block: don't declare submit_bio_checks in local header
[linux-block.git] / block / blk-core.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
1da177e4
LT
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
1da177e4
LT
15#include <linux/kernel.h>
16#include <linux/module.h>
1da177e4
LT
17#include <linux/bio.h>
18#include <linux/blkdev.h>
52abca64 19#include <linux/blk-pm.h>
fe45e630 20#include <linux/blk-integrity.h>
1da177e4
LT
21#include <linux/highmem.h>
22#include <linux/mm.h>
cee9a0c4 23#include <linux/pagemap.h>
1da177e4
LT
24#include <linux/kernel_stat.h>
25#include <linux/string.h>
26#include <linux/init.h>
1da177e4
LT
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
faccbd4b 31#include <linux/task_io_accounting_ops.h>
c17bb495 32#include <linux/fault-inject.h>
73c10101 33#include <linux/list_sort.h>
e3c78ca5 34#include <linux/delay.h>
aaf7c680 35#include <linux/ratelimit.h>
6c954667 36#include <linux/pm_runtime.h>
54d4e6ab 37#include <linux/t10-pi.h>
18fbda91 38#include <linux/debugfs.h>
30abb3a6 39#include <linux/bpf.h>
b8e24a93 40#include <linux/psi.h>
82d981d4 41#include <linux/part_stat.h>
71ac860a 42#include <linux/sched/sysctl.h>
a892c8d5 43#include <linux/blk-crypto.h>
55782138
LZ
44
45#define CREATE_TRACE_POINTS
46#include <trace/events/block.h>
1da177e4 47
8324aa91 48#include "blk.h"
2aa7745b 49#include "blk-mq-sched.h"
bca6b067 50#include "blk-pm.h"
672fdcf0 51#include "blk-cgroup.h"
a7b36ee6 52#include "blk-throttle.h"
8324aa91 53
18fbda91 54struct dentry *blk_debugfs_root;
18fbda91 55
d07335e5 56EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 57EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 58EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 59EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 60EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
b357e4a6 61EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
0bfc2455 62
a73f730d
TH
63DEFINE_IDA(blk_queue_ida);
64
1da177e4
LT
65/*
66 * For queue allocation
67 */
6728cb0e 68struct kmem_cache *blk_requestq_cachep;
704b914f 69struct kmem_cache *blk_requestq_srcu_cachep;
1da177e4 70
1da177e4
LT
71/*
72 * Controlling structure to kblockd
73 */
ff856bad 74static struct workqueue_struct *kblockd_workqueue;
1da177e4 75
8814ce8a
BVA
76/**
77 * blk_queue_flag_set - atomically set a queue flag
78 * @flag: flag to be set
79 * @q: request queue
80 */
81void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
82{
57d74df9 83 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
84}
85EXPORT_SYMBOL(blk_queue_flag_set);
86
87/**
88 * blk_queue_flag_clear - atomically clear a queue flag
89 * @flag: flag to be cleared
90 * @q: request queue
91 */
92void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
93{
57d74df9 94 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
95}
96EXPORT_SYMBOL(blk_queue_flag_clear);
97
98/**
99 * blk_queue_flag_test_and_set - atomically test and set a queue flag
100 * @flag: flag to be set
101 * @q: request queue
102 *
103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
104 * the flag was already set.
105 */
106bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
107{
57d74df9 108 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
109}
110EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
111
e47bc4ed
CK
112#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
113static const char *const blk_op_name[] = {
114 REQ_OP_NAME(READ),
115 REQ_OP_NAME(WRITE),
116 REQ_OP_NAME(FLUSH),
117 REQ_OP_NAME(DISCARD),
118 REQ_OP_NAME(SECURE_ERASE),
119 REQ_OP_NAME(ZONE_RESET),
6e33dbf2 120 REQ_OP_NAME(ZONE_RESET_ALL),
6c1b1da5
AJ
121 REQ_OP_NAME(ZONE_OPEN),
122 REQ_OP_NAME(ZONE_CLOSE),
123 REQ_OP_NAME(ZONE_FINISH),
0512a75b 124 REQ_OP_NAME(ZONE_APPEND),
e47bc4ed
CK
125 REQ_OP_NAME(WRITE_SAME),
126 REQ_OP_NAME(WRITE_ZEROES),
e47bc4ed
CK
127 REQ_OP_NAME(DRV_IN),
128 REQ_OP_NAME(DRV_OUT),
129};
130#undef REQ_OP_NAME
131
132/**
133 * blk_op_str - Return string XXX in the REQ_OP_XXX.
134 * @op: REQ_OP_XXX.
135 *
136 * Description: Centralize block layer function to convert REQ_OP_XXX into
137 * string format. Useful in the debugging and tracing bio or request. For
138 * invalid REQ_OP_XXX it returns string "UNKNOWN".
139 */
140inline const char *blk_op_str(unsigned int op)
141{
142 const char *op_str = "UNKNOWN";
143
144 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
145 op_str = blk_op_name[op];
146
147 return op_str;
148}
149EXPORT_SYMBOL_GPL(blk_op_str);
150
2a842aca
CH
151static const struct {
152 int errno;
153 const char *name;
154} blk_errors[] = {
155 [BLK_STS_OK] = { 0, "" },
156 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
157 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
158 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
159 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
160 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
161 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
162 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
163 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
164 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 165 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 166 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
7d32c027 167 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
2a842aca 168
4e4cbee9
CH
169 /* device mapper special case, should not leak out: */
170 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
171
3b481d91
KB
172 /* zone device specific errors */
173 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
174 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
175
2a842aca
CH
176 /* everything else not covered above: */
177 [BLK_STS_IOERR] = { -EIO, "I/O" },
178};
179
180blk_status_t errno_to_blk_status(int errno)
181{
182 int i;
183
184 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
185 if (blk_errors[i].errno == errno)
186 return (__force blk_status_t)i;
187 }
188
189 return BLK_STS_IOERR;
190}
191EXPORT_SYMBOL_GPL(errno_to_blk_status);
192
193int blk_status_to_errno(blk_status_t status)
194{
195 int idx = (__force int)status;
196
34bd9c1c 197 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
198 return -EIO;
199 return blk_errors[idx].errno;
200}
201EXPORT_SYMBOL_GPL(blk_status_to_errno);
202
0d7a29a2 203const char *blk_status_to_str(blk_status_t status)
2a842aca
CH
204{
205 int idx = (__force int)status;
206
34bd9c1c 207 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
0d7a29a2
CH
208 return "<null>";
209 return blk_errors[idx].name;
2a842aca
CH
210}
211
1da177e4
LT
212/**
213 * blk_sync_queue - cancel any pending callbacks on a queue
214 * @q: the queue
215 *
216 * Description:
217 * The block layer may perform asynchronous callback activity
218 * on a queue, such as calling the unplug function after a timeout.
219 * A block device may call blk_sync_queue to ensure that any
220 * such activity is cancelled, thus allowing it to release resources
59c51591 221 * that the callbacks might use. The caller must already have made sure
c62b37d9 222 * that its ->submit_bio will not re-add plugging prior to calling
1da177e4
LT
223 * this function.
224 *
da527770 225 * This function does not cancel any asynchronous activity arising
da3dae54 226 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 227 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 228 *
1da177e4
LT
229 */
230void blk_sync_queue(struct request_queue *q)
231{
70ed28b9 232 del_timer_sync(&q->timeout);
4e9b6f20 233 cancel_work_sync(&q->timeout_work);
1da177e4
LT
234}
235EXPORT_SYMBOL(blk_sync_queue);
236
c9254f2d 237/**
cd84a62e 238 * blk_set_pm_only - increment pm_only counter
c9254f2d 239 * @q: request queue pointer
c9254f2d 240 */
cd84a62e 241void blk_set_pm_only(struct request_queue *q)
c9254f2d 242{
cd84a62e 243 atomic_inc(&q->pm_only);
c9254f2d 244}
cd84a62e 245EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 246
cd84a62e 247void blk_clear_pm_only(struct request_queue *q)
c9254f2d 248{
cd84a62e
BVA
249 int pm_only;
250
251 pm_only = atomic_dec_return(&q->pm_only);
252 WARN_ON_ONCE(pm_only < 0);
253 if (pm_only == 0)
254 wake_up_all(&q->mq_freeze_wq);
c9254f2d 255}
cd84a62e 256EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 257
b5bd357c
LC
258/**
259 * blk_put_queue - decrement the request_queue refcount
260 * @q: the request_queue structure to decrement the refcount for
261 *
262 * Decrements the refcount of the request_queue kobject. When this reaches 0
263 * we'll have blk_release_queue() called.
e8c7d14a
LC
264 *
265 * Context: Any context, but the last reference must not be dropped from
266 * atomic context.
b5bd357c 267 */
165125e1 268void blk_put_queue(struct request_queue *q)
483f4afc
AV
269{
270 kobject_put(&q->kobj);
271}
d86e0e83 272EXPORT_SYMBOL(blk_put_queue);
483f4afc 273
8e141f9e 274void blk_queue_start_drain(struct request_queue *q)
aed3ea94 275{
d3cfb2a0
ML
276 /*
277 * When queue DYING flag is set, we need to block new req
278 * entering queue, so we call blk_freeze_queue_start() to
279 * prevent I/O from crossing blk_queue_enter().
280 */
281 blk_freeze_queue_start(q);
344e9ffc 282 if (queue_is_mq(q))
aed3ea94 283 blk_mq_wake_waiters(q);
055f6e18
ML
284 /* Make blk_queue_enter() reexamine the DYING flag. */
285 wake_up_all(&q->mq_freeze_wq);
aed3ea94 286}
8e141f9e
CH
287
288void blk_set_queue_dying(struct request_queue *q)
289{
290 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
291 blk_queue_start_drain(q);
292}
aed3ea94
JA
293EXPORT_SYMBOL_GPL(blk_set_queue_dying);
294
c9a929dd
TH
295/**
296 * blk_cleanup_queue - shutdown a request queue
297 * @q: request queue to shutdown
298 *
c246e80d
BVA
299 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
300 * put it. All future requests will be failed immediately with -ENODEV.
e8c7d14a
LC
301 *
302 * Context: can sleep
c94a96ac 303 */
6728cb0e 304void blk_cleanup_queue(struct request_queue *q)
483f4afc 305{
e8c7d14a
LC
306 /* cannot be called from atomic context */
307 might_sleep();
308
bae85c15
BVA
309 WARN_ON_ONCE(blk_queue_registered(q));
310
3f3299d5 311 /* mark @q DYING, no new request or merges will be allowed afterwards */
aed3ea94 312 blk_set_queue_dying(q);
6ecf23af 313
57d74df9
CH
314 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
315 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
c9a929dd 316
c246e80d
BVA
317 /*
318 * Drain all requests queued before DYING marking. Set DEAD flag to
67ed8b73
BVA
319 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
320 * after draining finished.
c246e80d 321 */
3ef28e83 322 blk_freeze_queue(q);
c57cdf7a 323
57d74df9 324 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
c9a929dd 325
c9a929dd 326 blk_sync_queue(q);
2a19b28f
ML
327 if (queue_is_mq(q)) {
328 blk_mq_cancel_work_sync(q);
c7e2d94b 329 blk_mq_exit_queue(q);
2a19b28f 330 }
a1ce35fa 331
c3e22192
ML
332 /*
333 * In theory, request pool of sched_tags belongs to request queue.
334 * However, the current implementation requires tag_set for freeing
335 * requests, so free the pool now.
336 *
337 * Queue has become frozen, there can't be any in-queue requests, so
338 * it is safe to free requests now.
339 */
340 mutex_lock(&q->sysfs_lock);
341 if (q->elevator)
1820f4f0 342 blk_mq_sched_free_rqs(q);
c3e22192
ML
343 mutex_unlock(&q->sysfs_lock);
344
3ef28e83 345 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 346
c9a929dd 347 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
348 blk_put_queue(q);
349}
1da177e4
LT
350EXPORT_SYMBOL(blk_cleanup_queue);
351
3a0a5299
BVA
352/**
353 * blk_queue_enter() - try to increase q->q_usage_counter
354 * @q: request queue pointer
a4d34da7 355 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
3a0a5299 356 */
9a95e4ef 357int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 358{
a4d34da7 359 const bool pm = flags & BLK_MQ_REQ_PM;
3a0a5299 360
1f14a098 361 while (!blk_try_enter_queue(q, pm)) {
3a0a5299 362 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
363 return -EBUSY;
364
5ed61d3f 365 /*
1f14a098
CH
366 * read pair of barrier in blk_freeze_queue_start(), we need to
367 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
368 * reading .mq_freeze_depth or queue dying flag, otherwise the
369 * following wait may never return if the two reads are
370 * reordered.
5ed61d3f
ML
371 */
372 smp_rmb();
1dc3039b 373 wait_event(q->mq_freeze_wq,
7996a8b5 374 (!q->mq_freeze_depth &&
52abca64 375 blk_pm_resume_queue(pm, q)) ||
1dc3039b 376 blk_queue_dying(q));
3ef28e83
DW
377 if (blk_queue_dying(q))
378 return -ENODEV;
3ef28e83 379 }
1f14a098
CH
380
381 return 0;
3ef28e83
DW
382}
383
c98cb5bb 384int __bio_queue_enter(struct request_queue *q, struct bio *bio)
accea322 385{
a6741536 386 while (!blk_try_enter_queue(q, false)) {
eab4e027
PB
387 struct gendisk *disk = bio->bi_bdev->bd_disk;
388
a6741536 389 if (bio->bi_opf & REQ_NOWAIT) {
8e141f9e 390 if (test_bit(GD_DEAD, &disk->state))
a6741536 391 goto dead;
accea322 392 bio_wouldblock_error(bio);
a6741536
CH
393 return -EBUSY;
394 }
395
396 /*
397 * read pair of barrier in blk_freeze_queue_start(), we need to
398 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
399 * reading .mq_freeze_depth or queue dying flag, otherwise the
400 * following wait may never return if the two reads are
401 * reordered.
402 */
403 smp_rmb();
404 wait_event(q->mq_freeze_wq,
405 (!q->mq_freeze_depth &&
406 blk_pm_resume_queue(false, q)) ||
8e141f9e
CH
407 test_bit(GD_DEAD, &disk->state));
408 if (test_bit(GD_DEAD, &disk->state))
a6741536 409 goto dead;
accea322
CH
410 }
411
a6741536
CH
412 return 0;
413dead:
414 bio_io_error(bio);
415 return -ENODEV;
accea322
CH
416}
417
3ef28e83
DW
418void blk_queue_exit(struct request_queue *q)
419{
420 percpu_ref_put(&q->q_usage_counter);
421}
422
423static void blk_queue_usage_counter_release(struct percpu_ref *ref)
424{
425 struct request_queue *q =
426 container_of(ref, struct request_queue, q_usage_counter);
427
428 wake_up_all(&q->mq_freeze_wq);
429}
430
bca237a5 431static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 432{
bca237a5 433 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
434
435 kblockd_schedule_work(&q->timeout_work);
436}
437
2e3c18d0
TH
438static void blk_timeout_work(struct work_struct *work)
439{
440}
441
704b914f 442struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu)
1946089a 443{
165125e1 444 struct request_queue *q;
338aa96d 445 int ret;
1946089a 446
704b914f
ML
447 q = kmem_cache_alloc_node(blk_get_queue_kmem_cache(alloc_srcu),
448 GFP_KERNEL | __GFP_ZERO, node_id);
1da177e4
LT
449 if (!q)
450 return NULL;
451
704b914f
ML
452 if (alloc_srcu) {
453 blk_queue_flag_set(QUEUE_FLAG_HAS_SRCU, q);
454 if (init_srcu_struct(q->srcu) != 0)
455 goto fail_q;
456 }
457
cbf62af3 458 q->last_merge = NULL;
cbf62af3 459
3d745ea5 460 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
a73f730d 461 if (q->id < 0)
704b914f 462 goto fail_srcu;
a73f730d 463
c495a176 464 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
338aa96d 465 if (ret)
54efd50b
KO
466 goto fail_id;
467
a83b576c
JA
468 q->stats = blk_alloc_queue_stats();
469 if (!q->stats)
edb0872f 470 goto fail_split;
a83b576c 471
5151412d 472 q->node = node_id;
0989a025 473
079a2e3e 474 atomic_set(&q->nr_active_requests_shared_tags, 0);
bccf5e26 475
bca237a5 476 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
2e3c18d0 477 INIT_WORK(&q->timeout_work, blk_timeout_work);
a612fddf 478 INIT_LIST_HEAD(&q->icq_list);
483f4afc 479
8324aa91 480 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 481
85e0cbbb 482 mutex_init(&q->debugfs_mutex);
483f4afc 483 mutex_init(&q->sysfs_lock);
cecf5d87 484 mutex_init(&q->sysfs_dir_lock);
0d945c1f 485 spin_lock_init(&q->queue_lock);
c94a96ac 486
320ae51f 487 init_waitqueue_head(&q->mq_freeze_wq);
7996a8b5 488 mutex_init(&q->mq_freeze_lock);
320ae51f 489
3ef28e83
DW
490 /*
491 * Init percpu_ref in atomic mode so that it's faster to shutdown.
492 * See blk_register_queue() for details.
493 */
494 if (percpu_ref_init(&q->q_usage_counter,
495 blk_queue_usage_counter_release,
496 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
edb0872f 497 goto fail_stats;
f51b802c 498
3ef28e83
DW
499 if (blkcg_init_queue(q))
500 goto fail_ref;
501
3d745ea5
CH
502 blk_queue_dma_alignment(q, 511);
503 blk_set_default_limits(&q->limits);
d2a27964 504 q->nr_requests = BLKDEV_DEFAULT_RQ;
3d745ea5 505
1da177e4 506 return q;
a73f730d 507
3ef28e83
DW
508fail_ref:
509 percpu_ref_exit(&q->q_usage_counter);
a83b576c 510fail_stats:
edb0872f 511 blk_free_queue_stats(q->stats);
54efd50b 512fail_split:
338aa96d 513 bioset_exit(&q->bio_split);
a73f730d
TH
514fail_id:
515 ida_simple_remove(&blk_queue_ida, q->id);
704b914f
ML
516fail_srcu:
517 if (alloc_srcu)
518 cleanup_srcu_struct(q->srcu);
a73f730d 519fail_q:
704b914f 520 kmem_cache_free(blk_get_queue_kmem_cache(alloc_srcu), q);
a73f730d 521 return NULL;
1da177e4 522}
1da177e4 523
b5bd357c
LC
524/**
525 * blk_get_queue - increment the request_queue refcount
526 * @q: the request_queue structure to increment the refcount for
527 *
528 * Increment the refcount of the request_queue kobject.
763b5892
LC
529 *
530 * Context: Any context.
b5bd357c 531 */
09ac46c4 532bool blk_get_queue(struct request_queue *q)
1da177e4 533{
3f3299d5 534 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
535 __blk_get_queue(q);
536 return true;
1da177e4
LT
537 }
538
09ac46c4 539 return false;
1da177e4 540}
d86e0e83 541EXPORT_SYMBOL(blk_get_queue);
1da177e4 542
52c5e62d 543static void handle_bad_sector(struct bio *bio, sector_t maxsector)
1da177e4
LT
544{
545 char b[BDEVNAME_SIZE];
546
8a3ee677 547 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
f4ac712e 548 "%s: rw=%d, want=%llu, limit=%llu\n",
8a3ee677 549 current->comm,
f4ac712e
TH
550 bio_devname(bio, b), bio->bi_opf,
551 bio_end_sector(bio), maxsector);
1da177e4
LT
552}
553
c17bb495
AM
554#ifdef CONFIG_FAIL_MAKE_REQUEST
555
556static DECLARE_FAULT_ATTR(fail_make_request);
557
558static int __init setup_fail_make_request(char *str)
559{
560 return setup_fault_attr(&fail_make_request, str);
561}
562__setup("fail_make_request=", setup_fail_make_request);
563
06c8c691 564bool should_fail_request(struct block_device *part, unsigned int bytes)
c17bb495 565{
8446fe92 566 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
567}
568
569static int __init fail_make_request_debugfs(void)
570{
dd48c085
AM
571 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
572 NULL, &fail_make_request);
573
21f9fcd8 574 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
575}
576
577late_initcall(fail_make_request_debugfs);
c17bb495
AM
578#endif /* CONFIG_FAIL_MAKE_REQUEST */
579
2f9f6221 580static inline bool bio_check_ro(struct bio *bio)
721c7fc7 581{
2f9f6221 582 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
721c7fc7
ID
583 char b[BDEVNAME_SIZE];
584
8b2ded1c
MP
585 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
586 return false;
587
a32e236e 588 WARN_ONCE(1,
c8178674 589 "Trying to write to read-only block-device %s (partno %d)\n",
2f9f6221 590 bio_devname(bio, b), bio->bi_bdev->bd_partno);
a32e236e
LT
591 /* Older lvm-tools actually trigger this */
592 return false;
721c7fc7
ID
593 }
594
595 return false;
596}
597
30abb3a6
HM
598static noinline int should_fail_bio(struct bio *bio)
599{
309dca30 600 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
30abb3a6
HM
601 return -EIO;
602 return 0;
603}
604ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
605
52c5e62d
CH
606/*
607 * Check whether this bio extends beyond the end of the device or partition.
608 * This may well happen - the kernel calls bread() without checking the size of
609 * the device, e.g., when mounting a file system.
610 */
2f9f6221 611static inline int bio_check_eod(struct bio *bio)
52c5e62d 612{
2f9f6221 613 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
52c5e62d
CH
614 unsigned int nr_sectors = bio_sectors(bio);
615
616 if (nr_sectors && maxsector &&
617 (nr_sectors > maxsector ||
618 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
619 handle_bad_sector(bio, maxsector);
620 return -EIO;
621 }
622 return 0;
623}
624
74d46992
CH
625/*
626 * Remap block n of partition p to block n+start(p) of the disk.
627 */
2f9f6221 628static int blk_partition_remap(struct bio *bio)
74d46992 629{
309dca30 630 struct block_device *p = bio->bi_bdev;
74d46992 631
52c5e62d 632 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2f9f6221 633 return -EIO;
5eac3eb3 634 if (bio_sectors(bio)) {
8446fe92 635 bio->bi_iter.bi_sector += p->bd_start_sect;
1c02fca6 636 trace_block_bio_remap(bio, p->bd_dev,
29ff57c6 637 bio->bi_iter.bi_sector -
8446fe92 638 p->bd_start_sect);
52c5e62d 639 }
30c5d345 640 bio_set_flag(bio, BIO_REMAPPED);
2f9f6221 641 return 0;
74d46992
CH
642}
643
0512a75b
KB
644/*
645 * Check write append to a zoned block device.
646 */
647static inline blk_status_t blk_check_zone_append(struct request_queue *q,
648 struct bio *bio)
649{
650 sector_t pos = bio->bi_iter.bi_sector;
651 int nr_sectors = bio_sectors(bio);
652
653 /* Only applicable to zoned block devices */
654 if (!blk_queue_is_zoned(q))
655 return BLK_STS_NOTSUPP;
656
657 /* The bio sector must point to the start of a sequential zone */
658 if (pos & (blk_queue_zone_sectors(q) - 1) ||
659 !blk_queue_zone_is_seq(q, pos))
660 return BLK_STS_IOERR;
661
662 /*
663 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
664 * split and could result in non-contiguous sectors being written in
665 * different zones.
666 */
667 if (nr_sectors > q->limits.chunk_sectors)
668 return BLK_STS_IOERR;
669
670 /* Make sure the BIO is small enough and will not get split */
671 if (nr_sectors > q->limits.max_zone_append_sectors)
672 return BLK_STS_IOERR;
673
674 bio->bi_opf |= REQ_NOMERGE;
675
676 return BLK_STS_OK;
677}
678
29ff2362 679static noinline_for_stack bool submit_bio_checks(struct bio *bio)
1da177e4 680{
309dca30 681 struct block_device *bdev = bio->bi_bdev;
eab4e027 682 struct request_queue *q = bdev_get_queue(bdev);
4e4cbee9 683 blk_status_t status = BLK_STS_IOERR;
5a473e83 684 struct blk_plug *plug;
1da177e4
LT
685
686 might_sleep();
1da177e4 687
5a473e83
JA
688 plug = blk_mq_plug(q, bio);
689 if (plug && plug->nowait)
690 bio->bi_opf |= REQ_NOWAIT;
691
03a07c92 692 /*
b0beb280 693 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
021a2446 694 * if queue does not support NOWAIT.
03a07c92 695 */
021a2446 696 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
b0beb280 697 goto not_supported;
03a07c92 698
30abb3a6 699 if (should_fail_bio(bio))
5a7bbad2 700 goto end_io;
2f9f6221
CH
701 if (unlikely(bio_check_ro(bio)))
702 goto end_io;
3a905c37
CH
703 if (!bio_flagged(bio, BIO_REMAPPED)) {
704 if (unlikely(bio_check_eod(bio)))
705 goto end_io;
706 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
707 goto end_io;
708 }
2056a782 709
5a7bbad2 710 /*
ed00aabd
CH
711 * Filter flush bio's early so that bio based drivers without flush
712 * support don't have to worry about them.
5a7bbad2 713 */
f3a8ab7d 714 if (op_is_flush(bio->bi_opf) &&
c888a8f9 715 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 716 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
e439ab71 717 if (!bio_sectors(bio)) {
4e4cbee9 718 status = BLK_STS_OK;
51fd77bd
JA
719 goto end_io;
720 }
5a7bbad2 721 }
5ddfe969 722
d04c406f 723 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
6ce913fe 724 bio_clear_polled(bio);
d04c406f 725
288dab8a
CH
726 switch (bio_op(bio)) {
727 case REQ_OP_DISCARD:
728 if (!blk_queue_discard(q))
729 goto not_supported;
730 break;
731 case REQ_OP_SECURE_ERASE:
732 if (!blk_queue_secure_erase(q))
733 goto not_supported;
734 break;
735 case REQ_OP_WRITE_SAME:
74d46992 736 if (!q->limits.max_write_same_sectors)
288dab8a 737 goto not_supported;
58886785 738 break;
0512a75b
KB
739 case REQ_OP_ZONE_APPEND:
740 status = blk_check_zone_append(q, bio);
741 if (status != BLK_STS_OK)
742 goto end_io;
743 break;
2d253440 744 case REQ_OP_ZONE_RESET:
6c1b1da5
AJ
745 case REQ_OP_ZONE_OPEN:
746 case REQ_OP_ZONE_CLOSE:
747 case REQ_OP_ZONE_FINISH:
74d46992 748 if (!blk_queue_is_zoned(q))
2d253440 749 goto not_supported;
288dab8a 750 break;
6e33dbf2
CK
751 case REQ_OP_ZONE_RESET_ALL:
752 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
753 goto not_supported;
754 break;
a6f0788e 755 case REQ_OP_WRITE_ZEROES:
74d46992 756 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
757 goto not_supported;
758 break;
288dab8a
CH
759 default:
760 break;
5a7bbad2 761 }
01edede4 762
b781d8db 763 if (blk_throtl_bio(bio))
ae118896 764 return false;
db18a53e
CH
765
766 blk_cgroup_bio_start(bio);
767 blkcg_bio_issue_init(bio);
27a84d54 768
fbbaf700 769 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
e8a676d6 770 trace_block_bio_queue(bio);
fbbaf700
N
771 /* Now that enqueuing has been traced, we need to trace
772 * completion as well.
773 */
774 bio_set_flag(bio, BIO_TRACE_COMPLETION);
775 }
27a84d54 776 return true;
a7384677 777
288dab8a 778not_supported:
4e4cbee9 779 status = BLK_STS_NOTSUPP;
a7384677 780end_io:
4e4cbee9 781 bio->bi_status = status;
4246a0b6 782 bio_endio(bio);
27a84d54 783 return false;
1da177e4
LT
784}
785
900e0807
JA
786static void __submit_bio(struct bio *bio)
787{
788 struct gendisk *disk = bio->bi_bdev->bd_disk;
cc9c884d 789
7f36b7d0
ML
790 if (unlikely(!blk_crypto_bio_prep(&bio)))
791 return;
792
793 if (!disk->fops->submit_bio) {
3e08773c 794 blk_mq_submit_bio(bio);
7f36b7d0
ML
795 } else if (likely(bio_queue_enter(bio) == 0)) {
796 disk->fops->submit_bio(bio);
797 blk_queue_exit(disk->queue);
798 }
ac7c5675
CH
799}
800
566acf2d
CH
801/*
802 * The loop in this function may be a bit non-obvious, and so deserves some
803 * explanation:
804 *
805 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
806 * that), so we have a list with a single bio.
807 * - We pretend that we have just taken it off a longer list, so we assign
808 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
809 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
810 * bios through a recursive call to submit_bio_noacct. If it did, we find a
811 * non-NULL value in bio_list and re-enter the loop from the top.
812 * - In this case we really did just take the bio of the top of the list (no
813 * pretending) and so remove it from bio_list, and call into ->submit_bio()
814 * again.
815 *
816 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
817 * bio_list_on_stack[1] contains bios that were submitted before the current
818 * ->submit_bio_bio, but that haven't been processed yet.
819 */
3e08773c 820static void __submit_bio_noacct(struct bio *bio)
566acf2d
CH
821{
822 struct bio_list bio_list_on_stack[2];
566acf2d
CH
823
824 BUG_ON(bio->bi_next);
825
826 bio_list_init(&bio_list_on_stack[0]);
827 current->bio_list = bio_list_on_stack;
828
829 do {
eab4e027 830 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
566acf2d
CH
831 struct bio_list lower, same;
832
566acf2d
CH
833 /*
834 * Create a fresh bio_list for all subordinate requests.
835 */
836 bio_list_on_stack[1] = bio_list_on_stack[0];
837 bio_list_init(&bio_list_on_stack[0]);
838
3e08773c 839 __submit_bio(bio);
566acf2d
CH
840
841 /*
842 * Sort new bios into those for a lower level and those for the
843 * same level.
844 */
845 bio_list_init(&lower);
846 bio_list_init(&same);
847 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
eab4e027 848 if (q == bdev_get_queue(bio->bi_bdev))
566acf2d
CH
849 bio_list_add(&same, bio);
850 else
851 bio_list_add(&lower, bio);
852
853 /*
854 * Now assemble so we handle the lowest level first.
855 */
856 bio_list_merge(&bio_list_on_stack[0], &lower);
857 bio_list_merge(&bio_list_on_stack[0], &same);
858 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
859 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
860
861 current->bio_list = NULL;
566acf2d
CH
862}
863
3e08773c 864static void __submit_bio_noacct_mq(struct bio *bio)
ff93ea0c 865{
7c792f33 866 struct bio_list bio_list[2] = { };
ff93ea0c 867
7c792f33 868 current->bio_list = bio_list;
ff93ea0c
CH
869
870 do {
3e08773c 871 __submit_bio(bio);
7c792f33 872 } while ((bio = bio_list_pop(&bio_list[0])));
ff93ea0c
CH
873
874 current->bio_list = NULL;
ff93ea0c
CH
875}
876
27a84d54 877/**
ed00aabd 878 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
27a84d54
CH
879 * @bio: The bio describing the location in memory and on the device.
880 *
3fdd4086
CH
881 * This is a version of submit_bio() that shall only be used for I/O that is
882 * resubmitted to lower level drivers by stacking block drivers. All file
883 * systems and other upper level users of the block layer should use
884 * submit_bio() instead.
d89d8796 885 */
3e08773c 886void submit_bio_noacct(struct bio *bio)
d89d8796 887{
a650628b
ML
888 if (unlikely(!submit_bio_checks(bio)))
889 return;
890
27a84d54 891 /*
566acf2d
CH
892 * We only want one ->submit_bio to be active at a time, else stack
893 * usage with stacked devices could be a problem. Use current->bio_list
894 * to collect a list of requests submited by a ->submit_bio method while
895 * it is active, and then process them after it returned.
27a84d54 896 */
3e08773c 897 if (current->bio_list)
f5fe1b51 898 bio_list_add(&current->bio_list[0], bio);
3e08773c
CH
899 else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
900 __submit_bio_noacct_mq(bio);
901 else
902 __submit_bio_noacct(bio);
d89d8796 903}
ed00aabd 904EXPORT_SYMBOL(submit_bio_noacct);
1da177e4
LT
905
906/**
710027a4 907 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
908 * @bio: The &struct bio which describes the I/O
909 *
3fdd4086
CH
910 * submit_bio() is used to submit I/O requests to block devices. It is passed a
911 * fully set up &struct bio that describes the I/O that needs to be done. The
309dca30 912 * bio will be send to the device described by the bi_bdev field.
1da177e4 913 *
3fdd4086
CH
914 * The success/failure status of the request, along with notification of
915 * completion, is delivered asynchronously through the ->bi_end_io() callback
916 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
917 * been called.
1da177e4 918 */
3e08773c 919void submit_bio(struct bio *bio)
1da177e4 920{
d3f77dfd 921 if (blkcg_punt_bio_submit(bio))
3e08773c 922 return;
d3f77dfd 923
bf2de6f5
JA
924 /*
925 * If it's a regular read/write or a barrier with data attached,
926 * go through the normal accounting stuff before submission.
927 */
e2a60da7 928 if (bio_has_data(bio)) {
4363ac7c
MP
929 unsigned int count;
930
95fe6c1a 931 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
309dca30 932 count = queue_logical_block_size(
eab4e027 933 bdev_get_queue(bio->bi_bdev)) >> 9;
4363ac7c
MP
934 else
935 count = bio_sectors(bio);
936
a8ebb056 937 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
938 count_vm_events(PGPGOUT, count);
939 } else {
4f024f37 940 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
941 count_vm_events(PGPGIN, count);
942 }
1da177e4
LT
943 }
944
b8e24a93 945 /*
760f83ea
CH
946 * If we're reading data that is part of the userspace workingset, count
947 * submission time as memory stall. When the device is congested, or
948 * the submitting cgroup IO-throttled, submission can be a significant
949 * part of overall IO time.
b8e24a93 950 */
760f83ea
CH
951 if (unlikely(bio_op(bio) == REQ_OP_READ &&
952 bio_flagged(bio, BIO_WORKINGSET))) {
953 unsigned long pflags;
b8e24a93 954
760f83ea 955 psi_memstall_enter(&pflags);
3e08773c 956 submit_bio_noacct(bio);
b8e24a93 957 psi_memstall_leave(&pflags);
3e08773c 958 return;
760f83ea
CH
959 }
960
3e08773c 961 submit_bio_noacct(bio);
1da177e4 962}
1da177e4
LT
963EXPORT_SYMBOL(submit_bio);
964
3e08773c
CH
965/**
966 * bio_poll - poll for BIO completions
967 * @bio: bio to poll for
e30028ac 968 * @iob: batches of IO
3e08773c
CH
969 * @flags: BLK_POLL_* flags that control the behavior
970 *
971 * Poll for completions on queue associated with the bio. Returns number of
972 * completed entries found.
973 *
974 * Note: the caller must either be the context that submitted @bio, or
975 * be in a RCU critical section to prevent freeing of @bio.
976 */
5a72e899 977int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
3e08773c 978{
859897c3 979 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3e08773c
CH
980 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
981 int ret;
982
983 if (cookie == BLK_QC_T_NONE ||
984 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
985 return 0;
986
aa8dccca 987 blk_flush_plug(current->plug, false);
3e08773c
CH
988
989 if (blk_queue_enter(q, BLK_MQ_REQ_NOWAIT))
990 return 0;
991 if (WARN_ON_ONCE(!queue_is_mq(q)))
992 ret = 0; /* not yet implemented, should not happen */
993 else
5a72e899 994 ret = blk_mq_poll(q, cookie, iob, flags);
3e08773c
CH
995 blk_queue_exit(q);
996 return ret;
997}
998EXPORT_SYMBOL_GPL(bio_poll);
999
1000/*
1001 * Helper to implement file_operations.iopoll. Requires the bio to be stored
1002 * in iocb->private, and cleared before freeing the bio.
1003 */
5a72e899
JA
1004int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
1005 unsigned int flags)
3e08773c
CH
1006{
1007 struct bio *bio;
1008 int ret = 0;
1009
1010 /*
1011 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
1012 * point to a freshly allocated bio at this point. If that happens
1013 * we have a few cases to consider:
1014 *
1015 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
1016 * simply nothing in this case
1017 * 2) the bio points to a not poll enabled device. bio_poll will catch
1018 * this and return 0
1019 * 3) the bio points to a poll capable device, including but not
1020 * limited to the one that the original bio pointed to. In this
1021 * case we will call into the actual poll method and poll for I/O,
1022 * even if we don't need to, but it won't cause harm either.
1023 *
1024 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
1025 * is still allocated. Because partitions hold a reference to the whole
1026 * device bdev and thus disk, the disk is also still valid. Grabbing
1027 * a reference to the queue in bio_poll() ensures the hctxs and requests
1028 * are still valid as well.
1029 */
1030 rcu_read_lock();
1031 bio = READ_ONCE(kiocb->private);
1032 if (bio && bio->bi_bdev)
5a72e899 1033 ret = bio_poll(bio, iob, flags);
3e08773c
CH
1034 rcu_read_unlock();
1035
1036 return ret;
1037}
1038EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
1039
450b7879 1040void update_io_ticks(struct block_device *part, unsigned long now, bool end)
9123bf6f
CH
1041{
1042 unsigned long stamp;
1043again:
8446fe92 1044 stamp = READ_ONCE(part->bd_stamp);
d80c228d 1045 if (unlikely(time_after(now, stamp))) {
8446fe92 1046 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
9123bf6f
CH
1047 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1048 }
8446fe92
CH
1049 if (part->bd_partno) {
1050 part = bdev_whole(part);
9123bf6f
CH
1051 goto again;
1052 }
1053}
1054
8446fe92 1055static unsigned long __part_start_io_acct(struct block_device *part,
e45c47d1
MS
1056 unsigned int sectors, unsigned int op,
1057 unsigned long start_time)
956d510e 1058{
956d510e 1059 const int sgrp = op_stat_group(op);
956d510e
CH
1060
1061 part_stat_lock();
e45c47d1 1062 update_io_ticks(part, start_time, false);
956d510e
CH
1063 part_stat_inc(part, ios[sgrp]);
1064 part_stat_add(part, sectors[sgrp], sectors);
1065 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1066 part_stat_unlock();
320ae51f 1067
e45c47d1
MS
1068 return start_time;
1069}
1070
1071/**
1072 * bio_start_io_acct_time - start I/O accounting for bio based drivers
1073 * @bio: bio to start account for
1074 * @start_time: start time that should be passed back to bio_end_io_acct().
1075 */
1076void bio_start_io_acct_time(struct bio *bio, unsigned long start_time)
1077{
1078 __part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1079 bio_op(bio), start_time);
956d510e 1080}
e45c47d1 1081EXPORT_SYMBOL_GPL(bio_start_io_acct_time);
7b26410b 1082
99dfc43e
CH
1083/**
1084 * bio_start_io_acct - start I/O accounting for bio based drivers
1085 * @bio: bio to start account for
1086 *
1087 * Returns the start time that should be passed back to bio_end_io_acct().
1088 */
1089unsigned long bio_start_io_acct(struct bio *bio)
7b26410b 1090{
e45c47d1
MS
1091 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1092 bio_op(bio), jiffies);
7b26410b 1093}
99dfc43e 1094EXPORT_SYMBOL_GPL(bio_start_io_acct);
7b26410b
SL
1095
1096unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1097 unsigned int op)
1098{
e45c47d1 1099 return __part_start_io_acct(disk->part0, sectors, op, jiffies);
7b26410b 1100}
956d510e
CH
1101EXPORT_SYMBOL(disk_start_io_acct);
1102
8446fe92 1103static void __part_end_io_acct(struct block_device *part, unsigned int op,
7b26410b 1104 unsigned long start_time)
956d510e 1105{
956d510e
CH
1106 const int sgrp = op_stat_group(op);
1107 unsigned long now = READ_ONCE(jiffies);
1108 unsigned long duration = now - start_time;
5b18b5a7 1109
956d510e
CH
1110 part_stat_lock();
1111 update_io_ticks(part, now, true);
1112 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1113 part_stat_local_dec(part, in_flight[op_is_write(op)]);
320ae51f
JA
1114 part_stat_unlock();
1115}
7b26410b 1116
99dfc43e
CH
1117void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1118 struct block_device *orig_bdev)
7b26410b 1119{
99dfc43e 1120 __part_end_io_acct(orig_bdev, bio_op(bio), start_time);
7b26410b 1121}
99dfc43e 1122EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
7b26410b
SL
1123
1124void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1125 unsigned long start_time)
1126{
8446fe92 1127 __part_end_io_acct(disk->part0, op, start_time);
7b26410b 1128}
956d510e 1129EXPORT_SYMBOL(disk_end_io_acct);
320ae51f 1130
ef9e3fac
KU
1131/**
1132 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1133 * @q : the queue of the device being checked
1134 *
1135 * Description:
1136 * Check if underlying low-level drivers of a device are busy.
1137 * If the drivers want to export their busy state, they must set own
1138 * exporting function using blk_queue_lld_busy() first.
1139 *
1140 * Basically, this function is used only by request stacking drivers
1141 * to stop dispatching requests to underlying devices when underlying
1142 * devices are busy. This behavior helps more I/O merging on the queue
1143 * of the request stacking driver and prevents I/O throughput regression
1144 * on burst I/O load.
1145 *
1146 * Return:
1147 * 0 - Not busy (The request stacking driver should dispatch request)
1148 * 1 - Busy (The request stacking driver should stop dispatching request)
1149 */
1150int blk_lld_busy(struct request_queue *q)
1151{
344e9ffc 1152 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1153 return q->mq_ops->busy(q);
ef9e3fac
KU
1154
1155 return 0;
1156}
1157EXPORT_SYMBOL_GPL(blk_lld_busy);
1158
59c3d45e 1159int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1160{
1161 return queue_work(kblockd_workqueue, work);
1162}
1da177e4
LT
1163EXPORT_SYMBOL(kblockd_schedule_work);
1164
818cd1cb
JA
1165int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1166 unsigned long delay)
1167{
1168 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1169}
1170EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1171
47c122e3
JA
1172void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1173{
1174 struct task_struct *tsk = current;
1175
1176 /*
1177 * If this is a nested plug, don't actually assign it.
1178 */
1179 if (tsk->plug)
1180 return;
1181
bc490f81 1182 plug->mq_list = NULL;
47c122e3
JA
1183 plug->cached_rq = NULL;
1184 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1185 plug->rq_count = 0;
1186 plug->multiple_queues = false;
dc5fc361 1187 plug->has_elevator = false;
47c122e3
JA
1188 plug->nowait = false;
1189 INIT_LIST_HEAD(&plug->cb_list);
1190
1191 /*
1192 * Store ordering should not be needed here, since a potential
1193 * preempt will imply a full memory barrier
1194 */
1195 tsk->plug = plug;
1196}
1197
75df7136
SJ
1198/**
1199 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1200 * @plug: The &struct blk_plug that needs to be initialized
1201 *
1202 * Description:
40405851
JM
1203 * blk_start_plug() indicates to the block layer an intent by the caller
1204 * to submit multiple I/O requests in a batch. The block layer may use
1205 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1206 * is called. However, the block layer may choose to submit requests
1207 * before a call to blk_finish_plug() if the number of queued I/Os
1208 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1209 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1210 * the task schedules (see below).
1211 *
75df7136
SJ
1212 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1213 * pending I/O should the task end up blocking between blk_start_plug() and
1214 * blk_finish_plug(). This is important from a performance perspective, but
1215 * also ensures that we don't deadlock. For instance, if the task is blocking
1216 * for a memory allocation, memory reclaim could end up wanting to free a
1217 * page belonging to that request that is currently residing in our private
1218 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1219 * this kind of deadlock.
1220 */
73c10101
JA
1221void blk_start_plug(struct blk_plug *plug)
1222{
47c122e3 1223 blk_start_plug_nr_ios(plug, 1);
73c10101
JA
1224}
1225EXPORT_SYMBOL(blk_start_plug);
1226
74018dc3 1227static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1228{
1229 LIST_HEAD(callbacks);
1230
2a7d5559
SL
1231 while (!list_empty(&plug->cb_list)) {
1232 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1233
2a7d5559
SL
1234 while (!list_empty(&callbacks)) {
1235 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1236 struct blk_plug_cb,
1237 list);
2a7d5559 1238 list_del(&cb->list);
74018dc3 1239 cb->callback(cb, from_schedule);
2a7d5559 1240 }
048c9374
N
1241 }
1242}
1243
9cbb1750
N
1244struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1245 int size)
1246{
1247 struct blk_plug *plug = current->plug;
1248 struct blk_plug_cb *cb;
1249
1250 if (!plug)
1251 return NULL;
1252
1253 list_for_each_entry(cb, &plug->cb_list, list)
1254 if (cb->callback == unplug && cb->data == data)
1255 return cb;
1256
1257 /* Not currently on the callback list */
1258 BUG_ON(size < sizeof(*cb));
1259 cb = kzalloc(size, GFP_ATOMIC);
1260 if (cb) {
1261 cb->data = data;
1262 cb->callback = unplug;
1263 list_add(&cb->list, &plug->cb_list);
1264 }
1265 return cb;
1266}
1267EXPORT_SYMBOL(blk_check_plugged);
1268
aa8dccca 1269void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
73c10101 1270{
b600455d
PB
1271 if (!list_empty(&plug->cb_list))
1272 flush_plug_callbacks(plug, from_schedule);
bc490f81 1273 if (!rq_list_empty(plug->mq_list))
320ae51f 1274 blk_mq_flush_plug_list(plug, from_schedule);
c5fc7b93
JA
1275 /*
1276 * Unconditionally flush out cached requests, even if the unplug
1277 * event came from schedule. Since we know hold references to the
1278 * queue for cached requests, we don't want a blocked task holding
1279 * up a queue freeze/quiesce event.
1280 */
1281 if (unlikely(!rq_list_empty(plug->cached_rq)))
47c122e3 1282 blk_mq_free_plug_rqs(plug);
73c10101 1283}
73c10101 1284
40405851
JM
1285/**
1286 * blk_finish_plug - mark the end of a batch of submitted I/O
1287 * @plug: The &struct blk_plug passed to blk_start_plug()
1288 *
1289 * Description:
1290 * Indicate that a batch of I/O submissions is complete. This function
1291 * must be paired with an initial call to blk_start_plug(). The intent
1292 * is to allow the block layer to optimize I/O submission. See the
1293 * documentation for blk_start_plug() for more information.
1294 */
73c10101
JA
1295void blk_finish_plug(struct blk_plug *plug)
1296{
008f75a2 1297 if (plug == current->plug) {
aa8dccca 1298 __blk_flush_plug(plug, false);
008f75a2
CH
1299 current->plug = NULL;
1300 }
73c10101 1301}
88b996cd 1302EXPORT_SYMBOL(blk_finish_plug);
73c10101 1303
71ac860a
ML
1304void blk_io_schedule(void)
1305{
1306 /* Prevent hang_check timer from firing at us during very long I/O */
1307 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1308
1309 if (timeout)
1310 io_schedule_timeout(timeout);
1311 else
1312 io_schedule();
1313}
1314EXPORT_SYMBOL_GPL(blk_io_schedule);
1315
1da177e4
LT
1316int __init blk_dev_init(void)
1317{
ef295ecf
CH
1318 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1319 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1320 sizeof_field(struct request, cmd_flags));
ef295ecf 1321 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1322 sizeof_field(struct bio, bi_opf));
704b914f
ML
1323 BUILD_BUG_ON(ALIGN(offsetof(struct request_queue, srcu),
1324 __alignof__(struct request_queue)) !=
1325 sizeof(struct request_queue));
9eb55b03 1326
89b90be2
TH
1327 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1328 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1329 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1330 if (!kblockd_workqueue)
1331 panic("Failed to create kblockd\n");
1332
c2789bd4 1333 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1334 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1335
704b914f
ML
1336 blk_requestq_srcu_cachep = kmem_cache_create("request_queue_srcu",
1337 sizeof(struct request_queue) +
1338 sizeof(struct srcu_struct), 0, SLAB_PANIC, NULL);
1339
18fbda91 1340 blk_debugfs_root = debugfs_create_dir("block", NULL);
18fbda91 1341
d38ecf93 1342 return 0;
1da177e4 1343}