Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
1da177e4
LT
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
1da177e4
LT
15#include <linux/kernel.h>
16#include <linux/module.h>
1da177e4
LT
17#include <linux/bio.h>
18#include <linux/blkdev.h>
52abca64 19#include <linux/blk-pm.h>
fe45e630 20#include <linux/blk-integrity.h>
1da177e4
LT
21#include <linux/highmem.h>
22#include <linux/mm.h>
cee9a0c4 23#include <linux/pagemap.h>
1da177e4
LT
24#include <linux/kernel_stat.h>
25#include <linux/string.h>
26#include <linux/init.h>
1da177e4
LT
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
faccbd4b 31#include <linux/task_io_accounting_ops.h>
c17bb495 32#include <linux/fault-inject.h>
73c10101 33#include <linux/list_sort.h>
e3c78ca5 34#include <linux/delay.h>
aaf7c680 35#include <linux/ratelimit.h>
6c954667 36#include <linux/pm_runtime.h>
54d4e6ab 37#include <linux/t10-pi.h>
18fbda91 38#include <linux/debugfs.h>
30abb3a6 39#include <linux/bpf.h>
82d981d4 40#include <linux/part_stat.h>
71ac860a 41#include <linux/sched/sysctl.h>
a892c8d5 42#include <linux/blk-crypto.h>
55782138
LZ
43
44#define CREATE_TRACE_POINTS
45#include <trace/events/block.h>
1da177e4 46
8324aa91 47#include "blk.h"
2aa7745b 48#include "blk-mq-sched.h"
bca6b067 49#include "blk-pm.h"
672fdcf0 50#include "blk-cgroup.h"
a7b36ee6 51#include "blk-throttle.h"
8324aa91 52
18fbda91 53struct dentry *blk_debugfs_root;
18fbda91 54
d07335e5 55EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 56EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 57EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 58EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 59EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
b357e4a6 60EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
0bfc2455 61
2bd85221 62static DEFINE_IDA(blk_queue_ida);
a73f730d 63
1da177e4
LT
64/*
65 * For queue allocation
66 */
2bd85221 67static struct kmem_cache *blk_requestq_cachep;
1da177e4 68
1da177e4
LT
69/*
70 * Controlling structure to kblockd
71 */
ff856bad 72static struct workqueue_struct *kblockd_workqueue;
1da177e4 73
8814ce8a
BVA
74/**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
78 */
79void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80{
57d74df9 81 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
82}
83EXPORT_SYMBOL(blk_queue_flag_set);
84
85/**
86 * blk_queue_flag_clear - atomically clear a queue flag
87 * @flag: flag to be cleared
88 * @q: request queue
89 */
90void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91{
57d74df9 92 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
93}
94EXPORT_SYMBOL(blk_queue_flag_clear);
95
96/**
97 * blk_queue_flag_test_and_set - atomically test and set a queue flag
98 * @flag: flag to be set
99 * @q: request queue
100 *
101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
102 * the flag was already set.
103 */
104bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105{
57d74df9 106 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
107}
108EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109
e47bc4ed
CK
110#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
111static const char *const blk_op_name[] = {
112 REQ_OP_NAME(READ),
113 REQ_OP_NAME(WRITE),
114 REQ_OP_NAME(FLUSH),
115 REQ_OP_NAME(DISCARD),
116 REQ_OP_NAME(SECURE_ERASE),
117 REQ_OP_NAME(ZONE_RESET),
6e33dbf2 118 REQ_OP_NAME(ZONE_RESET_ALL),
6c1b1da5
AJ
119 REQ_OP_NAME(ZONE_OPEN),
120 REQ_OP_NAME(ZONE_CLOSE),
121 REQ_OP_NAME(ZONE_FINISH),
0512a75b 122 REQ_OP_NAME(ZONE_APPEND),
e47bc4ed 123 REQ_OP_NAME(WRITE_ZEROES),
e47bc4ed
CK
124 REQ_OP_NAME(DRV_IN),
125 REQ_OP_NAME(DRV_OUT),
126};
127#undef REQ_OP_NAME
128
129/**
130 * blk_op_str - Return string XXX in the REQ_OP_XXX.
131 * @op: REQ_OP_XXX.
132 *
133 * Description: Centralize block layer function to convert REQ_OP_XXX into
134 * string format. Useful in the debugging and tracing bio or request. For
135 * invalid REQ_OP_XXX it returns string "UNKNOWN".
136 */
77e7ffd7 137inline const char *blk_op_str(enum req_op op)
e47bc4ed
CK
138{
139 const char *op_str = "UNKNOWN";
140
141 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
142 op_str = blk_op_name[op];
143
144 return op_str;
145}
146EXPORT_SYMBOL_GPL(blk_op_str);
147
2a842aca
CH
148static const struct {
149 int errno;
150 const char *name;
151} blk_errors[] = {
152 [BLK_STS_OK] = { 0, "" },
153 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
154 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
155 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
156 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
157 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
7ba15083 158 [BLK_STS_RESV_CONFLICT] = { -EBADE, "reservation conflict" },
2a842aca
CH
159 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
160 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
161 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 162 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 163 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
7d32c027 164 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
2a842aca 165
4e4cbee9
CH
166 /* device mapper special case, should not leak out: */
167 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
168
3b481d91
KB
169 /* zone device specific errors */
170 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
171 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
172
dffc480d
DLM
173 /* Command duration limit device-side timeout */
174 [BLK_STS_DURATION_LIMIT] = { -ETIME, "duration limit exceeded" },
175
2a842aca
CH
176 /* everything else not covered above: */
177 [BLK_STS_IOERR] = { -EIO, "I/O" },
178};
179
180blk_status_t errno_to_blk_status(int errno)
181{
182 int i;
183
184 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
185 if (blk_errors[i].errno == errno)
186 return (__force blk_status_t)i;
187 }
188
189 return BLK_STS_IOERR;
190}
191EXPORT_SYMBOL_GPL(errno_to_blk_status);
192
193int blk_status_to_errno(blk_status_t status)
194{
195 int idx = (__force int)status;
196
34bd9c1c 197 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
198 return -EIO;
199 return blk_errors[idx].errno;
200}
201EXPORT_SYMBOL_GPL(blk_status_to_errno);
202
0d7a29a2 203const char *blk_status_to_str(blk_status_t status)
2a842aca
CH
204{
205 int idx = (__force int)status;
206
34bd9c1c 207 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
0d7a29a2
CH
208 return "<null>";
209 return blk_errors[idx].name;
2a842aca
CH
210}
211
1da177e4
LT
212/**
213 * blk_sync_queue - cancel any pending callbacks on a queue
214 * @q: the queue
215 *
216 * Description:
217 * The block layer may perform asynchronous callback activity
218 * on a queue, such as calling the unplug function after a timeout.
219 * A block device may call blk_sync_queue to ensure that any
220 * such activity is cancelled, thus allowing it to release resources
59c51591 221 * that the callbacks might use. The caller must already have made sure
c62b37d9 222 * that its ->submit_bio will not re-add plugging prior to calling
1da177e4
LT
223 * this function.
224 *
da527770 225 * This function does not cancel any asynchronous activity arising
da3dae54 226 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 227 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 228 *
1da177e4
LT
229 */
230void blk_sync_queue(struct request_queue *q)
231{
70ed28b9 232 del_timer_sync(&q->timeout);
4e9b6f20 233 cancel_work_sync(&q->timeout_work);
1da177e4
LT
234}
235EXPORT_SYMBOL(blk_sync_queue);
236
c9254f2d 237/**
cd84a62e 238 * blk_set_pm_only - increment pm_only counter
c9254f2d 239 * @q: request queue pointer
c9254f2d 240 */
cd84a62e 241void blk_set_pm_only(struct request_queue *q)
c9254f2d 242{
cd84a62e 243 atomic_inc(&q->pm_only);
c9254f2d 244}
cd84a62e 245EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 246
cd84a62e 247void blk_clear_pm_only(struct request_queue *q)
c9254f2d 248{
cd84a62e
BVA
249 int pm_only;
250
251 pm_only = atomic_dec_return(&q->pm_only);
252 WARN_ON_ONCE(pm_only < 0);
253 if (pm_only == 0)
254 wake_up_all(&q->mq_freeze_wq);
c9254f2d 255}
cd84a62e 256EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 257
2bd85221
CH
258static void blk_free_queue_rcu(struct rcu_head *rcu_head)
259{
d36a9ea5
ML
260 struct request_queue *q = container_of(rcu_head,
261 struct request_queue, rcu_head);
262
263 percpu_ref_exit(&q->q_usage_counter);
264 kmem_cache_free(blk_requestq_cachep, q);
2bd85221
CH
265}
266
267static void blk_free_queue(struct request_queue *q)
268{
2bd85221 269 blk_free_queue_stats(q->stats);
2bd85221
CH
270 if (queue_is_mq(q))
271 blk_mq_release(q);
272
273 ida_free(&blk_queue_ida, q->id);
274 call_rcu(&q->rcu_head, blk_free_queue_rcu);
275}
276
b5bd357c
LC
277/**
278 * blk_put_queue - decrement the request_queue refcount
279 * @q: the request_queue structure to decrement the refcount for
280 *
2bd85221
CH
281 * Decrements the refcount of the request_queue and free it when the refcount
282 * reaches 0.
b5bd357c 283 */
165125e1 284void blk_put_queue(struct request_queue *q)
483f4afc 285{
2bd85221
CH
286 if (refcount_dec_and_test(&q->refs))
287 blk_free_queue(q);
483f4afc 288}
d86e0e83 289EXPORT_SYMBOL(blk_put_queue);
483f4afc 290
8e141f9e 291void blk_queue_start_drain(struct request_queue *q)
aed3ea94 292{
d3cfb2a0
ML
293 /*
294 * When queue DYING flag is set, we need to block new req
295 * entering queue, so we call blk_freeze_queue_start() to
296 * prevent I/O from crossing blk_queue_enter().
297 */
298 blk_freeze_queue_start(q);
344e9ffc 299 if (queue_is_mq(q))
aed3ea94 300 blk_mq_wake_waiters(q);
055f6e18
ML
301 /* Make blk_queue_enter() reexamine the DYING flag. */
302 wake_up_all(&q->mq_freeze_wq);
aed3ea94 303}
8e141f9e 304
3a0a5299
BVA
305/**
306 * blk_queue_enter() - try to increase q->q_usage_counter
307 * @q: request queue pointer
a4d34da7 308 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
3a0a5299 309 */
9a95e4ef 310int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 311{
a4d34da7 312 const bool pm = flags & BLK_MQ_REQ_PM;
3a0a5299 313
1f14a098 314 while (!blk_try_enter_queue(q, pm)) {
3a0a5299 315 if (flags & BLK_MQ_REQ_NOWAIT)
56f99b8d 316 return -EAGAIN;
3ef28e83 317
5ed61d3f 318 /*
1f14a098
CH
319 * read pair of barrier in blk_freeze_queue_start(), we need to
320 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
321 * reading .mq_freeze_depth or queue dying flag, otherwise the
322 * following wait may never return if the two reads are
323 * reordered.
5ed61d3f
ML
324 */
325 smp_rmb();
1dc3039b 326 wait_event(q->mq_freeze_wq,
7996a8b5 327 (!q->mq_freeze_depth &&
52abca64 328 blk_pm_resume_queue(pm, q)) ||
1dc3039b 329 blk_queue_dying(q));
3ef28e83
DW
330 if (blk_queue_dying(q))
331 return -ENODEV;
3ef28e83 332 }
1f14a098
CH
333
334 return 0;
3ef28e83
DW
335}
336
c98cb5bb 337int __bio_queue_enter(struct request_queue *q, struct bio *bio)
accea322 338{
a6741536 339 while (!blk_try_enter_queue(q, false)) {
eab4e027
PB
340 struct gendisk *disk = bio->bi_bdev->bd_disk;
341
a6741536 342 if (bio->bi_opf & REQ_NOWAIT) {
8e141f9e 343 if (test_bit(GD_DEAD, &disk->state))
a6741536 344 goto dead;
accea322 345 bio_wouldblock_error(bio);
56f99b8d 346 return -EAGAIN;
a6741536
CH
347 }
348
349 /*
350 * read pair of barrier in blk_freeze_queue_start(), we need to
351 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
352 * reading .mq_freeze_depth or queue dying flag, otherwise the
353 * following wait may never return if the two reads are
354 * reordered.
355 */
356 smp_rmb();
357 wait_event(q->mq_freeze_wq,
358 (!q->mq_freeze_depth &&
359 blk_pm_resume_queue(false, q)) ||
8e141f9e
CH
360 test_bit(GD_DEAD, &disk->state));
361 if (test_bit(GD_DEAD, &disk->state))
a6741536 362 goto dead;
accea322
CH
363 }
364
a6741536
CH
365 return 0;
366dead:
367 bio_io_error(bio);
368 return -ENODEV;
accea322
CH
369}
370
3ef28e83
DW
371void blk_queue_exit(struct request_queue *q)
372{
373 percpu_ref_put(&q->q_usage_counter);
374}
375
376static void blk_queue_usage_counter_release(struct percpu_ref *ref)
377{
378 struct request_queue *q =
379 container_of(ref, struct request_queue, q_usage_counter);
380
381 wake_up_all(&q->mq_freeze_wq);
382}
383
bca237a5 384static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 385{
bca237a5 386 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
387
388 kblockd_schedule_work(&q->timeout_work);
389}
390
2e3c18d0
TH
391static void blk_timeout_work(struct work_struct *work)
392{
393}
394
80bd4a7a 395struct request_queue *blk_alloc_queue(int node_id)
1946089a 396{
165125e1 397 struct request_queue *q;
1946089a 398
80bd4a7a
CH
399 q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
400 node_id);
1da177e4
LT
401 if (!q)
402 return NULL;
403
cbf62af3 404 q->last_merge = NULL;
cbf62af3 405
798f2a6f 406 q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
a73f730d 407 if (q->id < 0)
80bd4a7a 408 goto fail_q;
a73f730d 409
a83b576c
JA
410 q->stats = blk_alloc_queue_stats();
411 if (!q->stats)
46754bd0 412 goto fail_id;
a83b576c 413
5151412d 414 q->node = node_id;
0989a025 415
079a2e3e 416 atomic_set(&q->nr_active_requests_shared_tags, 0);
bccf5e26 417
bca237a5 418 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
2e3c18d0 419 INIT_WORK(&q->timeout_work, blk_timeout_work);
a612fddf 420 INIT_LIST_HEAD(&q->icq_list);
483f4afc 421
2bd85221 422 refcount_set(&q->refs, 1);
85e0cbbb 423 mutex_init(&q->debugfs_mutex);
483f4afc 424 mutex_init(&q->sysfs_lock);
cecf5d87 425 mutex_init(&q->sysfs_dir_lock);
a13bd91b 426 mutex_init(&q->rq_qos_mutex);
0d945c1f 427 spin_lock_init(&q->queue_lock);
c94a96ac 428
320ae51f 429 init_waitqueue_head(&q->mq_freeze_wq);
7996a8b5 430 mutex_init(&q->mq_freeze_lock);
320ae51f 431
3ef28e83
DW
432 /*
433 * Init percpu_ref in atomic mode so that it's faster to shutdown.
434 * See blk_register_queue() for details.
435 */
436 if (percpu_ref_init(&q->q_usage_counter,
437 blk_queue_usage_counter_release,
438 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
edb0872f 439 goto fail_stats;
f51b802c 440
3d745ea5 441 blk_set_default_limits(&q->limits);
d2a27964 442 q->nr_requests = BLKDEV_DEFAULT_RQ;
3d745ea5 443
1da177e4 444 return q;
a73f730d 445
a83b576c 446fail_stats:
edb0872f 447 blk_free_queue_stats(q->stats);
a73f730d 448fail_id:
798f2a6f 449 ida_free(&blk_queue_ida, q->id);
a73f730d 450fail_q:
80bd4a7a 451 kmem_cache_free(blk_requestq_cachep, q);
a73f730d 452 return NULL;
1da177e4 453}
1da177e4 454
b5bd357c
LC
455/**
456 * blk_get_queue - increment the request_queue refcount
457 * @q: the request_queue structure to increment the refcount for
458 *
459 * Increment the refcount of the request_queue kobject.
763b5892
LC
460 *
461 * Context: Any context.
b5bd357c 462 */
09ac46c4 463bool blk_get_queue(struct request_queue *q)
1da177e4 464{
828b5f01
CH
465 if (unlikely(blk_queue_dying(q)))
466 return false;
2bd85221 467 refcount_inc(&q->refs);
828b5f01 468 return true;
1da177e4 469}
d86e0e83 470EXPORT_SYMBOL(blk_get_queue);
1da177e4 471
c17bb495
AM
472#ifdef CONFIG_FAIL_MAKE_REQUEST
473
474static DECLARE_FAULT_ATTR(fail_make_request);
475
476static int __init setup_fail_make_request(char *str)
477{
478 return setup_fault_attr(&fail_make_request, str);
479}
480__setup("fail_make_request=", setup_fail_make_request);
481
06c8c691 482bool should_fail_request(struct block_device *part, unsigned int bytes)
c17bb495 483{
8446fe92 484 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
485}
486
487static int __init fail_make_request_debugfs(void)
488{
dd48c085
AM
489 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
490 NULL, &fail_make_request);
491
21f9fcd8 492 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
493}
494
495late_initcall(fail_make_request_debugfs);
c17bb495
AM
496#endif /* CONFIG_FAIL_MAKE_REQUEST */
497
bdb7d420 498static inline void bio_check_ro(struct bio *bio)
721c7fc7 499{
2f9f6221 500 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
8b2ded1c 501 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
bdb7d420 502 return;
57e95e46
CH
503 pr_warn("Trying to write to read-only block-device %pg\n",
504 bio->bi_bdev);
a32e236e 505 /* Older lvm-tools actually trigger this */
721c7fc7 506 }
721c7fc7
ID
507}
508
30abb3a6
HM
509static noinline int should_fail_bio(struct bio *bio)
510{
309dca30 511 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
30abb3a6
HM
512 return -EIO;
513 return 0;
514}
515ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
516
52c5e62d
CH
517/*
518 * Check whether this bio extends beyond the end of the device or partition.
519 * This may well happen - the kernel calls bread() without checking the size of
520 * the device, e.g., when mounting a file system.
521 */
2f9f6221 522static inline int bio_check_eod(struct bio *bio)
52c5e62d 523{
2f9f6221 524 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
52c5e62d
CH
525 unsigned int nr_sectors = bio_sectors(bio);
526
3eb96946 527 if (nr_sectors &&
52c5e62d
CH
528 (nr_sectors > maxsector ||
529 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
ad740780 530 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
069adbac
CH
531 "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
532 current->comm, bio->bi_bdev, bio->bi_opf,
533 bio->bi_iter.bi_sector, nr_sectors, maxsector);
52c5e62d
CH
534 return -EIO;
535 }
536 return 0;
537}
538
74d46992
CH
539/*
540 * Remap block n of partition p to block n+start(p) of the disk.
541 */
2f9f6221 542static int blk_partition_remap(struct bio *bio)
74d46992 543{
309dca30 544 struct block_device *p = bio->bi_bdev;
74d46992 545
52c5e62d 546 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2f9f6221 547 return -EIO;
5eac3eb3 548 if (bio_sectors(bio)) {
8446fe92 549 bio->bi_iter.bi_sector += p->bd_start_sect;
1c02fca6 550 trace_block_bio_remap(bio, p->bd_dev,
29ff57c6 551 bio->bi_iter.bi_sector -
8446fe92 552 p->bd_start_sect);
52c5e62d 553 }
30c5d345 554 bio_set_flag(bio, BIO_REMAPPED);
2f9f6221 555 return 0;
74d46992
CH
556}
557
0512a75b
KB
558/*
559 * Check write append to a zoned block device.
560 */
561static inline blk_status_t blk_check_zone_append(struct request_queue *q,
562 struct bio *bio)
563{
0512a75b
KB
564 int nr_sectors = bio_sectors(bio);
565
566 /* Only applicable to zoned block devices */
edd1dbc8 567 if (!bdev_is_zoned(bio->bi_bdev))
0512a75b
KB
568 return BLK_STS_NOTSUPP;
569
570 /* The bio sector must point to the start of a sequential zone */
e29b2100 571 if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector) ||
052e545c 572 !bio_zone_is_seq(bio))
0512a75b
KB
573 return BLK_STS_IOERR;
574
575 /*
576 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
577 * split and could result in non-contiguous sectors being written in
578 * different zones.
579 */
580 if (nr_sectors > q->limits.chunk_sectors)
581 return BLK_STS_IOERR;
582
583 /* Make sure the BIO is small enough and will not get split */
584 if (nr_sectors > q->limits.max_zone_append_sectors)
585 return BLK_STS_IOERR;
586
587 bio->bi_opf |= REQ_NOMERGE;
588
589 return BLK_STS_OK;
590}
591
900e0807
JA
592static void __submit_bio(struct bio *bio)
593{
7f36b7d0
ML
594 if (unlikely(!blk_crypto_bio_prep(&bio)))
595 return;
596
9f4107b0 597 if (!bio->bi_bdev->bd_has_submit_bio) {
3e08773c 598 blk_mq_submit_bio(bio);
7f36b7d0 599 } else if (likely(bio_queue_enter(bio) == 0)) {
9f4107b0
JA
600 struct gendisk *disk = bio->bi_bdev->bd_disk;
601
7f36b7d0
ML
602 disk->fops->submit_bio(bio);
603 blk_queue_exit(disk->queue);
604 }
ac7c5675
CH
605}
606
566acf2d
CH
607/*
608 * The loop in this function may be a bit non-obvious, and so deserves some
609 * explanation:
610 *
611 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
612 * that), so we have a list with a single bio.
613 * - We pretend that we have just taken it off a longer list, so we assign
614 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
615 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
616 * bios through a recursive call to submit_bio_noacct. If it did, we find a
617 * non-NULL value in bio_list and re-enter the loop from the top.
618 * - In this case we really did just take the bio of the top of the list (no
619 * pretending) and so remove it from bio_list, and call into ->submit_bio()
620 * again.
621 *
622 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
623 * bio_list_on_stack[1] contains bios that were submitted before the current
69fe0f29 624 * ->submit_bio, but that haven't been processed yet.
566acf2d 625 */
3e08773c 626static void __submit_bio_noacct(struct bio *bio)
566acf2d
CH
627{
628 struct bio_list bio_list_on_stack[2];
566acf2d
CH
629
630 BUG_ON(bio->bi_next);
631
632 bio_list_init(&bio_list_on_stack[0]);
633 current->bio_list = bio_list_on_stack;
634
635 do {
eab4e027 636 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
566acf2d
CH
637 struct bio_list lower, same;
638
566acf2d
CH
639 /*
640 * Create a fresh bio_list for all subordinate requests.
641 */
642 bio_list_on_stack[1] = bio_list_on_stack[0];
643 bio_list_init(&bio_list_on_stack[0]);
644
3e08773c 645 __submit_bio(bio);
566acf2d
CH
646
647 /*
648 * Sort new bios into those for a lower level and those for the
649 * same level.
650 */
651 bio_list_init(&lower);
652 bio_list_init(&same);
653 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
eab4e027 654 if (q == bdev_get_queue(bio->bi_bdev))
566acf2d
CH
655 bio_list_add(&same, bio);
656 else
657 bio_list_add(&lower, bio);
658
659 /*
660 * Now assemble so we handle the lowest level first.
661 */
662 bio_list_merge(&bio_list_on_stack[0], &lower);
663 bio_list_merge(&bio_list_on_stack[0], &same);
664 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
665 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
666
667 current->bio_list = NULL;
566acf2d
CH
668}
669
3e08773c 670static void __submit_bio_noacct_mq(struct bio *bio)
ff93ea0c 671{
7c792f33 672 struct bio_list bio_list[2] = { };
ff93ea0c 673
7c792f33 674 current->bio_list = bio_list;
ff93ea0c
CH
675
676 do {
3e08773c 677 __submit_bio(bio);
7c792f33 678 } while ((bio = bio_list_pop(&bio_list[0])));
ff93ea0c
CH
679
680 current->bio_list = NULL;
ff93ea0c
CH
681}
682
3f98c753 683void submit_bio_noacct_nocheck(struct bio *bio)
d89d8796 684{
0f7c8f0f
JH
685 blk_cgroup_bio_start(bio);
686 blkcg_bio_issue_init(bio);
687
688 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
689 trace_block_bio_queue(bio);
690 /*
691 * Now that enqueuing has been traced, we need to trace
692 * completion as well.
693 */
694 bio_set_flag(bio, BIO_TRACE_COMPLETION);
695 }
696
27a84d54 697 /*
566acf2d
CH
698 * We only want one ->submit_bio to be active at a time, else stack
699 * usage with stacked devices could be a problem. Use current->bio_list
700 * to collect a list of requests submited by a ->submit_bio method while
701 * it is active, and then process them after it returned.
27a84d54 702 */
3e08773c 703 if (current->bio_list)
f5fe1b51 704 bio_list_add(&current->bio_list[0], bio);
9f4107b0 705 else if (!bio->bi_bdev->bd_has_submit_bio)
3e08773c
CH
706 __submit_bio_noacct_mq(bio);
707 else
708 __submit_bio_noacct(bio);
d89d8796 709}
3f98c753
ML
710
711/**
712 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
713 * @bio: The bio describing the location in memory and on the device.
714 *
715 * This is a version of submit_bio() that shall only be used for I/O that is
716 * resubmitted to lower level drivers by stacking block drivers. All file
717 * systems and other upper level users of the block layer should use
718 * submit_bio() instead.
719 */
720void submit_bio_noacct(struct bio *bio)
1da177e4 721{
309dca30 722 struct block_device *bdev = bio->bi_bdev;
eab4e027 723 struct request_queue *q = bdev_get_queue(bdev);
4e4cbee9 724 blk_status_t status = BLK_STS_IOERR;
5a473e83 725 struct blk_plug *plug;
1da177e4
LT
726
727 might_sleep();
1da177e4 728
6deacb3b 729 plug = blk_mq_plug(bio);
5a473e83
JA
730 if (plug && plug->nowait)
731 bio->bi_opf |= REQ_NOWAIT;
732
03a07c92 733 /*
b0beb280 734 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
021a2446 735 * if queue does not support NOWAIT.
03a07c92 736 */
568ec936 737 if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
b0beb280 738 goto not_supported;
03a07c92 739
30abb3a6 740 if (should_fail_bio(bio))
5a7bbad2 741 goto end_io;
bdb7d420 742 bio_check_ro(bio);
3a905c37
CH
743 if (!bio_flagged(bio, BIO_REMAPPED)) {
744 if (unlikely(bio_check_eod(bio)))
745 goto end_io;
746 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
747 goto end_io;
748 }
2056a782 749
5a7bbad2 750 /*
ed00aabd
CH
751 * Filter flush bio's early so that bio based drivers without flush
752 * support don't have to worry about them.
5a7bbad2 753 */
b4a6bb3a
CH
754 if (op_is_flush(bio->bi_opf)) {
755 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
756 bio_op(bio) != REQ_OP_ZONE_APPEND))
51fd77bd 757 goto end_io;
b4a6bb3a
CH
758 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
759 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
760 if (!bio_sectors(bio)) {
761 status = BLK_STS_OK;
762 goto end_io;
763 }
51fd77bd 764 }
5a7bbad2 765 }
5ddfe969 766
d04c406f 767 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
6ce913fe 768 bio_clear_polled(bio);
d04c406f 769
288dab8a
CH
770 switch (bio_op(bio)) {
771 case REQ_OP_DISCARD:
70200574 772 if (!bdev_max_discard_sectors(bdev))
288dab8a
CH
773 goto not_supported;
774 break;
775 case REQ_OP_SECURE_ERASE:
44abff2c 776 if (!bdev_max_secure_erase_sectors(bdev))
288dab8a
CH
777 goto not_supported;
778 break;
0512a75b
KB
779 case REQ_OP_ZONE_APPEND:
780 status = blk_check_zone_append(q, bio);
781 if (status != BLK_STS_OK)
782 goto end_io;
783 break;
2d253440 784 case REQ_OP_ZONE_RESET:
6c1b1da5
AJ
785 case REQ_OP_ZONE_OPEN:
786 case REQ_OP_ZONE_CLOSE:
787 case REQ_OP_ZONE_FINISH:
edd1dbc8 788 if (!bdev_is_zoned(bio->bi_bdev))
2d253440 789 goto not_supported;
288dab8a 790 break;
6e33dbf2 791 case REQ_OP_ZONE_RESET_ALL:
edd1dbc8 792 if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q))
6e33dbf2
CK
793 goto not_supported;
794 break;
a6f0788e 795 case REQ_OP_WRITE_ZEROES:
74d46992 796 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
797 goto not_supported;
798 break;
288dab8a
CH
799 default:
800 break;
5a7bbad2 801 }
01edede4 802
b781d8db 803 if (blk_throtl_bio(bio))
3f98c753
ML
804 return;
805 submit_bio_noacct_nocheck(bio);
d24c670e 806 return;
a7384677 807
288dab8a 808not_supported:
4e4cbee9 809 status = BLK_STS_NOTSUPP;
a7384677 810end_io:
4e4cbee9 811 bio->bi_status = status;
4246a0b6 812 bio_endio(bio);
d89d8796 813}
ed00aabd 814EXPORT_SYMBOL(submit_bio_noacct);
1da177e4
LT
815
816/**
710027a4 817 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
818 * @bio: The &struct bio which describes the I/O
819 *
3fdd4086
CH
820 * submit_bio() is used to submit I/O requests to block devices. It is passed a
821 * fully set up &struct bio that describes the I/O that needs to be done. The
309dca30 822 * bio will be send to the device described by the bi_bdev field.
1da177e4 823 *
3fdd4086
CH
824 * The success/failure status of the request, along with notification of
825 * completion, is delivered asynchronously through the ->bi_end_io() callback
e8848087 826 * in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has
3fdd4086 827 * been called.
1da177e4 828 */
3e08773c 829void submit_bio(struct bio *bio)
1da177e4 830{
a3e7689b
CH
831 if (bio_op(bio) == REQ_OP_READ) {
832 task_io_account_read(bio->bi_iter.bi_size);
833 count_vm_events(PGPGIN, bio_sectors(bio));
834 } else if (bio_op(bio) == REQ_OP_WRITE) {
835 count_vm_events(PGPGOUT, bio_sectors(bio));
1da177e4
LT
836 }
837
3e08773c 838 submit_bio_noacct(bio);
1da177e4 839}
1da177e4
LT
840EXPORT_SYMBOL(submit_bio);
841
3e08773c
CH
842/**
843 * bio_poll - poll for BIO completions
844 * @bio: bio to poll for
e30028ac 845 * @iob: batches of IO
3e08773c
CH
846 * @flags: BLK_POLL_* flags that control the behavior
847 *
848 * Poll for completions on queue associated with the bio. Returns number of
849 * completed entries found.
850 *
851 * Note: the caller must either be the context that submitted @bio, or
852 * be in a RCU critical section to prevent freeing of @bio.
853 */
5a72e899 854int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
3e08773c 855{
3e08773c 856 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
310726c3
JA
857 struct block_device *bdev;
858 struct request_queue *q;
69fe0f29 859 int ret = 0;
3e08773c 860
310726c3
JA
861 bdev = READ_ONCE(bio->bi_bdev);
862 if (!bdev)
863 return 0;
864
865 q = bdev_get_queue(bdev);
3e08773c
CH
866 if (cookie == BLK_QC_T_NONE ||
867 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
868 return 0;
869
110fdb44
PR
870 /*
871 * As the requests that require a zone lock are not plugged in the
872 * first place, directly accessing the plug instead of using
873 * blk_mq_plug() should not have any consequences during flushing for
874 * zoned devices.
875 */
aa8dccca 876 blk_flush_plug(current->plug, false);
3e08773c 877
33391eec
JA
878 /*
879 * We need to be able to enter a frozen queue, similar to how
880 * timeouts also need to do that. If that is blocked, then we can
881 * have pending IO when a queue freeze is started, and then the
882 * wait for the freeze to finish will wait for polled requests to
883 * timeout as the poller is preventer from entering the queue and
884 * completing them. As long as we prevent new IO from being queued,
885 * that should be all that matters.
886 */
887 if (!percpu_ref_tryget(&q->q_usage_counter))
3e08773c 888 return 0;
69fe0f29 889 if (queue_is_mq(q)) {
5a72e899 890 ret = blk_mq_poll(q, cookie, iob, flags);
69fe0f29
ML
891 } else {
892 struct gendisk *disk = q->disk;
893
894 if (disk && disk->fops->poll_bio)
895 ret = disk->fops->poll_bio(bio, iob, flags);
896 }
3e08773c
CH
897 blk_queue_exit(q);
898 return ret;
899}
900EXPORT_SYMBOL_GPL(bio_poll);
901
902/*
903 * Helper to implement file_operations.iopoll. Requires the bio to be stored
904 * in iocb->private, and cleared before freeing the bio.
905 */
5a72e899
JA
906int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
907 unsigned int flags)
3e08773c
CH
908{
909 struct bio *bio;
910 int ret = 0;
911
912 /*
913 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
914 * point to a freshly allocated bio at this point. If that happens
915 * we have a few cases to consider:
916 *
917 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
918 * simply nothing in this case
919 * 2) the bio points to a not poll enabled device. bio_poll will catch
920 * this and return 0
921 * 3) the bio points to a poll capable device, including but not
922 * limited to the one that the original bio pointed to. In this
923 * case we will call into the actual poll method and poll for I/O,
924 * even if we don't need to, but it won't cause harm either.
925 *
926 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
927 * is still allocated. Because partitions hold a reference to the whole
928 * device bdev and thus disk, the disk is also still valid. Grabbing
929 * a reference to the queue in bio_poll() ensures the hctxs and requests
930 * are still valid as well.
931 */
932 rcu_read_lock();
933 bio = READ_ONCE(kiocb->private);
310726c3 934 if (bio)
5a72e899 935 ret = bio_poll(bio, iob, flags);
3e08773c
CH
936 rcu_read_unlock();
937
938 return ret;
939}
940EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
941
450b7879 942void update_io_ticks(struct block_device *part, unsigned long now, bool end)
9123bf6f
CH
943{
944 unsigned long stamp;
945again:
8446fe92 946 stamp = READ_ONCE(part->bd_stamp);
d80c228d 947 if (unlikely(time_after(now, stamp))) {
939f9dd0 948 if (likely(try_cmpxchg(&part->bd_stamp, &stamp, now)))
9123bf6f
CH
949 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
950 }
8446fe92
CH
951 if (part->bd_partno) {
952 part = bdev_whole(part);
9123bf6f
CH
953 goto again;
954 }
955}
956
5f275713 957unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
5f0614a5 958 unsigned long start_time)
956d510e 959{
956d510e 960 part_stat_lock();
5f0614a5 961 update_io_ticks(bdev, start_time, false);
5f0614a5 962 part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
956d510e 963 part_stat_unlock();
320ae51f 964
e45c47d1
MS
965 return start_time;
966}
5f0614a5 967EXPORT_SYMBOL(bdev_start_io_acct);
e45c47d1 968
99dfc43e
CH
969/**
970 * bio_start_io_acct - start I/O accounting for bio based drivers
971 * @bio: bio to start account for
972 *
973 * Returns the start time that should be passed back to bio_end_io_acct().
974 */
975unsigned long bio_start_io_acct(struct bio *bio)
7b26410b 976{
5f275713 977 return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
7b26410b 978}
99dfc43e 979EXPORT_SYMBOL_GPL(bio_start_io_acct);
7b26410b 980
77e7ffd7 981void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
5f275713 982 unsigned int sectors, unsigned long start_time)
956d510e 983{
956d510e
CH
984 const int sgrp = op_stat_group(op);
985 unsigned long now = READ_ONCE(jiffies);
986 unsigned long duration = now - start_time;
5b18b5a7 987
956d510e 988 part_stat_lock();
5f0614a5 989 update_io_ticks(bdev, now, true);
5f275713
YK
990 part_stat_inc(bdev, ios[sgrp]);
991 part_stat_add(bdev, sectors[sgrp], sectors);
5f0614a5
ML
992 part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
993 part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
320ae51f
JA
994 part_stat_unlock();
995}
5f0614a5 996EXPORT_SYMBOL(bdev_end_io_acct);
7b26410b 997
99dfc43e 998void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
5f0614a5 999 struct block_device *orig_bdev)
7b26410b 1000{
5f275713 1001 bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
7b26410b 1002}
99dfc43e 1003EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
7b26410b 1004
ef9e3fac
KU
1005/**
1006 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1007 * @q : the queue of the device being checked
1008 *
1009 * Description:
1010 * Check if underlying low-level drivers of a device are busy.
1011 * If the drivers want to export their busy state, they must set own
1012 * exporting function using blk_queue_lld_busy() first.
1013 *
1014 * Basically, this function is used only by request stacking drivers
1015 * to stop dispatching requests to underlying devices when underlying
1016 * devices are busy. This behavior helps more I/O merging on the queue
1017 * of the request stacking driver and prevents I/O throughput regression
1018 * on burst I/O load.
1019 *
1020 * Return:
1021 * 0 - Not busy (The request stacking driver should dispatch request)
1022 * 1 - Busy (The request stacking driver should stop dispatching request)
1023 */
1024int blk_lld_busy(struct request_queue *q)
1025{
344e9ffc 1026 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1027 return q->mq_ops->busy(q);
ef9e3fac
KU
1028
1029 return 0;
1030}
1031EXPORT_SYMBOL_GPL(blk_lld_busy);
1032
59c3d45e 1033int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1034{
1035 return queue_work(kblockd_workqueue, work);
1036}
1da177e4
LT
1037EXPORT_SYMBOL(kblockd_schedule_work);
1038
818cd1cb
JA
1039int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1040 unsigned long delay)
1041{
1042 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1043}
1044EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1045
47c122e3
JA
1046void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1047{
1048 struct task_struct *tsk = current;
1049
1050 /*
1051 * If this is a nested plug, don't actually assign it.
1052 */
1053 if (tsk->plug)
1054 return;
1055
bc490f81 1056 plug->mq_list = NULL;
47c122e3
JA
1057 plug->cached_rq = NULL;
1058 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1059 plug->rq_count = 0;
1060 plug->multiple_queues = false;
dc5fc361 1061 plug->has_elevator = false;
47c122e3
JA
1062 plug->nowait = false;
1063 INIT_LIST_HEAD(&plug->cb_list);
1064
1065 /*
1066 * Store ordering should not be needed here, since a potential
1067 * preempt will imply a full memory barrier
1068 */
1069 tsk->plug = plug;
1070}
1071
75df7136
SJ
1072/**
1073 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1074 * @plug: The &struct blk_plug that needs to be initialized
1075 *
1076 * Description:
40405851
JM
1077 * blk_start_plug() indicates to the block layer an intent by the caller
1078 * to submit multiple I/O requests in a batch. The block layer may use
1079 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1080 * is called. However, the block layer may choose to submit requests
1081 * before a call to blk_finish_plug() if the number of queued I/Os
1082 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1083 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1084 * the task schedules (see below).
1085 *
75df7136
SJ
1086 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1087 * pending I/O should the task end up blocking between blk_start_plug() and
1088 * blk_finish_plug(). This is important from a performance perspective, but
1089 * also ensures that we don't deadlock. For instance, if the task is blocking
1090 * for a memory allocation, memory reclaim could end up wanting to free a
1091 * page belonging to that request that is currently residing in our private
1092 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1093 * this kind of deadlock.
1094 */
73c10101
JA
1095void blk_start_plug(struct blk_plug *plug)
1096{
47c122e3 1097 blk_start_plug_nr_ios(plug, 1);
73c10101
JA
1098}
1099EXPORT_SYMBOL(blk_start_plug);
1100
74018dc3 1101static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1102{
1103 LIST_HEAD(callbacks);
1104
2a7d5559
SL
1105 while (!list_empty(&plug->cb_list)) {
1106 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1107
2a7d5559
SL
1108 while (!list_empty(&callbacks)) {
1109 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1110 struct blk_plug_cb,
1111 list);
2a7d5559 1112 list_del(&cb->list);
74018dc3 1113 cb->callback(cb, from_schedule);
2a7d5559 1114 }
048c9374
N
1115 }
1116}
1117
9cbb1750
N
1118struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1119 int size)
1120{
1121 struct blk_plug *plug = current->plug;
1122 struct blk_plug_cb *cb;
1123
1124 if (!plug)
1125 return NULL;
1126
1127 list_for_each_entry(cb, &plug->cb_list, list)
1128 if (cb->callback == unplug && cb->data == data)
1129 return cb;
1130
1131 /* Not currently on the callback list */
1132 BUG_ON(size < sizeof(*cb));
1133 cb = kzalloc(size, GFP_ATOMIC);
1134 if (cb) {
1135 cb->data = data;
1136 cb->callback = unplug;
1137 list_add(&cb->list, &plug->cb_list);
1138 }
1139 return cb;
1140}
1141EXPORT_SYMBOL(blk_check_plugged);
1142
aa8dccca 1143void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
73c10101 1144{
b600455d
PB
1145 if (!list_empty(&plug->cb_list))
1146 flush_plug_callbacks(plug, from_schedule);
70904263 1147 blk_mq_flush_plug_list(plug, from_schedule);
c5fc7b93
JA
1148 /*
1149 * Unconditionally flush out cached requests, even if the unplug
1150 * event came from schedule. Since we know hold references to the
1151 * queue for cached requests, we don't want a blocked task holding
1152 * up a queue freeze/quiesce event.
1153 */
1154 if (unlikely(!rq_list_empty(plug->cached_rq)))
47c122e3 1155 blk_mq_free_plug_rqs(plug);
73c10101 1156}
73c10101 1157
40405851
JM
1158/**
1159 * blk_finish_plug - mark the end of a batch of submitted I/O
1160 * @plug: The &struct blk_plug passed to blk_start_plug()
1161 *
1162 * Description:
1163 * Indicate that a batch of I/O submissions is complete. This function
1164 * must be paired with an initial call to blk_start_plug(). The intent
1165 * is to allow the block layer to optimize I/O submission. See the
1166 * documentation for blk_start_plug() for more information.
1167 */
73c10101
JA
1168void blk_finish_plug(struct blk_plug *plug)
1169{
008f75a2 1170 if (plug == current->plug) {
aa8dccca 1171 __blk_flush_plug(plug, false);
008f75a2
CH
1172 current->plug = NULL;
1173 }
73c10101 1174}
88b996cd 1175EXPORT_SYMBOL(blk_finish_plug);
73c10101 1176
71ac860a
ML
1177void blk_io_schedule(void)
1178{
1179 /* Prevent hang_check timer from firing at us during very long I/O */
1180 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1181
1182 if (timeout)
1183 io_schedule_timeout(timeout);
1184 else
1185 io_schedule();
1186}
1187EXPORT_SYMBOL_GPL(blk_io_schedule);
1188
1da177e4
LT
1189int __init blk_dev_init(void)
1190{
16458cf3 1191 BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
ef295ecf 1192 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1193 sizeof_field(struct request, cmd_flags));
ef295ecf 1194 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1195 sizeof_field(struct bio, bi_opf));
9eb55b03 1196
89b90be2
TH
1197 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1198 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1199 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1200 if (!kblockd_workqueue)
1201 panic("Failed to create kblockd\n");
1202
c2789bd4 1203 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1204 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1205
18fbda91 1206 blk_debugfs_root = debugfs_create_dir("block", NULL);
18fbda91 1207
d38ecf93 1208 return 0;
1da177e4 1209}