Merge tag 'nvme-5.16-2021-11-25' of git://git.infradead.org/nvme into block-5.16
[linux-block.git] / block / blk-core.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
1da177e4
LT
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
1da177e4
LT
15#include <linux/kernel.h>
16#include <linux/module.h>
1da177e4
LT
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
52abca64 20#include <linux/blk-pm.h>
fe45e630 21#include <linux/blk-integrity.h>
1da177e4
LT
22#include <linux/highmem.h>
23#include <linux/mm.h>
cee9a0c4 24#include <linux/pagemap.h>
1da177e4
LT
25#include <linux/kernel_stat.h>
26#include <linux/string.h>
27#include <linux/init.h>
1da177e4
LT
28#include <linux/completion.h>
29#include <linux/slab.h>
30#include <linux/swap.h>
31#include <linux/writeback.h>
faccbd4b 32#include <linux/task_io_accounting_ops.h>
c17bb495 33#include <linux/fault-inject.h>
73c10101 34#include <linux/list_sort.h>
e3c78ca5 35#include <linux/delay.h>
aaf7c680 36#include <linux/ratelimit.h>
6c954667 37#include <linux/pm_runtime.h>
eea8f41c 38#include <linux/blk-cgroup.h>
54d4e6ab 39#include <linux/t10-pi.h>
18fbda91 40#include <linux/debugfs.h>
30abb3a6 41#include <linux/bpf.h>
b8e24a93 42#include <linux/psi.h>
71ac860a 43#include <linux/sched/sysctl.h>
a892c8d5 44#include <linux/blk-crypto.h>
55782138
LZ
45
46#define CREATE_TRACE_POINTS
47#include <trace/events/block.h>
1da177e4 48
8324aa91 49#include "blk.h"
43a5e4e2 50#include "blk-mq.h"
bd166ef1 51#include "blk-mq-sched.h"
bca6b067 52#include "blk-pm.h"
a7b36ee6 53#include "blk-throttle.h"
8324aa91 54
18fbda91 55struct dentry *blk_debugfs_root;
18fbda91 56
d07335e5 57EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 58EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 59EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 60EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 61EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
b357e4a6 62EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
0bfc2455 63
a73f730d
TH
64DEFINE_IDA(blk_queue_ida);
65
1da177e4
LT
66/*
67 * For queue allocation
68 */
6728cb0e 69struct kmem_cache *blk_requestq_cachep;
1da177e4 70
1da177e4
LT
71/*
72 * Controlling structure to kblockd
73 */
ff856bad 74static struct workqueue_struct *kblockd_workqueue;
1da177e4 75
8814ce8a
BVA
76/**
77 * blk_queue_flag_set - atomically set a queue flag
78 * @flag: flag to be set
79 * @q: request queue
80 */
81void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
82{
57d74df9 83 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
84}
85EXPORT_SYMBOL(blk_queue_flag_set);
86
87/**
88 * blk_queue_flag_clear - atomically clear a queue flag
89 * @flag: flag to be cleared
90 * @q: request queue
91 */
92void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
93{
57d74df9 94 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
95}
96EXPORT_SYMBOL(blk_queue_flag_clear);
97
98/**
99 * blk_queue_flag_test_and_set - atomically test and set a queue flag
100 * @flag: flag to be set
101 * @q: request queue
102 *
103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
104 * the flag was already set.
105 */
106bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
107{
57d74df9 108 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
109}
110EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
111
2a4aa30c 112void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 113{
1afb20f3
FT
114 memset(rq, 0, sizeof(*rq));
115
1da177e4 116 INIT_LIST_HEAD(&rq->queuelist);
63a71386 117 rq->q = q;
a2dec7b3 118 rq->__sector = (sector_t) -1;
2e662b65
JA
119 INIT_HLIST_NODE(&rq->hash);
120 RB_CLEAR_NODE(&rq->rb_node);
e44a6a23
XT
121 rq->tag = BLK_MQ_NO_TAG;
122 rq->internal_tag = BLK_MQ_NO_TAG;
522a7775 123 rq->start_time_ns = ktime_get_ns();
09e099d4 124 rq->part = NULL;
a892c8d5 125 blk_crypto_rq_set_defaults(rq);
1da177e4 126}
2a4aa30c 127EXPORT_SYMBOL(blk_rq_init);
1da177e4 128
e47bc4ed
CK
129#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
130static const char *const blk_op_name[] = {
131 REQ_OP_NAME(READ),
132 REQ_OP_NAME(WRITE),
133 REQ_OP_NAME(FLUSH),
134 REQ_OP_NAME(DISCARD),
135 REQ_OP_NAME(SECURE_ERASE),
136 REQ_OP_NAME(ZONE_RESET),
6e33dbf2 137 REQ_OP_NAME(ZONE_RESET_ALL),
6c1b1da5
AJ
138 REQ_OP_NAME(ZONE_OPEN),
139 REQ_OP_NAME(ZONE_CLOSE),
140 REQ_OP_NAME(ZONE_FINISH),
0512a75b 141 REQ_OP_NAME(ZONE_APPEND),
e47bc4ed
CK
142 REQ_OP_NAME(WRITE_SAME),
143 REQ_OP_NAME(WRITE_ZEROES),
e47bc4ed
CK
144 REQ_OP_NAME(DRV_IN),
145 REQ_OP_NAME(DRV_OUT),
146};
147#undef REQ_OP_NAME
148
149/**
150 * blk_op_str - Return string XXX in the REQ_OP_XXX.
151 * @op: REQ_OP_XXX.
152 *
153 * Description: Centralize block layer function to convert REQ_OP_XXX into
154 * string format. Useful in the debugging and tracing bio or request. For
155 * invalid REQ_OP_XXX it returns string "UNKNOWN".
156 */
157inline const char *blk_op_str(unsigned int op)
158{
159 const char *op_str = "UNKNOWN";
160
161 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
162 op_str = blk_op_name[op];
163
164 return op_str;
165}
166EXPORT_SYMBOL_GPL(blk_op_str);
167
2a842aca
CH
168static const struct {
169 int errno;
170 const char *name;
171} blk_errors[] = {
172 [BLK_STS_OK] = { 0, "" },
173 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
174 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
175 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
176 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
177 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
178 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
179 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
180 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
181 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 182 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 183 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 184
4e4cbee9
CH
185 /* device mapper special case, should not leak out: */
186 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
187
3b481d91
KB
188 /* zone device specific errors */
189 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
190 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
191
2a842aca
CH
192 /* everything else not covered above: */
193 [BLK_STS_IOERR] = { -EIO, "I/O" },
194};
195
196blk_status_t errno_to_blk_status(int errno)
197{
198 int i;
199
200 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
201 if (blk_errors[i].errno == errno)
202 return (__force blk_status_t)i;
203 }
204
205 return BLK_STS_IOERR;
206}
207EXPORT_SYMBOL_GPL(errno_to_blk_status);
208
209int blk_status_to_errno(blk_status_t status)
210{
211 int idx = (__force int)status;
212
34bd9c1c 213 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
214 return -EIO;
215 return blk_errors[idx].errno;
216}
217EXPORT_SYMBOL_GPL(blk_status_to_errno);
218
9be3e06f 219void blk_print_req_error(struct request *req, blk_status_t status)
2a842aca
CH
220{
221 int idx = (__force int)status;
222
34bd9c1c 223 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
224 return;
225
178cc590 226 printk_ratelimited(KERN_ERR
c477b797 227 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
b0e5168a 228 "phys_seg %u prio class %u\n",
c477b797 229 blk_errors[idx].name,
b0e5168a
CK
230 req->rq_disk ? req->rq_disk->disk_name : "?",
231 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
232 req->cmd_flags & ~REQ_OP_MASK,
233 req->nr_phys_segments,
234 IOPRIO_PRIO_CLASS(req->ioprio));
2a842aca
CH
235}
236
1da177e4
LT
237void blk_dump_rq_flags(struct request *rq, char *msg)
238{
aebf526b
CH
239 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
240 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 241 (unsigned long long) rq->cmd_flags);
1da177e4 242
83096ebf
TH
243 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
244 (unsigned long long)blk_rq_pos(rq),
245 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
246 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
247 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 248}
1da177e4
LT
249EXPORT_SYMBOL(blk_dump_rq_flags);
250
1da177e4
LT
251/**
252 * blk_sync_queue - cancel any pending callbacks on a queue
253 * @q: the queue
254 *
255 * Description:
256 * The block layer may perform asynchronous callback activity
257 * on a queue, such as calling the unplug function after a timeout.
258 * A block device may call blk_sync_queue to ensure that any
259 * such activity is cancelled, thus allowing it to release resources
59c51591 260 * that the callbacks might use. The caller must already have made sure
c62b37d9 261 * that its ->submit_bio will not re-add plugging prior to calling
1da177e4
LT
262 * this function.
263 *
da527770 264 * This function does not cancel any asynchronous activity arising
da3dae54 265 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 266 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 267 *
1da177e4
LT
268 */
269void blk_sync_queue(struct request_queue *q)
270{
70ed28b9 271 del_timer_sync(&q->timeout);
4e9b6f20 272 cancel_work_sync(&q->timeout_work);
1da177e4
LT
273}
274EXPORT_SYMBOL(blk_sync_queue);
275
c9254f2d 276/**
cd84a62e 277 * blk_set_pm_only - increment pm_only counter
c9254f2d 278 * @q: request queue pointer
c9254f2d 279 */
cd84a62e 280void blk_set_pm_only(struct request_queue *q)
c9254f2d 281{
cd84a62e 282 atomic_inc(&q->pm_only);
c9254f2d 283}
cd84a62e 284EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 285
cd84a62e 286void blk_clear_pm_only(struct request_queue *q)
c9254f2d 287{
cd84a62e
BVA
288 int pm_only;
289
290 pm_only = atomic_dec_return(&q->pm_only);
291 WARN_ON_ONCE(pm_only < 0);
292 if (pm_only == 0)
293 wake_up_all(&q->mq_freeze_wq);
c9254f2d 294}
cd84a62e 295EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 296
b5bd357c
LC
297/**
298 * blk_put_queue - decrement the request_queue refcount
299 * @q: the request_queue structure to decrement the refcount for
300 *
301 * Decrements the refcount of the request_queue kobject. When this reaches 0
302 * we'll have blk_release_queue() called.
e8c7d14a
LC
303 *
304 * Context: Any context, but the last reference must not be dropped from
305 * atomic context.
b5bd357c 306 */
165125e1 307void blk_put_queue(struct request_queue *q)
483f4afc
AV
308{
309 kobject_put(&q->kobj);
310}
d86e0e83 311EXPORT_SYMBOL(blk_put_queue);
483f4afc 312
8e141f9e 313void blk_queue_start_drain(struct request_queue *q)
aed3ea94 314{
d3cfb2a0
ML
315 /*
316 * When queue DYING flag is set, we need to block new req
317 * entering queue, so we call blk_freeze_queue_start() to
318 * prevent I/O from crossing blk_queue_enter().
319 */
320 blk_freeze_queue_start(q);
344e9ffc 321 if (queue_is_mq(q))
aed3ea94 322 blk_mq_wake_waiters(q);
055f6e18
ML
323 /* Make blk_queue_enter() reexamine the DYING flag. */
324 wake_up_all(&q->mq_freeze_wq);
aed3ea94 325}
8e141f9e
CH
326
327void blk_set_queue_dying(struct request_queue *q)
328{
329 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
330 blk_queue_start_drain(q);
331}
aed3ea94
JA
332EXPORT_SYMBOL_GPL(blk_set_queue_dying);
333
c9a929dd
TH
334/**
335 * blk_cleanup_queue - shutdown a request queue
336 * @q: request queue to shutdown
337 *
c246e80d
BVA
338 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
339 * put it. All future requests will be failed immediately with -ENODEV.
e8c7d14a
LC
340 *
341 * Context: can sleep
c94a96ac 342 */
6728cb0e 343void blk_cleanup_queue(struct request_queue *q)
483f4afc 344{
e8c7d14a
LC
345 /* cannot be called from atomic context */
346 might_sleep();
347
bae85c15
BVA
348 WARN_ON_ONCE(blk_queue_registered(q));
349
3f3299d5 350 /* mark @q DYING, no new request or merges will be allowed afterwards */
aed3ea94 351 blk_set_queue_dying(q);
6ecf23af 352
57d74df9
CH
353 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
354 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
c9a929dd 355
c246e80d
BVA
356 /*
357 * Drain all requests queued before DYING marking. Set DEAD flag to
67ed8b73
BVA
358 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
359 * after draining finished.
c246e80d 360 */
3ef28e83 361 blk_freeze_queue(q);
c57cdf7a 362
57d74df9 363 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
c9a929dd 364
c9a929dd 365 blk_sync_queue(q);
2a19b28f
ML
366 if (queue_is_mq(q)) {
367 blk_mq_cancel_work_sync(q);
c7e2d94b 368 blk_mq_exit_queue(q);
2a19b28f 369 }
a1ce35fa 370
c3e22192
ML
371 /*
372 * In theory, request pool of sched_tags belongs to request queue.
373 * However, the current implementation requires tag_set for freeing
374 * requests, so free the pool now.
375 *
376 * Queue has become frozen, there can't be any in-queue requests, so
377 * it is safe to free requests now.
378 */
379 mutex_lock(&q->sysfs_lock);
380 if (q->elevator)
1820f4f0 381 blk_mq_sched_free_rqs(q);
c3e22192
ML
382 mutex_unlock(&q->sysfs_lock);
383
3ef28e83 384 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 385
c9a929dd 386 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
387 blk_put_queue(q);
388}
1da177e4
LT
389EXPORT_SYMBOL(blk_cleanup_queue);
390
3a0a5299
BVA
391/**
392 * blk_queue_enter() - try to increase q->q_usage_counter
393 * @q: request queue pointer
a4d34da7 394 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
3a0a5299 395 */
9a95e4ef 396int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 397{
a4d34da7 398 const bool pm = flags & BLK_MQ_REQ_PM;
3a0a5299 399
1f14a098 400 while (!blk_try_enter_queue(q, pm)) {
3a0a5299 401 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
402 return -EBUSY;
403
5ed61d3f 404 /*
1f14a098
CH
405 * read pair of barrier in blk_freeze_queue_start(), we need to
406 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
407 * reading .mq_freeze_depth or queue dying flag, otherwise the
408 * following wait may never return if the two reads are
409 * reordered.
5ed61d3f
ML
410 */
411 smp_rmb();
1dc3039b 412 wait_event(q->mq_freeze_wq,
7996a8b5 413 (!q->mq_freeze_depth &&
52abca64 414 blk_pm_resume_queue(pm, q)) ||
1dc3039b 415 blk_queue_dying(q));
3ef28e83
DW
416 if (blk_queue_dying(q))
417 return -ENODEV;
3ef28e83 418 }
1f14a098
CH
419
420 return 0;
3ef28e83
DW
421}
422
c98cb5bb 423int __bio_queue_enter(struct request_queue *q, struct bio *bio)
accea322 424{
a6741536 425 while (!blk_try_enter_queue(q, false)) {
eab4e027
PB
426 struct gendisk *disk = bio->bi_bdev->bd_disk;
427
a6741536 428 if (bio->bi_opf & REQ_NOWAIT) {
8e141f9e 429 if (test_bit(GD_DEAD, &disk->state))
a6741536 430 goto dead;
accea322 431 bio_wouldblock_error(bio);
a6741536
CH
432 return -EBUSY;
433 }
434
435 /*
436 * read pair of barrier in blk_freeze_queue_start(), we need to
437 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
438 * reading .mq_freeze_depth or queue dying flag, otherwise the
439 * following wait may never return if the two reads are
440 * reordered.
441 */
442 smp_rmb();
443 wait_event(q->mq_freeze_wq,
444 (!q->mq_freeze_depth &&
445 blk_pm_resume_queue(false, q)) ||
8e141f9e
CH
446 test_bit(GD_DEAD, &disk->state));
447 if (test_bit(GD_DEAD, &disk->state))
a6741536 448 goto dead;
accea322
CH
449 }
450
a6741536
CH
451 return 0;
452dead:
453 bio_io_error(bio);
454 return -ENODEV;
accea322
CH
455}
456
3ef28e83
DW
457void blk_queue_exit(struct request_queue *q)
458{
459 percpu_ref_put(&q->q_usage_counter);
460}
461
462static void blk_queue_usage_counter_release(struct percpu_ref *ref)
463{
464 struct request_queue *q =
465 container_of(ref, struct request_queue, q_usage_counter);
466
467 wake_up_all(&q->mq_freeze_wq);
468}
469
bca237a5 470static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 471{
bca237a5 472 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
473
474 kblockd_schedule_work(&q->timeout_work);
475}
476
2e3c18d0
TH
477static void blk_timeout_work(struct work_struct *work)
478{
479}
480
c62b37d9 481struct request_queue *blk_alloc_queue(int node_id)
1946089a 482{
165125e1 483 struct request_queue *q;
338aa96d 484 int ret;
1946089a 485
8324aa91 486 q = kmem_cache_alloc_node(blk_requestq_cachep,
3d745ea5 487 GFP_KERNEL | __GFP_ZERO, node_id);
1da177e4
LT
488 if (!q)
489 return NULL;
490
cbf62af3 491 q->last_merge = NULL;
cbf62af3 492
3d745ea5 493 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
a73f730d 494 if (q->id < 0)
3d2936f4 495 goto fail_q;
a73f730d 496
c495a176 497 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
338aa96d 498 if (ret)
54efd50b
KO
499 goto fail_id;
500
a83b576c
JA
501 q->stats = blk_alloc_queue_stats();
502 if (!q->stats)
edb0872f 503 goto fail_split;
a83b576c 504
5151412d 505 q->node = node_id;
0989a025 506
079a2e3e 507 atomic_set(&q->nr_active_requests_shared_tags, 0);
bccf5e26 508
bca237a5 509 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
2e3c18d0 510 INIT_WORK(&q->timeout_work, blk_timeout_work);
a612fddf 511 INIT_LIST_HEAD(&q->icq_list);
4eef3049 512#ifdef CONFIG_BLK_CGROUP
e8989fae 513 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 514#endif
483f4afc 515
8324aa91 516 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 517
85e0cbbb 518 mutex_init(&q->debugfs_mutex);
483f4afc 519 mutex_init(&q->sysfs_lock);
cecf5d87 520 mutex_init(&q->sysfs_dir_lock);
0d945c1f 521 spin_lock_init(&q->queue_lock);
c94a96ac 522
320ae51f 523 init_waitqueue_head(&q->mq_freeze_wq);
7996a8b5 524 mutex_init(&q->mq_freeze_lock);
320ae51f 525
3ef28e83
DW
526 /*
527 * Init percpu_ref in atomic mode so that it's faster to shutdown.
528 * See blk_register_queue() for details.
529 */
530 if (percpu_ref_init(&q->q_usage_counter,
531 blk_queue_usage_counter_release,
532 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
edb0872f 533 goto fail_stats;
f51b802c 534
3ef28e83
DW
535 if (blkcg_init_queue(q))
536 goto fail_ref;
537
3d745ea5
CH
538 blk_queue_dma_alignment(q, 511);
539 blk_set_default_limits(&q->limits);
d2a27964 540 q->nr_requests = BLKDEV_DEFAULT_RQ;
3d745ea5 541
1da177e4 542 return q;
a73f730d 543
3ef28e83
DW
544fail_ref:
545 percpu_ref_exit(&q->q_usage_counter);
a83b576c 546fail_stats:
edb0872f 547 blk_free_queue_stats(q->stats);
54efd50b 548fail_split:
338aa96d 549 bioset_exit(&q->bio_split);
a73f730d
TH
550fail_id:
551 ida_simple_remove(&blk_queue_ida, q->id);
552fail_q:
553 kmem_cache_free(blk_requestq_cachep, q);
554 return NULL;
1da177e4 555}
1da177e4 556
b5bd357c
LC
557/**
558 * blk_get_queue - increment the request_queue refcount
559 * @q: the request_queue structure to increment the refcount for
560 *
561 * Increment the refcount of the request_queue kobject.
763b5892
LC
562 *
563 * Context: Any context.
b5bd357c 564 */
09ac46c4 565bool blk_get_queue(struct request_queue *q)
1da177e4 566{
3f3299d5 567 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
568 __blk_get_queue(q);
569 return true;
1da177e4
LT
570 }
571
09ac46c4 572 return false;
1da177e4 573}
d86e0e83 574EXPORT_SYMBOL(blk_get_queue);
1da177e4 575
52c5e62d 576static void handle_bad_sector(struct bio *bio, sector_t maxsector)
1da177e4
LT
577{
578 char b[BDEVNAME_SIZE];
579
8a3ee677 580 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
f4ac712e 581 "%s: rw=%d, want=%llu, limit=%llu\n",
8a3ee677 582 current->comm,
f4ac712e
TH
583 bio_devname(bio, b), bio->bi_opf,
584 bio_end_sector(bio), maxsector);
1da177e4
LT
585}
586
c17bb495
AM
587#ifdef CONFIG_FAIL_MAKE_REQUEST
588
589static DECLARE_FAULT_ATTR(fail_make_request);
590
591static int __init setup_fail_make_request(char *str)
592{
593 return setup_fault_attr(&fail_make_request, str);
594}
595__setup("fail_make_request=", setup_fail_make_request);
596
8446fe92 597static bool should_fail_request(struct block_device *part, unsigned int bytes)
c17bb495 598{
8446fe92 599 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
600}
601
602static int __init fail_make_request_debugfs(void)
603{
dd48c085
AM
604 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
605 NULL, &fail_make_request);
606
21f9fcd8 607 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
608}
609
610late_initcall(fail_make_request_debugfs);
611
612#else /* CONFIG_FAIL_MAKE_REQUEST */
613
8446fe92 614static inline bool should_fail_request(struct block_device *part,
b2c9cd37 615 unsigned int bytes)
c17bb495 616{
b2c9cd37 617 return false;
c17bb495
AM
618}
619
620#endif /* CONFIG_FAIL_MAKE_REQUEST */
621
2f9f6221 622static inline bool bio_check_ro(struct bio *bio)
721c7fc7 623{
2f9f6221 624 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
721c7fc7
ID
625 char b[BDEVNAME_SIZE];
626
8b2ded1c
MP
627 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
628 return false;
629
a32e236e 630 WARN_ONCE(1,
c8178674 631 "Trying to write to read-only block-device %s (partno %d)\n",
2f9f6221 632 bio_devname(bio, b), bio->bi_bdev->bd_partno);
a32e236e
LT
633 /* Older lvm-tools actually trigger this */
634 return false;
721c7fc7
ID
635 }
636
637 return false;
638}
639
30abb3a6
HM
640static noinline int should_fail_bio(struct bio *bio)
641{
309dca30 642 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
30abb3a6
HM
643 return -EIO;
644 return 0;
645}
646ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
647
52c5e62d
CH
648/*
649 * Check whether this bio extends beyond the end of the device or partition.
650 * This may well happen - the kernel calls bread() without checking the size of
651 * the device, e.g., when mounting a file system.
652 */
2f9f6221 653static inline int bio_check_eod(struct bio *bio)
52c5e62d 654{
2f9f6221 655 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
52c5e62d
CH
656 unsigned int nr_sectors = bio_sectors(bio);
657
658 if (nr_sectors && maxsector &&
659 (nr_sectors > maxsector ||
660 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
661 handle_bad_sector(bio, maxsector);
662 return -EIO;
663 }
664 return 0;
665}
666
74d46992
CH
667/*
668 * Remap block n of partition p to block n+start(p) of the disk.
669 */
2f9f6221 670static int blk_partition_remap(struct bio *bio)
74d46992 671{
309dca30 672 struct block_device *p = bio->bi_bdev;
74d46992 673
52c5e62d 674 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2f9f6221 675 return -EIO;
5eac3eb3 676 if (bio_sectors(bio)) {
8446fe92 677 bio->bi_iter.bi_sector += p->bd_start_sect;
1c02fca6 678 trace_block_bio_remap(bio, p->bd_dev,
29ff57c6 679 bio->bi_iter.bi_sector -
8446fe92 680 p->bd_start_sect);
52c5e62d 681 }
30c5d345 682 bio_set_flag(bio, BIO_REMAPPED);
2f9f6221 683 return 0;
74d46992
CH
684}
685
0512a75b
KB
686/*
687 * Check write append to a zoned block device.
688 */
689static inline blk_status_t blk_check_zone_append(struct request_queue *q,
690 struct bio *bio)
691{
692 sector_t pos = bio->bi_iter.bi_sector;
693 int nr_sectors = bio_sectors(bio);
694
695 /* Only applicable to zoned block devices */
696 if (!blk_queue_is_zoned(q))
697 return BLK_STS_NOTSUPP;
698
699 /* The bio sector must point to the start of a sequential zone */
700 if (pos & (blk_queue_zone_sectors(q) - 1) ||
701 !blk_queue_zone_is_seq(q, pos))
702 return BLK_STS_IOERR;
703
704 /*
705 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
706 * split and could result in non-contiguous sectors being written in
707 * different zones.
708 */
709 if (nr_sectors > q->limits.chunk_sectors)
710 return BLK_STS_IOERR;
711
712 /* Make sure the BIO is small enough and will not get split */
713 if (nr_sectors > q->limits.max_zone_append_sectors)
714 return BLK_STS_IOERR;
715
716 bio->bi_opf |= REQ_NOMERGE;
717
718 return BLK_STS_OK;
719}
720
900e0807 721noinline_for_stack bool submit_bio_checks(struct bio *bio)
1da177e4 722{
309dca30 723 struct block_device *bdev = bio->bi_bdev;
eab4e027 724 struct request_queue *q = bdev_get_queue(bdev);
4e4cbee9 725 blk_status_t status = BLK_STS_IOERR;
5a473e83 726 struct blk_plug *plug;
1da177e4
LT
727
728 might_sleep();
1da177e4 729
5a473e83
JA
730 plug = blk_mq_plug(q, bio);
731 if (plug && plug->nowait)
732 bio->bi_opf |= REQ_NOWAIT;
733
03a07c92 734 /*
b0beb280 735 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
021a2446 736 * if queue does not support NOWAIT.
03a07c92 737 */
021a2446 738 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
b0beb280 739 goto not_supported;
03a07c92 740
30abb3a6 741 if (should_fail_bio(bio))
5a7bbad2 742 goto end_io;
2f9f6221
CH
743 if (unlikely(bio_check_ro(bio)))
744 goto end_io;
3a905c37
CH
745 if (!bio_flagged(bio, BIO_REMAPPED)) {
746 if (unlikely(bio_check_eod(bio)))
747 goto end_io;
748 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
749 goto end_io;
750 }
2056a782 751
5a7bbad2 752 /*
ed00aabd
CH
753 * Filter flush bio's early so that bio based drivers without flush
754 * support don't have to worry about them.
5a7bbad2 755 */
f3a8ab7d 756 if (op_is_flush(bio->bi_opf) &&
c888a8f9 757 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 758 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
e439ab71 759 if (!bio_sectors(bio)) {
4e4cbee9 760 status = BLK_STS_OK;
51fd77bd
JA
761 goto end_io;
762 }
5a7bbad2 763 }
5ddfe969 764
d04c406f 765 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
6ce913fe 766 bio_clear_polled(bio);
d04c406f 767
288dab8a
CH
768 switch (bio_op(bio)) {
769 case REQ_OP_DISCARD:
770 if (!blk_queue_discard(q))
771 goto not_supported;
772 break;
773 case REQ_OP_SECURE_ERASE:
774 if (!blk_queue_secure_erase(q))
775 goto not_supported;
776 break;
777 case REQ_OP_WRITE_SAME:
74d46992 778 if (!q->limits.max_write_same_sectors)
288dab8a 779 goto not_supported;
58886785 780 break;
0512a75b
KB
781 case REQ_OP_ZONE_APPEND:
782 status = blk_check_zone_append(q, bio);
783 if (status != BLK_STS_OK)
784 goto end_io;
785 break;
2d253440 786 case REQ_OP_ZONE_RESET:
6c1b1da5
AJ
787 case REQ_OP_ZONE_OPEN:
788 case REQ_OP_ZONE_CLOSE:
789 case REQ_OP_ZONE_FINISH:
74d46992 790 if (!blk_queue_is_zoned(q))
2d253440 791 goto not_supported;
288dab8a 792 break;
6e33dbf2
CK
793 case REQ_OP_ZONE_RESET_ALL:
794 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
795 goto not_supported;
796 break;
a6f0788e 797 case REQ_OP_WRITE_ZEROES:
74d46992 798 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
799 goto not_supported;
800 break;
288dab8a
CH
801 default:
802 break;
5a7bbad2 803 }
01edede4 804
7f4b35d1 805 /*
3e82c348
CH
806 * Various block parts want %current->io_context, so allocate it up
807 * front rather than dealing with lots of pain to allocate it only
808 * where needed. This may fail and the block layer knows how to live
809 * with it.
7f4b35d1 810 */
3e82c348
CH
811 if (unlikely(!current->io_context))
812 create_task_io_context(current, GFP_ATOMIC, q->node);
7f4b35d1 813
b781d8db 814 if (blk_throtl_bio(bio))
ae118896 815 return false;
db18a53e
CH
816
817 blk_cgroup_bio_start(bio);
818 blkcg_bio_issue_init(bio);
27a84d54 819
fbbaf700 820 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
e8a676d6 821 trace_block_bio_queue(bio);
fbbaf700
N
822 /* Now that enqueuing has been traced, we need to trace
823 * completion as well.
824 */
825 bio_set_flag(bio, BIO_TRACE_COMPLETION);
826 }
27a84d54 827 return true;
a7384677 828
288dab8a 829not_supported:
4e4cbee9 830 status = BLK_STS_NOTSUPP;
a7384677 831end_io:
4e4cbee9 832 bio->bi_status = status;
4246a0b6 833 bio_endio(bio);
27a84d54 834 return false;
1da177e4
LT
835}
836
900e0807 837static void __submit_bio_fops(struct gendisk *disk, struct bio *bio)
ac7c5675 838{
cc9c884d 839 if (unlikely(bio_queue_enter(bio) != 0))
3e08773c 840 return;
900e0807
JA
841 if (submit_bio_checks(bio) && blk_crypto_bio_prep(&bio))
842 disk->fops->submit_bio(bio);
843 blk_queue_exit(disk->queue);
844}
cc9c884d 845
900e0807
JA
846static void __submit_bio(struct bio *bio)
847{
848 struct gendisk *disk = bio->bi_bdev->bd_disk;
cc9c884d 849
900e0807 850 if (!disk->fops->submit_bio)
3e08773c 851 blk_mq_submit_bio(bio);
900e0807
JA
852 else
853 __submit_bio_fops(disk, bio);
ac7c5675
CH
854}
855
566acf2d
CH
856/*
857 * The loop in this function may be a bit non-obvious, and so deserves some
858 * explanation:
859 *
860 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
861 * that), so we have a list with a single bio.
862 * - We pretend that we have just taken it off a longer list, so we assign
863 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
864 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
865 * bios through a recursive call to submit_bio_noacct. If it did, we find a
866 * non-NULL value in bio_list and re-enter the loop from the top.
867 * - In this case we really did just take the bio of the top of the list (no
868 * pretending) and so remove it from bio_list, and call into ->submit_bio()
869 * again.
870 *
871 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
872 * bio_list_on_stack[1] contains bios that were submitted before the current
873 * ->submit_bio_bio, but that haven't been processed yet.
874 */
3e08773c 875static void __submit_bio_noacct(struct bio *bio)
566acf2d
CH
876{
877 struct bio_list bio_list_on_stack[2];
566acf2d
CH
878
879 BUG_ON(bio->bi_next);
880
881 bio_list_init(&bio_list_on_stack[0]);
882 current->bio_list = bio_list_on_stack;
883
884 do {
eab4e027 885 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
566acf2d
CH
886 struct bio_list lower, same;
887
566acf2d
CH
888 /*
889 * Create a fresh bio_list for all subordinate requests.
890 */
891 bio_list_on_stack[1] = bio_list_on_stack[0];
892 bio_list_init(&bio_list_on_stack[0]);
893
3e08773c 894 __submit_bio(bio);
566acf2d
CH
895
896 /*
897 * Sort new bios into those for a lower level and those for the
898 * same level.
899 */
900 bio_list_init(&lower);
901 bio_list_init(&same);
902 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
eab4e027 903 if (q == bdev_get_queue(bio->bi_bdev))
566acf2d
CH
904 bio_list_add(&same, bio);
905 else
906 bio_list_add(&lower, bio);
907
908 /*
909 * Now assemble so we handle the lowest level first.
910 */
911 bio_list_merge(&bio_list_on_stack[0], &lower);
912 bio_list_merge(&bio_list_on_stack[0], &same);
913 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
914 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
915
916 current->bio_list = NULL;
566acf2d
CH
917}
918
3e08773c 919static void __submit_bio_noacct_mq(struct bio *bio)
ff93ea0c 920{
7c792f33 921 struct bio_list bio_list[2] = { };
ff93ea0c 922
7c792f33 923 current->bio_list = bio_list;
ff93ea0c
CH
924
925 do {
3e08773c 926 __submit_bio(bio);
7c792f33 927 } while ((bio = bio_list_pop(&bio_list[0])));
ff93ea0c
CH
928
929 current->bio_list = NULL;
ff93ea0c
CH
930}
931
27a84d54 932/**
ed00aabd 933 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
27a84d54
CH
934 * @bio: The bio describing the location in memory and on the device.
935 *
3fdd4086
CH
936 * This is a version of submit_bio() that shall only be used for I/O that is
937 * resubmitted to lower level drivers by stacking block drivers. All file
938 * systems and other upper level users of the block layer should use
939 * submit_bio() instead.
d89d8796 940 */
3e08773c 941void submit_bio_noacct(struct bio *bio)
d89d8796 942{
27a84d54 943 /*
566acf2d
CH
944 * We only want one ->submit_bio to be active at a time, else stack
945 * usage with stacked devices could be a problem. Use current->bio_list
946 * to collect a list of requests submited by a ->submit_bio method while
947 * it is active, and then process them after it returned.
27a84d54 948 */
3e08773c 949 if (current->bio_list)
f5fe1b51 950 bio_list_add(&current->bio_list[0], bio);
3e08773c
CH
951 else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
952 __submit_bio_noacct_mq(bio);
953 else
954 __submit_bio_noacct(bio);
d89d8796 955}
ed00aabd 956EXPORT_SYMBOL(submit_bio_noacct);
1da177e4
LT
957
958/**
710027a4 959 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
960 * @bio: The &struct bio which describes the I/O
961 *
3fdd4086
CH
962 * submit_bio() is used to submit I/O requests to block devices. It is passed a
963 * fully set up &struct bio that describes the I/O that needs to be done. The
309dca30 964 * bio will be send to the device described by the bi_bdev field.
1da177e4 965 *
3fdd4086
CH
966 * The success/failure status of the request, along with notification of
967 * completion, is delivered asynchronously through the ->bi_end_io() callback
968 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
969 * been called.
1da177e4 970 */
3e08773c 971void submit_bio(struct bio *bio)
1da177e4 972{
d3f77dfd 973 if (blkcg_punt_bio_submit(bio))
3e08773c 974 return;
d3f77dfd 975
bf2de6f5
JA
976 /*
977 * If it's a regular read/write or a barrier with data attached,
978 * go through the normal accounting stuff before submission.
979 */
e2a60da7 980 if (bio_has_data(bio)) {
4363ac7c
MP
981 unsigned int count;
982
95fe6c1a 983 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
309dca30 984 count = queue_logical_block_size(
eab4e027 985 bdev_get_queue(bio->bi_bdev)) >> 9;
4363ac7c
MP
986 else
987 count = bio_sectors(bio);
988
a8ebb056 989 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
990 count_vm_events(PGPGOUT, count);
991 } else {
4f024f37 992 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
993 count_vm_events(PGPGIN, count);
994 }
1da177e4
LT
995 }
996
b8e24a93 997 /*
760f83ea
CH
998 * If we're reading data that is part of the userspace workingset, count
999 * submission time as memory stall. When the device is congested, or
1000 * the submitting cgroup IO-throttled, submission can be a significant
1001 * part of overall IO time.
b8e24a93 1002 */
760f83ea
CH
1003 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1004 bio_flagged(bio, BIO_WORKINGSET))) {
1005 unsigned long pflags;
b8e24a93 1006
760f83ea 1007 psi_memstall_enter(&pflags);
3e08773c 1008 submit_bio_noacct(bio);
b8e24a93 1009 psi_memstall_leave(&pflags);
3e08773c 1010 return;
760f83ea
CH
1011 }
1012
3e08773c 1013 submit_bio_noacct(bio);
1da177e4 1014}
1da177e4
LT
1015EXPORT_SYMBOL(submit_bio);
1016
3e08773c
CH
1017/**
1018 * bio_poll - poll for BIO completions
1019 * @bio: bio to poll for
1020 * @flags: BLK_POLL_* flags that control the behavior
1021 *
1022 * Poll for completions on queue associated with the bio. Returns number of
1023 * completed entries found.
1024 *
1025 * Note: the caller must either be the context that submitted @bio, or
1026 * be in a RCU critical section to prevent freeing of @bio.
1027 */
5a72e899 1028int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
3e08773c 1029{
859897c3 1030 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3e08773c
CH
1031 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
1032 int ret;
1033
1034 if (cookie == BLK_QC_T_NONE ||
1035 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1036 return 0;
1037
1038 if (current->plug)
008f75a2 1039 blk_flush_plug(current->plug, false);
3e08773c
CH
1040
1041 if (blk_queue_enter(q, BLK_MQ_REQ_NOWAIT))
1042 return 0;
1043 if (WARN_ON_ONCE(!queue_is_mq(q)))
1044 ret = 0; /* not yet implemented, should not happen */
1045 else
5a72e899 1046 ret = blk_mq_poll(q, cookie, iob, flags);
3e08773c
CH
1047 blk_queue_exit(q);
1048 return ret;
1049}
1050EXPORT_SYMBOL_GPL(bio_poll);
1051
1052/*
1053 * Helper to implement file_operations.iopoll. Requires the bio to be stored
1054 * in iocb->private, and cleared before freeing the bio.
1055 */
5a72e899
JA
1056int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
1057 unsigned int flags)
3e08773c
CH
1058{
1059 struct bio *bio;
1060 int ret = 0;
1061
1062 /*
1063 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
1064 * point to a freshly allocated bio at this point. If that happens
1065 * we have a few cases to consider:
1066 *
1067 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
1068 * simply nothing in this case
1069 * 2) the bio points to a not poll enabled device. bio_poll will catch
1070 * this and return 0
1071 * 3) the bio points to a poll capable device, including but not
1072 * limited to the one that the original bio pointed to. In this
1073 * case we will call into the actual poll method and poll for I/O,
1074 * even if we don't need to, but it won't cause harm either.
1075 *
1076 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
1077 * is still allocated. Because partitions hold a reference to the whole
1078 * device bdev and thus disk, the disk is also still valid. Grabbing
1079 * a reference to the queue in bio_poll() ensures the hctxs and requests
1080 * are still valid as well.
1081 */
1082 rcu_read_lock();
1083 bio = READ_ONCE(kiocb->private);
1084 if (bio && bio->bi_bdev)
5a72e899 1085 ret = bio_poll(bio, iob, flags);
3e08773c
CH
1086 rcu_read_unlock();
1087
1088 return ret;
1089}
1090EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
1091
82124d60 1092/**
bf4e6b4e 1093 * blk_cloned_rq_check_limits - Helper function to check a cloned request
0d720318 1094 * for the new queue limits
82124d60
KU
1095 * @q: the queue
1096 * @rq: the request being checked
1097 *
1098 * Description:
1099 * @rq may have been made based on weaker limitations of upper-level queues
1100 * in request stacking drivers, and it may violate the limitation of @q.
1101 * Since the block layer and the underlying device driver trust @rq
1102 * after it is inserted to @q, it should be checked against @q before
1103 * the insertion using this generic function.
1104 *
82124d60 1105 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
1106 * limits when retrying requests on other queues. Those requests need
1107 * to be checked against the new queue limits again during dispatch.
82124d60 1108 */
143d2600 1109static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
bf4e6b4e 1110 struct request *rq)
82124d60 1111{
8327cce5
RS
1112 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1113
1114 if (blk_rq_sectors(rq) > max_sectors) {
1115 /*
1116 * SCSI device does not have a good way to return if
1117 * Write Same/Zero is actually supported. If a device rejects
1118 * a non-read/write command (discard, write same,etc.) the
1119 * low-level device driver will set the relevant queue limit to
1120 * 0 to prevent blk-lib from issuing more of the offending
1121 * operations. Commands queued prior to the queue limit being
1122 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1123 * errors being propagated to upper layers.
1124 */
1125 if (max_sectors == 0)
1126 return BLK_STS_NOTSUPP;
1127
61939b12 1128 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
8327cce5 1129 __func__, blk_rq_sectors(rq), max_sectors);
143d2600 1130 return BLK_STS_IOERR;
82124d60
KU
1131 }
1132
1133 /*
9bb33f24
CH
1134 * The queue settings related to segment counting may differ from the
1135 * original queue.
82124d60 1136 */
e9cd19c0 1137 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
8a78362c 1138 if (rq->nr_phys_segments > queue_max_segments(q)) {
61939b12
JP
1139 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1140 __func__, rq->nr_phys_segments, queue_max_segments(q));
143d2600 1141 return BLK_STS_IOERR;
82124d60
KU
1142 }
1143
143d2600 1144 return BLK_STS_OK;
82124d60 1145}
82124d60
KU
1146
1147/**
1148 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1149 * @q: the queue to submit the request
1150 * @rq: the request being queued
1151 */
2a842aca 1152blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60 1153{
8327cce5
RS
1154 blk_status_t ret;
1155
1156 ret = blk_cloned_rq_check_limits(q, rq);
1157 if (ret != BLK_STS_OK)
1158 return ret;
82124d60 1159
b2c9cd37 1160 if (rq->rq_disk &&
8446fe92 1161 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 1162 return BLK_STS_IOERR;
82124d60 1163
a892c8d5
ST
1164 if (blk_crypto_insert_cloned_request(rq))
1165 return BLK_STS_IOERR;
1166
be6bfe36 1167 blk_account_io_start(rq);
82124d60
KU
1168
1169 /*
a1ce35fa
JA
1170 * Since we have a scheduler attached on the top device,
1171 * bypass a potential scheduler on the bottom device for
1172 * insert.
82124d60 1173 */
fd9c40f6 1174 return blk_mq_request_issue_directly(rq, true);
82124d60
KU
1175}
1176EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1177
80a761fd
TH
1178/**
1179 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1180 * @rq: request to examine
1181 *
1182 * Description:
1183 * A request could be merge of IOs which require different failure
1184 * handling. This function determines the number of bytes which
1185 * can be failed from the beginning of the request without
1186 * crossing into area which need to be retried further.
1187 *
1188 * Return:
1189 * The number of bytes to fail.
80a761fd
TH
1190 */
1191unsigned int blk_rq_err_bytes(const struct request *rq)
1192{
1193 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1194 unsigned int bytes = 0;
1195 struct bio *bio;
1196
e8064021 1197 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
1198 return blk_rq_bytes(rq);
1199
1200 /*
1201 * Currently the only 'mixing' which can happen is between
1202 * different fastfail types. We can safely fail portions
1203 * which have all the failfast bits that the first one has -
1204 * the ones which are at least as eager to fail as the first
1205 * one.
1206 */
1207 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 1208 if ((bio->bi_opf & ff) != ff)
80a761fd 1209 break;
4f024f37 1210 bytes += bio->bi_iter.bi_size;
80a761fd
TH
1211 }
1212
1213 /* this could lead to infinite loop */
1214 BUG_ON(blk_rq_bytes(rq) && !bytes);
1215 return bytes;
1216}
1217EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1218
8446fe92
CH
1219static void update_io_ticks(struct block_device *part, unsigned long now,
1220 bool end)
9123bf6f
CH
1221{
1222 unsigned long stamp;
1223again:
8446fe92 1224 stamp = READ_ONCE(part->bd_stamp);
d80c228d 1225 if (unlikely(time_after(now, stamp))) {
8446fe92 1226 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
9123bf6f
CH
1227 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1228 }
8446fe92
CH
1229 if (part->bd_partno) {
1230 part = bdev_whole(part);
9123bf6f
CH
1231 goto again;
1232 }
1233}
1234
be6bfe36 1235void __blk_account_io_done(struct request *req, u64 now)
bc58ba94 1236{
be6bfe36 1237 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1238
be6bfe36
PB
1239 part_stat_lock();
1240 update_io_ticks(req->part, jiffies, true);
1241 part_stat_inc(req->part, ios[sgrp]);
1242 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1243 part_stat_unlock();
bc58ba94
JA
1244}
1245
be6bfe36 1246void __blk_account_io_start(struct request *rq)
320ae51f 1247{
0b6e522c
CH
1248 /* passthrough requests can hold bios that do not have ->bi_bdev set */
1249 if (rq->bio && rq->bio->bi_bdev)
1250 rq->part = rq->bio->bi_bdev;
1251 else
1252 rq->part = rq->rq_disk->part0;
524f9ffd 1253
112f158f 1254 part_stat_lock();
76268f3a 1255 update_io_ticks(rq->part, jiffies, false);
320ae51f
JA
1256 part_stat_unlock();
1257}
320ae51f 1258
8446fe92 1259static unsigned long __part_start_io_acct(struct block_device *part,
7b26410b 1260 unsigned int sectors, unsigned int op)
956d510e 1261{
956d510e
CH
1262 const int sgrp = op_stat_group(op);
1263 unsigned long now = READ_ONCE(jiffies);
1264
1265 part_stat_lock();
1266 update_io_ticks(part, now, false);
1267 part_stat_inc(part, ios[sgrp]);
1268 part_stat_add(part, sectors[sgrp], sectors);
1269 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1270 part_stat_unlock();
320ae51f 1271
956d510e
CH
1272 return now;
1273}
7b26410b 1274
99dfc43e
CH
1275/**
1276 * bio_start_io_acct - start I/O accounting for bio based drivers
1277 * @bio: bio to start account for
1278 *
1279 * Returns the start time that should be passed back to bio_end_io_acct().
1280 */
1281unsigned long bio_start_io_acct(struct bio *bio)
7b26410b 1282{
99dfc43e 1283 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio));
7b26410b 1284}
99dfc43e 1285EXPORT_SYMBOL_GPL(bio_start_io_acct);
7b26410b
SL
1286
1287unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1288 unsigned int op)
1289{
8446fe92 1290 return __part_start_io_acct(disk->part0, sectors, op);
7b26410b 1291}
956d510e
CH
1292EXPORT_SYMBOL(disk_start_io_acct);
1293
8446fe92 1294static void __part_end_io_acct(struct block_device *part, unsigned int op,
7b26410b 1295 unsigned long start_time)
956d510e 1296{
956d510e
CH
1297 const int sgrp = op_stat_group(op);
1298 unsigned long now = READ_ONCE(jiffies);
1299 unsigned long duration = now - start_time;
5b18b5a7 1300
956d510e
CH
1301 part_stat_lock();
1302 update_io_ticks(part, now, true);
1303 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1304 part_stat_local_dec(part, in_flight[op_is_write(op)]);
320ae51f
JA
1305 part_stat_unlock();
1306}
7b26410b 1307
99dfc43e
CH
1308void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1309 struct block_device *orig_bdev)
7b26410b 1310{
99dfc43e 1311 __part_end_io_acct(orig_bdev, bio_op(bio), start_time);
7b26410b 1312}
99dfc43e 1313EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
7b26410b
SL
1314
1315void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1316 unsigned long start_time)
1317{
8446fe92 1318 __part_end_io_acct(disk->part0, op, start_time);
7b26410b 1319}
956d510e 1320EXPORT_SYMBOL(disk_end_io_acct);
320ae51f 1321
ef71de8b
CH
1322/*
1323 * Steal bios from a request and add them to a bio list.
1324 * The request must not have been partially completed before.
1325 */
1326void blk_steal_bios(struct bio_list *list, struct request *rq)
1327{
1328 if (rq->bio) {
1329 if (list->tail)
1330 list->tail->bi_next = rq->bio;
1331 else
1332 list->head = rq->bio;
1333 list->tail = rq->biotail;
1334
1335 rq->bio = NULL;
1336 rq->biotail = NULL;
1337 }
1338
1339 rq->__data_len = 0;
1340}
1341EXPORT_SYMBOL_GPL(blk_steal_bios);
1342
2d4dc890
IL
1343#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1344/**
1345 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1346 * @rq: the request to be flushed
1347 *
1348 * Description:
1349 * Flush all pages in @rq.
1350 */
1351void rq_flush_dcache_pages(struct request *rq)
1352{
1353 struct req_iterator iter;
7988613b 1354 struct bio_vec bvec;
2d4dc890
IL
1355
1356 rq_for_each_segment(bvec, rq, iter)
7988613b 1357 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1358}
1359EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1360#endif
1361
ef9e3fac
KU
1362/**
1363 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1364 * @q : the queue of the device being checked
1365 *
1366 * Description:
1367 * Check if underlying low-level drivers of a device are busy.
1368 * If the drivers want to export their busy state, they must set own
1369 * exporting function using blk_queue_lld_busy() first.
1370 *
1371 * Basically, this function is used only by request stacking drivers
1372 * to stop dispatching requests to underlying devices when underlying
1373 * devices are busy. This behavior helps more I/O merging on the queue
1374 * of the request stacking driver and prevents I/O throughput regression
1375 * on burst I/O load.
1376 *
1377 * Return:
1378 * 0 - Not busy (The request stacking driver should dispatch request)
1379 * 1 - Busy (The request stacking driver should stop dispatching request)
1380 */
1381int blk_lld_busy(struct request_queue *q)
1382{
344e9ffc 1383 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1384 return q->mq_ops->busy(q);
ef9e3fac
KU
1385
1386 return 0;
1387}
1388EXPORT_SYMBOL_GPL(blk_lld_busy);
1389
78d8e58a
MS
1390/**
1391 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1392 * @rq: the clone request to be cleaned up
1393 *
1394 * Description:
1395 * Free all bios in @rq for a cloned request.
1396 */
1397void blk_rq_unprep_clone(struct request *rq)
1398{
1399 struct bio *bio;
1400
1401 while ((bio = rq->bio) != NULL) {
1402 rq->bio = bio->bi_next;
1403
1404 bio_put(bio);
1405 }
1406}
1407EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1408
78d8e58a
MS
1409/**
1410 * blk_rq_prep_clone - Helper function to setup clone request
1411 * @rq: the request to be setup
1412 * @rq_src: original request to be cloned
1413 * @bs: bio_set that bios for clone are allocated from
1414 * @gfp_mask: memory allocation mask for bio
1415 * @bio_ctr: setup function to be called for each clone bio.
1416 * Returns %0 for success, non %0 for failure.
1417 * @data: private data to be passed to @bio_ctr
1418 *
1419 * Description:
1420 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
78d8e58a
MS
1421 * Also, pages which the original bios are pointing to are not copied
1422 * and the cloned bios just point same pages.
1423 * So cloned bios must be completed before original bios, which means
1424 * the caller must complete @rq before @rq_src.
1425 */
1426int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1427 struct bio_set *bs, gfp_t gfp_mask,
1428 int (*bio_ctr)(struct bio *, struct bio *, void *),
1429 void *data)
1430{
1431 struct bio *bio, *bio_src;
1432
1433 if (!bs)
f4f8154a 1434 bs = &fs_bio_set;
78d8e58a
MS
1435
1436 __rq_for_each_bio(bio_src, rq_src) {
1437 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1438 if (!bio)
1439 goto free_and_out;
1440
1441 if (bio_ctr && bio_ctr(bio, bio_src, data))
1442 goto free_and_out;
1443
1444 if (rq->bio) {
1445 rq->biotail->bi_next = bio;
1446 rq->biotail = bio;
93f221ae 1447 } else {
78d8e58a 1448 rq->bio = rq->biotail = bio;
93f221ae
EB
1449 }
1450 bio = NULL;
78d8e58a
MS
1451 }
1452
361301a2
GJ
1453 /* Copy attributes of the original request to the clone request. */
1454 rq->__sector = blk_rq_pos(rq_src);
1455 rq->__data_len = blk_rq_bytes(rq_src);
1456 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1457 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1458 rq->special_vec = rq_src->special_vec;
1459 }
1460 rq->nr_phys_segments = rq_src->nr_phys_segments;
1461 rq->ioprio = rq_src->ioprio;
78d8e58a 1462
93f221ae
EB
1463 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1464 goto free_and_out;
78d8e58a
MS
1465
1466 return 0;
1467
1468free_and_out:
1469 if (bio)
1470 bio_put(bio);
1471 blk_rq_unprep_clone(rq);
1472
1473 return -ENOMEM;
b0fd271d
KU
1474}
1475EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1476
59c3d45e 1477int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1478{
1479 return queue_work(kblockd_workqueue, work);
1480}
1da177e4
LT
1481EXPORT_SYMBOL(kblockd_schedule_work);
1482
818cd1cb
JA
1483int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1484 unsigned long delay)
1485{
1486 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1487}
1488EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1489
47c122e3
JA
1490void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1491{
1492 struct task_struct *tsk = current;
1493
1494 /*
1495 * If this is a nested plug, don't actually assign it.
1496 */
1497 if (tsk->plug)
1498 return;
1499
bc490f81 1500 plug->mq_list = NULL;
47c122e3
JA
1501 plug->cached_rq = NULL;
1502 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1503 plug->rq_count = 0;
1504 plug->multiple_queues = false;
dc5fc361 1505 plug->has_elevator = false;
47c122e3
JA
1506 plug->nowait = false;
1507 INIT_LIST_HEAD(&plug->cb_list);
1508
1509 /*
1510 * Store ordering should not be needed here, since a potential
1511 * preempt will imply a full memory barrier
1512 */
1513 tsk->plug = plug;
1514}
1515
75df7136
SJ
1516/**
1517 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1518 * @plug: The &struct blk_plug that needs to be initialized
1519 *
1520 * Description:
40405851
JM
1521 * blk_start_plug() indicates to the block layer an intent by the caller
1522 * to submit multiple I/O requests in a batch. The block layer may use
1523 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1524 * is called. However, the block layer may choose to submit requests
1525 * before a call to blk_finish_plug() if the number of queued I/Os
1526 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1527 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1528 * the task schedules (see below).
1529 *
75df7136
SJ
1530 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1531 * pending I/O should the task end up blocking between blk_start_plug() and
1532 * blk_finish_plug(). This is important from a performance perspective, but
1533 * also ensures that we don't deadlock. For instance, if the task is blocking
1534 * for a memory allocation, memory reclaim could end up wanting to free a
1535 * page belonging to that request that is currently residing in our private
1536 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1537 * this kind of deadlock.
1538 */
73c10101
JA
1539void blk_start_plug(struct blk_plug *plug)
1540{
47c122e3 1541 blk_start_plug_nr_ios(plug, 1);
73c10101
JA
1542}
1543EXPORT_SYMBOL(blk_start_plug);
1544
74018dc3 1545static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1546{
1547 LIST_HEAD(callbacks);
1548
2a7d5559
SL
1549 while (!list_empty(&plug->cb_list)) {
1550 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1551
2a7d5559
SL
1552 while (!list_empty(&callbacks)) {
1553 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1554 struct blk_plug_cb,
1555 list);
2a7d5559 1556 list_del(&cb->list);
74018dc3 1557 cb->callback(cb, from_schedule);
2a7d5559 1558 }
048c9374
N
1559 }
1560}
1561
9cbb1750
N
1562struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1563 int size)
1564{
1565 struct blk_plug *plug = current->plug;
1566 struct blk_plug_cb *cb;
1567
1568 if (!plug)
1569 return NULL;
1570
1571 list_for_each_entry(cb, &plug->cb_list, list)
1572 if (cb->callback == unplug && cb->data == data)
1573 return cb;
1574
1575 /* Not currently on the callback list */
1576 BUG_ON(size < sizeof(*cb));
1577 cb = kzalloc(size, GFP_ATOMIC);
1578 if (cb) {
1579 cb->data = data;
1580 cb->callback = unplug;
1581 list_add(&cb->list, &plug->cb_list);
1582 }
1583 return cb;
1584}
1585EXPORT_SYMBOL(blk_check_plugged);
1586
008f75a2 1587void blk_flush_plug(struct blk_plug *plug, bool from_schedule)
73c10101 1588{
b600455d
PB
1589 if (!list_empty(&plug->cb_list))
1590 flush_plug_callbacks(plug, from_schedule);
bc490f81 1591 if (!rq_list_empty(plug->mq_list))
320ae51f 1592 blk_mq_flush_plug_list(plug, from_schedule);
c5fc7b93
JA
1593 /*
1594 * Unconditionally flush out cached requests, even if the unplug
1595 * event came from schedule. Since we know hold references to the
1596 * queue for cached requests, we don't want a blocked task holding
1597 * up a queue freeze/quiesce event.
1598 */
1599 if (unlikely(!rq_list_empty(plug->cached_rq)))
47c122e3 1600 blk_mq_free_plug_rqs(plug);
73c10101 1601}
73c10101 1602
40405851
JM
1603/**
1604 * blk_finish_plug - mark the end of a batch of submitted I/O
1605 * @plug: The &struct blk_plug passed to blk_start_plug()
1606 *
1607 * Description:
1608 * Indicate that a batch of I/O submissions is complete. This function
1609 * must be paired with an initial call to blk_start_plug(). The intent
1610 * is to allow the block layer to optimize I/O submission. See the
1611 * documentation for blk_start_plug() for more information.
1612 */
73c10101
JA
1613void blk_finish_plug(struct blk_plug *plug)
1614{
008f75a2
CH
1615 if (plug == current->plug) {
1616 blk_flush_plug(plug, false);
1617 current->plug = NULL;
1618 }
73c10101 1619}
88b996cd 1620EXPORT_SYMBOL(blk_finish_plug);
73c10101 1621
71ac860a
ML
1622void blk_io_schedule(void)
1623{
1624 /* Prevent hang_check timer from firing at us during very long I/O */
1625 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1626
1627 if (timeout)
1628 io_schedule_timeout(timeout);
1629 else
1630 io_schedule();
1631}
1632EXPORT_SYMBOL_GPL(blk_io_schedule);
1633
1da177e4
LT
1634int __init blk_dev_init(void)
1635{
ef295ecf
CH
1636 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1637 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1638 sizeof_field(struct request, cmd_flags));
ef295ecf 1639 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1640 sizeof_field(struct bio, bi_opf));
9eb55b03 1641
89b90be2
TH
1642 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1643 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1644 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1645 if (!kblockd_workqueue)
1646 panic("Failed to create kblockd\n");
1647
c2789bd4 1648 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1649 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1650
18fbda91 1651 blk_debugfs_root = debugfs_create_dir("block", NULL);
18fbda91 1652
d38ecf93 1653 return 0;
1da177e4 1654}