blk-throttle: Re-use the throtl_set_slice_end()
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
1da177e4
LT
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
1da177e4
LT
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/backing-dev.h>
18#include <linux/bio.h>
19#include <linux/blkdev.h>
320ae51f 20#include <linux/blk-mq.h>
1da177e4
LT
21#include <linux/highmem.h>
22#include <linux/mm.h>
cee9a0c4 23#include <linux/pagemap.h>
1da177e4
LT
24#include <linux/kernel_stat.h>
25#include <linux/string.h>
26#include <linux/init.h>
1da177e4
LT
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
faccbd4b 31#include <linux/task_io_accounting_ops.h>
c17bb495 32#include <linux/fault-inject.h>
73c10101 33#include <linux/list_sort.h>
e3c78ca5 34#include <linux/delay.h>
aaf7c680 35#include <linux/ratelimit.h>
6c954667 36#include <linux/pm_runtime.h>
eea8f41c 37#include <linux/blk-cgroup.h>
54d4e6ab 38#include <linux/t10-pi.h>
18fbda91 39#include <linux/debugfs.h>
30abb3a6 40#include <linux/bpf.h>
b8e24a93 41#include <linux/psi.h>
71ac860a 42#include <linux/sched/sysctl.h>
a892c8d5 43#include <linux/blk-crypto.h>
55782138
LZ
44
45#define CREATE_TRACE_POINTS
46#include <trace/events/block.h>
1da177e4 47
8324aa91 48#include "blk.h"
43a5e4e2 49#include "blk-mq.h"
bd166ef1 50#include "blk-mq-sched.h"
bca6b067 51#include "blk-pm.h"
c1c80384 52#include "blk-rq-qos.h"
8324aa91 53
18fbda91 54struct dentry *blk_debugfs_root;
18fbda91 55
d07335e5 56EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 57EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 58EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 59EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 60EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 61
a73f730d
TH
62DEFINE_IDA(blk_queue_ida);
63
1da177e4
LT
64/*
65 * For queue allocation
66 */
6728cb0e 67struct kmem_cache *blk_requestq_cachep;
1da177e4 68
1da177e4
LT
69/*
70 * Controlling structure to kblockd
71 */
ff856bad 72static struct workqueue_struct *kblockd_workqueue;
1da177e4 73
8814ce8a
BVA
74/**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
78 */
79void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80{
57d74df9 81 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
82}
83EXPORT_SYMBOL(blk_queue_flag_set);
84
85/**
86 * blk_queue_flag_clear - atomically clear a queue flag
87 * @flag: flag to be cleared
88 * @q: request queue
89 */
90void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91{
57d74df9 92 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
93}
94EXPORT_SYMBOL(blk_queue_flag_clear);
95
96/**
97 * blk_queue_flag_test_and_set - atomically test and set a queue flag
98 * @flag: flag to be set
99 * @q: request queue
100 *
101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
102 * the flag was already set.
103 */
104bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105{
57d74df9 106 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
107}
108EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109
2a4aa30c 110void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 111{
1afb20f3
FT
112 memset(rq, 0, sizeof(*rq));
113
1da177e4 114 INIT_LIST_HEAD(&rq->queuelist);
63a71386 115 rq->q = q;
a2dec7b3 116 rq->__sector = (sector_t) -1;
2e662b65
JA
117 INIT_HLIST_NODE(&rq->hash);
118 RB_CLEAR_NODE(&rq->rb_node);
e44a6a23
XT
119 rq->tag = BLK_MQ_NO_TAG;
120 rq->internal_tag = BLK_MQ_NO_TAG;
522a7775 121 rq->start_time_ns = ktime_get_ns();
09e099d4 122 rq->part = NULL;
b554db14 123 refcount_set(&rq->ref, 1);
a892c8d5 124 blk_crypto_rq_set_defaults(rq);
1da177e4 125}
2a4aa30c 126EXPORT_SYMBOL(blk_rq_init);
1da177e4 127
e47bc4ed
CK
128#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
129static const char *const blk_op_name[] = {
130 REQ_OP_NAME(READ),
131 REQ_OP_NAME(WRITE),
132 REQ_OP_NAME(FLUSH),
133 REQ_OP_NAME(DISCARD),
134 REQ_OP_NAME(SECURE_ERASE),
135 REQ_OP_NAME(ZONE_RESET),
6e33dbf2 136 REQ_OP_NAME(ZONE_RESET_ALL),
6c1b1da5
AJ
137 REQ_OP_NAME(ZONE_OPEN),
138 REQ_OP_NAME(ZONE_CLOSE),
139 REQ_OP_NAME(ZONE_FINISH),
0512a75b 140 REQ_OP_NAME(ZONE_APPEND),
e47bc4ed
CK
141 REQ_OP_NAME(WRITE_SAME),
142 REQ_OP_NAME(WRITE_ZEROES),
143 REQ_OP_NAME(SCSI_IN),
144 REQ_OP_NAME(SCSI_OUT),
145 REQ_OP_NAME(DRV_IN),
146 REQ_OP_NAME(DRV_OUT),
147};
148#undef REQ_OP_NAME
149
150/**
151 * blk_op_str - Return string XXX in the REQ_OP_XXX.
152 * @op: REQ_OP_XXX.
153 *
154 * Description: Centralize block layer function to convert REQ_OP_XXX into
155 * string format. Useful in the debugging and tracing bio or request. For
156 * invalid REQ_OP_XXX it returns string "UNKNOWN".
157 */
158inline const char *blk_op_str(unsigned int op)
159{
160 const char *op_str = "UNKNOWN";
161
162 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
163 op_str = blk_op_name[op];
164
165 return op_str;
166}
167EXPORT_SYMBOL_GPL(blk_op_str);
168
2a842aca
CH
169static const struct {
170 int errno;
171 const char *name;
172} blk_errors[] = {
173 [BLK_STS_OK] = { 0, "" },
174 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
175 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
176 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
177 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
178 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
179 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
180 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
181 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
182 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 183 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 184 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 185
4e4cbee9
CH
186 /* device mapper special case, should not leak out: */
187 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
188
2a842aca
CH
189 /* everything else not covered above: */
190 [BLK_STS_IOERR] = { -EIO, "I/O" },
191};
192
193blk_status_t errno_to_blk_status(int errno)
194{
195 int i;
196
197 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
198 if (blk_errors[i].errno == errno)
199 return (__force blk_status_t)i;
200 }
201
202 return BLK_STS_IOERR;
203}
204EXPORT_SYMBOL_GPL(errno_to_blk_status);
205
206int blk_status_to_errno(blk_status_t status)
207{
208 int idx = (__force int)status;
209
34bd9c1c 210 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
211 return -EIO;
212 return blk_errors[idx].errno;
213}
214EXPORT_SYMBOL_GPL(blk_status_to_errno);
215
178cc590
CH
216static void print_req_error(struct request *req, blk_status_t status,
217 const char *caller)
2a842aca
CH
218{
219 int idx = (__force int)status;
220
34bd9c1c 221 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
222 return;
223
178cc590 224 printk_ratelimited(KERN_ERR
b0e5168a
CK
225 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
226 "phys_seg %u prio class %u\n",
178cc590 227 caller, blk_errors[idx].name,
b0e5168a
CK
228 req->rq_disk ? req->rq_disk->disk_name : "?",
229 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
230 req->cmd_flags & ~REQ_OP_MASK,
231 req->nr_phys_segments,
232 IOPRIO_PRIO_CLASS(req->ioprio));
2a842aca
CH
233}
234
5bb23a68 235static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 236 unsigned int nbytes, blk_status_t error)
1da177e4 237{
78d8e58a 238 if (error)
4e4cbee9 239 bio->bi_status = error;
797e7dbb 240
e8064021 241 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 242 bio_set_flag(bio, BIO_QUIET);
08bafc03 243
f79ea416 244 bio_advance(bio, nbytes);
7ba1ba12 245
0512a75b
KB
246 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
247 /*
248 * Partial zone append completions cannot be supported as the
249 * BIO fragments may end up not being written sequentially.
250 */
251 if (bio->bi_iter.bi_size)
252 bio->bi_status = BLK_STS_IOERR;
253 else
254 bio->bi_iter.bi_sector = rq->__sector;
255 }
256
143a87f4 257 /* don't actually finish bio if it's part of flush sequence */
e8064021 258 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 259 bio_endio(bio);
1da177e4 260}
1da177e4 261
1da177e4
LT
262void blk_dump_rq_flags(struct request *rq, char *msg)
263{
aebf526b
CH
264 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
265 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 266 (unsigned long long) rq->cmd_flags);
1da177e4 267
83096ebf
TH
268 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
269 (unsigned long long)blk_rq_pos(rq),
270 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
271 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
272 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 273}
1da177e4
LT
274EXPORT_SYMBOL(blk_dump_rq_flags);
275
1da177e4
LT
276/**
277 * blk_sync_queue - cancel any pending callbacks on a queue
278 * @q: the queue
279 *
280 * Description:
281 * The block layer may perform asynchronous callback activity
282 * on a queue, such as calling the unplug function after a timeout.
283 * A block device may call blk_sync_queue to ensure that any
284 * such activity is cancelled, thus allowing it to release resources
59c51591 285 * that the callbacks might use. The caller must already have made sure
c62b37d9 286 * that its ->submit_bio will not re-add plugging prior to calling
1da177e4
LT
287 * this function.
288 *
da527770 289 * This function does not cancel any asynchronous activity arising
da3dae54 290 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 291 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 292 *
1da177e4
LT
293 */
294void blk_sync_queue(struct request_queue *q)
295{
70ed28b9 296 del_timer_sync(&q->timeout);
4e9b6f20 297 cancel_work_sync(&q->timeout_work);
1da177e4
LT
298}
299EXPORT_SYMBOL(blk_sync_queue);
300
c9254f2d 301/**
cd84a62e 302 * blk_set_pm_only - increment pm_only counter
c9254f2d 303 * @q: request queue pointer
c9254f2d 304 */
cd84a62e 305void blk_set_pm_only(struct request_queue *q)
c9254f2d 306{
cd84a62e 307 atomic_inc(&q->pm_only);
c9254f2d 308}
cd84a62e 309EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 310
cd84a62e 311void blk_clear_pm_only(struct request_queue *q)
c9254f2d 312{
cd84a62e
BVA
313 int pm_only;
314
315 pm_only = atomic_dec_return(&q->pm_only);
316 WARN_ON_ONCE(pm_only < 0);
317 if (pm_only == 0)
318 wake_up_all(&q->mq_freeze_wq);
c9254f2d 319}
cd84a62e 320EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 321
b5bd357c
LC
322/**
323 * blk_put_queue - decrement the request_queue refcount
324 * @q: the request_queue structure to decrement the refcount for
325 *
326 * Decrements the refcount of the request_queue kobject. When this reaches 0
327 * we'll have blk_release_queue() called.
e8c7d14a
LC
328 *
329 * Context: Any context, but the last reference must not be dropped from
330 * atomic context.
b5bd357c 331 */
165125e1 332void blk_put_queue(struct request_queue *q)
483f4afc
AV
333{
334 kobject_put(&q->kobj);
335}
d86e0e83 336EXPORT_SYMBOL(blk_put_queue);
483f4afc 337
aed3ea94
JA
338void blk_set_queue_dying(struct request_queue *q)
339{
8814ce8a 340 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
aed3ea94 341
d3cfb2a0
ML
342 /*
343 * When queue DYING flag is set, we need to block new req
344 * entering queue, so we call blk_freeze_queue_start() to
345 * prevent I/O from crossing blk_queue_enter().
346 */
347 blk_freeze_queue_start(q);
348
344e9ffc 349 if (queue_is_mq(q))
aed3ea94 350 blk_mq_wake_waiters(q);
055f6e18
ML
351
352 /* Make blk_queue_enter() reexamine the DYING flag. */
353 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
354}
355EXPORT_SYMBOL_GPL(blk_set_queue_dying);
356
c9a929dd
TH
357/**
358 * blk_cleanup_queue - shutdown a request queue
359 * @q: request queue to shutdown
360 *
c246e80d
BVA
361 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
362 * put it. All future requests will be failed immediately with -ENODEV.
e8c7d14a
LC
363 *
364 * Context: can sleep
c94a96ac 365 */
6728cb0e 366void blk_cleanup_queue(struct request_queue *q)
483f4afc 367{
e8c7d14a
LC
368 /* cannot be called from atomic context */
369 might_sleep();
370
bae85c15
BVA
371 WARN_ON_ONCE(blk_queue_registered(q));
372
3f3299d5 373 /* mark @q DYING, no new request or merges will be allowed afterwards */
aed3ea94 374 blk_set_queue_dying(q);
6ecf23af 375
57d74df9
CH
376 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
377 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
c9a929dd 378
c246e80d
BVA
379 /*
380 * Drain all requests queued before DYING marking. Set DEAD flag to
67ed8b73
BVA
381 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
382 * after draining finished.
c246e80d 383 */
3ef28e83 384 blk_freeze_queue(q);
c57cdf7a
ML
385
386 rq_qos_exit(q);
387
57d74df9 388 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
c9a929dd 389
5a48fc14
DW
390 /* for synchronous bio-based driver finish in-flight integrity i/o */
391 blk_flush_integrity();
392
c9a929dd 393 /* @q won't process any more request, flush async actions */
dc3b17cc 394 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
395 blk_sync_queue(q);
396
344e9ffc 397 if (queue_is_mq(q))
c7e2d94b 398 blk_mq_exit_queue(q);
a1ce35fa 399
c3e22192
ML
400 /*
401 * In theory, request pool of sched_tags belongs to request queue.
402 * However, the current implementation requires tag_set for freeing
403 * requests, so free the pool now.
404 *
405 * Queue has become frozen, there can't be any in-queue requests, so
406 * it is safe to free requests now.
407 */
408 mutex_lock(&q->sysfs_lock);
409 if (q->elevator)
410 blk_mq_sched_free_requests(q);
411 mutex_unlock(&q->sysfs_lock);
412
3ef28e83 413 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 414
c9a929dd 415 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
416 blk_put_queue(q);
417}
1da177e4
LT
418EXPORT_SYMBOL(blk_cleanup_queue);
419
3a0a5299
BVA
420/**
421 * blk_queue_enter() - try to increase q->q_usage_counter
422 * @q: request queue pointer
423 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
424 */
9a95e4ef 425int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 426{
cd84a62e 427 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
3a0a5299 428
3ef28e83 429 while (true) {
3a0a5299 430 bool success = false;
3ef28e83 431
818e0fa2 432 rcu_read_lock();
3a0a5299
BVA
433 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
434 /*
cd84a62e
BVA
435 * The code that increments the pm_only counter is
436 * responsible for ensuring that that counter is
437 * globally visible before the queue is unfrozen.
3a0a5299 438 */
cd84a62e 439 if (pm || !blk_queue_pm_only(q)) {
3a0a5299
BVA
440 success = true;
441 } else {
442 percpu_ref_put(&q->q_usage_counter);
443 }
444 }
818e0fa2 445 rcu_read_unlock();
3a0a5299
BVA
446
447 if (success)
3ef28e83
DW
448 return 0;
449
3a0a5299 450 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
451 return -EBUSY;
452
5ed61d3f 453 /*
1671d522 454 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 455 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
456 * .q_usage_counter and reading .mq_freeze_depth or
457 * queue dying flag, otherwise the following wait may
458 * never return if the two reads are reordered.
5ed61d3f
ML
459 */
460 smp_rmb();
461
1dc3039b 462 wait_event(q->mq_freeze_wq,
7996a8b5 463 (!q->mq_freeze_depth &&
0d25bd07
BVA
464 (pm || (blk_pm_request_resume(q),
465 !blk_queue_pm_only(q)))) ||
1dc3039b 466 blk_queue_dying(q));
3ef28e83
DW
467 if (blk_queue_dying(q))
468 return -ENODEV;
3ef28e83
DW
469 }
470}
471
accea322
CH
472static inline int bio_queue_enter(struct bio *bio)
473{
474 struct request_queue *q = bio->bi_disk->queue;
475 bool nowait = bio->bi_opf & REQ_NOWAIT;
476 int ret;
477
478 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
479 if (unlikely(ret)) {
480 if (nowait && !blk_queue_dying(q))
481 bio_wouldblock_error(bio);
482 else
483 bio_io_error(bio);
484 }
485
486 return ret;
487}
488
3ef28e83
DW
489void blk_queue_exit(struct request_queue *q)
490{
491 percpu_ref_put(&q->q_usage_counter);
492}
493
494static void blk_queue_usage_counter_release(struct percpu_ref *ref)
495{
496 struct request_queue *q =
497 container_of(ref, struct request_queue, q_usage_counter);
498
499 wake_up_all(&q->mq_freeze_wq);
500}
501
bca237a5 502static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 503{
bca237a5 504 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
505
506 kblockd_schedule_work(&q->timeout_work);
507}
508
2e3c18d0
TH
509static void blk_timeout_work(struct work_struct *work)
510{
511}
512
c62b37d9 513struct request_queue *blk_alloc_queue(int node_id)
1946089a 514{
165125e1 515 struct request_queue *q;
338aa96d 516 int ret;
1946089a 517
8324aa91 518 q = kmem_cache_alloc_node(blk_requestq_cachep,
3d745ea5 519 GFP_KERNEL | __GFP_ZERO, node_id);
1da177e4
LT
520 if (!q)
521 return NULL;
522
cbf62af3 523 q->last_merge = NULL;
cbf62af3 524
3d745ea5 525 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
a73f730d 526 if (q->id < 0)
3d2936f4 527 goto fail_q;
a73f730d 528
338aa96d
KO
529 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
530 if (ret)
54efd50b
KO
531 goto fail_id;
532
aef33c2f 533 q->backing_dev_info = bdi_alloc(node_id);
d03f6cdc
JK
534 if (!q->backing_dev_info)
535 goto fail_split;
536
a83b576c
JA
537 q->stats = blk_alloc_queue_stats();
538 if (!q->stats)
539 goto fail_stats;
540
5151412d 541 q->node = node_id;
0989a025 542
bccf5e26
JG
543 atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
544
bca237a5
KC
545 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
546 laptop_mode_timer_fn, 0);
547 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
2e3c18d0 548 INIT_WORK(&q->timeout_work, blk_timeout_work);
a612fddf 549 INIT_LIST_HEAD(&q->icq_list);
4eef3049 550#ifdef CONFIG_BLK_CGROUP
e8989fae 551 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 552#endif
483f4afc 553
8324aa91 554 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 555
85e0cbbb 556 mutex_init(&q->debugfs_mutex);
483f4afc 557 mutex_init(&q->sysfs_lock);
cecf5d87 558 mutex_init(&q->sysfs_dir_lock);
0d945c1f 559 spin_lock_init(&q->queue_lock);
c94a96ac 560
320ae51f 561 init_waitqueue_head(&q->mq_freeze_wq);
7996a8b5 562 mutex_init(&q->mq_freeze_lock);
320ae51f 563
3ef28e83
DW
564 /*
565 * Init percpu_ref in atomic mode so that it's faster to shutdown.
566 * See blk_register_queue() for details.
567 */
568 if (percpu_ref_init(&q->q_usage_counter,
569 blk_queue_usage_counter_release,
570 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 571 goto fail_bdi;
f51b802c 572
3ef28e83
DW
573 if (blkcg_init_queue(q))
574 goto fail_ref;
575
3d745ea5
CH
576 blk_queue_dma_alignment(q, 511);
577 blk_set_default_limits(&q->limits);
c62b37d9 578 q->nr_requests = BLKDEV_MAX_RQ;
3d745ea5 579
1da177e4 580 return q;
a73f730d 581
3ef28e83
DW
582fail_ref:
583 percpu_ref_exit(&q->q_usage_counter);
fff4996b 584fail_bdi:
a83b576c
JA
585 blk_free_queue_stats(q->stats);
586fail_stats:
d03f6cdc 587 bdi_put(q->backing_dev_info);
54efd50b 588fail_split:
338aa96d 589 bioset_exit(&q->bio_split);
a73f730d
TH
590fail_id:
591 ida_simple_remove(&blk_queue_ida, q->id);
592fail_q:
593 kmem_cache_free(blk_requestq_cachep, q);
594 return NULL;
1da177e4 595}
3d745ea5 596EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 597
b5bd357c
LC
598/**
599 * blk_get_queue - increment the request_queue refcount
600 * @q: the request_queue structure to increment the refcount for
601 *
602 * Increment the refcount of the request_queue kobject.
763b5892
LC
603 *
604 * Context: Any context.
b5bd357c 605 */
09ac46c4 606bool blk_get_queue(struct request_queue *q)
1da177e4 607{
3f3299d5 608 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
609 __blk_get_queue(q);
610 return true;
1da177e4
LT
611 }
612
09ac46c4 613 return false;
1da177e4 614}
d86e0e83 615EXPORT_SYMBOL(blk_get_queue);
1da177e4 616
a1ce35fa
JA
617/**
618 * blk_get_request - allocate a request
619 * @q: request queue to allocate a request for
620 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
621 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1da177e4 622 */
a1ce35fa
JA
623struct request *blk_get_request(struct request_queue *q, unsigned int op,
624 blk_mq_req_flags_t flags)
1da177e4 625{
a1ce35fa 626 struct request *req;
1da177e4 627
a1ce35fa
JA
628 WARN_ON_ONCE(op & REQ_NOWAIT);
629 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1da177e4 630
a1ce35fa
JA
631 req = blk_mq_alloc_request(q, op, flags);
632 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
633 q->mq_ops->initialize_rq_fn(req);
1da177e4 634
a1ce35fa 635 return req;
1da177e4 636}
a1ce35fa 637EXPORT_SYMBOL(blk_get_request);
1da177e4 638
1da177e4
LT
639void blk_put_request(struct request *req)
640{
a1ce35fa 641 blk_mq_free_request(req);
1da177e4 642}
1da177e4
LT
643EXPORT_SYMBOL(blk_put_request);
644
52c5e62d 645static void handle_bad_sector(struct bio *bio, sector_t maxsector)
1da177e4
LT
646{
647 char b[BDEVNAME_SIZE];
648
649 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 650 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 651 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 652 (unsigned long long)bio_end_sector(bio),
52c5e62d 653 (long long)maxsector);
1da177e4
LT
654}
655
c17bb495
AM
656#ifdef CONFIG_FAIL_MAKE_REQUEST
657
658static DECLARE_FAULT_ATTR(fail_make_request);
659
660static int __init setup_fail_make_request(char *str)
661{
662 return setup_fault_attr(&fail_make_request, str);
663}
664__setup("fail_make_request=", setup_fail_make_request);
665
b2c9cd37 666static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 667{
b2c9cd37 668 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
669}
670
671static int __init fail_make_request_debugfs(void)
672{
dd48c085
AM
673 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
674 NULL, &fail_make_request);
675
21f9fcd8 676 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
677}
678
679late_initcall(fail_make_request_debugfs);
680
681#else /* CONFIG_FAIL_MAKE_REQUEST */
682
b2c9cd37
AM
683static inline bool should_fail_request(struct hd_struct *part,
684 unsigned int bytes)
c17bb495 685{
b2c9cd37 686 return false;
c17bb495
AM
687}
688
689#endif /* CONFIG_FAIL_MAKE_REQUEST */
690
721c7fc7
ID
691static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
692{
b089cfd9
JA
693 const int op = bio_op(bio);
694
8b2ded1c 695 if (part->policy && op_is_write(op)) {
721c7fc7
ID
696 char b[BDEVNAME_SIZE];
697
8b2ded1c
MP
698 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
699 return false;
700
a32e236e 701 WARN_ONCE(1,
c8178674 702 "Trying to write to read-only block-device %s (partno %d)\n",
721c7fc7 703 bio_devname(bio, b), part->partno);
a32e236e
LT
704 /* Older lvm-tools actually trigger this */
705 return false;
721c7fc7
ID
706 }
707
708 return false;
709}
710
30abb3a6
HM
711static noinline int should_fail_bio(struct bio *bio)
712{
713 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
714 return -EIO;
715 return 0;
716}
717ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
718
52c5e62d
CH
719/*
720 * Check whether this bio extends beyond the end of the device or partition.
721 * This may well happen - the kernel calls bread() without checking the size of
722 * the device, e.g., when mounting a file system.
723 */
724static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
725{
726 unsigned int nr_sectors = bio_sectors(bio);
727
728 if (nr_sectors && maxsector &&
729 (nr_sectors > maxsector ||
730 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
731 handle_bad_sector(bio, maxsector);
732 return -EIO;
733 }
734 return 0;
735}
736
74d46992
CH
737/*
738 * Remap block n of partition p to block n+start(p) of the disk.
739 */
740static inline int blk_partition_remap(struct bio *bio)
741{
742 struct hd_struct *p;
52c5e62d 743 int ret = -EIO;
74d46992 744
721c7fc7
ID
745 rcu_read_lock();
746 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
52c5e62d
CH
747 if (unlikely(!p))
748 goto out;
749 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
750 goto out;
751 if (unlikely(bio_check_ro(bio, p)))
721c7fc7 752 goto out;
721c7fc7 753
5eac3eb3 754 if (bio_sectors(bio)) {
52c5e62d
CH
755 if (bio_check_eod(bio, part_nr_sects_read(p)))
756 goto out;
757 bio->bi_iter.bi_sector += p->start_sect;
52c5e62d
CH
758 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
759 bio->bi_iter.bi_sector - p->start_sect);
760 }
c04fa44b 761 bio->bi_partno = 0;
52c5e62d 762 ret = 0;
721c7fc7
ID
763out:
764 rcu_read_unlock();
74d46992
CH
765 return ret;
766}
767
0512a75b
KB
768/*
769 * Check write append to a zoned block device.
770 */
771static inline blk_status_t blk_check_zone_append(struct request_queue *q,
772 struct bio *bio)
773{
774 sector_t pos = bio->bi_iter.bi_sector;
775 int nr_sectors = bio_sectors(bio);
776
777 /* Only applicable to zoned block devices */
778 if (!blk_queue_is_zoned(q))
779 return BLK_STS_NOTSUPP;
780
781 /* The bio sector must point to the start of a sequential zone */
782 if (pos & (blk_queue_zone_sectors(q) - 1) ||
783 !blk_queue_zone_is_seq(q, pos))
784 return BLK_STS_IOERR;
785
786 /*
787 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
788 * split and could result in non-contiguous sectors being written in
789 * different zones.
790 */
791 if (nr_sectors > q->limits.chunk_sectors)
792 return BLK_STS_IOERR;
793
794 /* Make sure the BIO is small enough and will not get split */
795 if (nr_sectors > q->limits.max_zone_append_sectors)
796 return BLK_STS_IOERR;
797
798 bio->bi_opf |= REQ_NOMERGE;
799
800 return BLK_STS_OK;
801}
802
ed00aabd 803static noinline_for_stack bool submit_bio_checks(struct bio *bio)
1da177e4 804{
833f84e2 805 struct request_queue *q = bio->bi_disk->queue;
4e4cbee9 806 blk_status_t status = BLK_STS_IOERR;
5a473e83 807 struct blk_plug *plug;
1da177e4
LT
808
809 might_sleep();
1da177e4 810
5a473e83
JA
811 plug = blk_mq_plug(q, bio);
812 if (plug && plug->nowait)
813 bio->bi_opf |= REQ_NOWAIT;
814
03a07c92 815 /*
b0beb280 816 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
021a2446 817 * if queue does not support NOWAIT.
03a07c92 818 */
021a2446 819 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
b0beb280 820 goto not_supported;
03a07c92 821
30abb3a6 822 if (should_fail_bio(bio))
5a7bbad2 823 goto end_io;
2056a782 824
52c5e62d
CH
825 if (bio->bi_partno) {
826 if (unlikely(blk_partition_remap(bio)))
721c7fc7
ID
827 goto end_io;
828 } else {
52c5e62d
CH
829 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
830 goto end_io;
831 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
721c7fc7
ID
832 goto end_io;
833 }
2056a782 834
5a7bbad2 835 /*
ed00aabd
CH
836 * Filter flush bio's early so that bio based drivers without flush
837 * support don't have to worry about them.
5a7bbad2 838 */
f3a8ab7d 839 if (op_is_flush(bio->bi_opf) &&
c888a8f9 840 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 841 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
e439ab71 842 if (!bio_sectors(bio)) {
4e4cbee9 843 status = BLK_STS_OK;
51fd77bd
JA
844 goto end_io;
845 }
5a7bbad2 846 }
5ddfe969 847
d04c406f
CH
848 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
849 bio->bi_opf &= ~REQ_HIPRI;
850
288dab8a
CH
851 switch (bio_op(bio)) {
852 case REQ_OP_DISCARD:
853 if (!blk_queue_discard(q))
854 goto not_supported;
855 break;
856 case REQ_OP_SECURE_ERASE:
857 if (!blk_queue_secure_erase(q))
858 goto not_supported;
859 break;
860 case REQ_OP_WRITE_SAME:
74d46992 861 if (!q->limits.max_write_same_sectors)
288dab8a 862 goto not_supported;
58886785 863 break;
0512a75b
KB
864 case REQ_OP_ZONE_APPEND:
865 status = blk_check_zone_append(q, bio);
866 if (status != BLK_STS_OK)
867 goto end_io;
868 break;
2d253440 869 case REQ_OP_ZONE_RESET:
6c1b1da5
AJ
870 case REQ_OP_ZONE_OPEN:
871 case REQ_OP_ZONE_CLOSE:
872 case REQ_OP_ZONE_FINISH:
74d46992 873 if (!blk_queue_is_zoned(q))
2d253440 874 goto not_supported;
288dab8a 875 break;
6e33dbf2
CK
876 case REQ_OP_ZONE_RESET_ALL:
877 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
878 goto not_supported;
879 break;
a6f0788e 880 case REQ_OP_WRITE_ZEROES:
74d46992 881 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
882 goto not_supported;
883 break;
288dab8a
CH
884 default:
885 break;
5a7bbad2 886 }
01edede4 887
7f4b35d1 888 /*
3e82c348
CH
889 * Various block parts want %current->io_context, so allocate it up
890 * front rather than dealing with lots of pain to allocate it only
891 * where needed. This may fail and the block layer knows how to live
892 * with it.
7f4b35d1 893 */
3e82c348
CH
894 if (unlikely(!current->io_context))
895 create_task_io_context(current, GFP_ATOMIC, q->node);
7f4b35d1 896
db18a53e
CH
897 if (blk_throtl_bio(bio)) {
898 blkcg_bio_issue_init(bio);
ae118896 899 return false;
db18a53e
CH
900 }
901
902 blk_cgroup_bio_start(bio);
903 blkcg_bio_issue_init(bio);
27a84d54 904
fbbaf700
N
905 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
906 trace_block_bio_queue(q, bio);
907 /* Now that enqueuing has been traced, we need to trace
908 * completion as well.
909 */
910 bio_set_flag(bio, BIO_TRACE_COMPLETION);
911 }
27a84d54 912 return true;
a7384677 913
288dab8a 914not_supported:
4e4cbee9 915 status = BLK_STS_NOTSUPP;
a7384677 916end_io:
4e4cbee9 917 bio->bi_status = status;
4246a0b6 918 bio_endio(bio);
27a84d54 919 return false;
1da177e4
LT
920}
921
ed00aabd 922static blk_qc_t __submit_bio(struct bio *bio)
ac7c5675 923{
c62b37d9 924 struct gendisk *disk = bio->bi_disk;
ac7c5675
CH
925 blk_qc_t ret = BLK_QC_T_NONE;
926
927 if (blk_crypto_bio_prep(&bio)) {
c62b37d9
CH
928 if (!disk->fops->submit_bio)
929 return blk_mq_submit_bio(bio);
930 ret = disk->fops->submit_bio(bio);
ac7c5675 931 }
c62b37d9 932 blk_queue_exit(disk->queue);
ac7c5675
CH
933 return ret;
934}
935
566acf2d
CH
936/*
937 * The loop in this function may be a bit non-obvious, and so deserves some
938 * explanation:
939 *
940 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
941 * that), so we have a list with a single bio.
942 * - We pretend that we have just taken it off a longer list, so we assign
943 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
944 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
945 * bios through a recursive call to submit_bio_noacct. If it did, we find a
946 * non-NULL value in bio_list and re-enter the loop from the top.
947 * - In this case we really did just take the bio of the top of the list (no
948 * pretending) and so remove it from bio_list, and call into ->submit_bio()
949 * again.
950 *
951 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
952 * bio_list_on_stack[1] contains bios that were submitted before the current
953 * ->submit_bio_bio, but that haven't been processed yet.
954 */
955static blk_qc_t __submit_bio_noacct(struct bio *bio)
956{
957 struct bio_list bio_list_on_stack[2];
958 blk_qc_t ret = BLK_QC_T_NONE;
959
960 BUG_ON(bio->bi_next);
961
962 bio_list_init(&bio_list_on_stack[0]);
963 current->bio_list = bio_list_on_stack;
964
965 do {
966 struct request_queue *q = bio->bi_disk->queue;
967 struct bio_list lower, same;
968
969 if (unlikely(bio_queue_enter(bio) != 0))
970 continue;
971
972 /*
973 * Create a fresh bio_list for all subordinate requests.
974 */
975 bio_list_on_stack[1] = bio_list_on_stack[0];
976 bio_list_init(&bio_list_on_stack[0]);
977
978 ret = __submit_bio(bio);
979
980 /*
981 * Sort new bios into those for a lower level and those for the
982 * same level.
983 */
984 bio_list_init(&lower);
985 bio_list_init(&same);
986 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
987 if (q == bio->bi_disk->queue)
988 bio_list_add(&same, bio);
989 else
990 bio_list_add(&lower, bio);
991
992 /*
993 * Now assemble so we handle the lowest level first.
994 */
995 bio_list_merge(&bio_list_on_stack[0], &lower);
996 bio_list_merge(&bio_list_on_stack[0], &same);
997 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
998 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
999
1000 current->bio_list = NULL;
1001 return ret;
1002}
1003
ff93ea0c
CH
1004static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1005{
7c792f33 1006 struct bio_list bio_list[2] = { };
ff93ea0c
CH
1007 blk_qc_t ret = BLK_QC_T_NONE;
1008
7c792f33 1009 current->bio_list = bio_list;
ff93ea0c
CH
1010
1011 do {
0e6e255e 1012 struct gendisk *disk = bio->bi_disk;
ff93ea0c
CH
1013
1014 if (unlikely(bio_queue_enter(bio) != 0))
1015 continue;
1016
1017 if (!blk_crypto_bio_prep(&bio)) {
1018 blk_queue_exit(disk->queue);
1019 ret = BLK_QC_T_NONE;
1020 continue;
1021 }
1022
1023 ret = blk_mq_submit_bio(bio);
7c792f33 1024 } while ((bio = bio_list_pop(&bio_list[0])));
ff93ea0c
CH
1025
1026 current->bio_list = NULL;
1027 return ret;
1028}
1029
27a84d54 1030/**
ed00aabd 1031 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
27a84d54
CH
1032 * @bio: The bio describing the location in memory and on the device.
1033 *
3fdd4086
CH
1034 * This is a version of submit_bio() that shall only be used for I/O that is
1035 * resubmitted to lower level drivers by stacking block drivers. All file
1036 * systems and other upper level users of the block layer should use
1037 * submit_bio() instead.
d89d8796 1038 */
ed00aabd 1039blk_qc_t submit_bio_noacct(struct bio *bio)
d89d8796 1040{
ed00aabd 1041 if (!submit_bio_checks(bio))
566acf2d 1042 return BLK_QC_T_NONE;
27a84d54
CH
1043
1044 /*
566acf2d
CH
1045 * We only want one ->submit_bio to be active at a time, else stack
1046 * usage with stacked devices could be a problem. Use current->bio_list
1047 * to collect a list of requests submited by a ->submit_bio method while
1048 * it is active, and then process them after it returned.
27a84d54 1049 */
bddd87c7 1050 if (current->bio_list) {
f5fe1b51 1051 bio_list_add(&current->bio_list[0], bio);
566acf2d 1052 return BLK_QC_T_NONE;
d89d8796 1053 }
27a84d54 1054
ff93ea0c
CH
1055 if (!bio->bi_disk->fops->submit_bio)
1056 return __submit_bio_noacct_mq(bio);
566acf2d 1057 return __submit_bio_noacct(bio);
d89d8796 1058}
ed00aabd 1059EXPORT_SYMBOL(submit_bio_noacct);
1da177e4
LT
1060
1061/**
710027a4 1062 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1063 * @bio: The &struct bio which describes the I/O
1064 *
3fdd4086
CH
1065 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1066 * fully set up &struct bio that describes the I/O that needs to be done. The
1067 * bio will be send to the device described by the bi_disk and bi_partno fields.
1da177e4 1068 *
3fdd4086
CH
1069 * The success/failure status of the request, along with notification of
1070 * completion, is delivered asynchronously through the ->bi_end_io() callback
1071 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1072 * been called.
1da177e4 1073 */
4e49ea4a 1074blk_qc_t submit_bio(struct bio *bio)
1da177e4 1075{
d3f77dfd
TH
1076 if (blkcg_punt_bio_submit(bio))
1077 return BLK_QC_T_NONE;
1078
bf2de6f5
JA
1079 /*
1080 * If it's a regular read/write or a barrier with data attached,
1081 * go through the normal accounting stuff before submission.
1082 */
e2a60da7 1083 if (bio_has_data(bio)) {
4363ac7c
MP
1084 unsigned int count;
1085
95fe6c1a 1086 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
7c5a0dcf 1087 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
4363ac7c
MP
1088 else
1089 count = bio_sectors(bio);
1090
a8ebb056 1091 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
1092 count_vm_events(PGPGOUT, count);
1093 } else {
4f024f37 1094 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1095 count_vm_events(PGPGIN, count);
1096 }
1097
1098 if (unlikely(block_dump)) {
1099 char b[BDEVNAME_SIZE];
8dcbdc74 1100 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1101 current->comm, task_pid_nr(current),
a8ebb056 1102 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 1103 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 1104 bio_devname(bio, b), count);
bf2de6f5 1105 }
1da177e4
LT
1106 }
1107
b8e24a93 1108 /*
760f83ea
CH
1109 * If we're reading data that is part of the userspace workingset, count
1110 * submission time as memory stall. When the device is congested, or
1111 * the submitting cgroup IO-throttled, submission can be a significant
1112 * part of overall IO time.
b8e24a93 1113 */
760f83ea
CH
1114 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1115 bio_flagged(bio, BIO_WORKINGSET))) {
1116 unsigned long pflags;
1117 blk_qc_t ret;
b8e24a93 1118
760f83ea 1119 psi_memstall_enter(&pflags);
ed00aabd 1120 ret = submit_bio_noacct(bio);
b8e24a93
JW
1121 psi_memstall_leave(&pflags);
1122
760f83ea
CH
1123 return ret;
1124 }
1125
ed00aabd 1126 return submit_bio_noacct(bio);
1da177e4 1127}
1da177e4
LT
1128EXPORT_SYMBOL(submit_bio);
1129
82124d60 1130/**
bf4e6b4e 1131 * blk_cloned_rq_check_limits - Helper function to check a cloned request
0d720318 1132 * for the new queue limits
82124d60
KU
1133 * @q: the queue
1134 * @rq: the request being checked
1135 *
1136 * Description:
1137 * @rq may have been made based on weaker limitations of upper-level queues
1138 * in request stacking drivers, and it may violate the limitation of @q.
1139 * Since the block layer and the underlying device driver trust @rq
1140 * after it is inserted to @q, it should be checked against @q before
1141 * the insertion using this generic function.
1142 *
82124d60 1143 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
1144 * limits when retrying requests on other queues. Those requests need
1145 * to be checked against the new queue limits again during dispatch.
82124d60 1146 */
143d2600 1147static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
bf4e6b4e 1148 struct request *rq)
82124d60 1149{
8327cce5
RS
1150 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1151
1152 if (blk_rq_sectors(rq) > max_sectors) {
1153 /*
1154 * SCSI device does not have a good way to return if
1155 * Write Same/Zero is actually supported. If a device rejects
1156 * a non-read/write command (discard, write same,etc.) the
1157 * low-level device driver will set the relevant queue limit to
1158 * 0 to prevent blk-lib from issuing more of the offending
1159 * operations. Commands queued prior to the queue limit being
1160 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1161 * errors being propagated to upper layers.
1162 */
1163 if (max_sectors == 0)
1164 return BLK_STS_NOTSUPP;
1165
61939b12 1166 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
8327cce5 1167 __func__, blk_rq_sectors(rq), max_sectors);
143d2600 1168 return BLK_STS_IOERR;
82124d60
KU
1169 }
1170
1171 /*
1172 * queue's settings related to segment counting like q->bounce_pfn
1173 * may differ from that of other stacking queues.
1174 * Recalculate it to check the request correctly on this queue's
1175 * limitation.
1176 */
e9cd19c0 1177 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
8a78362c 1178 if (rq->nr_phys_segments > queue_max_segments(q)) {
61939b12
JP
1179 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1180 __func__, rq->nr_phys_segments, queue_max_segments(q));
143d2600 1181 return BLK_STS_IOERR;
82124d60
KU
1182 }
1183
143d2600 1184 return BLK_STS_OK;
82124d60 1185}
82124d60
KU
1186
1187/**
1188 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1189 * @q: the queue to submit the request
1190 * @rq: the request being queued
1191 */
2a842aca 1192blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60 1193{
8327cce5
RS
1194 blk_status_t ret;
1195
1196 ret = blk_cloned_rq_check_limits(q, rq);
1197 if (ret != BLK_STS_OK)
1198 return ret;
82124d60 1199
b2c9cd37
AM
1200 if (rq->rq_disk &&
1201 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 1202 return BLK_STS_IOERR;
82124d60 1203
a892c8d5
ST
1204 if (blk_crypto_insert_cloned_request(rq))
1205 return BLK_STS_IOERR;
1206
a1ce35fa 1207 if (blk_queue_io_stat(q))
b5af37ab 1208 blk_account_io_start(rq);
82124d60
KU
1209
1210 /*
a1ce35fa
JA
1211 * Since we have a scheduler attached on the top device,
1212 * bypass a potential scheduler on the bottom device for
1213 * insert.
82124d60 1214 */
fd9c40f6 1215 return blk_mq_request_issue_directly(rq, true);
82124d60
KU
1216}
1217EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1218
80a761fd
TH
1219/**
1220 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1221 * @rq: request to examine
1222 *
1223 * Description:
1224 * A request could be merge of IOs which require different failure
1225 * handling. This function determines the number of bytes which
1226 * can be failed from the beginning of the request without
1227 * crossing into area which need to be retried further.
1228 *
1229 * Return:
1230 * The number of bytes to fail.
80a761fd
TH
1231 */
1232unsigned int blk_rq_err_bytes(const struct request *rq)
1233{
1234 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1235 unsigned int bytes = 0;
1236 struct bio *bio;
1237
e8064021 1238 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
1239 return blk_rq_bytes(rq);
1240
1241 /*
1242 * Currently the only 'mixing' which can happen is between
1243 * different fastfail types. We can safely fail portions
1244 * which have all the failfast bits that the first one has -
1245 * the ones which are at least as eager to fail as the first
1246 * one.
1247 */
1248 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 1249 if ((bio->bi_opf & ff) != ff)
80a761fd 1250 break;
4f024f37 1251 bytes += bio->bi_iter.bi_size;
80a761fd
TH
1252 }
1253
1254 /* this could lead to infinite loop */
1255 BUG_ON(blk_rq_bytes(rq) && !bytes);
1256 return bytes;
1257}
1258EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1259
9123bf6f
CH
1260static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1261{
1262 unsigned long stamp;
1263again:
1264 stamp = READ_ONCE(part->stamp);
1265 if (unlikely(stamp != now)) {
1266 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp))
1267 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1268 }
1269 if (part->partno) {
1270 part = &part_to_disk(part)->part0;
1271 goto again;
1272 }
1273}
1274
f1394b79 1275static void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 1276{
ecb6186c 1277 if (req->part && blk_do_io_stat(req)) {
ddcf35d3 1278 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1279 struct hd_struct *part;
bc58ba94 1280
112f158f 1281 part_stat_lock();
09e099d4 1282 part = req->part;
112f158f 1283 part_stat_add(part, sectors[sgrp], bytes >> 9);
bc58ba94
JA
1284 part_stat_unlock();
1285 }
1286}
1287
522a7775 1288void blk_account_io_done(struct request *req, u64 now)
bc58ba94 1289{
bc58ba94 1290 /*
dd4c133f
TH
1291 * Account IO completion. flush_rq isn't accounted as a
1292 * normal IO on queueing nor completion. Accounting the
1293 * containing request is enough.
bc58ba94 1294 */
ecb6186c
LG
1295 if (req->part && blk_do_io_stat(req) &&
1296 !(req->rq_flags & RQF_FLUSH_SEQ)) {
ddcf35d3 1297 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1298 struct hd_struct *part;
bc58ba94 1299
112f158f 1300 part_stat_lock();
09e099d4 1301 part = req->part;
bc58ba94 1302
2b8bd423 1303 update_io_ticks(part, jiffies, true);
112f158f
MS
1304 part_stat_inc(part, ios[sgrp]);
1305 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
524f9ffd 1306 part_stat_unlock();
bc58ba94 1307
6c23a968 1308 hd_struct_put(part);
bc58ba94
JA
1309 }
1310}
1311
b5af37ab 1312void blk_account_io_start(struct request *rq)
320ae51f 1313{
320ae51f
JA
1314 if (!blk_do_io_stat(rq))
1315 return;
1316
b5af37ab 1317 rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
524f9ffd 1318
112f158f 1319 part_stat_lock();
76268f3a 1320 update_io_ticks(rq->part, jiffies, false);
320ae51f
JA
1321 part_stat_unlock();
1322}
320ae51f 1323
7b26410b
SL
1324static unsigned long __part_start_io_acct(struct hd_struct *part,
1325 unsigned int sectors, unsigned int op)
956d510e 1326{
956d510e
CH
1327 const int sgrp = op_stat_group(op);
1328 unsigned long now = READ_ONCE(jiffies);
1329
1330 part_stat_lock();
1331 update_io_ticks(part, now, false);
1332 part_stat_inc(part, ios[sgrp]);
1333 part_stat_add(part, sectors[sgrp], sectors);
1334 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1335 part_stat_unlock();
320ae51f 1336
956d510e
CH
1337 return now;
1338}
7b26410b
SL
1339
1340unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part,
1341 struct bio *bio)
1342{
1343 *part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector);
1344
1345 return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio));
1346}
1347EXPORT_SYMBOL_GPL(part_start_io_acct);
1348
1349unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1350 unsigned int op)
1351{
1352 return __part_start_io_acct(&disk->part0, sectors, op);
1353}
956d510e
CH
1354EXPORT_SYMBOL(disk_start_io_acct);
1355
7b26410b
SL
1356static void __part_end_io_acct(struct hd_struct *part, unsigned int op,
1357 unsigned long start_time)
956d510e 1358{
956d510e
CH
1359 const int sgrp = op_stat_group(op);
1360 unsigned long now = READ_ONCE(jiffies);
1361 unsigned long duration = now - start_time;
5b18b5a7 1362
956d510e
CH
1363 part_stat_lock();
1364 update_io_ticks(part, now, true);
1365 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1366 part_stat_local_dec(part, in_flight[op_is_write(op)]);
320ae51f
JA
1367 part_stat_unlock();
1368}
7b26410b
SL
1369
1370void part_end_io_acct(struct hd_struct *part, struct bio *bio,
1371 unsigned long start_time)
1372{
1373 __part_end_io_acct(part, bio_op(bio), start_time);
1374 hd_struct_put(part);
1375}
1376EXPORT_SYMBOL_GPL(part_end_io_acct);
1377
1378void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1379 unsigned long start_time)
1380{
1381 __part_end_io_acct(&disk->part0, op, start_time);
1382}
956d510e 1383EXPORT_SYMBOL(disk_end_io_acct);
320ae51f 1384
ef71de8b
CH
1385/*
1386 * Steal bios from a request and add them to a bio list.
1387 * The request must not have been partially completed before.
1388 */
1389void blk_steal_bios(struct bio_list *list, struct request *rq)
1390{
1391 if (rq->bio) {
1392 if (list->tail)
1393 list->tail->bi_next = rq->bio;
1394 else
1395 list->head = rq->bio;
1396 list->tail = rq->biotail;
1397
1398 rq->bio = NULL;
1399 rq->biotail = NULL;
1400 }
1401
1402 rq->__data_len = 0;
1403}
1404EXPORT_SYMBOL_GPL(blk_steal_bios);
1405
3bcddeac 1406/**
2e60e022 1407 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1408 * @req: the request being processed
2a842aca 1409 * @error: block status code
8ebf9756 1410 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1411 *
1412 * Description:
8ebf9756
RD
1413 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1414 * the request structure even if @req doesn't have leftover.
1415 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1416 *
1417 * This special helper function is only for request stacking drivers
1418 * (e.g. request-based dm) so that they can handle partial completion.
3a211b71 1419 * Actual device drivers should use blk_mq_end_request instead.
2e60e022
TH
1420 *
1421 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1422 * %false return from this function.
3bcddeac 1423 *
1954e9a9
BVA
1424 * Note:
1425 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1426 * blk_rq_bytes() and in blk_update_request().
1427 *
3bcddeac 1428 * Return:
2e60e022
TH
1429 * %false - this request doesn't have any more data
1430 * %true - this request has more data
3bcddeac 1431 **/
2a842aca
CH
1432bool blk_update_request(struct request *req, blk_status_t error,
1433 unsigned int nr_bytes)
1da177e4 1434{
f79ea416 1435 int total_bytes;
1da177e4 1436
2a842aca 1437 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 1438
2e60e022
TH
1439 if (!req->bio)
1440 return false;
1441
54d4e6ab
MG
1442#ifdef CONFIG_BLK_DEV_INTEGRITY
1443 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1444 error == BLK_STS_OK)
1445 req->q->integrity.profile->complete_fn(req, nr_bytes);
1446#endif
1447
2a842aca
CH
1448 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1449 !(req->rq_flags & RQF_QUIET)))
178cc590 1450 print_req_error(req, error, __func__);
1da177e4 1451
bc58ba94 1452 blk_account_io_completion(req, nr_bytes);
d72d904a 1453
f79ea416
KO
1454 total_bytes = 0;
1455 while (req->bio) {
1456 struct bio *bio = req->bio;
4f024f37 1457 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 1458
9c24c10a 1459 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 1460 req->bio = bio->bi_next;
1da177e4 1461
fbbaf700
N
1462 /* Completion has already been traced */
1463 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 1464 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 1465
f79ea416
KO
1466 total_bytes += bio_bytes;
1467 nr_bytes -= bio_bytes;
1da177e4 1468
f79ea416
KO
1469 if (!nr_bytes)
1470 break;
1da177e4
LT
1471 }
1472
1473 /*
1474 * completely done
1475 */
2e60e022
TH
1476 if (!req->bio) {
1477 /*
1478 * Reset counters so that the request stacking driver
1479 * can find how many bytes remain in the request
1480 * later.
1481 */
a2dec7b3 1482 req->__data_len = 0;
2e60e022
TH
1483 return false;
1484 }
1da177e4 1485
a2dec7b3 1486 req->__data_len -= total_bytes;
2e46e8b2
TH
1487
1488 /* update sector only for requests with clear definition of sector */
57292b58 1489 if (!blk_rq_is_passthrough(req))
a2dec7b3 1490 req->__sector += total_bytes >> 9;
2e46e8b2 1491
80a761fd 1492 /* mixed attributes always follow the first bio */
e8064021 1493 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 1494 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 1495 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
1496 }
1497
ed6565e7
CH
1498 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1499 /*
1500 * If total number of sectors is less than the first segment
1501 * size, something has gone terribly wrong.
1502 */
1503 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1504 blk_dump_rq_flags(req, "request botched");
1505 req->__data_len = blk_rq_cur_bytes(req);
1506 }
2e46e8b2 1507
ed6565e7 1508 /* recalculate the number of segments */
e9cd19c0 1509 req->nr_phys_segments = blk_recalc_rq_segments(req);
ed6565e7 1510 }
2e46e8b2 1511
2e60e022 1512 return true;
1da177e4 1513}
2e60e022 1514EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 1515
2d4dc890
IL
1516#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1517/**
1518 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1519 * @rq: the request to be flushed
1520 *
1521 * Description:
1522 * Flush all pages in @rq.
1523 */
1524void rq_flush_dcache_pages(struct request *rq)
1525{
1526 struct req_iterator iter;
7988613b 1527 struct bio_vec bvec;
2d4dc890
IL
1528
1529 rq_for_each_segment(bvec, rq, iter)
7988613b 1530 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1531}
1532EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1533#endif
1534
ef9e3fac
KU
1535/**
1536 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1537 * @q : the queue of the device being checked
1538 *
1539 * Description:
1540 * Check if underlying low-level drivers of a device are busy.
1541 * If the drivers want to export their busy state, they must set own
1542 * exporting function using blk_queue_lld_busy() first.
1543 *
1544 * Basically, this function is used only by request stacking drivers
1545 * to stop dispatching requests to underlying devices when underlying
1546 * devices are busy. This behavior helps more I/O merging on the queue
1547 * of the request stacking driver and prevents I/O throughput regression
1548 * on burst I/O load.
1549 *
1550 * Return:
1551 * 0 - Not busy (The request stacking driver should dispatch request)
1552 * 1 - Busy (The request stacking driver should stop dispatching request)
1553 */
1554int blk_lld_busy(struct request_queue *q)
1555{
344e9ffc 1556 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1557 return q->mq_ops->busy(q);
ef9e3fac
KU
1558
1559 return 0;
1560}
1561EXPORT_SYMBOL_GPL(blk_lld_busy);
1562
78d8e58a
MS
1563/**
1564 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1565 * @rq: the clone request to be cleaned up
1566 *
1567 * Description:
1568 * Free all bios in @rq for a cloned request.
1569 */
1570void blk_rq_unprep_clone(struct request *rq)
1571{
1572 struct bio *bio;
1573
1574 while ((bio = rq->bio) != NULL) {
1575 rq->bio = bio->bi_next;
1576
1577 bio_put(bio);
1578 }
1579}
1580EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1581
78d8e58a
MS
1582/**
1583 * blk_rq_prep_clone - Helper function to setup clone request
1584 * @rq: the request to be setup
1585 * @rq_src: original request to be cloned
1586 * @bs: bio_set that bios for clone are allocated from
1587 * @gfp_mask: memory allocation mask for bio
1588 * @bio_ctr: setup function to be called for each clone bio.
1589 * Returns %0 for success, non %0 for failure.
1590 * @data: private data to be passed to @bio_ctr
1591 *
1592 * Description:
1593 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
78d8e58a
MS
1594 * Also, pages which the original bios are pointing to are not copied
1595 * and the cloned bios just point same pages.
1596 * So cloned bios must be completed before original bios, which means
1597 * the caller must complete @rq before @rq_src.
1598 */
1599int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1600 struct bio_set *bs, gfp_t gfp_mask,
1601 int (*bio_ctr)(struct bio *, struct bio *, void *),
1602 void *data)
1603{
1604 struct bio *bio, *bio_src;
1605
1606 if (!bs)
f4f8154a 1607 bs = &fs_bio_set;
78d8e58a
MS
1608
1609 __rq_for_each_bio(bio_src, rq_src) {
1610 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1611 if (!bio)
1612 goto free_and_out;
1613
1614 if (bio_ctr && bio_ctr(bio, bio_src, data))
1615 goto free_and_out;
1616
1617 if (rq->bio) {
1618 rq->biotail->bi_next = bio;
1619 rq->biotail = bio;
93f221ae 1620 } else {
78d8e58a 1621 rq->bio = rq->biotail = bio;
93f221ae
EB
1622 }
1623 bio = NULL;
78d8e58a
MS
1624 }
1625
361301a2
GJ
1626 /* Copy attributes of the original request to the clone request. */
1627 rq->__sector = blk_rq_pos(rq_src);
1628 rq->__data_len = blk_rq_bytes(rq_src);
1629 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1630 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1631 rq->special_vec = rq_src->special_vec;
1632 }
1633 rq->nr_phys_segments = rq_src->nr_phys_segments;
1634 rq->ioprio = rq_src->ioprio;
78d8e58a 1635
93f221ae
EB
1636 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1637 goto free_and_out;
78d8e58a
MS
1638
1639 return 0;
1640
1641free_and_out:
1642 if (bio)
1643 bio_put(bio);
1644 blk_rq_unprep_clone(rq);
1645
1646 return -ENOMEM;
b0fd271d
KU
1647}
1648EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1649
59c3d45e 1650int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1651{
1652 return queue_work(kblockd_workqueue, work);
1653}
1da177e4
LT
1654EXPORT_SYMBOL(kblockd_schedule_work);
1655
818cd1cb
JA
1656int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1657 unsigned long delay)
1658{
1659 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1660}
1661EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1662
75df7136
SJ
1663/**
1664 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1665 * @plug: The &struct blk_plug that needs to be initialized
1666 *
1667 * Description:
40405851
JM
1668 * blk_start_plug() indicates to the block layer an intent by the caller
1669 * to submit multiple I/O requests in a batch. The block layer may use
1670 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1671 * is called. However, the block layer may choose to submit requests
1672 * before a call to blk_finish_plug() if the number of queued I/Os
1673 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1674 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1675 * the task schedules (see below).
1676 *
75df7136
SJ
1677 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1678 * pending I/O should the task end up blocking between blk_start_plug() and
1679 * blk_finish_plug(). This is important from a performance perspective, but
1680 * also ensures that we don't deadlock. For instance, if the task is blocking
1681 * for a memory allocation, memory reclaim could end up wanting to free a
1682 * page belonging to that request that is currently residing in our private
1683 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1684 * this kind of deadlock.
1685 */
73c10101
JA
1686void blk_start_plug(struct blk_plug *plug)
1687{
1688 struct task_struct *tsk = current;
1689
dd6cf3e1
SL
1690 /*
1691 * If this is a nested plug, don't actually assign it.
1692 */
1693 if (tsk->plug)
1694 return;
1695
320ae51f 1696 INIT_LIST_HEAD(&plug->mq_list);
048c9374 1697 INIT_LIST_HEAD(&plug->cb_list);
5f0ed774 1698 plug->rq_count = 0;
ce5b009c 1699 plug->multiple_queues = false;
5a473e83 1700 plug->nowait = false;
5f0ed774 1701
73c10101 1702 /*
dd6cf3e1
SL
1703 * Store ordering should not be needed here, since a potential
1704 * preempt will imply a full memory barrier
73c10101 1705 */
dd6cf3e1 1706 tsk->plug = plug;
73c10101
JA
1707}
1708EXPORT_SYMBOL(blk_start_plug);
1709
74018dc3 1710static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1711{
1712 LIST_HEAD(callbacks);
1713
2a7d5559
SL
1714 while (!list_empty(&plug->cb_list)) {
1715 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1716
2a7d5559
SL
1717 while (!list_empty(&callbacks)) {
1718 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1719 struct blk_plug_cb,
1720 list);
2a7d5559 1721 list_del(&cb->list);
74018dc3 1722 cb->callback(cb, from_schedule);
2a7d5559 1723 }
048c9374
N
1724 }
1725}
1726
9cbb1750
N
1727struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1728 int size)
1729{
1730 struct blk_plug *plug = current->plug;
1731 struct blk_plug_cb *cb;
1732
1733 if (!plug)
1734 return NULL;
1735
1736 list_for_each_entry(cb, &plug->cb_list, list)
1737 if (cb->callback == unplug && cb->data == data)
1738 return cb;
1739
1740 /* Not currently on the callback list */
1741 BUG_ON(size < sizeof(*cb));
1742 cb = kzalloc(size, GFP_ATOMIC);
1743 if (cb) {
1744 cb->data = data;
1745 cb->callback = unplug;
1746 list_add(&cb->list, &plug->cb_list);
1747 }
1748 return cb;
1749}
1750EXPORT_SYMBOL(blk_check_plugged);
1751
49cac01e 1752void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101 1753{
74018dc3 1754 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
1755
1756 if (!list_empty(&plug->mq_list))
1757 blk_mq_flush_plug_list(plug, from_schedule);
73c10101 1758}
73c10101 1759
40405851
JM
1760/**
1761 * blk_finish_plug - mark the end of a batch of submitted I/O
1762 * @plug: The &struct blk_plug passed to blk_start_plug()
1763 *
1764 * Description:
1765 * Indicate that a batch of I/O submissions is complete. This function
1766 * must be paired with an initial call to blk_start_plug(). The intent
1767 * is to allow the block layer to optimize I/O submission. See the
1768 * documentation for blk_start_plug() for more information.
1769 */
73c10101
JA
1770void blk_finish_plug(struct blk_plug *plug)
1771{
dd6cf3e1
SL
1772 if (plug != current->plug)
1773 return;
f6603783 1774 blk_flush_plug_list(plug, false);
73c10101 1775
dd6cf3e1 1776 current->plug = NULL;
73c10101 1777}
88b996cd 1778EXPORT_SYMBOL(blk_finish_plug);
73c10101 1779
71ac860a
ML
1780void blk_io_schedule(void)
1781{
1782 /* Prevent hang_check timer from firing at us during very long I/O */
1783 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1784
1785 if (timeout)
1786 io_schedule_timeout(timeout);
1787 else
1788 io_schedule();
1789}
1790EXPORT_SYMBOL_GPL(blk_io_schedule);
1791
1da177e4
LT
1792int __init blk_dev_init(void)
1793{
ef295ecf
CH
1794 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1795 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1796 sizeof_field(struct request, cmd_flags));
ef295ecf 1797 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1798 sizeof_field(struct bio, bi_opf));
9eb55b03 1799
89b90be2
TH
1800 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1801 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1802 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1803 if (!kblockd_workqueue)
1804 panic("Failed to create kblockd\n");
1805
c2789bd4 1806 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1807 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1808
18fbda91 1809 blk_debugfs_root = debugfs_create_dir("block", NULL);
18fbda91 1810
d38ecf93 1811 return 0;
1da177e4 1812}