue_directly(rq);
82124d60
KU
1369}
1370EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1371
80a761fd
TH
1372/**
1373 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1374 * @rq: request to examine
1375 *
1376 * Description:
1377 * A request could be merge of IOs which require different failure
1378 * handling. This function determines the number of bytes which
1379 * can be failed from the beginning of the request without
1380 * crossing into area which need to be retried further.
1381 *
1382 * Return:
1383 * The number of bytes to fail.
80a761fd
TH
1384 */
1385unsigned int blk_rq_err_bytes(const struct request *rq)
1386{
1387 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1388 unsigned int bytes = 0;
1389 struct bio *bio;
1390
e8064021 1391 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
1392 return blk_rq_bytes(rq);
1393
1394 /*
1395 * Currently the only 'mixing' which can happen is between
1396 * different fastfail types. We can safely fail portions
1397 * which have all the failfast bits that the first one has -
1398 * the ones which are at least as eager to fail as the first
1399 * one.
1400 */
1401 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 1402 if ((bio->bi_opf & ff) != ff)
80a761fd 1403 break;
4f024f37 1404 bytes += bio->bi_iter.bi_size;
80a761fd
TH
1405 }
1406
1407 /* this could lead to infinite loop */
1408 BUG_ON(blk_rq_bytes(rq) && !bytes);
1409 return bytes;
1410}
1411EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1412
320ae51f 1413void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 1414{
c2553b58 1415 if (blk_do_io_stat(req)) {
ddcf35d3 1416 const int sgrp = op_stat_group(req_op(req));
bc58ba94
JA
1417 struct hd_struct *part;
1418 int cpu;
1419
1420 cpu = part_stat_lock();
09e099d4 1421 part = req->part;
ddcf35d3 1422 part_stat_add(cpu, part, sectors[sgrp], bytes >> 9);
bc58ba94
JA
1423 part_stat_unlock();
1424 }
1425}
1426
522a7775 1427void blk_account_io_done(struct request *req, u64 now)
bc58ba94 1428{
bc58ba94 1429 /*
dd4c133f
TH
1430 * Account IO completion. flush_rq isn't accounted as a
1431 * normal IO on queueing nor completion. Accounting the
1432 * containing request is enough.
bc58ba94 1433 */
e8064021 1434 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
ddcf35d3 1435 const int sgrp = op_stat_group(req_op(req));
bc58ba94
JA
1436 struct hd_struct *part;
1437 int cpu;
1438
1439 cpu = part_stat_lock();
09e099d4 1440 part = req->part;
bc58ba94 1441
ddcf35d3 1442 part_stat_inc(cpu, part, ios[sgrp]);
b57e99b4 1443 part_stat_add(cpu, part, nsecs[sgrp], now - req->start_time_ns);
d62e26b3 1444 part_round_stats(req->q, cpu, part);
ddcf35d3 1445 part_dec_in_flight(req->q, part, rq_data_dir(req));
bc58ba94 1446
6c23a968 1447 hd_struct_put(part);
bc58ba94
JA
1448 part_stat_unlock();
1449 }
1450}
1451
320ae51f
JA
1452void blk_account_io_start(struct request *rq, bool new_io)
1453{
1454 struct hd_struct *part;
1455 int rw = rq_data_dir(rq);
1456 int cpu;
1457
1458 if (!blk_do_io_stat(rq))
1459 return;
1460
1461 cpu = part_stat_lock();
1462
1463 if (!new_io) {
1464 part = rq->part;
1465 part_stat_inc(cpu, part, merges[rw]);
1466 } else {
1467 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1468 if (!hd_struct_try_get(part)) {
1469 /*
1470 * The partition is already being removed,
1471 * the request will be accounted on the disk only
1472 *
1473 * We take a reference on disk->part0 although that
1474 * partition will never be deleted, so we can treat
1475 * it as any other partition.
1476 */
1477 part = &rq->rq_disk->part0;
1478 hd_struct_get(part);
1479 }
d62e26b3
JA
1480 part_round_stats(rq->q, cpu, part);
1481 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
1482 rq->part = part;
1483 }
1484
1485 part_stat_unlock();
1486}
1487
ef71de8b
CH
1488/*
1489 * Steal bios from a request and add them to a bio list.
1490 * The request must not have been partially completed before.
1491 */
1492void blk_steal_bios(struct bio_list *list, struct request *rq)
1493{
1494 if (rq->bio) {
1495 if (list->tail)
1496 list->tail->bi_next = rq->bio;
1497 else
1498 list->head = rq->bio;
1499 list->tail = rq->biotail;
1500
1501 rq->bio = NULL;
1502 rq->biotail = NULL;
1503 }
1504
1505 rq->__data_len = 0;
1506}
1507EXPORT_SYMBOL_GPL(blk_steal_bios);
1508
3bcddeac 1509/**
2e60e022 1510 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1511 * @req: the request being processed
2a842aca 1512 * @error: block status code
8ebf9756 1513 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1514 *
1515 * Description:
8ebf9756
RD
1516 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1517 * the request structure even if @req doesn't have leftover.
1518 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1519 *
1520 * This special helper function is only for request stacking drivers
1521 * (e.g. request-based dm) so that they can handle partial completion.
1522 * Actual device drivers should use blk_end_request instead.
1523 *
1524 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1525 * %false return from this function.
3bcddeac 1526 *
1954e9a9
BVA
1527 * Note:
1528 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1529 * blk_rq_bytes() and in blk_update_request().
1530 *
3bcddeac 1531 * Return:
2e60e022
TH
1532 * %false - this request doesn't have any more data
1533 * %true - this request has more data
3bcddeac 1534 **/
2a842aca
CH
1535bool blk_update_request(struct request *req, blk_status_t error,
1536 unsigned int nr_bytes)
1da177e4 1537{
f79ea416 1538 int total_bytes;
1da177e4 1539
2a842aca 1540 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 1541
2e60e022
TH
1542 if (!req->bio)
1543 return false;
1544
2a842aca
CH
1545 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1546 !(req->rq_flags & RQF_QUIET)))
1547 print_req_error(req, error);
1da177e4 1548
bc58ba94 1549 blk_account_io_completion(req, nr_bytes);
d72d904a 1550
f79ea416
KO
1551 total_bytes = 0;
1552 while (req->bio) {
1553 struct bio *bio = req->bio;
4f024f37 1554 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 1555
9c24c10a 1556 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 1557 req->bio = bio->bi_next;
1da177e4 1558
fbbaf700
N
1559 /* Completion has already been traced */
1560 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 1561 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 1562
f79ea416
KO
1563 total_bytes += bio_bytes;
1564 nr_bytes -= bio_bytes;
1da177e4 1565
f79ea416
KO
1566 if (!nr_bytes)
1567 break;
1da177e4
LT
1568 }
1569
1570 /*
1571 * completely done
1572 */
2e60e022
TH
1573 if (!req->bio) {
1574 /*
1575 * Reset counters so that the request stacking driver
1576 * can find how many bytes remain in the request
1577 * later.
1578 */
a2dec7b3 1579 req->__data_len = 0;
2e60e022
TH
1580 return false;
1581 }
1da177e4 1582
a2dec7b3 1583 req->__data_len -= total_bytes;
2e46e8b2
TH
1584
1585 /* update sector only for requests with clear definition of sector */
57292b58 1586 if (!blk_rq_is_passthrough(req))
a2dec7b3 1587 req->__sector += total_bytes >> 9;
2e46e8b2 1588
80a761fd 1589 /* mixed attributes always follow the first bio */
e8064021 1590 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 1591 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 1592 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
1593 }
1594
ed6565e7
CH
1595 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1596 /*
1597 * If total number of sectors is less than the first segment
1598 * size, something has gone terribly wrong.
1599 */
1600 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1601 blk_dump_rq_flags(req, "request botched");
1602 req->__data_len = blk_rq_cur_bytes(req);
1603 }
2e46e8b2 1604
ed6565e7
CH
1605 /* recalculate the number of segments */
1606 blk_recalc_rq_segments(req);
1607 }
2e46e8b2 1608
2e60e022 1609 return true;
1da177e4 1610}
2e60e022 1611EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 1612
86db1e29
JA
1613void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1614 struct bio *bio)
1da177e4 1615{
b4f42e28 1616 if (bio_has_data(bio))
fb2dce86 1617 rq->nr_phys_segments = bio_phys_segments(q, bio);
445251d0
JA
1618 else if (bio_op(bio) == REQ_OP_DISCARD)
1619 rq->nr_phys_segments = 1;
b4f42e28 1620
4f024f37 1621 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 1622 rq->bio = rq->biotail = bio;
1da177e4 1623
74d46992
CH
1624 if (bio->bi_disk)
1625 rq->rq_disk = bio->bi_disk;
66846572 1626}
1da177e4 1627
2d4dc890
IL
1628#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1629/**
1630 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1631 * @rq: the request to be flushed
1632 *
1633 * Description:
1634 * Flush all pages in @rq.
1635 */
1636void rq_flush_dcache_pages(struct request *rq)
1637{
1638 struct req_iterator iter;
7988613b 1639 struct bio_vec bvec;
2d4dc890
IL
1640
1641 rq_for_each_segment(bvec, rq, iter)
7988613b 1642 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1643}
1644EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1645#endif
1646
ef9e3fac
KU
1647/**
1648 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1649 * @q : the queue of the device being checked
1650 *
1651 * Description:
1652 * Check if underlying low-level drivers of a device are busy.
1653 * If the drivers want to export their busy state, they must set own
1654 * exporting function using blk_queue_lld_busy() first.
1655 *
1656 * Basically, this function is used only by request stacking drivers
1657 * to stop dispatching requests to underlying devices when underlying
1658 * devices are busy. This behavior helps more I/O merging on the queue
1659 * of the request stacking driver and prevents I/O throughput regression
1660 * on burst I/O load.
1661 *
1662 * Return:
1663 * 0 - Not busy (The request stacking driver should dispatch request)
1664 * 1 - Busy (The request stacking driver should stop dispatching request)
1665 */
1666int blk_lld_busy(struct request_queue *q)
1667{
9ba20527
JA
1668 if (q->mq_ops && q->mq_ops->busy)
1669 return q->mq_ops->busy(q);
ef9e3fac
KU
1670
1671 return 0;
1672}
1673EXPORT_SYMBOL_GPL(blk_lld_busy);
1674
78d8e58a
MS
1675/**
1676 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1677 * @rq: the clone request to be cleaned up
1678 *
1679 * Description:
1680 * Free all bios in @rq for a cloned request.
1681 */
1682void blk_rq_unprep_clone(struct request *rq)
1683{
1684 struct bio *bio;
1685
1686 while ((bio = rq->bio) != NULL) {
1687 rq->bio = bio->bi_next;
1688
1689 bio_put(bio);
1690 }
1691}
1692EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1693
1694/*
1695 * Copy attributes of the original request to the clone request.
1696 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1697 */
1698static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d 1699{
b0fd271d
KU
1700 dst->__sector = blk_rq_pos(src);
1701 dst->__data_len = blk_rq_bytes(src);
297ba57d
BVA
1702 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1703 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1704 dst->special_vec = src->special_vec;
1705 }
b0fd271d
KU
1706 dst->nr_phys_segments = src->nr_phys_segments;
1707 dst->ioprio = src->ioprio;
1708 dst->extra_len = src->extra_len;
78d8e58a
MS
1709}
1710
1711/**
1712 * blk_rq_prep_clone - Helper function to setup clone request
1713 * @rq: the request to be setup
1714 * @rq_src: original request to be cloned
1715 * @bs: bio_set that bios for clone are allocated from
1716 * @gfp_mask: memory allocation mask for bio
1717 * @bio_ctr: setup function to be called for each clone bio.
1718 * Returns %0 for success, non %0 for failure.
1719 * @data: private data to be passed to @bio_ctr
1720 *
1721 * Description:
1722 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1723 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1724 * are not copied, and copying such parts is the caller's responsibility.
1725 * Also, pages which the original bios are pointing to are not copied
1726 * and the cloned bios just point same pages.
1727 * So cloned bios must be completed before original bios, which means
1728 * the caller must complete @rq before @rq_src.
1729 */
1730int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1731 struct bio_set *bs, gfp_t gfp_mask,
1732 int (*bio_ctr)(struct bio *, struct bio *, void *),
1733 void *data)
1734{
1735 struct bio *bio, *bio_src;
1736
1737 if (!bs)
f4f8154a 1738 bs = &fs_bio_set;
78d8e58a
MS
1739
1740 __rq_for_each_bio(bio_src, rq_src) {
1741 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1742 if (!bio)
1743 goto free_and_out;
1744
1745 if (bio_ctr && bio_ctr(bio, bio_src, data))
1746 goto free_and_out;
1747
1748 if (rq->bio) {
1749 rq->biotail->bi_next = bio;
1750 rq->biotail = bio;
1751 } else
1752 rq->bio = rq->biotail = bio;
1753 }
1754
1755 __blk_rq_prep_clone(rq, rq_src);
1756
1757 return 0;
1758
1759free_and_out:
1760 if (bio)
1761 bio_put(bio);
1762 blk_rq_unprep_clone(rq);
1763
1764 return -ENOMEM;
b0fd271d
KU
1765}
1766EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1767
59c3d45e 1768int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1769{
1770 return queue_work(kblockd_workqueue, work);
1771}
1da177e4
LT
1772EXPORT_SYMBOL(kblockd_schedule_work);
1773
ee63cfa7
JA
1774int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1775{
1776 return queue_work_on(cpu, kblockd_workqueue, work);
1777}
1778EXPORT_SYMBOL(kblockd_schedule_work_on);
1779
818cd1cb
JA
1780int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1781 unsigned long delay)
1782{
1783 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1784}
1785EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1786
75df7136
SJ
1787/**
1788 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1789 * @plug: The &struct blk_plug that needs to be initialized
1790 *
1791 * Description:
1792 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1793 * pending I/O should the task end up blocking between blk_start_plug() and
1794 * blk_finish_plug(). This is important from a performance perspective, but
1795 * also ensures that we don't deadlock. For instance, if the task is blocking
1796 * for a memory allocation, memory reclaim could end up wanting to free a
1797 * page belonging to that request that is currently residing in our private
1798 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1799 * this kind of deadlock.
1800 */
73c10101
JA
1801void blk_start_plug(struct blk_plug *plug)
1802{
1803 struct task_struct *tsk = current;
1804
dd6cf3e1
SL
1805 /*
1806 * If this is a nested plug, don't actually assign it.
1807 */
1808 if (tsk->plug)
1809 return;
1810
320ae51f 1811 INIT_LIST_HEAD(&plug->mq_list);
048c9374 1812 INIT_LIST_HEAD(&plug->cb_list);
73c10101 1813 /*
dd6cf3e1
SL
1814 * Store ordering should not be needed here, since a potential
1815 * preempt will imply a full memory barrier
73c10101 1816 */
dd6cf3e1 1817 tsk->plug = plug;
73c10101
JA
1818}
1819EXPORT_SYMBOL(blk_start_plug);
1820
74018dc3 1821static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1822{
1823 LIST_HEAD(callbacks);
1824
2a7d5559
SL
1825 while (!list_empty(&plug->cb_list)) {
1826 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1827
2a7d5559
SL
1828 while (!list_empty(&callbacks)) {
1829 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1830 struct blk_plug_cb,
1831 list);
2a7d5559 1832 list_del(&cb->list);
74018dc3 1833 cb->callback(cb, from_schedule);
2a7d5559 1834 }
048c9374
N
1835 }
1836}
1837
9cbb1750
N
1838struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1839 int size)
1840{
1841 struct blk_plug *plug = current->plug;
1842 struct blk_plug_cb *cb;
1843
1844 if (!plug)
1845 return NULL;
1846
1847 list_for_each_entry(cb, &plug->cb_list, list)
1848 if (cb->callback == unplug && cb->data == data)
1849 return cb;
1850
1851 /* Not currently on the callback list */
1852 BUG_ON(size < sizeof(*cb));
1853 cb = kzalloc(size, GFP_ATOMIC);
1854 if (cb) {
1855 cb->data = data;
1856 cb->callback = unplug;
1857 list_add(&cb->list, &plug->cb_list);
1858 }
1859 return cb;
1860}
1861EXPORT_SYMBOL(blk_check_plugged);
1862
49cac01e 1863void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101 1864{
74018dc3 1865 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
1866
1867 if (!list_empty(&plug->mq_list))
1868 blk_mq_flush_plug_list(plug, from_schedule);
73c10101 1869}
73c10101
JA
1870
1871void blk_finish_plug(struct blk_plug *plug)
1872{
dd6cf3e1
SL
1873 if (plug != current->plug)
1874 return;
f6603783 1875 blk_flush_plug_list(plug, false);
73c10101 1876
dd6cf3e1 1877 current->plug = NULL;
73c10101 1878}
88b996cd 1879EXPORT_SYMBOL(blk_finish_plug);
73c10101 1880
1da177e4
LT
1881int __init blk_dev_init(void)
1882{
ef295ecf
CH
1883 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1884 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 1885 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
1886 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1887 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 1888
89b90be2
TH
1889 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1890 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1891 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1892 if (!kblockd_workqueue)
1893 panic("Failed to create kblockd\n");
1894
c2789bd4 1895 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1896 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1897
18fbda91
OS
1898#ifdef CONFIG_DEBUG_FS
1899 blk_debugfs_root = debugfs_create_dir("block", NULL);
1900#endif
1901
d38ecf93 1902 return 0;
1da177e4 1903}