block: export __make_request
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
55782138
LZ
31
32#define CREATE_TRACE_POINTS
33#include <trace/events/block.h>
1da177e4 34
8324aa91
JA
35#include "blk.h"
36
d07335e5 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 39EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 40
1da177e4
LT
41/*
42 * For the allocated request tables
43 */
5ece6c52 44static struct kmem_cache *request_cachep;
1da177e4
LT
45
46/*
47 * For queue allocation
48 */
6728cb0e 49struct kmem_cache *blk_requestq_cachep;
1da177e4 50
1da177e4
LT
51/*
52 * Controlling structure to kblockd
53 */
ff856bad 54static struct workqueue_struct *kblockd_workqueue;
1da177e4 55
26b8256e
JA
56static void drive_stat_acct(struct request *rq, int new_io)
57{
28f13702 58 struct hd_struct *part;
26b8256e 59 int rw = rq_data_dir(rq);
c9959059 60 int cpu;
26b8256e 61
c2553b58 62 if (!blk_do_io_stat(rq))
26b8256e
JA
63 return;
64
074a7aca 65 cpu = part_stat_lock();
c9959059 66
09e099d4
JM
67 if (!new_io) {
68 part = rq->part;
074a7aca 69 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
70 } else {
71 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 72 if (!hd_struct_try_get(part)) {
09e099d4
JM
73 /*
74 * The partition is already being removed,
75 * the request will be accounted on the disk only
76 *
77 * We take a reference on disk->part0 although that
78 * partition will never be deleted, so we can treat
79 * it as any other partition.
80 */
81 part = &rq->rq_disk->part0;
6c23a968 82 hd_struct_get(part);
09e099d4 83 }
074a7aca 84 part_round_stats(cpu, part);
316d315b 85 part_inc_in_flight(part, rw);
09e099d4 86 rq->part = part;
26b8256e 87 }
e71bf0d0 88
074a7aca 89 part_stat_unlock();
26b8256e
JA
90}
91
8324aa91 92void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
93{
94 int nr;
95
96 nr = q->nr_requests - (q->nr_requests / 8) + 1;
97 if (nr > q->nr_requests)
98 nr = q->nr_requests;
99 q->nr_congestion_on = nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
102 if (nr < 1)
103 nr = 1;
104 q->nr_congestion_off = nr;
105}
106
1da177e4
LT
107/**
108 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
109 * @bdev: device
110 *
111 * Locates the passed device's request queue and returns the address of its
112 * backing_dev_info
113 *
114 * Will return NULL if the request queue cannot be located.
115 */
116struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
117{
118 struct backing_dev_info *ret = NULL;
165125e1 119 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
120
121 if (q)
122 ret = &q->backing_dev_info;
123 return ret;
124}
1da177e4
LT
125EXPORT_SYMBOL(blk_get_backing_dev_info);
126
2a4aa30c 127void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 128{
1afb20f3
FT
129 memset(rq, 0, sizeof(*rq));
130
1da177e4 131 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 132 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 133 rq->cpu = -1;
63a71386 134 rq->q = q;
a2dec7b3 135 rq->__sector = (sector_t) -1;
2e662b65
JA
136 INIT_HLIST_NODE(&rq->hash);
137 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 138 rq->cmd = rq->__cmd;
e2494e1b 139 rq->cmd_len = BLK_MAX_CDB;
63a71386 140 rq->tag = -1;
1da177e4 141 rq->ref_count = 1;
b243ddcb 142 rq->start_time = jiffies;
9195291e 143 set_start_time_ns(rq);
09e099d4 144 rq->part = NULL;
1da177e4 145}
2a4aa30c 146EXPORT_SYMBOL(blk_rq_init);
1da177e4 147
5bb23a68
N
148static void req_bio_endio(struct request *rq, struct bio *bio,
149 unsigned int nbytes, int error)
1da177e4 150{
143a87f4
TH
151 if (error)
152 clear_bit(BIO_UPTODATE, &bio->bi_flags);
153 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
154 error = -EIO;
797e7dbb 155
143a87f4
TH
156 if (unlikely(nbytes > bio->bi_size)) {
157 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
158 __func__, nbytes, bio->bi_size);
159 nbytes = bio->bi_size;
5bb23a68 160 }
797e7dbb 161
143a87f4
TH
162 if (unlikely(rq->cmd_flags & REQ_QUIET))
163 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 164
143a87f4
TH
165 bio->bi_size -= nbytes;
166 bio->bi_sector += (nbytes >> 9);
7ba1ba12 167
143a87f4
TH
168 if (bio_integrity(bio))
169 bio_integrity_advance(bio, nbytes);
7ba1ba12 170
143a87f4
TH
171 /* don't actually finish bio if it's part of flush sequence */
172 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
173 bio_endio(bio, error);
1da177e4 174}
1da177e4 175
1da177e4
LT
176void blk_dump_rq_flags(struct request *rq, char *msg)
177{
178 int bit;
179
6728cb0e 180 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
181 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
182 rq->cmd_flags);
1da177e4 183
83096ebf
TH
184 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
185 (unsigned long long)blk_rq_pos(rq),
186 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 187 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 188 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 189
33659ebb 190 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 191 printk(KERN_INFO " cdb: ");
d34c87e4 192 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
193 printk("%02x ", rq->cmd[bit]);
194 printk("\n");
195 }
196}
1da177e4
LT
197EXPORT_SYMBOL(blk_dump_rq_flags);
198
3cca6dc1 199static void blk_delay_work(struct work_struct *work)
1da177e4 200{
3cca6dc1 201 struct request_queue *q;
1da177e4 202
3cca6dc1
JA
203 q = container_of(work, struct request_queue, delay_work.work);
204 spin_lock_irq(q->queue_lock);
24ecfbe2 205 __blk_run_queue(q);
3cca6dc1 206 spin_unlock_irq(q->queue_lock);
1da177e4 207}
1da177e4
LT
208
209/**
3cca6dc1
JA
210 * blk_delay_queue - restart queueing after defined interval
211 * @q: The &struct request_queue in question
212 * @msecs: Delay in msecs
1da177e4
LT
213 *
214 * Description:
3cca6dc1
JA
215 * Sometimes queueing needs to be postponed for a little while, to allow
216 * resources to come back. This function will make sure that queueing is
217 * restarted around the specified time.
218 */
219void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 220{
4521cc4e
JA
221 queue_delayed_work(kblockd_workqueue, &q->delay_work,
222 msecs_to_jiffies(msecs));
2ad8b1ef 223}
3cca6dc1 224EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 225
1da177e4
LT
226/**
227 * blk_start_queue - restart a previously stopped queue
165125e1 228 * @q: The &struct request_queue in question
1da177e4
LT
229 *
230 * Description:
231 * blk_start_queue() will clear the stop flag on the queue, and call
232 * the request_fn for the queue if it was in a stopped state when
233 * entered. Also see blk_stop_queue(). Queue lock must be held.
234 **/
165125e1 235void blk_start_queue(struct request_queue *q)
1da177e4 236{
a038e253
PBG
237 WARN_ON(!irqs_disabled());
238
75ad23bc 239 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 240 __blk_run_queue(q);
1da177e4 241}
1da177e4
LT
242EXPORT_SYMBOL(blk_start_queue);
243
244/**
245 * blk_stop_queue - stop a queue
165125e1 246 * @q: The &struct request_queue in question
1da177e4
LT
247 *
248 * Description:
249 * The Linux block layer assumes that a block driver will consume all
250 * entries on the request queue when the request_fn strategy is called.
251 * Often this will not happen, because of hardware limitations (queue
252 * depth settings). If a device driver gets a 'queue full' response,
253 * or if it simply chooses not to queue more I/O at one point, it can
254 * call this function to prevent the request_fn from being called until
255 * the driver has signalled it's ready to go again. This happens by calling
256 * blk_start_queue() to restart queue operations. Queue lock must be held.
257 **/
165125e1 258void blk_stop_queue(struct request_queue *q)
1da177e4 259{
ad3d9d7e 260 __cancel_delayed_work(&q->delay_work);
75ad23bc 261 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
262}
263EXPORT_SYMBOL(blk_stop_queue);
264
265/**
266 * blk_sync_queue - cancel any pending callbacks on a queue
267 * @q: the queue
268 *
269 * Description:
270 * The block layer may perform asynchronous callback activity
271 * on a queue, such as calling the unplug function after a timeout.
272 * A block device may call blk_sync_queue to ensure that any
273 * such activity is cancelled, thus allowing it to release resources
59c51591 274 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
275 * that its ->make_request_fn will not re-add plugging prior to calling
276 * this function.
277 *
da527770
VG
278 * This function does not cancel any asynchronous activity arising
279 * out of elevator or throttling code. That would require elevaotor_exit()
280 * and blk_throtl_exit() to be called with queue lock initialized.
281 *
1da177e4
LT
282 */
283void blk_sync_queue(struct request_queue *q)
284{
70ed28b9 285 del_timer_sync(&q->timeout);
3cca6dc1 286 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
287}
288EXPORT_SYMBOL(blk_sync_queue);
289
290/**
80a4b58e 291 * __blk_run_queue - run a single device queue
1da177e4 292 * @q: The queue to run
80a4b58e
JA
293 *
294 * Description:
295 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 296 * held and interrupts disabled.
1da177e4 297 */
24ecfbe2 298void __blk_run_queue(struct request_queue *q)
1da177e4 299{
a538cd03
TH
300 if (unlikely(blk_queue_stopped(q)))
301 return;
302
c21e6beb 303 q->request_fn(q);
75ad23bc
NP
304}
305EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 306
24ecfbe2
CH
307/**
308 * blk_run_queue_async - run a single device queue in workqueue context
309 * @q: The queue to run
310 *
311 * Description:
312 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
313 * of us.
314 */
315void blk_run_queue_async(struct request_queue *q)
316{
3ec717b7
SL
317 if (likely(!blk_queue_stopped(q))) {
318 __cancel_delayed_work(&q->delay_work);
24ecfbe2 319 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
3ec717b7 320 }
24ecfbe2 321}
c21e6beb 322EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 323
75ad23bc
NP
324/**
325 * blk_run_queue - run a single device queue
326 * @q: The queue to run
80a4b58e
JA
327 *
328 * Description:
329 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 330 * May be used to restart queueing when a request has completed.
75ad23bc
NP
331 */
332void blk_run_queue(struct request_queue *q)
333{
334 unsigned long flags;
335
336 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 337 __blk_run_queue(q);
1da177e4
LT
338 spin_unlock_irqrestore(q->queue_lock, flags);
339}
340EXPORT_SYMBOL(blk_run_queue);
341
165125e1 342void blk_put_queue(struct request_queue *q)
483f4afc
AV
343{
344 kobject_put(&q->kobj);
345}
d86e0e83 346EXPORT_SYMBOL(blk_put_queue);
483f4afc 347
c94a96ac
VG
348/*
349 * Note: If a driver supplied the queue lock, it should not zap that lock
350 * unexpectedly as some queue cleanup components like elevator_exit() and
351 * blk_throtl_exit() need queue lock.
352 */
6728cb0e 353void blk_cleanup_queue(struct request_queue *q)
483f4afc 354{
e3335de9
JA
355 /*
356 * We know we have process context here, so we can be a little
357 * cautious and ensure that pending block actions on this device
358 * are done before moving on. Going into this function, we should
359 * not have processes doing IO to this device.
360 */
361 blk_sync_queue(q);
362
31373d09 363 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 364 mutex_lock(&q->sysfs_lock);
75ad23bc 365 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
366 mutex_unlock(&q->sysfs_lock);
367
368 if (q->elevator)
369 elevator_exit(q->elevator);
370
da527770
VG
371 blk_throtl_exit(q);
372
483f4afc
AV
373 blk_put_queue(q);
374}
1da177e4
LT
375EXPORT_SYMBOL(blk_cleanup_queue);
376
165125e1 377static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
378{
379 struct request_list *rl = &q->rq;
380
1abec4fd
MS
381 if (unlikely(rl->rq_pool))
382 return 0;
383
1faa16d2
JA
384 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
385 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 386 rl->elvpriv = 0;
1faa16d2
JA
387 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
388 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 389
1946089a
CL
390 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
391 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
392
393 if (!rl->rq_pool)
394 return -ENOMEM;
395
396 return 0;
397}
398
165125e1 399struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 400{
1946089a
CL
401 return blk_alloc_queue_node(gfp_mask, -1);
402}
403EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 404
165125e1 405struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 406{
165125e1 407 struct request_queue *q;
e0bf68dd 408 int err;
1946089a 409
8324aa91 410 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 411 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
412 if (!q)
413 return NULL;
414
0989a025
JA
415 q->backing_dev_info.ra_pages =
416 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
417 q->backing_dev_info.state = 0;
418 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 419 q->backing_dev_info.name = "block";
0989a025 420
e0bf68dd
PZ
421 err = bdi_init(&q->backing_dev_info);
422 if (err) {
8324aa91 423 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
424 return NULL;
425 }
426
e43473b7
VG
427 if (blk_throtl_init(q)) {
428 kmem_cache_free(blk_requestq_cachep, q);
429 return NULL;
430 }
431
31373d09
MG
432 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
433 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb
JA
434 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
435 INIT_LIST_HEAD(&q->timeout_list);
ae1b1539
TH
436 INIT_LIST_HEAD(&q->flush_queue[0]);
437 INIT_LIST_HEAD(&q->flush_queue[1]);
438 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 439 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 440
8324aa91 441 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 442
483f4afc 443 mutex_init(&q->sysfs_lock);
e7e72bf6 444 spin_lock_init(&q->__queue_lock);
483f4afc 445
c94a96ac
VG
446 /*
447 * By default initialize queue_lock to internal lock and driver can
448 * override it later if need be.
449 */
450 q->queue_lock = &q->__queue_lock;
451
1da177e4
LT
452 return q;
453}
1946089a 454EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
455
456/**
457 * blk_init_queue - prepare a request queue for use with a block device
458 * @rfn: The function to be called to process requests that have been
459 * placed on the queue.
460 * @lock: Request queue spin lock
461 *
462 * Description:
463 * If a block device wishes to use the standard request handling procedures,
464 * which sorts requests and coalesces adjacent requests, then it must
465 * call blk_init_queue(). The function @rfn will be called when there
466 * are requests on the queue that need to be processed. If the device
467 * supports plugging, then @rfn may not be called immediately when requests
468 * are available on the queue, but may be called at some time later instead.
469 * Plugged queues are generally unplugged when a buffer belonging to one
470 * of the requests on the queue is needed, or due to memory pressure.
471 *
472 * @rfn is not required, or even expected, to remove all requests off the
473 * queue, but only as many as it can handle at a time. If it does leave
474 * requests on the queue, it is responsible for arranging that the requests
475 * get dealt with eventually.
476 *
477 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
478 * request queue; this lock will be taken also from interrupt context, so irq
479 * disabling is needed for it.
1da177e4 480 *
710027a4 481 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
482 * it didn't succeed.
483 *
484 * Note:
485 * blk_init_queue() must be paired with a blk_cleanup_queue() call
486 * when the block device is deactivated (such as at module unload).
487 **/
1946089a 488
165125e1 489struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 490{
1946089a
CL
491 return blk_init_queue_node(rfn, lock, -1);
492}
493EXPORT_SYMBOL(blk_init_queue);
494
165125e1 495struct request_queue *
1946089a
CL
496blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
497{
c86d1b8a 498 struct request_queue *uninit_q, *q;
1da177e4 499
c86d1b8a
MS
500 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
501 if (!uninit_q)
502 return NULL;
503
504 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
505 if (!q)
506 blk_cleanup_queue(uninit_q);
507
508 return q;
01effb0d
MS
509}
510EXPORT_SYMBOL(blk_init_queue_node);
511
512struct request_queue *
513blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
514 spinlock_t *lock)
515{
516 return blk_init_allocated_queue_node(q, rfn, lock, -1);
517}
518EXPORT_SYMBOL(blk_init_allocated_queue);
519
520struct request_queue *
521blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
522 spinlock_t *lock, int node_id)
523{
1da177e4
LT
524 if (!q)
525 return NULL;
526
1946089a 527 q->node = node_id;
c86d1b8a 528 if (blk_init_free_list(q))
8669aafd 529 return NULL;
1da177e4
LT
530
531 q->request_fn = rfn;
1da177e4 532 q->prep_rq_fn = NULL;
28018c24 533 q->unprep_rq_fn = NULL;
bc58ba94 534 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
535
536 /* Override internal queue lock with supplied lock pointer */
537 if (lock)
538 q->queue_lock = lock;
1da177e4 539
f3b144aa
JA
540 /*
541 * This also sets hw/phys segments, boundary and size
542 */
1da177e4 543 blk_queue_make_request(q, __make_request);
1da177e4 544
44ec9542
AS
545 q->sg_reserved_size = INT_MAX;
546
1da177e4
LT
547 /*
548 * all done
549 */
550 if (!elevator_init(q, NULL)) {
551 blk_queue_congestion_threshold(q);
552 return q;
553 }
554
1da177e4
LT
555 return NULL;
556}
01effb0d 557EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 558
165125e1 559int blk_get_queue(struct request_queue *q)
1da177e4 560{
fde6ad22 561 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 562 kobject_get(&q->kobj);
1da177e4
LT
563 return 0;
564 }
565
566 return 1;
567}
d86e0e83 568EXPORT_SYMBOL(blk_get_queue);
1da177e4 569
165125e1 570static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 571{
4aff5e23 572 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 573 elv_put_request(q, rq);
1da177e4
LT
574 mempool_free(rq, q->rq.rq_pool);
575}
576
1ea25ecb 577static struct request *
42dad764 578blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
579{
580 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
581
582 if (!rq)
583 return NULL;
584
2a4aa30c 585 blk_rq_init(q, rq);
1afb20f3 586
42dad764 587 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 588
cb98fc8b 589 if (priv) {
cb78b285 590 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
591 mempool_free(rq, q->rq.rq_pool);
592 return NULL;
593 }
4aff5e23 594 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 595 }
1da177e4 596
cb98fc8b 597 return rq;
1da177e4
LT
598}
599
600/*
601 * ioc_batching returns true if the ioc is a valid batching request and
602 * should be given priority access to a request.
603 */
165125e1 604static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
605{
606 if (!ioc)
607 return 0;
608
609 /*
610 * Make sure the process is able to allocate at least 1 request
611 * even if the batch times out, otherwise we could theoretically
612 * lose wakeups.
613 */
614 return ioc->nr_batch_requests == q->nr_batching ||
615 (ioc->nr_batch_requests > 0
616 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
617}
618
619/*
620 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
621 * will cause the process to be a "batcher" on all queues in the system. This
622 * is the behaviour we want though - once it gets a wakeup it should be given
623 * a nice run.
624 */
165125e1 625static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
626{
627 if (!ioc || ioc_batching(q, ioc))
628 return;
629
630 ioc->nr_batch_requests = q->nr_batching;
631 ioc->last_waited = jiffies;
632}
633
1faa16d2 634static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
635{
636 struct request_list *rl = &q->rq;
637
1faa16d2
JA
638 if (rl->count[sync] < queue_congestion_off_threshold(q))
639 blk_clear_queue_congested(q, sync);
1da177e4 640
1faa16d2
JA
641 if (rl->count[sync] + 1 <= q->nr_requests) {
642 if (waitqueue_active(&rl->wait[sync]))
643 wake_up(&rl->wait[sync]);
1da177e4 644
1faa16d2 645 blk_clear_queue_full(q, sync);
1da177e4
LT
646 }
647}
648
649/*
650 * A request has just been released. Account for it, update the full and
651 * congestion status, wake up any waiters. Called under q->queue_lock.
652 */
1faa16d2 653static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
654{
655 struct request_list *rl = &q->rq;
656
1faa16d2 657 rl->count[sync]--;
cb98fc8b
TH
658 if (priv)
659 rl->elvpriv--;
1da177e4 660
1faa16d2 661 __freed_request(q, sync);
1da177e4 662
1faa16d2
JA
663 if (unlikely(rl->starved[sync ^ 1]))
664 __freed_request(q, sync ^ 1);
1da177e4
LT
665}
666
9d5a4e94
MS
667/*
668 * Determine if elevator data should be initialized when allocating the
669 * request associated with @bio.
670 */
671static bool blk_rq_should_init_elevator(struct bio *bio)
672{
673 if (!bio)
674 return true;
675
676 /*
677 * Flush requests do not use the elevator so skip initialization.
678 * This allows a request to share the flush and elevator data.
679 */
680 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
681 return false;
682
683 return true;
684}
685
1da177e4 686/*
d6344532
NP
687 * Get a free request, queue_lock must be held.
688 * Returns NULL on failure, with queue_lock held.
689 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 690 */
165125e1 691static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 692 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
693{
694 struct request *rq = NULL;
695 struct request_list *rl = &q->rq;
88ee5ef1 696 struct io_context *ioc = NULL;
1faa16d2 697 const bool is_sync = rw_is_sync(rw_flags) != 0;
9d5a4e94 698 int may_queue, priv = 0;
88ee5ef1 699
7749a8d4 700 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
701 if (may_queue == ELV_MQUEUE_NO)
702 goto rq_starved;
703
1faa16d2
JA
704 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
705 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 706 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
707 /*
708 * The queue will fill after this allocation, so set
709 * it as full, and mark this process as "batching".
710 * This process will be allowed to complete a batch of
711 * requests, others will be blocked.
712 */
1faa16d2 713 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 714 ioc_set_batching(q, ioc);
1faa16d2 715 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
716 } else {
717 if (may_queue != ELV_MQUEUE_MUST
718 && !ioc_batching(q, ioc)) {
719 /*
720 * The queue is full and the allocating
721 * process is not a "batcher", and not
722 * exempted by the IO scheduler
723 */
724 goto out;
725 }
726 }
1da177e4 727 }
1faa16d2 728 blk_set_queue_congested(q, is_sync);
1da177e4
LT
729 }
730
082cf69e
JA
731 /*
732 * Only allow batching queuers to allocate up to 50% over the defined
733 * limit of requests, otherwise we could have thousands of requests
734 * allocated with any setting of ->nr_requests
735 */
1faa16d2 736 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 737 goto out;
fd782a4a 738
1faa16d2
JA
739 rl->count[is_sync]++;
740 rl->starved[is_sync] = 0;
cb98fc8b 741
9d5a4e94
MS
742 if (blk_rq_should_init_elevator(bio)) {
743 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
744 if (priv)
745 rl->elvpriv++;
746 }
cb98fc8b 747
f253b86b
JA
748 if (blk_queue_io_stat(q))
749 rw_flags |= REQ_IO_STAT;
1da177e4
LT
750 spin_unlock_irq(q->queue_lock);
751
7749a8d4 752 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 753 if (unlikely(!rq)) {
1da177e4
LT
754 /*
755 * Allocation failed presumably due to memory. Undo anything
756 * we might have messed up.
757 *
758 * Allocating task should really be put onto the front of the
759 * wait queue, but this is pretty rare.
760 */
761 spin_lock_irq(q->queue_lock);
1faa16d2 762 freed_request(q, is_sync, priv);
1da177e4
LT
763
764 /*
765 * in the very unlikely event that allocation failed and no
766 * requests for this direction was pending, mark us starved
767 * so that freeing of a request in the other direction will
768 * notice us. another possible fix would be to split the
769 * rq mempool into READ and WRITE
770 */
771rq_starved:
1faa16d2
JA
772 if (unlikely(rl->count[is_sync] == 0))
773 rl->starved[is_sync] = 1;
1da177e4 774
1da177e4
LT
775 goto out;
776 }
777
88ee5ef1
JA
778 /*
779 * ioc may be NULL here, and ioc_batching will be false. That's
780 * OK, if the queue is under the request limit then requests need
781 * not count toward the nr_batch_requests limit. There will always
782 * be some limit enforced by BLK_BATCH_TIME.
783 */
1da177e4
LT
784 if (ioc_batching(q, ioc))
785 ioc->nr_batch_requests--;
6728cb0e 786
1faa16d2 787 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 788out:
1da177e4
LT
789 return rq;
790}
791
792/*
7eaceacc
JA
793 * No available requests for this queue, wait for some requests to become
794 * available.
d6344532
NP
795 *
796 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 797 */
165125e1 798static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 799 struct bio *bio)
1da177e4 800{
1faa16d2 801 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
802 struct request *rq;
803
7749a8d4 804 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
805 while (!rq) {
806 DEFINE_WAIT(wait);
05caf8db 807 struct io_context *ioc;
1da177e4
LT
808 struct request_list *rl = &q->rq;
809
1faa16d2 810 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
811 TASK_UNINTERRUPTIBLE);
812
1faa16d2 813 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 814
05caf8db
ZY
815 spin_unlock_irq(q->queue_lock);
816 io_schedule();
1da177e4 817
05caf8db
ZY
818 /*
819 * After sleeping, we become a "batching" process and
820 * will be able to allocate at least one request, and
821 * up to a big batch of them for a small period time.
822 * See ioc_batching, ioc_set_batching
823 */
824 ioc = current_io_context(GFP_NOIO, q->node);
825 ioc_set_batching(q, ioc);
d6344532 826
05caf8db 827 spin_lock_irq(q->queue_lock);
1faa16d2 828 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
829
830 rq = get_request(q, rw_flags, bio, GFP_NOIO);
831 };
1da177e4
LT
832
833 return rq;
834}
835
165125e1 836struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
837{
838 struct request *rq;
839
bfe159a5
JB
840 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
841 return NULL;
842
1da177e4
LT
843 BUG_ON(rw != READ && rw != WRITE);
844
d6344532
NP
845 spin_lock_irq(q->queue_lock);
846 if (gfp_mask & __GFP_WAIT) {
22e2c507 847 rq = get_request_wait(q, rw, NULL);
d6344532 848 } else {
22e2c507 849 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
850 if (!rq)
851 spin_unlock_irq(q->queue_lock);
852 }
853 /* q->queue_lock is unlocked at this point */
1da177e4
LT
854
855 return rq;
856}
1da177e4
LT
857EXPORT_SYMBOL(blk_get_request);
858
dc72ef4a 859/**
79eb63e9 860 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 861 * @q: target request queue
79eb63e9
BH
862 * @bio: The bio describing the memory mappings that will be submitted for IO.
863 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 864 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 865 *
79eb63e9
BH
866 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
867 * type commands. Where the struct request needs to be farther initialized by
868 * the caller. It is passed a &struct bio, which describes the memory info of
869 * the I/O transfer.
dc72ef4a 870 *
79eb63e9
BH
871 * The caller of blk_make_request must make sure that bi_io_vec
872 * are set to describe the memory buffers. That bio_data_dir() will return
873 * the needed direction of the request. (And all bio's in the passed bio-chain
874 * are properly set accordingly)
875 *
876 * If called under none-sleepable conditions, mapped bio buffers must not
877 * need bouncing, by calling the appropriate masked or flagged allocator,
878 * suitable for the target device. Otherwise the call to blk_queue_bounce will
879 * BUG.
53674ac5
JA
880 *
881 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
882 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
883 * anything but the first bio in the chain. Otherwise you risk waiting for IO
884 * completion of a bio that hasn't been submitted yet, thus resulting in a
885 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
886 * of bio_alloc(), as that avoids the mempool deadlock.
887 * If possible a big IO should be split into smaller parts when allocation
888 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 889 */
79eb63e9
BH
890struct request *blk_make_request(struct request_queue *q, struct bio *bio,
891 gfp_t gfp_mask)
dc72ef4a 892{
79eb63e9
BH
893 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
894
895 if (unlikely(!rq))
896 return ERR_PTR(-ENOMEM);
897
898 for_each_bio(bio) {
899 struct bio *bounce_bio = bio;
900 int ret;
901
902 blk_queue_bounce(q, &bounce_bio);
903 ret = blk_rq_append_bio(q, rq, bounce_bio);
904 if (unlikely(ret)) {
905 blk_put_request(rq);
906 return ERR_PTR(ret);
907 }
908 }
909
910 return rq;
dc72ef4a 911}
79eb63e9 912EXPORT_SYMBOL(blk_make_request);
dc72ef4a 913
1da177e4
LT
914/**
915 * blk_requeue_request - put a request back on queue
916 * @q: request queue where request should be inserted
917 * @rq: request to be inserted
918 *
919 * Description:
920 * Drivers often keep queueing requests until the hardware cannot accept
921 * more, when that condition happens we need to put the request back
922 * on the queue. Must be called with queue lock held.
923 */
165125e1 924void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 925{
242f9dcb
JA
926 blk_delete_timer(rq);
927 blk_clear_rq_complete(rq);
5f3ea37c 928 trace_block_rq_requeue(q, rq);
2056a782 929
1da177e4
LT
930 if (blk_rq_tagged(rq))
931 blk_queue_end_tag(q, rq);
932
ba396a6c
JB
933 BUG_ON(blk_queued_rq(rq));
934
1da177e4
LT
935 elv_requeue_request(q, rq);
936}
1da177e4
LT
937EXPORT_SYMBOL(blk_requeue_request);
938
73c10101
JA
939static void add_acct_request(struct request_queue *q, struct request *rq,
940 int where)
941{
942 drive_stat_acct(rq, 1);
7eaceacc 943 __elv_add_request(q, rq, where);
73c10101
JA
944}
945
1da177e4 946/**
710027a4 947 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
948 * @q: request queue where request should be inserted
949 * @rq: request to be inserted
950 * @at_head: insert request at head or tail of queue
951 * @data: private data
1da177e4
LT
952 *
953 * Description:
954 * Many block devices need to execute commands asynchronously, so they don't
955 * block the whole kernel from preemption during request execution. This is
956 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
957 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
958 * be scheduled for actual execution by the request queue.
1da177e4
LT
959 *
960 * We have the option of inserting the head or the tail of the queue.
961 * Typically we use the tail for new ioctls and so forth. We use the head
962 * of the queue for things like a QUEUE_FULL message from a device, or a
963 * host that is unable to accept a particular command.
964 */
165125e1 965void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 966 int at_head, void *data)
1da177e4 967{
867d1191 968 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
969 unsigned long flags;
970
971 /*
972 * tell I/O scheduler that this isn't a regular read/write (ie it
973 * must not attempt merges on this) and that it acts as a soft
974 * barrier
975 */
4aff5e23 976 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
977
978 rq->special = data;
979
980 spin_lock_irqsave(q->queue_lock, flags);
981
982 /*
983 * If command is tagged, release the tag
984 */
867d1191
TH
985 if (blk_rq_tagged(rq))
986 blk_queue_end_tag(q, rq);
1da177e4 987
73c10101 988 add_acct_request(q, rq, where);
24ecfbe2 989 __blk_run_queue(q);
1da177e4
LT
990 spin_unlock_irqrestore(q->queue_lock, flags);
991}
1da177e4
LT
992EXPORT_SYMBOL(blk_insert_request);
993
074a7aca
TH
994static void part_round_stats_single(int cpu, struct hd_struct *part,
995 unsigned long now)
996{
997 if (now == part->stamp)
998 return;
999
316d315b 1000 if (part_in_flight(part)) {
074a7aca 1001 __part_stat_add(cpu, part, time_in_queue,
316d315b 1002 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1003 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1004 }
1005 part->stamp = now;
1006}
1007
1008/**
496aa8a9
RD
1009 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1010 * @cpu: cpu number for stats access
1011 * @part: target partition
1da177e4
LT
1012 *
1013 * The average IO queue length and utilisation statistics are maintained
1014 * by observing the current state of the queue length and the amount of
1015 * time it has been in this state for.
1016 *
1017 * Normally, that accounting is done on IO completion, but that can result
1018 * in more than a second's worth of IO being accounted for within any one
1019 * second, leading to >100% utilisation. To deal with that, we call this
1020 * function to do a round-off before returning the results when reading
1021 * /proc/diskstats. This accounts immediately for all queue usage up to
1022 * the current jiffies and restarts the counters again.
1023 */
c9959059 1024void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1025{
1026 unsigned long now = jiffies;
1027
074a7aca
TH
1028 if (part->partno)
1029 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1030 part_round_stats_single(cpu, part, now);
6f2576af 1031}
074a7aca 1032EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1033
1da177e4
LT
1034/*
1035 * queue lock must be held
1036 */
165125e1 1037void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1038{
1da177e4
LT
1039 if (unlikely(!q))
1040 return;
1041 if (unlikely(--req->ref_count))
1042 return;
1043
8922e16c
TH
1044 elv_completed_request(q, req);
1045
1cd96c24
BH
1046 /* this is a bio leak */
1047 WARN_ON(req->bio != NULL);
1048
1da177e4
LT
1049 /*
1050 * Request may not have originated from ll_rw_blk. if not,
1051 * it didn't come out of our reserved rq pools
1052 */
49171e5c 1053 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1054 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1055 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1056
1da177e4 1057 BUG_ON(!list_empty(&req->queuelist));
9817064b 1058 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1059
1060 blk_free_request(q, req);
1faa16d2 1061 freed_request(q, is_sync, priv);
1da177e4
LT
1062 }
1063}
6e39b69e
MC
1064EXPORT_SYMBOL_GPL(__blk_put_request);
1065
1da177e4
LT
1066void blk_put_request(struct request *req)
1067{
8922e16c 1068 unsigned long flags;
165125e1 1069 struct request_queue *q = req->q;
8922e16c 1070
52a93ba8
FT
1071 spin_lock_irqsave(q->queue_lock, flags);
1072 __blk_put_request(q, req);
1073 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1074}
1da177e4
LT
1075EXPORT_SYMBOL(blk_put_request);
1076
66ac0280
CH
1077/**
1078 * blk_add_request_payload - add a payload to a request
1079 * @rq: request to update
1080 * @page: page backing the payload
1081 * @len: length of the payload.
1082 *
1083 * This allows to later add a payload to an already submitted request by
1084 * a block driver. The driver needs to take care of freeing the payload
1085 * itself.
1086 *
1087 * Note that this is a quite horrible hack and nothing but handling of
1088 * discard requests should ever use it.
1089 */
1090void blk_add_request_payload(struct request *rq, struct page *page,
1091 unsigned int len)
1092{
1093 struct bio *bio = rq->bio;
1094
1095 bio->bi_io_vec->bv_page = page;
1096 bio->bi_io_vec->bv_offset = 0;
1097 bio->bi_io_vec->bv_len = len;
1098
1099 bio->bi_size = len;
1100 bio->bi_vcnt = 1;
1101 bio->bi_phys_segments = 1;
1102
1103 rq->__data_len = rq->resid_len = len;
1104 rq->nr_phys_segments = 1;
1105 rq->buffer = bio_data(bio);
1106}
1107EXPORT_SYMBOL_GPL(blk_add_request_payload);
1108
73c10101
JA
1109static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1110 struct bio *bio)
1111{
1112 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1113
73c10101
JA
1114 if (!ll_back_merge_fn(q, req, bio))
1115 return false;
1116
1117 trace_block_bio_backmerge(q, bio);
1118
1119 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1120 blk_rq_set_mixed_merge(req);
1121
1122 req->biotail->bi_next = bio;
1123 req->biotail = bio;
1124 req->__data_len += bio->bi_size;
1125 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1126
1127 drive_stat_acct(req, 0);
95cf3dd9 1128 elv_bio_merged(q, req, bio);
73c10101
JA
1129 return true;
1130}
1131
1132static bool bio_attempt_front_merge(struct request_queue *q,
1133 struct request *req, struct bio *bio)
1134{
1135 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1136
73c10101
JA
1137 if (!ll_front_merge_fn(q, req, bio))
1138 return false;
1139
1140 trace_block_bio_frontmerge(q, bio);
1141
1142 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1143 blk_rq_set_mixed_merge(req);
1144
73c10101
JA
1145 bio->bi_next = req->bio;
1146 req->bio = bio;
1147
1148 /*
1149 * may not be valid. if the low level driver said
1150 * it didn't need a bounce buffer then it better
1151 * not touch req->buffer either...
1152 */
1153 req->buffer = bio_data(bio);
1154 req->__sector = bio->bi_sector;
1155 req->__data_len += bio->bi_size;
1156 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1157
1158 drive_stat_acct(req, 0);
95cf3dd9 1159 elv_bio_merged(q, req, bio);
73c10101
JA
1160 return true;
1161}
1162
1163/*
1164 * Attempts to merge with the plugged list in the current process. Returns
25985edc 1165 * true if merge was successful, otherwise false.
73c10101
JA
1166 */
1167static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1168 struct bio *bio)
1169{
1170 struct blk_plug *plug;
1171 struct request *rq;
1172 bool ret = false;
1173
1174 plug = tsk->plug;
1175 if (!plug)
1176 goto out;
1177
1178 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1179 int el_ret;
1180
1181 if (rq->q != q)
1182 continue;
1183
1184 el_ret = elv_try_merge(rq, bio);
1185 if (el_ret == ELEVATOR_BACK_MERGE) {
1186 ret = bio_attempt_back_merge(q, rq, bio);
1187 if (ret)
1188 break;
1189 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1190 ret = bio_attempt_front_merge(q, rq, bio);
1191 if (ret)
1192 break;
1193 }
1194 }
1195out:
1196 return ret;
1197}
1198
86db1e29 1199void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1200{
c7c22e4d 1201 req->cpu = bio->bi_comp_cpu;
4aff5e23 1202 req->cmd_type = REQ_TYPE_FS;
52d9e675 1203
7b6d91da
CH
1204 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1205 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1206 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1207
52d9e675 1208 req->errors = 0;
a2dec7b3 1209 req->__sector = bio->bi_sector;
52d9e675 1210 req->ioprio = bio_prio(bio);
bc1c56fd 1211 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1212}
1213
166e1f90 1214int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1215{
5e00d1b5 1216 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1217 struct blk_plug *plug;
1218 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1219 struct request *req;
1da177e4 1220
1da177e4
LT
1221 /*
1222 * low level driver can indicate that it wants pages above a
1223 * certain limit bounced to low memory (ie for highmem, or even
1224 * ISA dma in theory)
1225 */
1226 blk_queue_bounce(q, &bio);
1227
4fed947c 1228 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1229 spin_lock_irq(q->queue_lock);
ae1b1539 1230 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1231 goto get_rq;
1232 }
1233
73c10101
JA
1234 /*
1235 * Check if we can merge with the plugged list before grabbing
1236 * any locks.
1237 */
1238 if (attempt_plug_merge(current, q, bio))
6728cb0e 1239 goto out;
1da177e4 1240
73c10101 1241 spin_lock_irq(q->queue_lock);
2056a782 1242
73c10101
JA
1243 el_ret = elv_merge(q, &req, bio);
1244 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101
JA
1245 if (bio_attempt_back_merge(q, req, bio)) {
1246 if (!attempt_back_merge(q, req))
1247 elv_merged_request(q, req, el_ret);
1248 goto out_unlock;
1249 }
1250 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101
JA
1251 if (bio_attempt_front_merge(q, req, bio)) {
1252 if (!attempt_front_merge(q, req))
1253 elv_merged_request(q, req, el_ret);
1254 goto out_unlock;
80a761fd 1255 }
1da177e4
LT
1256 }
1257
450991bc 1258get_rq:
7749a8d4
JA
1259 /*
1260 * This sync check and mask will be re-done in init_request_from_bio(),
1261 * but we need to set it earlier to expose the sync flag to the
1262 * rq allocator and io schedulers.
1263 */
1264 rw_flags = bio_data_dir(bio);
1265 if (sync)
7b6d91da 1266 rw_flags |= REQ_SYNC;
7749a8d4 1267
1da177e4 1268 /*
450991bc 1269 * Grab a free request. This is might sleep but can not fail.
d6344532 1270 * Returns with the queue unlocked.
450991bc 1271 */
7749a8d4 1272 req = get_request_wait(q, rw_flags, bio);
d6344532 1273
450991bc
NP
1274 /*
1275 * After dropping the lock and possibly sleeping here, our request
1276 * may now be mergeable after it had proven unmergeable (above).
1277 * We don't worry about that case for efficiency. It won't happen
1278 * often, and the elevators are able to handle it.
1da177e4 1279 */
52d9e675 1280 init_request_from_bio(req, bio);
1da177e4 1281
c7c22e4d 1282 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
5757a6d7 1283 bio_flagged(bio, BIO_CPU_AFFINE))
11ccf116 1284 req->cpu = raw_smp_processor_id();
73c10101
JA
1285
1286 plug = current->plug;
721a9602 1287 if (plug) {
dc6d36c9
JA
1288 /*
1289 * If this is the first request added after a plug, fire
1290 * of a plug trace. If others have been added before, check
1291 * if we have multiple devices in this plug. If so, make a
1292 * note to sort the list before dispatch.
1293 */
1294 if (list_empty(&plug->list))
1295 trace_block_plug(q);
1296 else if (!plug->should_sort) {
73c10101
JA
1297 struct request *__rq;
1298
1299 __rq = list_entry_rq(plug->list.prev);
1300 if (__rq->q != q)
1301 plug->should_sort = 1;
1302 }
73c10101 1303 list_add_tail(&req->queuelist, &plug->list);
55c022bb 1304 plug->count++;
73c10101 1305 drive_stat_acct(req, 1);
55c022bb
SL
1306 if (plug->count >= BLK_MAX_REQUEST_COUNT)
1307 blk_flush_plug_list(plug, false);
73c10101
JA
1308 } else {
1309 spin_lock_irq(q->queue_lock);
1310 add_acct_request(q, req, where);
24ecfbe2 1311 __blk_run_queue(q);
73c10101
JA
1312out_unlock:
1313 spin_unlock_irq(q->queue_lock);
1314 }
1da177e4 1315out:
1da177e4 1316 return 0;
1da177e4 1317}
166e1f90 1318EXPORT_SYMBOL_GPL(__make_request); /* for device mapper only */
1da177e4
LT
1319
1320/*
1321 * If bio->bi_dev is a partition, remap the location
1322 */
1323static inline void blk_partition_remap(struct bio *bio)
1324{
1325 struct block_device *bdev = bio->bi_bdev;
1326
bf2de6f5 1327 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1328 struct hd_struct *p = bdev->bd_part;
1329
1da177e4
LT
1330 bio->bi_sector += p->start_sect;
1331 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1332
d07335e5
MS
1333 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1334 bdev->bd_dev,
1335 bio->bi_sector - p->start_sect);
1da177e4
LT
1336 }
1337}
1338
1da177e4
LT
1339static void handle_bad_sector(struct bio *bio)
1340{
1341 char b[BDEVNAME_SIZE];
1342
1343 printk(KERN_INFO "attempt to access beyond end of device\n");
1344 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1345 bdevname(bio->bi_bdev, b),
1346 bio->bi_rw,
1347 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1348 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1349
1350 set_bit(BIO_EOF, &bio->bi_flags);
1351}
1352
c17bb495
AM
1353#ifdef CONFIG_FAIL_MAKE_REQUEST
1354
1355static DECLARE_FAULT_ATTR(fail_make_request);
1356
1357static int __init setup_fail_make_request(char *str)
1358{
1359 return setup_fault_attr(&fail_make_request, str);
1360}
1361__setup("fail_make_request=", setup_fail_make_request);
1362
b2c9cd37 1363static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1364{
b2c9cd37 1365 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1366}
1367
1368static int __init fail_make_request_debugfs(void)
1369{
dd48c085
AM
1370 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1371 NULL, &fail_make_request);
1372
1373 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1374}
1375
1376late_initcall(fail_make_request_debugfs);
1377
1378#else /* CONFIG_FAIL_MAKE_REQUEST */
1379
b2c9cd37
AM
1380static inline bool should_fail_request(struct hd_struct *part,
1381 unsigned int bytes)
c17bb495 1382{
b2c9cd37 1383 return false;
c17bb495
AM
1384}
1385
1386#endif /* CONFIG_FAIL_MAKE_REQUEST */
1387
c07e2b41
JA
1388/*
1389 * Check whether this bio extends beyond the end of the device.
1390 */
1391static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1392{
1393 sector_t maxsector;
1394
1395 if (!nr_sectors)
1396 return 0;
1397
1398 /* Test device or partition size, when known. */
77304d2a 1399 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1400 if (maxsector) {
1401 sector_t sector = bio->bi_sector;
1402
1403 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1404 /*
1405 * This may well happen - the kernel calls bread()
1406 * without checking the size of the device, e.g., when
1407 * mounting a device.
1408 */
1409 handle_bad_sector(bio);
1410 return 1;
1411 }
1412 }
1413
1414 return 0;
1415}
1416
1da177e4 1417/**
710027a4 1418 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1419 * @bio: The bio describing the location in memory and on the device.
1420 *
1421 * generic_make_request() is used to make I/O requests of block
1422 * devices. It is passed a &struct bio, which describes the I/O that needs
1423 * to be done.
1424 *
1425 * generic_make_request() does not return any status. The
1426 * success/failure status of the request, along with notification of
1427 * completion, is delivered asynchronously through the bio->bi_end_io
1428 * function described (one day) else where.
1429 *
1430 * The caller of generic_make_request must make sure that bi_io_vec
1431 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1432 * set to describe the device address, and the
1433 * bi_end_io and optionally bi_private are set to describe how
1434 * completion notification should be signaled.
1435 *
1436 * generic_make_request and the drivers it calls may use bi_next if this
1437 * bio happens to be merged with someone else, and may change bi_dev and
1438 * bi_sector for remaps as it sees fit. So the values of these fields
1439 * should NOT be depended on after the call to generic_make_request.
1440 */
d89d8796 1441static inline void __generic_make_request(struct bio *bio)
1da177e4 1442{
165125e1 1443 struct request_queue *q;
5ddfe969 1444 sector_t old_sector;
1da177e4 1445 int ret, nr_sectors = bio_sectors(bio);
2056a782 1446 dev_t old_dev;
51fd77bd 1447 int err = -EIO;
1da177e4
LT
1448
1449 might_sleep();
1da177e4 1450
c07e2b41
JA
1451 if (bio_check_eod(bio, nr_sectors))
1452 goto end_io;
1da177e4
LT
1453
1454 /*
1455 * Resolve the mapping until finished. (drivers are
1456 * still free to implement/resolve their own stacking
1457 * by explicitly returning 0)
1458 *
1459 * NOTE: we don't repeat the blk_size check for each new device.
1460 * Stacking drivers are expected to know what they are doing.
1461 */
5ddfe969 1462 old_sector = -1;
2056a782 1463 old_dev = 0;
1da177e4
LT
1464 do {
1465 char b[BDEVNAME_SIZE];
b2c9cd37 1466 struct hd_struct *part;
1da177e4
LT
1467
1468 q = bdev_get_queue(bio->bi_bdev);
a7384677 1469 if (unlikely(!q)) {
1da177e4
LT
1470 printk(KERN_ERR
1471 "generic_make_request: Trying to access "
1472 "nonexistent block-device %s (%Lu)\n",
1473 bdevname(bio->bi_bdev, b),
1474 (long long) bio->bi_sector);
a7384677 1475 goto end_io;
1da177e4
LT
1476 }
1477
7b6d91da 1478 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
67efc925 1479 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1480 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1481 bdevname(bio->bi_bdev, b),
1482 bio_sectors(bio),
1483 queue_max_hw_sectors(q));
1da177e4
LT
1484 goto end_io;
1485 }
1486
fde6ad22 1487 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1488 goto end_io;
1489
b2c9cd37
AM
1490 part = bio->bi_bdev->bd_part;
1491 if (should_fail_request(part, bio->bi_size) ||
1492 should_fail_request(&part_to_disk(part)->part0,
1493 bio->bi_size))
c17bb495
AM
1494 goto end_io;
1495
1da177e4
LT
1496 /*
1497 * If this device has partitions, remap block n
1498 * of partition p to block n+start(p) of the disk.
1499 */
1500 blk_partition_remap(bio);
1501
7ba1ba12
MP
1502 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1503 goto end_io;
1504
5ddfe969 1505 if (old_sector != -1)
d07335e5 1506 trace_block_bio_remap(q, bio, old_dev, old_sector);
2056a782 1507
5ddfe969 1508 old_sector = bio->bi_sector;
2056a782
JA
1509 old_dev = bio->bi_bdev->bd_dev;
1510
c07e2b41
JA
1511 if (bio_check_eod(bio, nr_sectors))
1512 goto end_io;
a7384677 1513
1e87901e
TH
1514 /*
1515 * Filter flush bio's early so that make_request based
1516 * drivers without flush support don't have to worry
1517 * about them.
1518 */
1519 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1520 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1521 if (!nr_sectors) {
1522 err = 0;
1523 goto end_io;
1524 }
1525 }
1526
8d57a98c
AH
1527 if ((bio->bi_rw & REQ_DISCARD) &&
1528 (!blk_queue_discard(q) ||
1529 ((bio->bi_rw & REQ_SECURE) &&
1530 !blk_queue_secdiscard(q)))) {
51fd77bd
JA
1531 err = -EOPNOTSUPP;
1532 goto end_io;
1533 }
5ddfe969 1534
f469a7b4
VG
1535 if (blk_throtl_bio(q, &bio))
1536 goto end_io;
e43473b7
VG
1537
1538 /*
1539 * If bio = NULL, bio has been throttled and will be submitted
1540 * later.
1541 */
1542 if (!bio)
1543 break;
1544
01edede4
MK
1545 trace_block_bio_queue(q, bio);
1546
1da177e4
LT
1547 ret = q->make_request_fn(q, bio);
1548 } while (ret);
a7384677
TH
1549
1550 return;
1551
1552end_io:
1553 bio_endio(bio, err);
1da177e4
LT
1554}
1555
d89d8796
NB
1556/*
1557 * We only want one ->make_request_fn to be active at a time,
1558 * else stack usage with stacked devices could be a problem.
bddd87c7 1559 * So use current->bio_list to keep a list of requests
d89d8796 1560 * submited by a make_request_fn function.
bddd87c7 1561 * current->bio_list is also used as a flag to say if
d89d8796
NB
1562 * generic_make_request is currently active in this task or not.
1563 * If it is NULL, then no make_request is active. If it is non-NULL,
1564 * then a make_request is active, and new requests should be added
1565 * at the tail
1566 */
1567void generic_make_request(struct bio *bio)
1568{
bddd87c7
AM
1569 struct bio_list bio_list_on_stack;
1570
1571 if (current->bio_list) {
d89d8796 1572 /* make_request is active */
bddd87c7 1573 bio_list_add(current->bio_list, bio);
d89d8796
NB
1574 return;
1575 }
1576 /* following loop may be a bit non-obvious, and so deserves some
1577 * explanation.
1578 * Before entering the loop, bio->bi_next is NULL (as all callers
1579 * ensure that) so we have a list with a single bio.
1580 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1581 * we assign bio_list to a pointer to the bio_list_on_stack,
1582 * thus initialising the bio_list of new bios to be
d89d8796
NB
1583 * added. __generic_make_request may indeed add some more bios
1584 * through a recursive call to generic_make_request. If it
1585 * did, we find a non-NULL value in bio_list and re-enter the loop
1586 * from the top. In this case we really did just take the bio
bddd87c7
AM
1587 * of the top of the list (no pretending) and so remove it from
1588 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1589 *
1590 * The loop was structured like this to make only one call to
1591 * __generic_make_request (which is important as it is large and
1592 * inlined) and to keep the structure simple.
1593 */
1594 BUG_ON(bio->bi_next);
bddd87c7
AM
1595 bio_list_init(&bio_list_on_stack);
1596 current->bio_list = &bio_list_on_stack;
d89d8796 1597 do {
d89d8796 1598 __generic_make_request(bio);
bddd87c7 1599 bio = bio_list_pop(current->bio_list);
d89d8796 1600 } while (bio);
bddd87c7 1601 current->bio_list = NULL; /* deactivate */
d89d8796 1602}
1da177e4
LT
1603EXPORT_SYMBOL(generic_make_request);
1604
1605/**
710027a4 1606 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1607 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1608 * @bio: The &struct bio which describes the I/O
1609 *
1610 * submit_bio() is very similar in purpose to generic_make_request(), and
1611 * uses that function to do most of the work. Both are fairly rough
710027a4 1612 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1613 *
1614 */
1615void submit_bio(int rw, struct bio *bio)
1616{
1617 int count = bio_sectors(bio);
1618
22e2c507 1619 bio->bi_rw |= rw;
1da177e4 1620
bf2de6f5
JA
1621 /*
1622 * If it's a regular read/write or a barrier with data attached,
1623 * go through the normal accounting stuff before submission.
1624 */
3ffb52e7 1625 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1626 if (rw & WRITE) {
1627 count_vm_events(PGPGOUT, count);
1628 } else {
1629 task_io_account_read(bio->bi_size);
1630 count_vm_events(PGPGIN, count);
1631 }
1632
1633 if (unlikely(block_dump)) {
1634 char b[BDEVNAME_SIZE];
8dcbdc74 1635 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1636 current->comm, task_pid_nr(current),
bf2de6f5
JA
1637 (rw & WRITE) ? "WRITE" : "READ",
1638 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1639 bdevname(bio->bi_bdev, b),
1640 count);
bf2de6f5 1641 }
1da177e4
LT
1642 }
1643
1644 generic_make_request(bio);
1645}
1da177e4
LT
1646EXPORT_SYMBOL(submit_bio);
1647
82124d60
KU
1648/**
1649 * blk_rq_check_limits - Helper function to check a request for the queue limit
1650 * @q: the queue
1651 * @rq: the request being checked
1652 *
1653 * Description:
1654 * @rq may have been made based on weaker limitations of upper-level queues
1655 * in request stacking drivers, and it may violate the limitation of @q.
1656 * Since the block layer and the underlying device driver trust @rq
1657 * after it is inserted to @q, it should be checked against @q before
1658 * the insertion using this generic function.
1659 *
1660 * This function should also be useful for request stacking drivers
eef35c2d 1661 * in some cases below, so export this function.
82124d60
KU
1662 * Request stacking drivers like request-based dm may change the queue
1663 * limits while requests are in the queue (e.g. dm's table swapping).
1664 * Such request stacking drivers should check those requests agaist
1665 * the new queue limits again when they dispatch those requests,
1666 * although such checkings are also done against the old queue limits
1667 * when submitting requests.
1668 */
1669int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1670{
3383977f
S
1671 if (rq->cmd_flags & REQ_DISCARD)
1672 return 0;
1673
ae03bf63
MP
1674 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1675 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1676 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1677 return -EIO;
1678 }
1679
1680 /*
1681 * queue's settings related to segment counting like q->bounce_pfn
1682 * may differ from that of other stacking queues.
1683 * Recalculate it to check the request correctly on this queue's
1684 * limitation.
1685 */
1686 blk_recalc_rq_segments(rq);
8a78362c 1687 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1688 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1689 return -EIO;
1690 }
1691
1692 return 0;
1693}
1694EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1695
1696/**
1697 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1698 * @q: the queue to submit the request
1699 * @rq: the request being queued
1700 */
1701int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1702{
1703 unsigned long flags;
1704
1705 if (blk_rq_check_limits(q, rq))
1706 return -EIO;
1707
b2c9cd37
AM
1708 if (rq->rq_disk &&
1709 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1710 return -EIO;
82124d60
KU
1711
1712 spin_lock_irqsave(q->queue_lock, flags);
1713
1714 /*
1715 * Submitting request must be dequeued before calling this function
1716 * because it will be linked to another request_queue
1717 */
1718 BUG_ON(blk_queued_rq(rq));
1719
73c10101 1720 add_acct_request(q, rq, ELEVATOR_INSERT_BACK);
82124d60
KU
1721 spin_unlock_irqrestore(q->queue_lock, flags);
1722
1723 return 0;
1724}
1725EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1726
80a761fd
TH
1727/**
1728 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1729 * @rq: request to examine
1730 *
1731 * Description:
1732 * A request could be merge of IOs which require different failure
1733 * handling. This function determines the number of bytes which
1734 * can be failed from the beginning of the request without
1735 * crossing into area which need to be retried further.
1736 *
1737 * Return:
1738 * The number of bytes to fail.
1739 *
1740 * Context:
1741 * queue_lock must be held.
1742 */
1743unsigned int blk_rq_err_bytes(const struct request *rq)
1744{
1745 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1746 unsigned int bytes = 0;
1747 struct bio *bio;
1748
1749 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1750 return blk_rq_bytes(rq);
1751
1752 /*
1753 * Currently the only 'mixing' which can happen is between
1754 * different fastfail types. We can safely fail portions
1755 * which have all the failfast bits that the first one has -
1756 * the ones which are at least as eager to fail as the first
1757 * one.
1758 */
1759 for (bio = rq->bio; bio; bio = bio->bi_next) {
1760 if ((bio->bi_rw & ff) != ff)
1761 break;
1762 bytes += bio->bi_size;
1763 }
1764
1765 /* this could lead to infinite loop */
1766 BUG_ON(blk_rq_bytes(rq) && !bytes);
1767 return bytes;
1768}
1769EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1770
bc58ba94
JA
1771static void blk_account_io_completion(struct request *req, unsigned int bytes)
1772{
c2553b58 1773 if (blk_do_io_stat(req)) {
bc58ba94
JA
1774 const int rw = rq_data_dir(req);
1775 struct hd_struct *part;
1776 int cpu;
1777
1778 cpu = part_stat_lock();
09e099d4 1779 part = req->part;
bc58ba94
JA
1780 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1781 part_stat_unlock();
1782 }
1783}
1784
1785static void blk_account_io_done(struct request *req)
1786{
bc58ba94 1787 /*
dd4c133f
TH
1788 * Account IO completion. flush_rq isn't accounted as a
1789 * normal IO on queueing nor completion. Accounting the
1790 * containing request is enough.
bc58ba94 1791 */
414b4ff5 1792 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1793 unsigned long duration = jiffies - req->start_time;
1794 const int rw = rq_data_dir(req);
1795 struct hd_struct *part;
1796 int cpu;
1797
1798 cpu = part_stat_lock();
09e099d4 1799 part = req->part;
bc58ba94
JA
1800
1801 part_stat_inc(cpu, part, ios[rw]);
1802 part_stat_add(cpu, part, ticks[rw], duration);
1803 part_round_stats(cpu, part);
316d315b 1804 part_dec_in_flight(part, rw);
bc58ba94 1805
6c23a968 1806 hd_struct_put(part);
bc58ba94
JA
1807 part_stat_unlock();
1808 }
1809}
1810
3bcddeac 1811/**
9934c8c0
TH
1812 * blk_peek_request - peek at the top of a request queue
1813 * @q: request queue to peek at
1814 *
1815 * Description:
1816 * Return the request at the top of @q. The returned request
1817 * should be started using blk_start_request() before LLD starts
1818 * processing it.
1819 *
1820 * Return:
1821 * Pointer to the request at the top of @q if available. Null
1822 * otherwise.
1823 *
1824 * Context:
1825 * queue_lock must be held.
1826 */
1827struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1828{
1829 struct request *rq;
1830 int ret;
1831
1832 while ((rq = __elv_next_request(q)) != NULL) {
1833 if (!(rq->cmd_flags & REQ_STARTED)) {
1834 /*
1835 * This is the first time the device driver
1836 * sees this request (possibly after
1837 * requeueing). Notify IO scheduler.
1838 */
33659ebb 1839 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1840 elv_activate_rq(q, rq);
1841
1842 /*
1843 * just mark as started even if we don't start
1844 * it, a request that has been delayed should
1845 * not be passed by new incoming requests
1846 */
1847 rq->cmd_flags |= REQ_STARTED;
1848 trace_block_rq_issue(q, rq);
1849 }
1850
1851 if (!q->boundary_rq || q->boundary_rq == rq) {
1852 q->end_sector = rq_end_sector(rq);
1853 q->boundary_rq = NULL;
1854 }
1855
1856 if (rq->cmd_flags & REQ_DONTPREP)
1857 break;
1858
2e46e8b2 1859 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1860 /*
1861 * make sure space for the drain appears we
1862 * know we can do this because max_hw_segments
1863 * has been adjusted to be one fewer than the
1864 * device can handle
1865 */
1866 rq->nr_phys_segments++;
1867 }
1868
1869 if (!q->prep_rq_fn)
1870 break;
1871
1872 ret = q->prep_rq_fn(q, rq);
1873 if (ret == BLKPREP_OK) {
1874 break;
1875 } else if (ret == BLKPREP_DEFER) {
1876 /*
1877 * the request may have been (partially) prepped.
1878 * we need to keep this request in the front to
1879 * avoid resource deadlock. REQ_STARTED will
1880 * prevent other fs requests from passing this one.
1881 */
2e46e8b2 1882 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1883 !(rq->cmd_flags & REQ_DONTPREP)) {
1884 /*
1885 * remove the space for the drain we added
1886 * so that we don't add it again
1887 */
1888 --rq->nr_phys_segments;
1889 }
1890
1891 rq = NULL;
1892 break;
1893 } else if (ret == BLKPREP_KILL) {
1894 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1895 /*
1896 * Mark this request as started so we don't trigger
1897 * any debug logic in the end I/O path.
1898 */
1899 blk_start_request(rq);
40cbbb78 1900 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1901 } else {
1902 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1903 break;
1904 }
1905 }
1906
1907 return rq;
1908}
9934c8c0 1909EXPORT_SYMBOL(blk_peek_request);
158dbda0 1910
9934c8c0 1911void blk_dequeue_request(struct request *rq)
158dbda0 1912{
9934c8c0
TH
1913 struct request_queue *q = rq->q;
1914
158dbda0
TH
1915 BUG_ON(list_empty(&rq->queuelist));
1916 BUG_ON(ELV_ON_HASH(rq));
1917
1918 list_del_init(&rq->queuelist);
1919
1920 /*
1921 * the time frame between a request being removed from the lists
1922 * and to it is freed is accounted as io that is in progress at
1923 * the driver side.
1924 */
9195291e 1925 if (blk_account_rq(rq)) {
0a7ae2ff 1926 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1927 set_io_start_time_ns(rq);
1928 }
158dbda0
TH
1929}
1930
9934c8c0
TH
1931/**
1932 * blk_start_request - start request processing on the driver
1933 * @req: request to dequeue
1934 *
1935 * Description:
1936 * Dequeue @req and start timeout timer on it. This hands off the
1937 * request to the driver.
1938 *
1939 * Block internal functions which don't want to start timer should
1940 * call blk_dequeue_request().
1941 *
1942 * Context:
1943 * queue_lock must be held.
1944 */
1945void blk_start_request(struct request *req)
1946{
1947 blk_dequeue_request(req);
1948
1949 /*
5f49f631
TH
1950 * We are now handing the request to the hardware, initialize
1951 * resid_len to full count and add the timeout handler.
9934c8c0 1952 */
5f49f631 1953 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1954 if (unlikely(blk_bidi_rq(req)))
1955 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1956
9934c8c0
TH
1957 blk_add_timer(req);
1958}
1959EXPORT_SYMBOL(blk_start_request);
1960
1961/**
1962 * blk_fetch_request - fetch a request from a request queue
1963 * @q: request queue to fetch a request from
1964 *
1965 * Description:
1966 * Return the request at the top of @q. The request is started on
1967 * return and LLD can start processing it immediately.
1968 *
1969 * Return:
1970 * Pointer to the request at the top of @q if available. Null
1971 * otherwise.
1972 *
1973 * Context:
1974 * queue_lock must be held.
1975 */
1976struct request *blk_fetch_request(struct request_queue *q)
1977{
1978 struct request *rq;
1979
1980 rq = blk_peek_request(q);
1981 if (rq)
1982 blk_start_request(rq);
1983 return rq;
1984}
1985EXPORT_SYMBOL(blk_fetch_request);
1986
3bcddeac 1987/**
2e60e022 1988 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1989 * @req: the request being processed
710027a4 1990 * @error: %0 for success, < %0 for error
8ebf9756 1991 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1992 *
1993 * Description:
8ebf9756
RD
1994 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1995 * the request structure even if @req doesn't have leftover.
1996 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1997 *
1998 * This special helper function is only for request stacking drivers
1999 * (e.g. request-based dm) so that they can handle partial completion.
2000 * Actual device drivers should use blk_end_request instead.
2001 *
2002 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2003 * %false return from this function.
3bcddeac
KU
2004 *
2005 * Return:
2e60e022
TH
2006 * %false - this request doesn't have any more data
2007 * %true - this request has more data
3bcddeac 2008 **/
2e60e022 2009bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2010{
5450d3e1 2011 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2012 struct bio *bio;
2013
2e60e022
TH
2014 if (!req->bio)
2015 return false;
2016
5f3ea37c 2017 trace_block_rq_complete(req->q, req);
2056a782 2018
1da177e4 2019 /*
6f41469c
TH
2020 * For fs requests, rq is just carrier of independent bio's
2021 * and each partial completion should be handled separately.
2022 * Reset per-request error on each partial completion.
2023 *
2024 * TODO: tj: This is too subtle. It would be better to let
2025 * low level drivers do what they see fit.
1da177e4 2026 */
33659ebb 2027 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2028 req->errors = 0;
2029
33659ebb
CH
2030 if (error && req->cmd_type == REQ_TYPE_FS &&
2031 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2032 char *error_type;
2033
2034 switch (error) {
2035 case -ENOLINK:
2036 error_type = "recoverable transport";
2037 break;
2038 case -EREMOTEIO:
2039 error_type = "critical target";
2040 break;
2041 case -EBADE:
2042 error_type = "critical nexus";
2043 break;
2044 case -EIO:
2045 default:
2046 error_type = "I/O";
2047 break;
2048 }
2049 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2050 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2051 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2052 }
2053
bc58ba94 2054 blk_account_io_completion(req, nr_bytes);
d72d904a 2055
1da177e4
LT
2056 total_bytes = bio_nbytes = 0;
2057 while ((bio = req->bio) != NULL) {
2058 int nbytes;
2059
2060 if (nr_bytes >= bio->bi_size) {
2061 req->bio = bio->bi_next;
2062 nbytes = bio->bi_size;
5bb23a68 2063 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2064 next_idx = 0;
2065 bio_nbytes = 0;
2066 } else {
2067 int idx = bio->bi_idx + next_idx;
2068
af498d7f 2069 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2070 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2071 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2072 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2073 break;
2074 }
2075
2076 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2077 BIO_BUG_ON(nbytes > bio->bi_size);
2078
2079 /*
2080 * not a complete bvec done
2081 */
2082 if (unlikely(nbytes > nr_bytes)) {
2083 bio_nbytes += nr_bytes;
2084 total_bytes += nr_bytes;
2085 break;
2086 }
2087
2088 /*
2089 * advance to the next vector
2090 */
2091 next_idx++;
2092 bio_nbytes += nbytes;
2093 }
2094
2095 total_bytes += nbytes;
2096 nr_bytes -= nbytes;
2097
6728cb0e
JA
2098 bio = req->bio;
2099 if (bio) {
1da177e4
LT
2100 /*
2101 * end more in this run, or just return 'not-done'
2102 */
2103 if (unlikely(nr_bytes <= 0))
2104 break;
2105 }
2106 }
2107
2108 /*
2109 * completely done
2110 */
2e60e022
TH
2111 if (!req->bio) {
2112 /*
2113 * Reset counters so that the request stacking driver
2114 * can find how many bytes remain in the request
2115 * later.
2116 */
a2dec7b3 2117 req->__data_len = 0;
2e60e022
TH
2118 return false;
2119 }
1da177e4
LT
2120
2121 /*
2122 * if the request wasn't completed, update state
2123 */
2124 if (bio_nbytes) {
5bb23a68 2125 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2126 bio->bi_idx += next_idx;
2127 bio_iovec(bio)->bv_offset += nr_bytes;
2128 bio_iovec(bio)->bv_len -= nr_bytes;
2129 }
2130
a2dec7b3 2131 req->__data_len -= total_bytes;
2e46e8b2
TH
2132 req->buffer = bio_data(req->bio);
2133
2134 /* update sector only for requests with clear definition of sector */
33659ebb 2135 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2136 req->__sector += total_bytes >> 9;
2e46e8b2 2137
80a761fd
TH
2138 /* mixed attributes always follow the first bio */
2139 if (req->cmd_flags & REQ_MIXED_MERGE) {
2140 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2141 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2142 }
2143
2e46e8b2
TH
2144 /*
2145 * If total number of sectors is less than the first segment
2146 * size, something has gone terribly wrong.
2147 */
2148 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2149 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2150 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2151 }
2152
2153 /* recalculate the number of segments */
1da177e4 2154 blk_recalc_rq_segments(req);
2e46e8b2 2155
2e60e022 2156 return true;
1da177e4 2157}
2e60e022 2158EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2159
2e60e022
TH
2160static bool blk_update_bidi_request(struct request *rq, int error,
2161 unsigned int nr_bytes,
2162 unsigned int bidi_bytes)
5efccd17 2163{
2e60e022
TH
2164 if (blk_update_request(rq, error, nr_bytes))
2165 return true;
5efccd17 2166
2e60e022
TH
2167 /* Bidi request must be completed as a whole */
2168 if (unlikely(blk_bidi_rq(rq)) &&
2169 blk_update_request(rq->next_rq, error, bidi_bytes))
2170 return true;
5efccd17 2171
e2e1a148
JA
2172 if (blk_queue_add_random(rq->q))
2173 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2174
2175 return false;
1da177e4
LT
2176}
2177
28018c24
JB
2178/**
2179 * blk_unprep_request - unprepare a request
2180 * @req: the request
2181 *
2182 * This function makes a request ready for complete resubmission (or
2183 * completion). It happens only after all error handling is complete,
2184 * so represents the appropriate moment to deallocate any resources
2185 * that were allocated to the request in the prep_rq_fn. The queue
2186 * lock is held when calling this.
2187 */
2188void blk_unprep_request(struct request *req)
2189{
2190 struct request_queue *q = req->q;
2191
2192 req->cmd_flags &= ~REQ_DONTPREP;
2193 if (q->unprep_rq_fn)
2194 q->unprep_rq_fn(q, req);
2195}
2196EXPORT_SYMBOL_GPL(blk_unprep_request);
2197
1da177e4
LT
2198/*
2199 * queue lock must be held
2200 */
2e60e022 2201static void blk_finish_request(struct request *req, int error)
1da177e4 2202{
b8286239
KU
2203 if (blk_rq_tagged(req))
2204 blk_queue_end_tag(req->q, req);
2205
ba396a6c 2206 BUG_ON(blk_queued_rq(req));
1da177e4 2207
33659ebb 2208 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2209 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2210
e78042e5
MA
2211 blk_delete_timer(req);
2212
28018c24
JB
2213 if (req->cmd_flags & REQ_DONTPREP)
2214 blk_unprep_request(req);
2215
2216
bc58ba94 2217 blk_account_io_done(req);
b8286239 2218
1da177e4 2219 if (req->end_io)
8ffdc655 2220 req->end_io(req, error);
b8286239
KU
2221 else {
2222 if (blk_bidi_rq(req))
2223 __blk_put_request(req->next_rq->q, req->next_rq);
2224
1da177e4 2225 __blk_put_request(req->q, req);
b8286239 2226 }
1da177e4
LT
2227}
2228
3b11313a 2229/**
2e60e022
TH
2230 * blk_end_bidi_request - Complete a bidi request
2231 * @rq: the request to complete
2232 * @error: %0 for success, < %0 for error
2233 * @nr_bytes: number of bytes to complete @rq
2234 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2235 *
2236 * Description:
e3a04fe3 2237 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2238 * Drivers that supports bidi can safely call this member for any
2239 * type of request, bidi or uni. In the later case @bidi_bytes is
2240 * just ignored.
336cdb40
KU
2241 *
2242 * Return:
2e60e022
TH
2243 * %false - we are done with this request
2244 * %true - still buffers pending for this request
a0cd1285 2245 **/
b1f74493 2246static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2247 unsigned int nr_bytes, unsigned int bidi_bytes)
2248{
336cdb40 2249 struct request_queue *q = rq->q;
2e60e022 2250 unsigned long flags;
32fab448 2251
2e60e022
TH
2252 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2253 return true;
32fab448 2254
336cdb40 2255 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2256 blk_finish_request(rq, error);
336cdb40
KU
2257 spin_unlock_irqrestore(q->queue_lock, flags);
2258
2e60e022 2259 return false;
32fab448
KU
2260}
2261
336cdb40 2262/**
2e60e022
TH
2263 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2264 * @rq: the request to complete
710027a4 2265 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2266 * @nr_bytes: number of bytes to complete @rq
2267 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2268 *
2269 * Description:
2e60e022
TH
2270 * Identical to blk_end_bidi_request() except that queue lock is
2271 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2272 *
2273 * Return:
2e60e022
TH
2274 * %false - we are done with this request
2275 * %true - still buffers pending for this request
336cdb40 2276 **/
b1f74493
FT
2277static bool __blk_end_bidi_request(struct request *rq, int error,
2278 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2279{
2e60e022
TH
2280 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2281 return true;
336cdb40 2282
2e60e022 2283 blk_finish_request(rq, error);
336cdb40 2284
2e60e022 2285 return false;
336cdb40 2286}
e19a3ab0
KU
2287
2288/**
2289 * blk_end_request - Helper function for drivers to complete the request.
2290 * @rq: the request being processed
710027a4 2291 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2292 * @nr_bytes: number of bytes to complete
2293 *
2294 * Description:
2295 * Ends I/O on a number of bytes attached to @rq.
2296 * If @rq has leftover, sets it up for the next range of segments.
2297 *
2298 * Return:
b1f74493
FT
2299 * %false - we are done with this request
2300 * %true - still buffers pending for this request
e19a3ab0 2301 **/
b1f74493 2302bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2303{
b1f74493 2304 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2305}
56ad1740 2306EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2307
2308/**
b1f74493
FT
2309 * blk_end_request_all - Helper function for drives to finish the request.
2310 * @rq: the request to finish
8ebf9756 2311 * @error: %0 for success, < %0 for error
336cdb40
KU
2312 *
2313 * Description:
b1f74493
FT
2314 * Completely finish @rq.
2315 */
2316void blk_end_request_all(struct request *rq, int error)
336cdb40 2317{
b1f74493
FT
2318 bool pending;
2319 unsigned int bidi_bytes = 0;
336cdb40 2320
b1f74493
FT
2321 if (unlikely(blk_bidi_rq(rq)))
2322 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2323
b1f74493
FT
2324 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2325 BUG_ON(pending);
2326}
56ad1740 2327EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2328
b1f74493
FT
2329/**
2330 * blk_end_request_cur - Helper function to finish the current request chunk.
2331 * @rq: the request to finish the current chunk for
8ebf9756 2332 * @error: %0 for success, < %0 for error
b1f74493
FT
2333 *
2334 * Description:
2335 * Complete the current consecutively mapped chunk from @rq.
2336 *
2337 * Return:
2338 * %false - we are done with this request
2339 * %true - still buffers pending for this request
2340 */
2341bool blk_end_request_cur(struct request *rq, int error)
2342{
2343 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2344}
56ad1740 2345EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2346
80a761fd
TH
2347/**
2348 * blk_end_request_err - Finish a request till the next failure boundary.
2349 * @rq: the request to finish till the next failure boundary for
2350 * @error: must be negative errno
2351 *
2352 * Description:
2353 * Complete @rq till the next failure boundary.
2354 *
2355 * Return:
2356 * %false - we are done with this request
2357 * %true - still buffers pending for this request
2358 */
2359bool blk_end_request_err(struct request *rq, int error)
2360{
2361 WARN_ON(error >= 0);
2362 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2363}
2364EXPORT_SYMBOL_GPL(blk_end_request_err);
2365
e3a04fe3 2366/**
b1f74493
FT
2367 * __blk_end_request - Helper function for drivers to complete the request.
2368 * @rq: the request being processed
2369 * @error: %0 for success, < %0 for error
2370 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2371 *
2372 * Description:
b1f74493 2373 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2374 *
2375 * Return:
b1f74493
FT
2376 * %false - we are done with this request
2377 * %true - still buffers pending for this request
e3a04fe3 2378 **/
b1f74493 2379bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2380{
b1f74493 2381 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2382}
56ad1740 2383EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2384
32fab448 2385/**
b1f74493
FT
2386 * __blk_end_request_all - Helper function for drives to finish the request.
2387 * @rq: the request to finish
8ebf9756 2388 * @error: %0 for success, < %0 for error
32fab448
KU
2389 *
2390 * Description:
b1f74493 2391 * Completely finish @rq. Must be called with queue lock held.
32fab448 2392 */
b1f74493 2393void __blk_end_request_all(struct request *rq, int error)
32fab448 2394{
b1f74493
FT
2395 bool pending;
2396 unsigned int bidi_bytes = 0;
2397
2398 if (unlikely(blk_bidi_rq(rq)))
2399 bidi_bytes = blk_rq_bytes(rq->next_rq);
2400
2401 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2402 BUG_ON(pending);
32fab448 2403}
56ad1740 2404EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2405
e19a3ab0 2406/**
b1f74493
FT
2407 * __blk_end_request_cur - Helper function to finish the current request chunk.
2408 * @rq: the request to finish the current chunk for
8ebf9756 2409 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2410 *
2411 * Description:
b1f74493
FT
2412 * Complete the current consecutively mapped chunk from @rq. Must
2413 * be called with queue lock held.
e19a3ab0
KU
2414 *
2415 * Return:
b1f74493
FT
2416 * %false - we are done with this request
2417 * %true - still buffers pending for this request
2418 */
2419bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2420{
b1f74493 2421 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2422}
56ad1740 2423EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2424
80a761fd
TH
2425/**
2426 * __blk_end_request_err - Finish a request till the next failure boundary.
2427 * @rq: the request to finish till the next failure boundary for
2428 * @error: must be negative errno
2429 *
2430 * Description:
2431 * Complete @rq till the next failure boundary. Must be called
2432 * with queue lock held.
2433 *
2434 * Return:
2435 * %false - we are done with this request
2436 * %true - still buffers pending for this request
2437 */
2438bool __blk_end_request_err(struct request *rq, int error)
2439{
2440 WARN_ON(error >= 0);
2441 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2442}
2443EXPORT_SYMBOL_GPL(__blk_end_request_err);
2444
86db1e29
JA
2445void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2446 struct bio *bio)
1da177e4 2447{
a82afdfc 2448 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2449 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2450
fb2dce86
DW
2451 if (bio_has_data(bio)) {
2452 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2453 rq->buffer = bio_data(bio);
2454 }
a2dec7b3 2455 rq->__data_len = bio->bi_size;
1da177e4 2456 rq->bio = rq->biotail = bio;
1da177e4 2457
66846572
N
2458 if (bio->bi_bdev)
2459 rq->rq_disk = bio->bi_bdev->bd_disk;
2460}
1da177e4 2461
2d4dc890
IL
2462#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2463/**
2464 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2465 * @rq: the request to be flushed
2466 *
2467 * Description:
2468 * Flush all pages in @rq.
2469 */
2470void rq_flush_dcache_pages(struct request *rq)
2471{
2472 struct req_iterator iter;
2473 struct bio_vec *bvec;
2474
2475 rq_for_each_segment(bvec, rq, iter)
2476 flush_dcache_page(bvec->bv_page);
2477}
2478EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2479#endif
2480
ef9e3fac
KU
2481/**
2482 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2483 * @q : the queue of the device being checked
2484 *
2485 * Description:
2486 * Check if underlying low-level drivers of a device are busy.
2487 * If the drivers want to export their busy state, they must set own
2488 * exporting function using blk_queue_lld_busy() first.
2489 *
2490 * Basically, this function is used only by request stacking drivers
2491 * to stop dispatching requests to underlying devices when underlying
2492 * devices are busy. This behavior helps more I/O merging on the queue
2493 * of the request stacking driver and prevents I/O throughput regression
2494 * on burst I/O load.
2495 *
2496 * Return:
2497 * 0 - Not busy (The request stacking driver should dispatch request)
2498 * 1 - Busy (The request stacking driver should stop dispatching request)
2499 */
2500int blk_lld_busy(struct request_queue *q)
2501{
2502 if (q->lld_busy_fn)
2503 return q->lld_busy_fn(q);
2504
2505 return 0;
2506}
2507EXPORT_SYMBOL_GPL(blk_lld_busy);
2508
b0fd271d
KU
2509/**
2510 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2511 * @rq: the clone request to be cleaned up
2512 *
2513 * Description:
2514 * Free all bios in @rq for a cloned request.
2515 */
2516void blk_rq_unprep_clone(struct request *rq)
2517{
2518 struct bio *bio;
2519
2520 while ((bio = rq->bio) != NULL) {
2521 rq->bio = bio->bi_next;
2522
2523 bio_put(bio);
2524 }
2525}
2526EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2527
2528/*
2529 * Copy attributes of the original request to the clone request.
2530 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2531 */
2532static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2533{
2534 dst->cpu = src->cpu;
3a2edd0d 2535 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2536 dst->cmd_type = src->cmd_type;
2537 dst->__sector = blk_rq_pos(src);
2538 dst->__data_len = blk_rq_bytes(src);
2539 dst->nr_phys_segments = src->nr_phys_segments;
2540 dst->ioprio = src->ioprio;
2541 dst->extra_len = src->extra_len;
2542}
2543
2544/**
2545 * blk_rq_prep_clone - Helper function to setup clone request
2546 * @rq: the request to be setup
2547 * @rq_src: original request to be cloned
2548 * @bs: bio_set that bios for clone are allocated from
2549 * @gfp_mask: memory allocation mask for bio
2550 * @bio_ctr: setup function to be called for each clone bio.
2551 * Returns %0 for success, non %0 for failure.
2552 * @data: private data to be passed to @bio_ctr
2553 *
2554 * Description:
2555 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2556 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2557 * are not copied, and copying such parts is the caller's responsibility.
2558 * Also, pages which the original bios are pointing to are not copied
2559 * and the cloned bios just point same pages.
2560 * So cloned bios must be completed before original bios, which means
2561 * the caller must complete @rq before @rq_src.
2562 */
2563int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2564 struct bio_set *bs, gfp_t gfp_mask,
2565 int (*bio_ctr)(struct bio *, struct bio *, void *),
2566 void *data)
2567{
2568 struct bio *bio, *bio_src;
2569
2570 if (!bs)
2571 bs = fs_bio_set;
2572
2573 blk_rq_init(NULL, rq);
2574
2575 __rq_for_each_bio(bio_src, rq_src) {
2576 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2577 if (!bio)
2578 goto free_and_out;
2579
2580 __bio_clone(bio, bio_src);
2581
2582 if (bio_integrity(bio_src) &&
7878cba9 2583 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2584 goto free_and_out;
2585
2586 if (bio_ctr && bio_ctr(bio, bio_src, data))
2587 goto free_and_out;
2588
2589 if (rq->bio) {
2590 rq->biotail->bi_next = bio;
2591 rq->biotail = bio;
2592 } else
2593 rq->bio = rq->biotail = bio;
2594 }
2595
2596 __blk_rq_prep_clone(rq, rq_src);
2597
2598 return 0;
2599
2600free_and_out:
2601 if (bio)
2602 bio_free(bio, bs);
2603 blk_rq_unprep_clone(rq);
2604
2605 return -ENOMEM;
2606}
2607EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2608
18887ad9 2609int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2610{
2611 return queue_work(kblockd_workqueue, work);
2612}
1da177e4
LT
2613EXPORT_SYMBOL(kblockd_schedule_work);
2614
e43473b7
VG
2615int kblockd_schedule_delayed_work(struct request_queue *q,
2616 struct delayed_work *dwork, unsigned long delay)
2617{
2618 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2619}
2620EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2621
73c10101
JA
2622#define PLUG_MAGIC 0x91827364
2623
2624void blk_start_plug(struct blk_plug *plug)
2625{
2626 struct task_struct *tsk = current;
2627
2628 plug->magic = PLUG_MAGIC;
2629 INIT_LIST_HEAD(&plug->list);
048c9374 2630 INIT_LIST_HEAD(&plug->cb_list);
73c10101 2631 plug->should_sort = 0;
55c022bb 2632 plug->count = 0;
73c10101
JA
2633
2634 /*
2635 * If this is a nested plug, don't actually assign it. It will be
2636 * flushed on its own.
2637 */
2638 if (!tsk->plug) {
2639 /*
2640 * Store ordering should not be needed here, since a potential
2641 * preempt will imply a full memory barrier
2642 */
2643 tsk->plug = plug;
2644 }
2645}
2646EXPORT_SYMBOL(blk_start_plug);
2647
2648static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2649{
2650 struct request *rqa = container_of(a, struct request, queuelist);
2651 struct request *rqb = container_of(b, struct request, queuelist);
2652
f83e8261 2653 return !(rqa->q <= rqb->q);
73c10101
JA
2654}
2655
49cac01e
JA
2656/*
2657 * If 'from_schedule' is true, then postpone the dispatch of requests
2658 * until a safe kblockd context. We due this to avoid accidental big
2659 * additional stack usage in driver dispatch, in places where the originally
2660 * plugger did not intend it.
2661 */
f6603783 2662static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2663 bool from_schedule)
99e22598 2664 __releases(q->queue_lock)
94b5eb28 2665{
49cac01e 2666 trace_block_unplug(q, depth, !from_schedule);
99e22598
JA
2667
2668 /*
2669 * If we are punting this to kblockd, then we can safely drop
2670 * the queue_lock before waking kblockd (which needs to take
2671 * this lock).
2672 */
2673 if (from_schedule) {
2674 spin_unlock(q->queue_lock);
24ecfbe2 2675 blk_run_queue_async(q);
99e22598 2676 } else {
24ecfbe2 2677 __blk_run_queue(q);
99e22598
JA
2678 spin_unlock(q->queue_lock);
2679 }
2680
94b5eb28
JA
2681}
2682
048c9374
N
2683static void flush_plug_callbacks(struct blk_plug *plug)
2684{
2685 LIST_HEAD(callbacks);
2686
2687 if (list_empty(&plug->cb_list))
2688 return;
2689
2690 list_splice_init(&plug->cb_list, &callbacks);
2691
2692 while (!list_empty(&callbacks)) {
2693 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2694 struct blk_plug_cb,
2695 list);
2696 list_del(&cb->list);
2697 cb->callback(cb);
2698 }
2699}
2700
49cac01e 2701void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2702{
2703 struct request_queue *q;
2704 unsigned long flags;
2705 struct request *rq;
109b8129 2706 LIST_HEAD(list);
94b5eb28 2707 unsigned int depth;
73c10101
JA
2708
2709 BUG_ON(plug->magic != PLUG_MAGIC);
2710
048c9374 2711 flush_plug_callbacks(plug);
73c10101
JA
2712 if (list_empty(&plug->list))
2713 return;
2714
109b8129 2715 list_splice_init(&plug->list, &list);
55c022bb 2716 plug->count = 0;
109b8129
N
2717
2718 if (plug->should_sort) {
2719 list_sort(NULL, &list, plug_rq_cmp);
2720 plug->should_sort = 0;
2721 }
73c10101
JA
2722
2723 q = NULL;
94b5eb28 2724 depth = 0;
18811272
JA
2725
2726 /*
2727 * Save and disable interrupts here, to avoid doing it for every
2728 * queue lock we have to take.
2729 */
73c10101 2730 local_irq_save(flags);
109b8129
N
2731 while (!list_empty(&list)) {
2732 rq = list_entry_rq(list.next);
73c10101 2733 list_del_init(&rq->queuelist);
73c10101
JA
2734 BUG_ON(!rq->q);
2735 if (rq->q != q) {
99e22598
JA
2736 /*
2737 * This drops the queue lock
2738 */
2739 if (q)
49cac01e 2740 queue_unplugged(q, depth, from_schedule);
73c10101 2741 q = rq->q;
94b5eb28 2742 depth = 0;
73c10101
JA
2743 spin_lock(q->queue_lock);
2744 }
73c10101
JA
2745 /*
2746 * rq is already accounted, so use raw insert
2747 */
401a18e9
JA
2748 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2749 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2750 else
2751 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
2752
2753 depth++;
73c10101
JA
2754 }
2755
99e22598
JA
2756 /*
2757 * This drops the queue lock
2758 */
2759 if (q)
49cac01e 2760 queue_unplugged(q, depth, from_schedule);
73c10101 2761
73c10101
JA
2762 local_irq_restore(flags);
2763}
73c10101
JA
2764
2765void blk_finish_plug(struct blk_plug *plug)
2766{
f6603783 2767 blk_flush_plug_list(plug, false);
73c10101 2768
88b996cd
CH
2769 if (plug == current->plug)
2770 current->plug = NULL;
73c10101 2771}
88b996cd 2772EXPORT_SYMBOL(blk_finish_plug);
73c10101 2773
1da177e4
LT
2774int __init blk_dev_init(void)
2775{
9eb55b03
NK
2776 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2777 sizeof(((struct request *)0)->cmd_flags));
2778
89b90be2
TH
2779 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2780 kblockd_workqueue = alloc_workqueue("kblockd",
2781 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2782 if (!kblockd_workqueue)
2783 panic("Failed to create kblockd\n");
2784
2785 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2786 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2787
8324aa91 2788 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2789 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2790
d38ecf93 2791 return 0;
1da177e4 2792}