Merge tag 'armsoc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
30abb3a6 37#include <linux/bpf.h>
55782138
LZ
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/block.h>
1da177e4 41
8324aa91 42#include "blk.h"
43a5e4e2 43#include "blk-mq.h"
bd166ef1 44#include "blk-mq-sched.h"
c1c80384 45#include "blk-rq-qos.h"
8324aa91 46
18fbda91
OS
47#ifdef CONFIG_DEBUG_FS
48struct dentry *blk_debugfs_root;
49#endif
50
d07335e5 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 55EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 56
a73f730d
TH
57DEFINE_IDA(blk_queue_ida);
58
1da177e4
LT
59/*
60 * For the allocated request tables
61 */
d674d414 62struct kmem_cache *request_cachep;
1da177e4
LT
63
64/*
65 * For queue allocation
66 */
6728cb0e 67struct kmem_cache *blk_requestq_cachep;
1da177e4 68
1da177e4
LT
69/*
70 * Controlling structure to kblockd
71 */
ff856bad 72static struct workqueue_struct *kblockd_workqueue;
1da177e4 73
8814ce8a
BVA
74/**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
78 */
79void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80{
81 unsigned long flags;
82
83 spin_lock_irqsave(q->queue_lock, flags);
84 queue_flag_set(flag, q);
85 spin_unlock_irqrestore(q->queue_lock, flags);
86}
87EXPORT_SYMBOL(blk_queue_flag_set);
88
89/**
90 * blk_queue_flag_clear - atomically clear a queue flag
91 * @flag: flag to be cleared
92 * @q: request queue
93 */
94void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
95{
96 unsigned long flags;
97
98 spin_lock_irqsave(q->queue_lock, flags);
99 queue_flag_clear(flag, q);
100 spin_unlock_irqrestore(q->queue_lock, flags);
101}
102EXPORT_SYMBOL(blk_queue_flag_clear);
103
104/**
105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
106 * @flag: flag to be set
107 * @q: request queue
108 *
109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110 * the flag was already set.
111 */
112bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
113{
114 unsigned long flags;
115 bool res;
116
117 spin_lock_irqsave(q->queue_lock, flags);
118 res = queue_flag_test_and_set(flag, q);
119 spin_unlock_irqrestore(q->queue_lock, flags);
120
121 return res;
122}
123EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
124
125/**
126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127 * @flag: flag to be cleared
128 * @q: request queue
129 *
130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
131 * the flag was set.
132 */
133bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
134{
135 unsigned long flags;
136 bool res;
137
138 spin_lock_irqsave(q->queue_lock, flags);
139 res = queue_flag_test_and_clear(flag, q);
140 spin_unlock_irqrestore(q->queue_lock, flags);
141
142 return res;
143}
144EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
145
d40f75a0
TH
146static void blk_clear_congested(struct request_list *rl, int sync)
147{
d40f75a0
TH
148#ifdef CONFIG_CGROUP_WRITEBACK
149 clear_wb_congested(rl->blkg->wb_congested, sync);
150#else
482cf79c
TH
151 /*
152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 * flip its congestion state for events on other blkcgs.
154 */
155 if (rl == &rl->q->root_rl)
dc3b17cc 156 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
157#endif
158}
159
160static void blk_set_congested(struct request_list *rl, int sync)
161{
d40f75a0
TH
162#ifdef CONFIG_CGROUP_WRITEBACK
163 set_wb_congested(rl->blkg->wb_congested, sync);
164#else
482cf79c
TH
165 /* see blk_clear_congested() */
166 if (rl == &rl->q->root_rl)
dc3b17cc 167 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
168#endif
169}
170
8324aa91 171void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
172{
173 int nr;
174
175 nr = q->nr_requests - (q->nr_requests / 8) + 1;
176 if (nr > q->nr_requests)
177 nr = q->nr_requests;
178 q->nr_congestion_on = nr;
179
180 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
181 if (nr < 1)
182 nr = 1;
183 q->nr_congestion_off = nr;
184}
185
2a4aa30c 186void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 187{
1afb20f3
FT
188 memset(rq, 0, sizeof(*rq));
189
1da177e4 190 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 191 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 192 rq->cpu = -1;
63a71386 193 rq->q = q;
a2dec7b3 194 rq->__sector = (sector_t) -1;
2e662b65
JA
195 INIT_HLIST_NODE(&rq->hash);
196 RB_CLEAR_NODE(&rq->rb_node);
63a71386 197 rq->tag = -1;
bd166ef1 198 rq->internal_tag = -1;
522a7775 199 rq->start_time_ns = ktime_get_ns();
09e099d4 200 rq->part = NULL;
1da177e4 201}
2a4aa30c 202EXPORT_SYMBOL(blk_rq_init);
1da177e4 203
2a842aca
CH
204static const struct {
205 int errno;
206 const char *name;
207} blk_errors[] = {
208 [BLK_STS_OK] = { 0, "" },
209 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
210 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
211 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
212 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
213 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
214 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
215 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
216 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
217 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 218 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 219 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 220
4e4cbee9
CH
221 /* device mapper special case, should not leak out: */
222 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
223
2a842aca
CH
224 /* everything else not covered above: */
225 [BLK_STS_IOERR] = { -EIO, "I/O" },
226};
227
228blk_status_t errno_to_blk_status(int errno)
229{
230 int i;
231
232 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
233 if (blk_errors[i].errno == errno)
234 return (__force blk_status_t)i;
235 }
236
237 return BLK_STS_IOERR;
238}
239EXPORT_SYMBOL_GPL(errno_to_blk_status);
240
241int blk_status_to_errno(blk_status_t status)
242{
243 int idx = (__force int)status;
244
34bd9c1c 245 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
246 return -EIO;
247 return blk_errors[idx].errno;
248}
249EXPORT_SYMBOL_GPL(blk_status_to_errno);
250
251static void print_req_error(struct request *req, blk_status_t status)
252{
253 int idx = (__force int)status;
254
34bd9c1c 255 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
256 return;
257
258 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
259 __func__, blk_errors[idx].name, req->rq_disk ?
260 req->rq_disk->disk_name : "?",
261 (unsigned long long)blk_rq_pos(req));
262}
263
5bb23a68 264static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 265 unsigned int nbytes, blk_status_t error)
1da177e4 266{
78d8e58a 267 if (error)
4e4cbee9 268 bio->bi_status = error;
797e7dbb 269
e8064021 270 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 271 bio_set_flag(bio, BIO_QUIET);
08bafc03 272
f79ea416 273 bio_advance(bio, nbytes);
7ba1ba12 274
143a87f4 275 /* don't actually finish bio if it's part of flush sequence */
e8064021 276 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 277 bio_endio(bio);
1da177e4 278}
1da177e4 279
1da177e4
LT
280void blk_dump_rq_flags(struct request *rq, char *msg)
281{
aebf526b
CH
282 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
283 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 284 (unsigned long long) rq->cmd_flags);
1da177e4 285
83096ebf
TH
286 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
287 (unsigned long long)blk_rq_pos(rq),
288 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
289 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
290 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 291}
1da177e4
LT
292EXPORT_SYMBOL(blk_dump_rq_flags);
293
3cca6dc1 294static void blk_delay_work(struct work_struct *work)
1da177e4 295{
3cca6dc1 296 struct request_queue *q;
1da177e4 297
3cca6dc1
JA
298 q = container_of(work, struct request_queue, delay_work.work);
299 spin_lock_irq(q->queue_lock);
24ecfbe2 300 __blk_run_queue(q);
3cca6dc1 301 spin_unlock_irq(q->queue_lock);
1da177e4 302}
1da177e4
LT
303
304/**
3cca6dc1
JA
305 * blk_delay_queue - restart queueing after defined interval
306 * @q: The &struct request_queue in question
307 * @msecs: Delay in msecs
1da177e4
LT
308 *
309 * Description:
3cca6dc1
JA
310 * Sometimes queueing needs to be postponed for a little while, to allow
311 * resources to come back. This function will make sure that queueing is
2fff8a92 312 * restarted around the specified time.
3cca6dc1
JA
313 */
314void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 315{
2fff8a92 316 lockdep_assert_held(q->queue_lock);
332ebbf7 317 WARN_ON_ONCE(q->mq_ops);
2fff8a92 318
70460571
BVA
319 if (likely(!blk_queue_dead(q)))
320 queue_delayed_work(kblockd_workqueue, &q->delay_work,
321 msecs_to_jiffies(msecs));
2ad8b1ef 322}
3cca6dc1 323EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 324
21491412
JA
325/**
326 * blk_start_queue_async - asynchronously restart a previously stopped queue
327 * @q: The &struct request_queue in question
328 *
329 * Description:
330 * blk_start_queue_async() will clear the stop flag on the queue, and
331 * ensure that the request_fn for the queue is run from an async
332 * context.
333 **/
334void blk_start_queue_async(struct request_queue *q)
335{
2fff8a92 336 lockdep_assert_held(q->queue_lock);
332ebbf7 337 WARN_ON_ONCE(q->mq_ops);
2fff8a92 338
21491412
JA
339 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
340 blk_run_queue_async(q);
341}
342EXPORT_SYMBOL(blk_start_queue_async);
343
1da177e4
LT
344/**
345 * blk_start_queue - restart a previously stopped queue
165125e1 346 * @q: The &struct request_queue in question
1da177e4
LT
347 *
348 * Description:
349 * blk_start_queue() will clear the stop flag on the queue, and call
350 * the request_fn for the queue if it was in a stopped state when
2fff8a92 351 * entered. Also see blk_stop_queue().
1da177e4 352 **/
165125e1 353void blk_start_queue(struct request_queue *q)
1da177e4 354{
2fff8a92 355 lockdep_assert_held(q->queue_lock);
332ebbf7 356 WARN_ON_ONCE(q->mq_ops);
a038e253 357
75ad23bc 358 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 359 __blk_run_queue(q);
1da177e4 360}
1da177e4
LT
361EXPORT_SYMBOL(blk_start_queue);
362
363/**
364 * blk_stop_queue - stop a queue
165125e1 365 * @q: The &struct request_queue in question
1da177e4
LT
366 *
367 * Description:
368 * The Linux block layer assumes that a block driver will consume all
369 * entries on the request queue when the request_fn strategy is called.
370 * Often this will not happen, because of hardware limitations (queue
371 * depth settings). If a device driver gets a 'queue full' response,
372 * or if it simply chooses not to queue more I/O at one point, it can
373 * call this function to prevent the request_fn from being called until
374 * the driver has signalled it's ready to go again. This happens by calling
2fff8a92 375 * blk_start_queue() to restart queue operations.
1da177e4 376 **/
165125e1 377void blk_stop_queue(struct request_queue *q)
1da177e4 378{
2fff8a92 379 lockdep_assert_held(q->queue_lock);
332ebbf7 380 WARN_ON_ONCE(q->mq_ops);
2fff8a92 381
136b5721 382 cancel_delayed_work(&q->delay_work);
75ad23bc 383 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
384}
385EXPORT_SYMBOL(blk_stop_queue);
386
387/**
388 * blk_sync_queue - cancel any pending callbacks on a queue
389 * @q: the queue
390 *
391 * Description:
392 * The block layer may perform asynchronous callback activity
393 * on a queue, such as calling the unplug function after a timeout.
394 * A block device may call blk_sync_queue to ensure that any
395 * such activity is cancelled, thus allowing it to release resources
59c51591 396 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
397 * that its ->make_request_fn will not re-add plugging prior to calling
398 * this function.
399 *
da527770 400 * This function does not cancel any asynchronous activity arising
da3dae54 401 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 402 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 403 *
1da177e4
LT
404 */
405void blk_sync_queue(struct request_queue *q)
406{
70ed28b9 407 del_timer_sync(&q->timeout);
4e9b6f20 408 cancel_work_sync(&q->timeout_work);
f04c1fe7
ML
409
410 if (q->mq_ops) {
411 struct blk_mq_hw_ctx *hctx;
412 int i;
413
aba7afc5 414 cancel_delayed_work_sync(&q->requeue_work);
21c6e939 415 queue_for_each_hw_ctx(q, hctx, i)
9f993737 416 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
417 } else {
418 cancel_delayed_work_sync(&q->delay_work);
419 }
1da177e4
LT
420}
421EXPORT_SYMBOL(blk_sync_queue);
422
c9254f2d
BVA
423/**
424 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
425 * @q: request queue pointer
426 *
427 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
428 * set and 1 if the flag was already set.
429 */
430int blk_set_preempt_only(struct request_queue *q)
431{
8814ce8a 432 return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
c9254f2d
BVA
433}
434EXPORT_SYMBOL_GPL(blk_set_preempt_only);
435
436void blk_clear_preempt_only(struct request_queue *q)
437{
8814ce8a 438 blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
3a0a5299 439 wake_up_all(&q->mq_freeze_wq);
c9254f2d
BVA
440}
441EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
442
c246e80d
BVA
443/**
444 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
445 * @q: The queue to run
446 *
447 * Description:
448 * Invoke request handling on a queue if there are any pending requests.
449 * May be used to restart request handling after a request has completed.
450 * This variant runs the queue whether or not the queue has been
451 * stopped. Must be called with the queue lock held and interrupts
452 * disabled. See also @blk_run_queue.
453 */
454inline void __blk_run_queue_uncond(struct request_queue *q)
455{
2fff8a92 456 lockdep_assert_held(q->queue_lock);
332ebbf7 457 WARN_ON_ONCE(q->mq_ops);
2fff8a92 458
c246e80d
BVA
459 if (unlikely(blk_queue_dead(q)))
460 return;
461
24faf6f6
BVA
462 /*
463 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
464 * the queue lock internally. As a result multiple threads may be
465 * running such a request function concurrently. Keep track of the
466 * number of active request_fn invocations such that blk_drain_queue()
467 * can wait until all these request_fn calls have finished.
468 */
469 q->request_fn_active++;
c246e80d 470 q->request_fn(q);
24faf6f6 471 q->request_fn_active--;
c246e80d 472}
a7928c15 473EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 474
1da177e4 475/**
80a4b58e 476 * __blk_run_queue - run a single device queue
1da177e4 477 * @q: The queue to run
80a4b58e
JA
478 *
479 * Description:
2fff8a92 480 * See @blk_run_queue.
1da177e4 481 */
24ecfbe2 482void __blk_run_queue(struct request_queue *q)
1da177e4 483{
2fff8a92 484 lockdep_assert_held(q->queue_lock);
332ebbf7 485 WARN_ON_ONCE(q->mq_ops);
2fff8a92 486
a538cd03
TH
487 if (unlikely(blk_queue_stopped(q)))
488 return;
489
c246e80d 490 __blk_run_queue_uncond(q);
75ad23bc
NP
491}
492EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 493
24ecfbe2
CH
494/**
495 * blk_run_queue_async - run a single device queue in workqueue context
496 * @q: The queue to run
497 *
498 * Description:
499 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
2fff8a92
BVA
500 * of us.
501 *
502 * Note:
503 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
504 * has canceled q->delay_work, callers must hold the queue lock to avoid
505 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
24ecfbe2
CH
506 */
507void blk_run_queue_async(struct request_queue *q)
508{
2fff8a92 509 lockdep_assert_held(q->queue_lock);
332ebbf7 510 WARN_ON_ONCE(q->mq_ops);
2fff8a92 511
70460571 512 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 513 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 514}
c21e6beb 515EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 516
75ad23bc
NP
517/**
518 * blk_run_queue - run a single device queue
519 * @q: The queue to run
80a4b58e
JA
520 *
521 * Description:
522 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 523 * May be used to restart queueing when a request has completed.
75ad23bc
NP
524 */
525void blk_run_queue(struct request_queue *q)
526{
527 unsigned long flags;
528
332ebbf7
BVA
529 WARN_ON_ONCE(q->mq_ops);
530
75ad23bc 531 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 532 __blk_run_queue(q);
1da177e4
LT
533 spin_unlock_irqrestore(q->queue_lock, flags);
534}
535EXPORT_SYMBOL(blk_run_queue);
536
165125e1 537void blk_put_queue(struct request_queue *q)
483f4afc
AV
538{
539 kobject_put(&q->kobj);
540}
d86e0e83 541EXPORT_SYMBOL(blk_put_queue);
483f4afc 542
e3c78ca5 543/**
807592a4 544 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 545 * @q: queue to drain
c9a929dd 546 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 547 *
c9a929dd
TH
548 * Drain requests from @q. If @drain_all is set, all requests are drained.
549 * If not, only ELVPRIV requests are drained. The caller is responsible
550 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 551 */
807592a4
BVA
552static void __blk_drain_queue(struct request_queue *q, bool drain_all)
553 __releases(q->queue_lock)
554 __acquires(q->queue_lock)
e3c78ca5 555{
458f27a9
AH
556 int i;
557
807592a4 558 lockdep_assert_held(q->queue_lock);
332ebbf7 559 WARN_ON_ONCE(q->mq_ops);
807592a4 560
e3c78ca5 561 while (true) {
481a7d64 562 bool drain = false;
e3c78ca5 563
b855b04a
TH
564 /*
565 * The caller might be trying to drain @q before its
566 * elevator is initialized.
567 */
568 if (q->elevator)
569 elv_drain_elevator(q);
570
5efd6113 571 blkcg_drain_queue(q);
e3c78ca5 572
4eabc941
TH
573 /*
574 * This function might be called on a queue which failed
b855b04a
TH
575 * driver init after queue creation or is not yet fully
576 * active yet. Some drivers (e.g. fd and loop) get unhappy
577 * in such cases. Kick queue iff dispatch queue has
578 * something on it and @q has request_fn set.
4eabc941 579 */
b855b04a 580 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 581 __blk_run_queue(q);
c9a929dd 582
8a5ecdd4 583 drain |= q->nr_rqs_elvpriv;
24faf6f6 584 drain |= q->request_fn_active;
481a7d64
TH
585
586 /*
587 * Unfortunately, requests are queued at and tracked from
588 * multiple places and there's no single counter which can
589 * be drained. Check all the queues and counters.
590 */
591 if (drain_all) {
e97c293c 592 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
593 drain |= !list_empty(&q->queue_head);
594 for (i = 0; i < 2; i++) {
8a5ecdd4 595 drain |= q->nr_rqs[i];
481a7d64 596 drain |= q->in_flight[i];
7c94e1c1
ML
597 if (fq)
598 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
599 }
600 }
e3c78ca5 601
481a7d64 602 if (!drain)
e3c78ca5 603 break;
807592a4
BVA
604
605 spin_unlock_irq(q->queue_lock);
606
e3c78ca5 607 msleep(10);
807592a4
BVA
608
609 spin_lock_irq(q->queue_lock);
e3c78ca5 610 }
458f27a9
AH
611
612 /*
613 * With queue marked dead, any woken up waiter will fail the
614 * allocation path, so the wakeup chaining is lost and we're
615 * left with hung waiters. We need to wake up those waiters.
616 */
617 if (q->request_fn) {
a051661c
TH
618 struct request_list *rl;
619
a051661c
TH
620 blk_queue_for_each_rl(rl, q)
621 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
622 wake_up_all(&rl->wait[i]);
458f27a9 623 }
e3c78ca5
TH
624}
625
454be724
ML
626void blk_drain_queue(struct request_queue *q)
627{
628 spin_lock_irq(q->queue_lock);
629 __blk_drain_queue(q, true);
630 spin_unlock_irq(q->queue_lock);
631}
632
d732580b
TH
633/**
634 * blk_queue_bypass_start - enter queue bypass mode
635 * @q: queue of interest
636 *
637 * In bypass mode, only the dispatch FIFO queue of @q is used. This
638 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 639 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
640 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
641 * inside queue or RCU read lock.
d732580b
TH
642 */
643void blk_queue_bypass_start(struct request_queue *q)
644{
332ebbf7
BVA
645 WARN_ON_ONCE(q->mq_ops);
646
d732580b 647 spin_lock_irq(q->queue_lock);
776687bc 648 q->bypass_depth++;
d732580b
TH
649 queue_flag_set(QUEUE_FLAG_BYPASS, q);
650 spin_unlock_irq(q->queue_lock);
651
776687bc
TH
652 /*
653 * Queues start drained. Skip actual draining till init is
654 * complete. This avoids lenghty delays during queue init which
655 * can happen many times during boot.
656 */
657 if (blk_queue_init_done(q)) {
807592a4
BVA
658 spin_lock_irq(q->queue_lock);
659 __blk_drain_queue(q, false);
660 spin_unlock_irq(q->queue_lock);
661
b82d4b19
TH
662 /* ensure blk_queue_bypass() is %true inside RCU read lock */
663 synchronize_rcu();
664 }
d732580b
TH
665}
666EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
667
668/**
669 * blk_queue_bypass_end - leave queue bypass mode
670 * @q: queue of interest
671 *
672 * Leave bypass mode and restore the normal queueing behavior.
332ebbf7
BVA
673 *
674 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
675 * this function is called for both blk-sq and blk-mq queues.
d732580b
TH
676 */
677void blk_queue_bypass_end(struct request_queue *q)
678{
679 spin_lock_irq(q->queue_lock);
680 if (!--q->bypass_depth)
681 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
682 WARN_ON_ONCE(q->bypass_depth < 0);
683 spin_unlock_irq(q->queue_lock);
684}
685EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
686
aed3ea94
JA
687void blk_set_queue_dying(struct request_queue *q)
688{
8814ce8a 689 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
aed3ea94 690
d3cfb2a0
ML
691 /*
692 * When queue DYING flag is set, we need to block new req
693 * entering queue, so we call blk_freeze_queue_start() to
694 * prevent I/O from crossing blk_queue_enter().
695 */
696 blk_freeze_queue_start(q);
697
aed3ea94
JA
698 if (q->mq_ops)
699 blk_mq_wake_waiters(q);
700 else {
701 struct request_list *rl;
702
bbfc3c5d 703 spin_lock_irq(q->queue_lock);
aed3ea94
JA
704 blk_queue_for_each_rl(rl, q) {
705 if (rl->rq_pool) {
34d9715a
ML
706 wake_up_all(&rl->wait[BLK_RW_SYNC]);
707 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
aed3ea94
JA
708 }
709 }
bbfc3c5d 710 spin_unlock_irq(q->queue_lock);
aed3ea94 711 }
055f6e18
ML
712
713 /* Make blk_queue_enter() reexamine the DYING flag. */
714 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
715}
716EXPORT_SYMBOL_GPL(blk_set_queue_dying);
717
4cf6324b
BVA
718/* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
719void blk_exit_queue(struct request_queue *q)
720{
721 /*
722 * Since the I/O scheduler exit code may access cgroup information,
723 * perform I/O scheduler exit before disassociating from the block
724 * cgroup controller.
725 */
726 if (q->elevator) {
727 ioc_clear_queue(q);
728 elevator_exit(q, q->elevator);
729 q->elevator = NULL;
730 }
731
732 /*
733 * Remove all references to @q from the block cgroup controller before
734 * restoring @q->queue_lock to avoid that restoring this pointer causes
735 * e.g. blkcg_print_blkgs() to crash.
736 */
737 blkcg_exit_queue(q);
738
739 /*
740 * Since the cgroup code may dereference the @q->backing_dev_info
741 * pointer, only decrease its reference count after having removed the
742 * association with the block cgroup controller.
743 */
744 bdi_put(q->backing_dev_info);
745}
746
c9a929dd
TH
747/**
748 * blk_cleanup_queue - shutdown a request queue
749 * @q: request queue to shutdown
750 *
c246e80d
BVA
751 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
752 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 753 */
6728cb0e 754void blk_cleanup_queue(struct request_queue *q)
483f4afc 755{
c9a929dd 756 spinlock_t *lock = q->queue_lock;
e3335de9 757
3f3299d5 758 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 759 mutex_lock(&q->sysfs_lock);
aed3ea94 760 blk_set_queue_dying(q);
c9a929dd 761 spin_lock_irq(lock);
6ecf23af 762
80fd9979 763 /*
3f3299d5 764 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
765 * that, unlike blk_queue_bypass_start(), we aren't performing
766 * synchronize_rcu() after entering bypass mode to avoid the delay
767 * as some drivers create and destroy a lot of queues while
768 * probing. This is still safe because blk_release_queue() will be
769 * called only after the queue refcnt drops to zero and nothing,
770 * RCU or not, would be traversing the queue by then.
771 */
6ecf23af
TH
772 q->bypass_depth++;
773 queue_flag_set(QUEUE_FLAG_BYPASS, q);
774
c9a929dd
TH
775 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
776 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 777 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
778 spin_unlock_irq(lock);
779 mutex_unlock(&q->sysfs_lock);
780
c246e80d
BVA
781 /*
782 * Drain all requests queued before DYING marking. Set DEAD flag to
783 * prevent that q->request_fn() gets invoked after draining finished.
784 */
3ef28e83 785 blk_freeze_queue(q);
9c1051aa 786 spin_lock_irq(lock);
c246e80d 787 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 788 spin_unlock_irq(lock);
c9a929dd 789
c2856ae2
ML
790 /*
791 * make sure all in-progress dispatch are completed because
792 * blk_freeze_queue() can only complete all requests, and
793 * dispatch may still be in-progress since we dispatch requests
1311326c
ML
794 * from more than one contexts.
795 *
796 * No need to quiesce queue if it isn't initialized yet since
797 * blk_freeze_queue() should be enough for cases of passthrough
798 * request.
c2856ae2 799 */
1311326c 800 if (q->mq_ops && blk_queue_init_done(q))
c2856ae2
ML
801 blk_mq_quiesce_queue(q);
802
5a48fc14
DW
803 /* for synchronous bio-based driver finish in-flight integrity i/o */
804 blk_flush_integrity();
805
c9a929dd 806 /* @q won't process any more request, flush async actions */
dc3b17cc 807 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
808 blk_sync_queue(q);
809
a063057d
BVA
810 /*
811 * I/O scheduler exit is only safe after the sysfs scheduler attribute
812 * has been removed.
813 */
814 WARN_ON_ONCE(q->kobj.state_in_sysfs);
815
4cf6324b 816 blk_exit_queue(q);
a063057d 817
45a9c9d9
BVA
818 if (q->mq_ops)
819 blk_mq_free_queue(q);
3ef28e83 820 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 821
5e5cfac0
AH
822 spin_lock_irq(lock);
823 if (q->queue_lock != &q->__queue_lock)
824 q->queue_lock = &q->__queue_lock;
825 spin_unlock_irq(lock);
826
c9a929dd 827 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
828 blk_put_queue(q);
829}
1da177e4
LT
830EXPORT_SYMBOL(blk_cleanup_queue);
831
271508db 832/* Allocate memory local to the request queue */
6d247d7f 833static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 834{
6d247d7f
CH
835 struct request_queue *q = data;
836
837 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
838}
839
6d247d7f 840static void free_request_simple(void *element, void *data)
271508db
DR
841{
842 kmem_cache_free(request_cachep, element);
843}
844
6d247d7f
CH
845static void *alloc_request_size(gfp_t gfp_mask, void *data)
846{
847 struct request_queue *q = data;
848 struct request *rq;
849
850 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
851 q->node);
852 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
853 kfree(rq);
854 rq = NULL;
855 }
856 return rq;
857}
858
859static void free_request_size(void *element, void *data)
860{
861 struct request_queue *q = data;
862
863 if (q->exit_rq_fn)
864 q->exit_rq_fn(q, element);
865 kfree(element);
866}
867
5b788ce3
TH
868int blk_init_rl(struct request_list *rl, struct request_queue *q,
869 gfp_t gfp_mask)
1da177e4 870{
85acb3ba 871 if (unlikely(rl->rq_pool) || q->mq_ops)
1abec4fd
MS
872 return 0;
873
5b788ce3 874 rl->q = q;
1faa16d2
JA
875 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
876 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
877 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
878 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 879
6d247d7f
CH
880 if (q->cmd_size) {
881 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
882 alloc_request_size, free_request_size,
883 q, gfp_mask, q->node);
884 } else {
885 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
886 alloc_request_simple, free_request_simple,
887 q, gfp_mask, q->node);
888 }
1da177e4
LT
889 if (!rl->rq_pool)
890 return -ENOMEM;
891
b425e504
BVA
892 if (rl != &q->root_rl)
893 WARN_ON_ONCE(!blk_get_queue(q));
894
1da177e4
LT
895 return 0;
896}
897
b425e504 898void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 899{
b425e504 900 if (rl->rq_pool) {
5b788ce3 901 mempool_destroy(rl->rq_pool);
b425e504
BVA
902 if (rl != &q->root_rl)
903 blk_put_queue(q);
904 }
5b788ce3
TH
905}
906
165125e1 907struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 908{
5ee0524b 909 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
1946089a
CL
910}
911EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 912
3a0a5299
BVA
913/**
914 * blk_queue_enter() - try to increase q->q_usage_counter
915 * @q: request queue pointer
916 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
917 */
9a95e4ef 918int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 919{
3a0a5299
BVA
920 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
921
3ef28e83 922 while (true) {
3a0a5299 923 bool success = false;
3ef28e83 924
818e0fa2 925 rcu_read_lock();
3a0a5299
BVA
926 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
927 /*
928 * The code that sets the PREEMPT_ONLY flag is
929 * responsible for ensuring that that flag is globally
930 * visible before the queue is unfrozen.
931 */
932 if (preempt || !blk_queue_preempt_only(q)) {
933 success = true;
934 } else {
935 percpu_ref_put(&q->q_usage_counter);
936 }
937 }
818e0fa2 938 rcu_read_unlock();
3a0a5299
BVA
939
940 if (success)
3ef28e83
DW
941 return 0;
942
3a0a5299 943 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
944 return -EBUSY;
945
5ed61d3f 946 /*
1671d522 947 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 948 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
949 * .q_usage_counter and reading .mq_freeze_depth or
950 * queue dying flag, otherwise the following wait may
951 * never return if the two reads are reordered.
5ed61d3f
ML
952 */
953 smp_rmb();
954
1dc3039b
AJ
955 wait_event(q->mq_freeze_wq,
956 (atomic_read(&q->mq_freeze_depth) == 0 &&
957 (preempt || !blk_queue_preempt_only(q))) ||
958 blk_queue_dying(q));
3ef28e83
DW
959 if (blk_queue_dying(q))
960 return -ENODEV;
3ef28e83
DW
961 }
962}
963
964void blk_queue_exit(struct request_queue *q)
965{
966 percpu_ref_put(&q->q_usage_counter);
967}
968
969static void blk_queue_usage_counter_release(struct percpu_ref *ref)
970{
971 struct request_queue *q =
972 container_of(ref, struct request_queue, q_usage_counter);
973
974 wake_up_all(&q->mq_freeze_wq);
975}
976
bca237a5 977static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 978{
bca237a5 979 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
980
981 kblockd_schedule_work(&q->timeout_work);
982}
983
498f6650
BVA
984/**
985 * blk_alloc_queue_node - allocate a request queue
986 * @gfp_mask: memory allocation flags
987 * @node_id: NUMA node to allocate memory from
988 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
989 * serialize calls to the legacy .request_fn() callback. Ignored for
990 * blk-mq request queues.
991 *
992 * Note: pass the queue lock as the third argument to this function instead of
993 * setting the queue lock pointer explicitly to avoid triggering a sporadic
994 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
995 * the queue lock pointer must be set before blkcg_init_queue() is called.
996 */
5ee0524b
BVA
997struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
998 spinlock_t *lock)
1946089a 999{
165125e1 1000 struct request_queue *q;
338aa96d 1001 int ret;
1946089a 1002
8324aa91 1003 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 1004 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
1005 if (!q)
1006 return NULL;
1007
cbf62af3
CH
1008 INIT_LIST_HEAD(&q->queue_head);
1009 q->last_merge = NULL;
1010 q->end_sector = 0;
1011 q->boundary_rq = NULL;
1012
00380a40 1013 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 1014 if (q->id < 0)
3d2936f4 1015 goto fail_q;
a73f730d 1016
338aa96d
KO
1017 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1018 if (ret)
54efd50b
KO
1019 goto fail_id;
1020
d03f6cdc
JK
1021 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1022 if (!q->backing_dev_info)
1023 goto fail_split;
1024
a83b576c
JA
1025 q->stats = blk_alloc_queue_stats();
1026 if (!q->stats)
1027 goto fail_stats;
1028
dc3b17cc 1029 q->backing_dev_info->ra_pages =
09cbfeaf 1030 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
1031 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1032 q->backing_dev_info->name = "block";
5151412d 1033 q->node = node_id;
0989a025 1034
bca237a5
KC
1035 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1036 laptop_mode_timer_fn, 0);
1037 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
4e9b6f20 1038 INIT_WORK(&q->timeout_work, NULL);
242f9dcb 1039 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 1040 INIT_LIST_HEAD(&q->icq_list);
4eef3049 1041#ifdef CONFIG_BLK_CGROUP
e8989fae 1042 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 1043#endif
3cca6dc1 1044 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 1045
8324aa91 1046 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 1047
5acb3cc2
WL
1048#ifdef CONFIG_BLK_DEV_IO_TRACE
1049 mutex_init(&q->blk_trace_mutex);
1050#endif
483f4afc 1051 mutex_init(&q->sysfs_lock);
e7e72bf6 1052 spin_lock_init(&q->__queue_lock);
483f4afc 1053
498f6650
BVA
1054 if (!q->mq_ops)
1055 q->queue_lock = lock ? : &q->__queue_lock;
c94a96ac 1056
b82d4b19
TH
1057 /*
1058 * A queue starts its life with bypass turned on to avoid
1059 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
1060 * init. The initial bypass will be finished when the queue is
1061 * registered by blk_register_queue().
b82d4b19
TH
1062 */
1063 q->bypass_depth = 1;
f78bac2c 1064 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
b82d4b19 1065
320ae51f
JA
1066 init_waitqueue_head(&q->mq_freeze_wq);
1067
3ef28e83
DW
1068 /*
1069 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1070 * See blk_register_queue() for details.
1071 */
1072 if (percpu_ref_init(&q->q_usage_counter,
1073 blk_queue_usage_counter_release,
1074 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 1075 goto fail_bdi;
f51b802c 1076
3ef28e83
DW
1077 if (blkcg_init_queue(q))
1078 goto fail_ref;
1079
1da177e4 1080 return q;
a73f730d 1081
3ef28e83
DW
1082fail_ref:
1083 percpu_ref_exit(&q->q_usage_counter);
fff4996b 1084fail_bdi:
a83b576c
JA
1085 blk_free_queue_stats(q->stats);
1086fail_stats:
d03f6cdc 1087 bdi_put(q->backing_dev_info);
54efd50b 1088fail_split:
338aa96d 1089 bioset_exit(&q->bio_split);
a73f730d
TH
1090fail_id:
1091 ida_simple_remove(&blk_queue_ida, q->id);
1092fail_q:
1093 kmem_cache_free(blk_requestq_cachep, q);
1094 return NULL;
1da177e4 1095}
1946089a 1096EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1097
1098/**
1099 * blk_init_queue - prepare a request queue for use with a block device
1100 * @rfn: The function to be called to process requests that have been
1101 * placed on the queue.
1102 * @lock: Request queue spin lock
1103 *
1104 * Description:
1105 * If a block device wishes to use the standard request handling procedures,
1106 * which sorts requests and coalesces adjacent requests, then it must
1107 * call blk_init_queue(). The function @rfn will be called when there
1108 * are requests on the queue that need to be processed. If the device
1109 * supports plugging, then @rfn may not be called immediately when requests
1110 * are available on the queue, but may be called at some time later instead.
1111 * Plugged queues are generally unplugged when a buffer belonging to one
1112 * of the requests on the queue is needed, or due to memory pressure.
1113 *
1114 * @rfn is not required, or even expected, to remove all requests off the
1115 * queue, but only as many as it can handle at a time. If it does leave
1116 * requests on the queue, it is responsible for arranging that the requests
1117 * get dealt with eventually.
1118 *
1119 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1120 * request queue; this lock will be taken also from interrupt context, so irq
1121 * disabling is needed for it.
1da177e4 1122 *
710027a4 1123 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
1124 * it didn't succeed.
1125 *
1126 * Note:
1127 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1128 * when the block device is deactivated (such as at module unload).
1129 **/
1946089a 1130
165125e1 1131struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1132{
c304a51b 1133 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
1134}
1135EXPORT_SYMBOL(blk_init_queue);
1136
165125e1 1137struct request_queue *
1946089a
CL
1138blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1139{
5ea708d1 1140 struct request_queue *q;
1da177e4 1141
498f6650 1142 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
5ea708d1 1143 if (!q)
c86d1b8a
MS
1144 return NULL;
1145
5ea708d1 1146 q->request_fn = rfn;
5ea708d1
CH
1147 if (blk_init_allocated_queue(q) < 0) {
1148 blk_cleanup_queue(q);
1149 return NULL;
1150 }
18741986 1151
7982e90c 1152 return q;
01effb0d
MS
1153}
1154EXPORT_SYMBOL(blk_init_queue_node);
1155
dece1635 1156static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 1157
1da177e4 1158
5ea708d1
CH
1159int blk_init_allocated_queue(struct request_queue *q)
1160{
332ebbf7
BVA
1161 WARN_ON_ONCE(q->mq_ops);
1162
6d247d7f 1163 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 1164 if (!q->fq)
5ea708d1 1165 return -ENOMEM;
7982e90c 1166
6d247d7f
CH
1167 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1168 goto out_free_flush_queue;
7982e90c 1169
a051661c 1170 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 1171 goto out_exit_flush_rq;
1da177e4 1172
287922eb 1173 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 1174 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 1175
f3b144aa
JA
1176 /*
1177 * This also sets hw/phys segments, boundary and size
1178 */
c20e8de2 1179 blk_queue_make_request(q, blk_queue_bio);
1da177e4 1180
44ec9542
AS
1181 q->sg_reserved_size = INT_MAX;
1182
acddf3b3 1183 if (elevator_init(q))
6d247d7f 1184 goto out_exit_flush_rq;
5ea708d1 1185 return 0;
eb1c160b 1186
6d247d7f
CH
1187out_exit_flush_rq:
1188 if (q->exit_rq_fn)
1189 q->exit_rq_fn(q, q->fq->flush_rq);
1190out_free_flush_queue:
ba483388 1191 blk_free_flush_queue(q->fq);
54648cf1 1192 q->fq = NULL;
5ea708d1 1193 return -ENOMEM;
1da177e4 1194}
5151412d 1195EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 1196
09ac46c4 1197bool blk_get_queue(struct request_queue *q)
1da177e4 1198{
3f3299d5 1199 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
1200 __blk_get_queue(q);
1201 return true;
1da177e4
LT
1202 }
1203
09ac46c4 1204 return false;
1da177e4 1205}
d86e0e83 1206EXPORT_SYMBOL(blk_get_queue);
1da177e4 1207
5b788ce3 1208static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 1209{
e8064021 1210 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 1211 elv_put_request(rl->q, rq);
f1f8cc94 1212 if (rq->elv.icq)
11a3122f 1213 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
1214 }
1215
5b788ce3 1216 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1217}
1218
1da177e4
LT
1219/*
1220 * ioc_batching returns true if the ioc is a valid batching request and
1221 * should be given priority access to a request.
1222 */
165125e1 1223static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1224{
1225 if (!ioc)
1226 return 0;
1227
1228 /*
1229 * Make sure the process is able to allocate at least 1 request
1230 * even if the batch times out, otherwise we could theoretically
1231 * lose wakeups.
1232 */
1233 return ioc->nr_batch_requests == q->nr_batching ||
1234 (ioc->nr_batch_requests > 0
1235 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1236}
1237
1238/*
1239 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1240 * will cause the process to be a "batcher" on all queues in the system. This
1241 * is the behaviour we want though - once it gets a wakeup it should be given
1242 * a nice run.
1243 */
165125e1 1244static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1245{
1246 if (!ioc || ioc_batching(q, ioc))
1247 return;
1248
1249 ioc->nr_batch_requests = q->nr_batching;
1250 ioc->last_waited = jiffies;
1251}
1252
5b788ce3 1253static void __freed_request(struct request_list *rl, int sync)
1da177e4 1254{
5b788ce3 1255 struct request_queue *q = rl->q;
1da177e4 1256
d40f75a0
TH
1257 if (rl->count[sync] < queue_congestion_off_threshold(q))
1258 blk_clear_congested(rl, sync);
1da177e4 1259
1faa16d2
JA
1260 if (rl->count[sync] + 1 <= q->nr_requests) {
1261 if (waitqueue_active(&rl->wait[sync]))
1262 wake_up(&rl->wait[sync]);
1da177e4 1263
5b788ce3 1264 blk_clear_rl_full(rl, sync);
1da177e4
LT
1265 }
1266}
1267
1268/*
1269 * A request has just been released. Account for it, update the full and
1270 * congestion status, wake up any waiters. Called under q->queue_lock.
1271 */
e8064021
CH
1272static void freed_request(struct request_list *rl, bool sync,
1273 req_flags_t rq_flags)
1da177e4 1274{
5b788ce3 1275 struct request_queue *q = rl->q;
1da177e4 1276
8a5ecdd4 1277 q->nr_rqs[sync]--;
1faa16d2 1278 rl->count[sync]--;
e8064021 1279 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1280 q->nr_rqs_elvpriv--;
1da177e4 1281
5b788ce3 1282 __freed_request(rl, sync);
1da177e4 1283
1faa16d2 1284 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1285 __freed_request(rl, sync ^ 1);
1da177e4
LT
1286}
1287
e3a2b3f9
JA
1288int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1289{
1290 struct request_list *rl;
d40f75a0 1291 int on_thresh, off_thresh;
e3a2b3f9 1292
332ebbf7
BVA
1293 WARN_ON_ONCE(q->mq_ops);
1294
e3a2b3f9
JA
1295 spin_lock_irq(q->queue_lock);
1296 q->nr_requests = nr;
1297 blk_queue_congestion_threshold(q);
d40f75a0
TH
1298 on_thresh = queue_congestion_on_threshold(q);
1299 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1300
d40f75a0
TH
1301 blk_queue_for_each_rl(rl, q) {
1302 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1303 blk_set_congested(rl, BLK_RW_SYNC);
1304 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1305 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1306
d40f75a0
TH
1307 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1308 blk_set_congested(rl, BLK_RW_ASYNC);
1309 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1310 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1311
e3a2b3f9
JA
1312 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1313 blk_set_rl_full(rl, BLK_RW_SYNC);
1314 } else {
1315 blk_clear_rl_full(rl, BLK_RW_SYNC);
1316 wake_up(&rl->wait[BLK_RW_SYNC]);
1317 }
1318
1319 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1320 blk_set_rl_full(rl, BLK_RW_ASYNC);
1321 } else {
1322 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1323 wake_up(&rl->wait[BLK_RW_ASYNC]);
1324 }
1325 }
1326
1327 spin_unlock_irq(q->queue_lock);
1328 return 0;
1329}
1330
da8303c6 1331/**
a06e05e6 1332 * __get_request - get a free request
5b788ce3 1333 * @rl: request list to allocate from
ef295ecf 1334 * @op: operation and flags
da8303c6 1335 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1336 * @flags: BLQ_MQ_REQ_* flags
4accf5fc 1337 * @gfp_mask: allocator flags
da8303c6
TH
1338 *
1339 * Get a free request from @q. This function may fail under memory
1340 * pressure or if @q is dead.
1341 *
da3dae54 1342 * Must be called with @q->queue_lock held and,
a492f075
JL
1343 * Returns ERR_PTR on failure, with @q->queue_lock held.
1344 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1345 */
ef295ecf 1346static struct request *__get_request(struct request_list *rl, unsigned int op,
4accf5fc 1347 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1da177e4 1348{
5b788ce3 1349 struct request_queue *q = rl->q;
b679281a 1350 struct request *rq;
7f4b35d1
TH
1351 struct elevator_type *et = q->elevator->type;
1352 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1353 struct io_cq *icq = NULL;
ef295ecf 1354 const bool is_sync = op_is_sync(op);
75eb6c37 1355 int may_queue;
e8064021 1356 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1357
2fff8a92
BVA
1358 lockdep_assert_held(q->queue_lock);
1359
3f3299d5 1360 if (unlikely(blk_queue_dying(q)))
a492f075 1361 return ERR_PTR(-ENODEV);
da8303c6 1362
ef295ecf 1363 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1364 if (may_queue == ELV_MQUEUE_NO)
1365 goto rq_starved;
1366
1faa16d2
JA
1367 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1368 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1369 /*
1370 * The queue will fill after this allocation, so set
1371 * it as full, and mark this process as "batching".
1372 * This process will be allowed to complete a batch of
1373 * requests, others will be blocked.
1374 */
5b788ce3 1375 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1376 ioc_set_batching(q, ioc);
5b788ce3 1377 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1378 } else {
1379 if (may_queue != ELV_MQUEUE_MUST
1380 && !ioc_batching(q, ioc)) {
1381 /*
1382 * The queue is full and the allocating
1383 * process is not a "batcher", and not
1384 * exempted by the IO scheduler
1385 */
a492f075 1386 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1387 }
1388 }
1da177e4 1389 }
d40f75a0 1390 blk_set_congested(rl, is_sync);
1da177e4
LT
1391 }
1392
082cf69e
JA
1393 /*
1394 * Only allow batching queuers to allocate up to 50% over the defined
1395 * limit of requests, otherwise we could have thousands of requests
1396 * allocated with any setting of ->nr_requests
1397 */
1faa16d2 1398 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1399 return ERR_PTR(-ENOMEM);
fd782a4a 1400
8a5ecdd4 1401 q->nr_rqs[is_sync]++;
1faa16d2
JA
1402 rl->count[is_sync]++;
1403 rl->starved[is_sync] = 0;
cb98fc8b 1404
f1f8cc94
TH
1405 /*
1406 * Decide whether the new request will be managed by elevator. If
e8064021 1407 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1408 * prevent the current elevator from being destroyed until the new
1409 * request is freed. This guarantees icq's won't be destroyed and
1410 * makes creating new ones safe.
1411 *
e6f7f93d
CH
1412 * Flush requests do not use the elevator so skip initialization.
1413 * This allows a request to share the flush and elevator data.
1414 *
f1f8cc94
TH
1415 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1416 * it will be created after releasing queue_lock.
1417 */
e6f7f93d 1418 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1419 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1420 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1421 if (et->icq_cache && ioc)
1422 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1423 }
cb98fc8b 1424
f253b86b 1425 if (blk_queue_io_stat(q))
e8064021 1426 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1427 spin_unlock_irq(q->queue_lock);
1428
29e2b09a 1429 /* allocate and init request */
5b788ce3 1430 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1431 if (!rq)
b679281a 1432 goto fail_alloc;
1da177e4 1433
29e2b09a 1434 blk_rq_init(q, rq);
a051661c 1435 blk_rq_set_rl(rq, rl);
ef295ecf 1436 rq->cmd_flags = op;
e8064021 1437 rq->rq_flags = rq_flags;
1b6d65a0
BVA
1438 if (flags & BLK_MQ_REQ_PREEMPT)
1439 rq->rq_flags |= RQF_PREEMPT;
29e2b09a 1440
aaf7c680 1441 /* init elvpriv */
e8064021 1442 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1443 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1444 if (ioc)
1445 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1446 if (!icq)
1447 goto fail_elvpriv;
29e2b09a 1448 }
aaf7c680
TH
1449
1450 rq->elv.icq = icq;
1451 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1452 goto fail_elvpriv;
1453
1454 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1455 if (icq)
1456 get_io_context(icq->ioc);
1457 }
aaf7c680 1458out:
88ee5ef1
JA
1459 /*
1460 * ioc may be NULL here, and ioc_batching will be false. That's
1461 * OK, if the queue is under the request limit then requests need
1462 * not count toward the nr_batch_requests limit. There will always
1463 * be some limit enforced by BLK_BATCH_TIME.
1464 */
1da177e4
LT
1465 if (ioc_batching(q, ioc))
1466 ioc->nr_batch_requests--;
6728cb0e 1467
e6a40b09 1468 trace_block_getrq(q, bio, op);
1da177e4 1469 return rq;
b679281a 1470
aaf7c680
TH
1471fail_elvpriv:
1472 /*
1473 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1474 * and may fail indefinitely under memory pressure and thus
1475 * shouldn't stall IO. Treat this request as !elvpriv. This will
1476 * disturb iosched and blkcg but weird is bettern than dead.
1477 */
7b2b10e0 1478 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1479 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1480
e8064021 1481 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1482 rq->elv.icq = NULL;
1483
1484 spin_lock_irq(q->queue_lock);
8a5ecdd4 1485 q->nr_rqs_elvpriv--;
aaf7c680
TH
1486 spin_unlock_irq(q->queue_lock);
1487 goto out;
1488
b679281a
TH
1489fail_alloc:
1490 /*
1491 * Allocation failed presumably due to memory. Undo anything we
1492 * might have messed up.
1493 *
1494 * Allocating task should really be put onto the front of the wait
1495 * queue, but this is pretty rare.
1496 */
1497 spin_lock_irq(q->queue_lock);
e8064021 1498 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1499
1500 /*
1501 * in the very unlikely event that allocation failed and no
1502 * requests for this direction was pending, mark us starved so that
1503 * freeing of a request in the other direction will notice
1504 * us. another possible fix would be to split the rq mempool into
1505 * READ and WRITE
1506 */
1507rq_starved:
1508 if (unlikely(rl->count[is_sync] == 0))
1509 rl->starved[is_sync] = 1;
a492f075 1510 return ERR_PTR(-ENOMEM);
1da177e4
LT
1511}
1512
da8303c6 1513/**
a06e05e6 1514 * get_request - get a free request
da8303c6 1515 * @q: request_queue to allocate request from
ef295ecf 1516 * @op: operation and flags
da8303c6 1517 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1518 * @flags: BLK_MQ_REQ_* flags.
4accf5fc 1519 * @gfp: allocator flags
da8303c6 1520 *
a9a14d36 1521 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags,
d0164adc 1522 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1523 *
da3dae54 1524 * Must be called with @q->queue_lock held and,
a492f075
JL
1525 * Returns ERR_PTR on failure, with @q->queue_lock held.
1526 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1527 */
ef295ecf 1528static struct request *get_request(struct request_queue *q, unsigned int op,
4accf5fc 1529 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1da177e4 1530{
ef295ecf 1531 const bool is_sync = op_is_sync(op);
a06e05e6 1532 DEFINE_WAIT(wait);
a051661c 1533 struct request_list *rl;
1da177e4 1534 struct request *rq;
a051661c 1535
2fff8a92 1536 lockdep_assert_held(q->queue_lock);
332ebbf7 1537 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1538
a051661c 1539 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1540retry:
4accf5fc 1541 rq = __get_request(rl, op, bio, flags, gfp);
a492f075 1542 if (!IS_ERR(rq))
a06e05e6 1543 return rq;
1da177e4 1544
03a07c92
GR
1545 if (op & REQ_NOWAIT) {
1546 blk_put_rl(rl);
1547 return ERR_PTR(-EAGAIN);
1548 }
1549
6a15674d 1550 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1551 blk_put_rl(rl);
a492f075 1552 return rq;
a051661c 1553 }
1da177e4 1554
a06e05e6
TH
1555 /* wait on @rl and retry */
1556 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1557 TASK_UNINTERRUPTIBLE);
1da177e4 1558
e6a40b09 1559 trace_block_sleeprq(q, bio, op);
1da177e4 1560
a06e05e6
TH
1561 spin_unlock_irq(q->queue_lock);
1562 io_schedule();
d6344532 1563
a06e05e6
TH
1564 /*
1565 * After sleeping, we become a "batching" process and will be able
1566 * to allocate at least one request, and up to a big batch of them
1567 * for a small period time. See ioc_batching, ioc_set_batching
1568 */
a06e05e6 1569 ioc_set_batching(q, current->io_context);
05caf8db 1570
a06e05e6
TH
1571 spin_lock_irq(q->queue_lock);
1572 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1573
a06e05e6 1574 goto retry;
1da177e4
LT
1575}
1576
6a15674d 1577/* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
cd6ce148 1578static struct request *blk_old_get_request(struct request_queue *q,
9a95e4ef 1579 unsigned int op, blk_mq_req_flags_t flags)
1da177e4
LT
1580{
1581 struct request *rq;
c3036021 1582 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
055f6e18 1583 int ret = 0;
1da177e4 1584
332ebbf7
BVA
1585 WARN_ON_ONCE(q->mq_ops);
1586
7f4b35d1
TH
1587 /* create ioc upfront */
1588 create_io_context(gfp_mask, q->node);
1589
3a0a5299 1590 ret = blk_queue_enter(q, flags);
055f6e18
ML
1591 if (ret)
1592 return ERR_PTR(ret);
d6344532 1593 spin_lock_irq(q->queue_lock);
4accf5fc 1594 rq = get_request(q, op, NULL, flags, gfp_mask);
0c4de0f3 1595 if (IS_ERR(rq)) {
da8303c6 1596 spin_unlock_irq(q->queue_lock);
055f6e18 1597 blk_queue_exit(q);
0c4de0f3
CH
1598 return rq;
1599 }
1da177e4 1600
0c4de0f3
CH
1601 /* q->queue_lock is unlocked at this point */
1602 rq->__data_len = 0;
1603 rq->__sector = (sector_t) -1;
1604 rq->bio = rq->biotail = NULL;
1da177e4
LT
1605 return rq;
1606}
320ae51f 1607
6a15674d 1608/**
ff005a06 1609 * blk_get_request - allocate a request
6a15674d
BVA
1610 * @q: request queue to allocate a request for
1611 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1612 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1613 */
ff005a06
CH
1614struct request *blk_get_request(struct request_queue *q, unsigned int op,
1615 blk_mq_req_flags_t flags)
320ae51f 1616{
d280bab3
BVA
1617 struct request *req;
1618
6a15674d 1619 WARN_ON_ONCE(op & REQ_NOWAIT);
1b6d65a0 1620 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
6a15674d 1621
d280bab3 1622 if (q->mq_ops) {
6a15674d 1623 req = blk_mq_alloc_request(q, op, flags);
d280bab3
BVA
1624 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1625 q->mq_ops->initialize_rq_fn(req);
1626 } else {
6a15674d 1627 req = blk_old_get_request(q, op, flags);
d280bab3
BVA
1628 if (!IS_ERR(req) && q->initialize_rq_fn)
1629 q->initialize_rq_fn(req);
1630 }
1631
1632 return req;
320ae51f 1633}
1da177e4
LT
1634EXPORT_SYMBOL(blk_get_request);
1635
1636/**
1637 * blk_requeue_request - put a request back on queue
1638 * @q: request queue where request should be inserted
1639 * @rq: request to be inserted
1640 *
1641 * Description:
1642 * Drivers often keep queueing requests until the hardware cannot accept
1643 * more, when that condition happens we need to put the request back
1644 * on the queue. Must be called with queue lock held.
1645 */
165125e1 1646void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1647{
2fff8a92 1648 lockdep_assert_held(q->queue_lock);
332ebbf7 1649 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1650
242f9dcb
JA
1651 blk_delete_timer(rq);
1652 blk_clear_rq_complete(rq);
5f3ea37c 1653 trace_block_rq_requeue(q, rq);
a7905043 1654 rq_qos_requeue(q, rq);
2056a782 1655
e8064021 1656 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1657 blk_queue_end_tag(q, rq);
1658
ba396a6c
JB
1659 BUG_ON(blk_queued_rq(rq));
1660
1da177e4
LT
1661 elv_requeue_request(q, rq);
1662}
1da177e4
LT
1663EXPORT_SYMBOL(blk_requeue_request);
1664
73c10101
JA
1665static void add_acct_request(struct request_queue *q, struct request *rq,
1666 int where)
1667{
320ae51f 1668 blk_account_io_start(rq, true);
7eaceacc 1669 __elv_add_request(q, rq, where);
73c10101
JA
1670}
1671
d62e26b3 1672static void part_round_stats_single(struct request_queue *q, int cpu,
b8d62b3a
JA
1673 struct hd_struct *part, unsigned long now,
1674 unsigned int inflight)
074a7aca 1675{
b8d62b3a 1676 if (inflight) {
074a7aca 1677 __part_stat_add(cpu, part, time_in_queue,
b8d62b3a 1678 inflight * (now - part->stamp));
074a7aca
TH
1679 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1680 }
1681 part->stamp = now;
1682}
1683
1684/**
496aa8a9 1685 * part_round_stats() - Round off the performance stats on a struct disk_stats.
d62e26b3 1686 * @q: target block queue
496aa8a9
RD
1687 * @cpu: cpu number for stats access
1688 * @part: target partition
1da177e4
LT
1689 *
1690 * The average IO queue length and utilisation statistics are maintained
1691 * by observing the current state of the queue length and the amount of
1692 * time it has been in this state for.
1693 *
1694 * Normally, that accounting is done on IO completion, but that can result
1695 * in more than a second's worth of IO being accounted for within any one
1696 * second, leading to >100% utilisation. To deal with that, we call this
1697 * function to do a round-off before returning the results when reading
1698 * /proc/diskstats. This accounts immediately for all queue usage up to
1699 * the current jiffies and restarts the counters again.
1700 */
d62e26b3 1701void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
6f2576af 1702{
b8d62b3a 1703 struct hd_struct *part2 = NULL;
6f2576af 1704 unsigned long now = jiffies;
b8d62b3a
JA
1705 unsigned int inflight[2];
1706 int stats = 0;
1707
1708 if (part->stamp != now)
1709 stats |= 1;
1710
1711 if (part->partno) {
1712 part2 = &part_to_disk(part)->part0;
1713 if (part2->stamp != now)
1714 stats |= 2;
1715 }
1716
1717 if (!stats)
1718 return;
1719
1720 part_in_flight(q, part, inflight);
6f2576af 1721
b8d62b3a
JA
1722 if (stats & 2)
1723 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1724 if (stats & 1)
1725 part_round_stats_single(q, cpu, part, now, inflight[0]);
6f2576af 1726}
074a7aca 1727EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1728
47fafbc7 1729#ifdef CONFIG_PM
c8158819
LM
1730static void blk_pm_put_request(struct request *rq)
1731{
e8064021 1732 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1733 pm_runtime_mark_last_busy(rq->q->dev);
1734}
1735#else
1736static inline void blk_pm_put_request(struct request *rq) {}
1737#endif
1738
165125e1 1739void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1740{
e8064021
CH
1741 req_flags_t rq_flags = req->rq_flags;
1742
1da177e4
LT
1743 if (unlikely(!q))
1744 return;
1da177e4 1745
6f5ba581
CH
1746 if (q->mq_ops) {
1747 blk_mq_free_request(req);
1748 return;
1749 }
1750
2fff8a92
BVA
1751 lockdep_assert_held(q->queue_lock);
1752
6cc77e9c 1753 blk_req_zone_write_unlock(req);
c8158819
LM
1754 blk_pm_put_request(req);
1755
8922e16c
TH
1756 elv_completed_request(q, req);
1757
1cd96c24
BH
1758 /* this is a bio leak */
1759 WARN_ON(req->bio != NULL);
1760
a7905043 1761 rq_qos_done(q, req);
87760e5e 1762
1da177e4
LT
1763 /*
1764 * Request may not have originated from ll_rw_blk. if not,
1765 * it didn't come out of our reserved rq pools
1766 */
e8064021 1767 if (rq_flags & RQF_ALLOCED) {
a051661c 1768 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1769 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1770
1da177e4 1771 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1772 BUG_ON(ELV_ON_HASH(req));
1da177e4 1773
a051661c 1774 blk_free_request(rl, req);
e8064021 1775 freed_request(rl, sync, rq_flags);
a051661c 1776 blk_put_rl(rl);
055f6e18 1777 blk_queue_exit(q);
1da177e4
LT
1778 }
1779}
6e39b69e
MC
1780EXPORT_SYMBOL_GPL(__blk_put_request);
1781
1da177e4
LT
1782void blk_put_request(struct request *req)
1783{
165125e1 1784 struct request_queue *q = req->q;
8922e16c 1785
320ae51f
JA
1786 if (q->mq_ops)
1787 blk_mq_free_request(req);
1788 else {
1789 unsigned long flags;
1790
1791 spin_lock_irqsave(q->queue_lock, flags);
1792 __blk_put_request(q, req);
1793 spin_unlock_irqrestore(q->queue_lock, flags);
1794 }
1da177e4 1795}
1da177e4
LT
1796EXPORT_SYMBOL(blk_put_request);
1797
320ae51f
JA
1798bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1799 struct bio *bio)
73c10101 1800{
1eff9d32 1801 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1802
73c10101
JA
1803 if (!ll_back_merge_fn(q, req, bio))
1804 return false;
1805
8c1cf6bb 1806 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1807
1808 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1809 blk_rq_set_mixed_merge(req);
1810
1811 req->biotail->bi_next = bio;
1812 req->biotail = bio;
4f024f37 1813 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1814 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1815
320ae51f 1816 blk_account_io_start(req, false);
73c10101
JA
1817 return true;
1818}
1819
320ae51f
JA
1820bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1821 struct bio *bio)
73c10101 1822{
1eff9d32 1823 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1824
73c10101
JA
1825 if (!ll_front_merge_fn(q, req, bio))
1826 return false;
1827
8c1cf6bb 1828 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1829
1830 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1831 blk_rq_set_mixed_merge(req);
1832
73c10101
JA
1833 bio->bi_next = req->bio;
1834 req->bio = bio;
1835
4f024f37
KO
1836 req->__sector = bio->bi_iter.bi_sector;
1837 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1838 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1839
320ae51f 1840 blk_account_io_start(req, false);
73c10101
JA
1841 return true;
1842}
1843
1e739730
CH
1844bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1845 struct bio *bio)
1846{
1847 unsigned short segments = blk_rq_nr_discard_segments(req);
1848
1849 if (segments >= queue_max_discard_segments(q))
1850 goto no_merge;
1851 if (blk_rq_sectors(req) + bio_sectors(bio) >
1852 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1853 goto no_merge;
1854
1855 req->biotail->bi_next = bio;
1856 req->biotail = bio;
1857 req->__data_len += bio->bi_iter.bi_size;
1858 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1859 req->nr_phys_segments = segments + 1;
1860
1861 blk_account_io_start(req, false);
1862 return true;
1863no_merge:
1864 req_set_nomerge(q, req);
1865 return false;
1866}
1867
bd87b589 1868/**
320ae51f 1869 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1870 * @q: request_queue new bio is being queued at
1871 * @bio: new bio being queued
1872 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1873 * @same_queue_rq: pointer to &struct request that gets filled in when
1874 * another request associated with @q is found on the plug list
1875 * (optional, may be %NULL)
bd87b589
TH
1876 *
1877 * Determine whether @bio being queued on @q can be merged with a request
1878 * on %current's plugged list. Returns %true if merge was successful,
1879 * otherwise %false.
1880 *
07c2bd37
TH
1881 * Plugging coalesces IOs from the same issuer for the same purpose without
1882 * going through @q->queue_lock. As such it's more of an issuing mechanism
1883 * than scheduling, and the request, while may have elvpriv data, is not
1884 * added on the elevator at this point. In addition, we don't have
1885 * reliable access to the elevator outside queue lock. Only check basic
1886 * merging parameters without querying the elevator.
da41a589
RE
1887 *
1888 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1889 */
320ae51f 1890bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1891 unsigned int *request_count,
1892 struct request **same_queue_rq)
73c10101
JA
1893{
1894 struct blk_plug *plug;
1895 struct request *rq;
92f399c7 1896 struct list_head *plug_list;
73c10101 1897
bd87b589 1898 plug = current->plug;
73c10101 1899 if (!plug)
34fe7c05 1900 return false;
56ebdaf2 1901 *request_count = 0;
73c10101 1902
92f399c7
SL
1903 if (q->mq_ops)
1904 plug_list = &plug->mq_list;
1905 else
1906 plug_list = &plug->list;
1907
1908 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1909 bool merged = false;
73c10101 1910
5b3f341f 1911 if (rq->q == q) {
1b2e19f1 1912 (*request_count)++;
5b3f341f
SL
1913 /*
1914 * Only blk-mq multiple hardware queues case checks the
1915 * rq in the same queue, there should be only one such
1916 * rq in a queue
1917 **/
1918 if (same_queue_rq)
1919 *same_queue_rq = rq;
1920 }
56ebdaf2 1921
07c2bd37 1922 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1923 continue;
1924
34fe7c05
CH
1925 switch (blk_try_merge(rq, bio)) {
1926 case ELEVATOR_BACK_MERGE:
1927 merged = bio_attempt_back_merge(q, rq, bio);
1928 break;
1929 case ELEVATOR_FRONT_MERGE:
1930 merged = bio_attempt_front_merge(q, rq, bio);
1931 break;
1e739730
CH
1932 case ELEVATOR_DISCARD_MERGE:
1933 merged = bio_attempt_discard_merge(q, rq, bio);
1934 break;
34fe7c05
CH
1935 default:
1936 break;
73c10101 1937 }
34fe7c05
CH
1938
1939 if (merged)
1940 return true;
73c10101 1941 }
34fe7c05
CH
1942
1943 return false;
73c10101
JA
1944}
1945
0809e3ac
JM
1946unsigned int blk_plug_queued_count(struct request_queue *q)
1947{
1948 struct blk_plug *plug;
1949 struct request *rq;
1950 struct list_head *plug_list;
1951 unsigned int ret = 0;
1952
1953 plug = current->plug;
1954 if (!plug)
1955 goto out;
1956
1957 if (q->mq_ops)
1958 plug_list = &plug->mq_list;
1959 else
1960 plug_list = &plug->list;
1961
1962 list_for_each_entry(rq, plug_list, queuelist) {
1963 if (rq->q == q)
1964 ret++;
1965 }
1966out:
1967 return ret;
1968}
1969
da8d7f07 1970void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1971{
0be0dee6
BVA
1972 struct io_context *ioc = rq_ioc(bio);
1973
1eff9d32 1974 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1975 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1976
4f024f37 1977 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1978 if (ioprio_valid(bio_prio(bio)))
1979 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1980 else if (ioc)
1981 req->ioprio = ioc->ioprio;
1982 else
1983 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
cb6934f8 1984 req->write_hint = bio->bi_write_hint;
bc1c56fd 1985 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1986}
da8d7f07 1987EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1988
dece1635 1989static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1990{
73c10101 1991 struct blk_plug *plug;
34fe7c05 1992 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1993 struct request *req, *free;
56ebdaf2 1994 unsigned int request_count = 0;
1da177e4 1995
1da177e4
LT
1996 /*
1997 * low level driver can indicate that it wants pages above a
1998 * certain limit bounced to low memory (ie for highmem, or even
1999 * ISA dma in theory)
2000 */
2001 blk_queue_bounce(q, &bio);
2002
af67c31f 2003 blk_queue_split(q, &bio);
23688bf4 2004
e23947bd 2005 if (!bio_integrity_prep(bio))
dece1635 2006 return BLK_QC_T_NONE;
ffecfd1a 2007
f73f44eb 2008 if (op_is_flush(bio->bi_opf)) {
73c10101 2009 spin_lock_irq(q->queue_lock);
ae1b1539 2010 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
2011 goto get_rq;
2012 }
2013
73c10101
JA
2014 /*
2015 * Check if we can merge with the plugged list before grabbing
2016 * any locks.
2017 */
0809e3ac
JM
2018 if (!blk_queue_nomerges(q)) {
2019 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 2020 return BLK_QC_T_NONE;
0809e3ac
JM
2021 } else
2022 request_count = blk_plug_queued_count(q);
1da177e4 2023
73c10101 2024 spin_lock_irq(q->queue_lock);
2056a782 2025
34fe7c05
CH
2026 switch (elv_merge(q, &req, bio)) {
2027 case ELEVATOR_BACK_MERGE:
2028 if (!bio_attempt_back_merge(q, req, bio))
2029 break;
2030 elv_bio_merged(q, req, bio);
2031 free = attempt_back_merge(q, req);
2032 if (free)
2033 __blk_put_request(q, free);
2034 else
2035 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2036 goto out_unlock;
2037 case ELEVATOR_FRONT_MERGE:
2038 if (!bio_attempt_front_merge(q, req, bio))
2039 break;
2040 elv_bio_merged(q, req, bio);
2041 free = attempt_front_merge(q, req);
2042 if (free)
2043 __blk_put_request(q, free);
2044 else
2045 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2046 goto out_unlock;
2047 default:
2048 break;
1da177e4
LT
2049 }
2050
450991bc 2051get_rq:
c1c80384 2052 rq_qos_throttle(q, bio, q->queue_lock);
87760e5e 2053
1da177e4 2054 /*
450991bc 2055 * Grab a free request. This is might sleep but can not fail.
d6344532 2056 * Returns with the queue unlocked.
450991bc 2057 */
055f6e18 2058 blk_queue_enter_live(q);
c3036021 2059 req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
a492f075 2060 if (IS_ERR(req)) {
055f6e18 2061 blk_queue_exit(q);
c1c80384 2062 rq_qos_cleanup(q, bio);
4e4cbee9
CH
2063 if (PTR_ERR(req) == -ENOMEM)
2064 bio->bi_status = BLK_STS_RESOURCE;
2065 else
2066 bio->bi_status = BLK_STS_IOERR;
4246a0b6 2067 bio_endio(bio);
da8303c6
TH
2068 goto out_unlock;
2069 }
d6344532 2070
c1c80384 2071 rq_qos_track(q, req, bio);
87760e5e 2072
450991bc
NP
2073 /*
2074 * After dropping the lock and possibly sleeping here, our request
2075 * may now be mergeable after it had proven unmergeable (above).
2076 * We don't worry about that case for efficiency. It won't happen
2077 * often, and the elevators are able to handle it.
1da177e4 2078 */
da8d7f07 2079 blk_init_request_from_bio(req, bio);
1da177e4 2080
9562ad9a 2081 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 2082 req->cpu = raw_smp_processor_id();
73c10101
JA
2083
2084 plug = current->plug;
721a9602 2085 if (plug) {
dc6d36c9
JA
2086 /*
2087 * If this is the first request added after a plug, fire
7aef2e78 2088 * of a plug trace.
0a6219a9
ML
2089 *
2090 * @request_count may become stale because of schedule
2091 * out, so check plug list again.
dc6d36c9 2092 */
0a6219a9 2093 if (!request_count || list_empty(&plug->list))
dc6d36c9 2094 trace_block_plug(q);
3540d5e8 2095 else {
50d24c34
SL
2096 struct request *last = list_entry_rq(plug->list.prev);
2097 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2098 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 2099 blk_flush_plug_list(plug, false);
019ceb7d
SL
2100 trace_block_plug(q);
2101 }
73c10101 2102 }
73c10101 2103 list_add_tail(&req->queuelist, &plug->list);
320ae51f 2104 blk_account_io_start(req, true);
73c10101
JA
2105 } else {
2106 spin_lock_irq(q->queue_lock);
2107 add_acct_request(q, req, where);
24ecfbe2 2108 __blk_run_queue(q);
73c10101
JA
2109out_unlock:
2110 spin_unlock_irq(q->queue_lock);
2111 }
dece1635
JA
2112
2113 return BLK_QC_T_NONE;
1da177e4
LT
2114}
2115
52c5e62d 2116static void handle_bad_sector(struct bio *bio, sector_t maxsector)
1da177e4
LT
2117{
2118 char b[BDEVNAME_SIZE];
2119
2120 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 2121 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 2122 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 2123 (unsigned long long)bio_end_sector(bio),
52c5e62d 2124 (long long)maxsector);
1da177e4
LT
2125}
2126
c17bb495
AM
2127#ifdef CONFIG_FAIL_MAKE_REQUEST
2128
2129static DECLARE_FAULT_ATTR(fail_make_request);
2130
2131static int __init setup_fail_make_request(char *str)
2132{
2133 return setup_fault_attr(&fail_make_request, str);
2134}
2135__setup("fail_make_request=", setup_fail_make_request);
2136
b2c9cd37 2137static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 2138{
b2c9cd37 2139 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
2140}
2141
2142static int __init fail_make_request_debugfs(void)
2143{
dd48c085
AM
2144 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2145 NULL, &fail_make_request);
2146
21f9fcd8 2147 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
2148}
2149
2150late_initcall(fail_make_request_debugfs);
2151
2152#else /* CONFIG_FAIL_MAKE_REQUEST */
2153
b2c9cd37
AM
2154static inline bool should_fail_request(struct hd_struct *part,
2155 unsigned int bytes)
c17bb495 2156{
b2c9cd37 2157 return false;
c17bb495
AM
2158}
2159
2160#endif /* CONFIG_FAIL_MAKE_REQUEST */
2161
721c7fc7
ID
2162static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2163{
b089cfd9
JA
2164 const int op = bio_op(bio);
2165
8b2ded1c 2166 if (part->policy && op_is_write(op)) {
721c7fc7
ID
2167 char b[BDEVNAME_SIZE];
2168
8b2ded1c
MP
2169 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
2170 return false;
2171
a32e236e 2172 WARN_ONCE(1,
721c7fc7
ID
2173 "generic_make_request: Trying to write "
2174 "to read-only block-device %s (partno %d)\n",
2175 bio_devname(bio, b), part->partno);
a32e236e
LT
2176 /* Older lvm-tools actually trigger this */
2177 return false;
721c7fc7
ID
2178 }
2179
2180 return false;
2181}
2182
30abb3a6
HM
2183static noinline int should_fail_bio(struct bio *bio)
2184{
2185 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2186 return -EIO;
2187 return 0;
2188}
2189ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2190
52c5e62d
CH
2191/*
2192 * Check whether this bio extends beyond the end of the device or partition.
2193 * This may well happen - the kernel calls bread() without checking the size of
2194 * the device, e.g., when mounting a file system.
2195 */
2196static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2197{
2198 unsigned int nr_sectors = bio_sectors(bio);
2199
2200 if (nr_sectors && maxsector &&
2201 (nr_sectors > maxsector ||
2202 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2203 handle_bad_sector(bio, maxsector);
2204 return -EIO;
2205 }
2206 return 0;
2207}
2208
74d46992
CH
2209/*
2210 * Remap block n of partition p to block n+start(p) of the disk.
2211 */
2212static inline int blk_partition_remap(struct bio *bio)
2213{
2214 struct hd_struct *p;
52c5e62d 2215 int ret = -EIO;
74d46992 2216
721c7fc7
ID
2217 rcu_read_lock();
2218 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
52c5e62d
CH
2219 if (unlikely(!p))
2220 goto out;
2221 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2222 goto out;
2223 if (unlikely(bio_check_ro(bio, p)))
721c7fc7 2224 goto out;
721c7fc7 2225
74d46992
CH
2226 /*
2227 * Zone reset does not include bi_size so bio_sectors() is always 0.
2228 * Include a test for the reset op code and perform the remap if needed.
2229 */
52c5e62d
CH
2230 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2231 if (bio_check_eod(bio, part_nr_sects_read(p)))
2232 goto out;
2233 bio->bi_iter.bi_sector += p->start_sect;
52c5e62d
CH
2234 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2235 bio->bi_iter.bi_sector - p->start_sect);
2236 }
c04fa44b 2237 bio->bi_partno = 0;
52c5e62d 2238 ret = 0;
721c7fc7
ID
2239out:
2240 rcu_read_unlock();
74d46992
CH
2241 return ret;
2242}
2243
27a84d54
CH
2244static noinline_for_stack bool
2245generic_make_request_checks(struct bio *bio)
1da177e4 2246{
165125e1 2247 struct request_queue *q;
5a7bbad2 2248 int nr_sectors = bio_sectors(bio);
4e4cbee9 2249 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 2250 char b[BDEVNAME_SIZE];
1da177e4
LT
2251
2252 might_sleep();
1da177e4 2253
74d46992 2254 q = bio->bi_disk->queue;
5a7bbad2
CH
2255 if (unlikely(!q)) {
2256 printk(KERN_ERR
2257 "generic_make_request: Trying to access "
2258 "nonexistent block-device %s (%Lu)\n",
74d46992 2259 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
2260 goto end_io;
2261 }
c17bb495 2262
03a07c92
GR
2263 /*
2264 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2265 * if queue is not a request based queue.
2266 */
03a07c92
GR
2267 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2268 goto not_supported;
2269
30abb3a6 2270 if (should_fail_bio(bio))
5a7bbad2 2271 goto end_io;
2056a782 2272
52c5e62d
CH
2273 if (bio->bi_partno) {
2274 if (unlikely(blk_partition_remap(bio)))
721c7fc7
ID
2275 goto end_io;
2276 } else {
52c5e62d
CH
2277 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2278 goto end_io;
2279 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
721c7fc7
ID
2280 goto end_io;
2281 }
2056a782 2282
5a7bbad2
CH
2283 /*
2284 * Filter flush bio's early so that make_request based
2285 * drivers without flush support don't have to worry
2286 * about them.
2287 */
f3a8ab7d 2288 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2289 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2290 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2291 if (!nr_sectors) {
4e4cbee9 2292 status = BLK_STS_OK;
51fd77bd
JA
2293 goto end_io;
2294 }
5a7bbad2 2295 }
5ddfe969 2296
288dab8a
CH
2297 switch (bio_op(bio)) {
2298 case REQ_OP_DISCARD:
2299 if (!blk_queue_discard(q))
2300 goto not_supported;
2301 break;
2302 case REQ_OP_SECURE_ERASE:
2303 if (!blk_queue_secure_erase(q))
2304 goto not_supported;
2305 break;
2306 case REQ_OP_WRITE_SAME:
74d46992 2307 if (!q->limits.max_write_same_sectors)
288dab8a 2308 goto not_supported;
58886785 2309 break;
2d253440
ST
2310 case REQ_OP_ZONE_REPORT:
2311 case REQ_OP_ZONE_RESET:
74d46992 2312 if (!blk_queue_is_zoned(q))
2d253440 2313 goto not_supported;
288dab8a 2314 break;
a6f0788e 2315 case REQ_OP_WRITE_ZEROES:
74d46992 2316 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
2317 goto not_supported;
2318 break;
288dab8a
CH
2319 default:
2320 break;
5a7bbad2 2321 }
01edede4 2322
7f4b35d1
TH
2323 /*
2324 * Various block parts want %current->io_context and lazy ioc
2325 * allocation ends up trading a lot of pain for a small amount of
2326 * memory. Just allocate it upfront. This may fail and block
2327 * layer knows how to live with it.
2328 */
2329 create_io_context(GFP_ATOMIC, q->node);
2330
ae118896
TH
2331 if (!blkcg_bio_issue_check(q, bio))
2332 return false;
27a84d54 2333
fbbaf700
N
2334 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2335 trace_block_bio_queue(q, bio);
2336 /* Now that enqueuing has been traced, we need to trace
2337 * completion as well.
2338 */
2339 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2340 }
27a84d54 2341 return true;
a7384677 2342
288dab8a 2343not_supported:
4e4cbee9 2344 status = BLK_STS_NOTSUPP;
a7384677 2345end_io:
4e4cbee9 2346 bio->bi_status = status;
4246a0b6 2347 bio_endio(bio);
27a84d54 2348 return false;
1da177e4
LT
2349}
2350
27a84d54
CH
2351/**
2352 * generic_make_request - hand a buffer to its device driver for I/O
2353 * @bio: The bio describing the location in memory and on the device.
2354 *
2355 * generic_make_request() is used to make I/O requests of block
2356 * devices. It is passed a &struct bio, which describes the I/O that needs
2357 * to be done.
2358 *
2359 * generic_make_request() does not return any status. The
2360 * success/failure status of the request, along with notification of
2361 * completion, is delivered asynchronously through the bio->bi_end_io
2362 * function described (one day) else where.
2363 *
2364 * The caller of generic_make_request must make sure that bi_io_vec
2365 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2366 * set to describe the device address, and the
2367 * bi_end_io and optionally bi_private are set to describe how
2368 * completion notification should be signaled.
2369 *
2370 * generic_make_request and the drivers it calls may use bi_next if this
2371 * bio happens to be merged with someone else, and may resubmit the bio to
2372 * a lower device by calling into generic_make_request recursively, which
2373 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2374 */
dece1635 2375blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2376{
f5fe1b51
N
2377 /*
2378 * bio_list_on_stack[0] contains bios submitted by the current
2379 * make_request_fn.
2380 * bio_list_on_stack[1] contains bios that were submitted before
2381 * the current make_request_fn, but that haven't been processed
2382 * yet.
2383 */
2384 struct bio_list bio_list_on_stack[2];
37f9579f
BVA
2385 blk_mq_req_flags_t flags = 0;
2386 struct request_queue *q = bio->bi_disk->queue;
dece1635 2387 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2388
37f9579f
BVA
2389 if (bio->bi_opf & REQ_NOWAIT)
2390 flags = BLK_MQ_REQ_NOWAIT;
cd4a4ae4
JA
2391 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2392 blk_queue_enter_live(q);
2393 else if (blk_queue_enter(q, flags) < 0) {
37f9579f
BVA
2394 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2395 bio_wouldblock_error(bio);
2396 else
2397 bio_io_error(bio);
2398 return ret;
2399 }
2400
27a84d54 2401 if (!generic_make_request_checks(bio))
dece1635 2402 goto out;
27a84d54
CH
2403
2404 /*
2405 * We only want one ->make_request_fn to be active at a time, else
2406 * stack usage with stacked devices could be a problem. So use
2407 * current->bio_list to keep a list of requests submited by a
2408 * make_request_fn function. current->bio_list is also used as a
2409 * flag to say if generic_make_request is currently active in this
2410 * task or not. If it is NULL, then no make_request is active. If
2411 * it is non-NULL, then a make_request is active, and new requests
2412 * should be added at the tail
2413 */
bddd87c7 2414 if (current->bio_list) {
f5fe1b51 2415 bio_list_add(&current->bio_list[0], bio);
dece1635 2416 goto out;
d89d8796 2417 }
27a84d54 2418
d89d8796
NB
2419 /* following loop may be a bit non-obvious, and so deserves some
2420 * explanation.
2421 * Before entering the loop, bio->bi_next is NULL (as all callers
2422 * ensure that) so we have a list with a single bio.
2423 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2424 * we assign bio_list to a pointer to the bio_list_on_stack,
2425 * thus initialising the bio_list of new bios to be
27a84d54 2426 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2427 * through a recursive call to generic_make_request. If it
2428 * did, we find a non-NULL value in bio_list and re-enter the loop
2429 * from the top. In this case we really did just take the bio
bddd87c7 2430 * of the top of the list (no pretending) and so remove it from
27a84d54 2431 * bio_list, and call into ->make_request() again.
d89d8796
NB
2432 */
2433 BUG_ON(bio->bi_next);
f5fe1b51
N
2434 bio_list_init(&bio_list_on_stack[0]);
2435 current->bio_list = bio_list_on_stack;
d89d8796 2436 do {
37f9579f
BVA
2437 bool enter_succeeded = true;
2438
2439 if (unlikely(q != bio->bi_disk->queue)) {
2440 if (q)
2441 blk_queue_exit(q);
2442 q = bio->bi_disk->queue;
2443 flags = 0;
2444 if (bio->bi_opf & REQ_NOWAIT)
2445 flags = BLK_MQ_REQ_NOWAIT;
2446 if (blk_queue_enter(q, flags) < 0) {
2447 enter_succeeded = false;
2448 q = NULL;
2449 }
2450 }
27a84d54 2451
37f9579f 2452 if (enter_succeeded) {
79bd9959
N
2453 struct bio_list lower, same;
2454
2455 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2456 bio_list_on_stack[1] = bio_list_on_stack[0];
2457 bio_list_init(&bio_list_on_stack[0]);
dece1635 2458 ret = q->make_request_fn(q, bio);
3ef28e83 2459
79bd9959
N
2460 /* sort new bios into those for a lower level
2461 * and those for the same level
2462 */
2463 bio_list_init(&lower);
2464 bio_list_init(&same);
f5fe1b51 2465 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 2466 if (q == bio->bi_disk->queue)
79bd9959
N
2467 bio_list_add(&same, bio);
2468 else
2469 bio_list_add(&lower, bio);
2470 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2471 bio_list_merge(&bio_list_on_stack[0], &lower);
2472 bio_list_merge(&bio_list_on_stack[0], &same);
2473 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2474 } else {
03a07c92
GR
2475 if (unlikely(!blk_queue_dying(q) &&
2476 (bio->bi_opf & REQ_NOWAIT)))
2477 bio_wouldblock_error(bio);
2478 else
2479 bio_io_error(bio);
3ef28e83 2480 }
f5fe1b51 2481 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2482 } while (bio);
bddd87c7 2483 current->bio_list = NULL; /* deactivate */
dece1635
JA
2484
2485out:
37f9579f
BVA
2486 if (q)
2487 blk_queue_exit(q);
dece1635 2488 return ret;
d89d8796 2489}
1da177e4
LT
2490EXPORT_SYMBOL(generic_make_request);
2491
f421e1d9
CH
2492/**
2493 * direct_make_request - hand a buffer directly to its device driver for I/O
2494 * @bio: The bio describing the location in memory and on the device.
2495 *
2496 * This function behaves like generic_make_request(), but does not protect
2497 * against recursion. Must only be used if the called driver is known
2498 * to not call generic_make_request (or direct_make_request) again from
2499 * its make_request function. (Calling direct_make_request again from
2500 * a workqueue is perfectly fine as that doesn't recurse).
2501 */
2502blk_qc_t direct_make_request(struct bio *bio)
2503{
2504 struct request_queue *q = bio->bi_disk->queue;
2505 bool nowait = bio->bi_opf & REQ_NOWAIT;
2506 blk_qc_t ret;
2507
2508 if (!generic_make_request_checks(bio))
2509 return BLK_QC_T_NONE;
2510
3a0a5299 2511 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
f421e1d9
CH
2512 if (nowait && !blk_queue_dying(q))
2513 bio->bi_status = BLK_STS_AGAIN;
2514 else
2515 bio->bi_status = BLK_STS_IOERR;
2516 bio_endio(bio);
2517 return BLK_QC_T_NONE;
2518 }
2519
2520 ret = q->make_request_fn(q, bio);
2521 blk_queue_exit(q);
2522 return ret;
2523}
2524EXPORT_SYMBOL_GPL(direct_make_request);
2525
1da177e4 2526/**
710027a4 2527 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2528 * @bio: The &struct bio which describes the I/O
2529 *
2530 * submit_bio() is very similar in purpose to generic_make_request(), and
2531 * uses that function to do most of the work. Both are fairly rough
710027a4 2532 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2533 *
2534 */
4e49ea4a 2535blk_qc_t submit_bio(struct bio *bio)
1da177e4 2536{
bf2de6f5
JA
2537 /*
2538 * If it's a regular read/write or a barrier with data attached,
2539 * go through the normal accounting stuff before submission.
2540 */
e2a60da7 2541 if (bio_has_data(bio)) {
4363ac7c
MP
2542 unsigned int count;
2543
95fe6c1a 2544 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
7c5a0dcf 2545 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
4363ac7c
MP
2546 else
2547 count = bio_sectors(bio);
2548
a8ebb056 2549 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2550 count_vm_events(PGPGOUT, count);
2551 } else {
4f024f37 2552 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2553 count_vm_events(PGPGIN, count);
2554 }
2555
2556 if (unlikely(block_dump)) {
2557 char b[BDEVNAME_SIZE];
8dcbdc74 2558 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2559 current->comm, task_pid_nr(current),
a8ebb056 2560 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2561 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 2562 bio_devname(bio, b), count);
bf2de6f5 2563 }
1da177e4
LT
2564 }
2565
dece1635 2566 return generic_make_request(bio);
1da177e4 2567}
1da177e4
LT
2568EXPORT_SYMBOL(submit_bio);
2569
ea435e1b
CH
2570bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2571{
2572 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2573 return false;
2574
2575 if (current->plug)
2576 blk_flush_plug_list(current->plug, false);
2577 return q->poll_fn(q, cookie);
2578}
2579EXPORT_SYMBOL_GPL(blk_poll);
2580
82124d60 2581/**
bf4e6b4e
HR
2582 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2583 * for new the queue limits
82124d60
KU
2584 * @q: the queue
2585 * @rq: the request being checked
2586 *
2587 * Description:
2588 * @rq may have been made based on weaker limitations of upper-level queues
2589 * in request stacking drivers, and it may violate the limitation of @q.
2590 * Since the block layer and the underlying device driver trust @rq
2591 * after it is inserted to @q, it should be checked against @q before
2592 * the insertion using this generic function.
2593 *
82124d60 2594 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2595 * limits when retrying requests on other queues. Those requests need
2596 * to be checked against the new queue limits again during dispatch.
82124d60 2597 */
bf4e6b4e
HR
2598static int blk_cloned_rq_check_limits(struct request_queue *q,
2599 struct request *rq)
82124d60 2600{
8fe0d473 2601 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2602 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2603 return -EIO;
2604 }
2605
2606 /*
2607 * queue's settings related to segment counting like q->bounce_pfn
2608 * may differ from that of other stacking queues.
2609 * Recalculate it to check the request correctly on this queue's
2610 * limitation.
2611 */
2612 blk_recalc_rq_segments(rq);
8a78362c 2613 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2614 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2615 return -EIO;
2616 }
2617
2618 return 0;
2619}
82124d60
KU
2620
2621/**
2622 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2623 * @q: the queue to submit the request
2624 * @rq: the request being queued
2625 */
2a842aca 2626blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2627{
2628 unsigned long flags;
4853abaa 2629 int where = ELEVATOR_INSERT_BACK;
82124d60 2630
bf4e6b4e 2631 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2632 return BLK_STS_IOERR;
82124d60 2633
b2c9cd37
AM
2634 if (rq->rq_disk &&
2635 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2636 return BLK_STS_IOERR;
82124d60 2637
7fb4898e
KB
2638 if (q->mq_ops) {
2639 if (blk_queue_io_stat(q))
2640 blk_account_io_start(rq, true);
157f377b
JA
2641 /*
2642 * Since we have a scheduler attached on the top device,
2643 * bypass a potential scheduler on the bottom device for
2644 * insert.
2645 */
c77ff7fd 2646 return blk_mq_request_issue_directly(rq);
7fb4898e
KB
2647 }
2648
82124d60 2649 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2650 if (unlikely(blk_queue_dying(q))) {
8ba61435 2651 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2652 return BLK_STS_IOERR;
8ba61435 2653 }
82124d60
KU
2654
2655 /*
2656 * Submitting request must be dequeued before calling this function
2657 * because it will be linked to another request_queue
2658 */
2659 BUG_ON(blk_queued_rq(rq));
2660
f73f44eb 2661 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2662 where = ELEVATOR_INSERT_FLUSH;
2663
2664 add_acct_request(q, rq, where);
e67b77c7
JM
2665 if (where == ELEVATOR_INSERT_FLUSH)
2666 __blk_run_queue(q);
82124d60
KU
2667 spin_unlock_irqrestore(q->queue_lock, flags);
2668
2a842aca 2669 return BLK_STS_OK;
82124d60
KU
2670}
2671EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2672
80a761fd
TH
2673/**
2674 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2675 * @rq: request to examine
2676 *
2677 * Description:
2678 * A request could be merge of IOs which require different failure
2679 * handling. This function determines the number of bytes which
2680 * can be failed from the beginning of the request without
2681 * crossing into area which need to be retried further.
2682 *
2683 * Return:
2684 * The number of bytes to fail.
80a761fd
TH
2685 */
2686unsigned int blk_rq_err_bytes(const struct request *rq)
2687{
2688 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2689 unsigned int bytes = 0;
2690 struct bio *bio;
2691
e8064021 2692 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2693 return blk_rq_bytes(rq);
2694
2695 /*
2696 * Currently the only 'mixing' which can happen is between
2697 * different fastfail types. We can safely fail portions
2698 * which have all the failfast bits that the first one has -
2699 * the ones which are at least as eager to fail as the first
2700 * one.
2701 */
2702 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2703 if ((bio->bi_opf & ff) != ff)
80a761fd 2704 break;
4f024f37 2705 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2706 }
2707
2708 /* this could lead to infinite loop */
2709 BUG_ON(blk_rq_bytes(rq) && !bytes);
2710 return bytes;
2711}
2712EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2713
320ae51f 2714void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2715{
c2553b58 2716 if (blk_do_io_stat(req)) {
ddcf35d3 2717 const int sgrp = op_stat_group(req_op(req));
bc58ba94
JA
2718 struct hd_struct *part;
2719 int cpu;
2720
2721 cpu = part_stat_lock();
09e099d4 2722 part = req->part;
ddcf35d3 2723 part_stat_add(cpu, part, sectors[sgrp], bytes >> 9);
bc58ba94
JA
2724 part_stat_unlock();
2725 }
2726}
2727
522a7775 2728void blk_account_io_done(struct request *req, u64 now)
bc58ba94 2729{
bc58ba94 2730 /*
dd4c133f
TH
2731 * Account IO completion. flush_rq isn't accounted as a
2732 * normal IO on queueing nor completion. Accounting the
2733 * containing request is enough.
bc58ba94 2734 */
e8064021 2735 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
522a7775 2736 unsigned long duration;
ddcf35d3 2737 const int sgrp = op_stat_group(req_op(req));
bc58ba94
JA
2738 struct hd_struct *part;
2739 int cpu;
2740
522a7775 2741 duration = nsecs_to_jiffies(now - req->start_time_ns);
bc58ba94 2742 cpu = part_stat_lock();
09e099d4 2743 part = req->part;
bc58ba94 2744
ddcf35d3
MC
2745 part_stat_inc(cpu, part, ios[sgrp]);
2746 part_stat_add(cpu, part, ticks[sgrp], duration);
d62e26b3 2747 part_round_stats(req->q, cpu, part);
ddcf35d3 2748 part_dec_in_flight(req->q, part, rq_data_dir(req));
bc58ba94 2749
6c23a968 2750 hd_struct_put(part);
bc58ba94
JA
2751 part_stat_unlock();
2752 }
2753}
2754
47fafbc7 2755#ifdef CONFIG_PM
c8158819
LM
2756/*
2757 * Don't process normal requests when queue is suspended
2758 * or in the process of suspending/resuming
2759 */
e4f36b24 2760static bool blk_pm_allow_request(struct request *rq)
c8158819 2761{
e4f36b24
CH
2762 switch (rq->q->rpm_status) {
2763 case RPM_RESUMING:
2764 case RPM_SUSPENDING:
2765 return rq->rq_flags & RQF_PM;
2766 case RPM_SUSPENDED:
2767 return false;
e9a83853
GU
2768 default:
2769 return true;
e4f36b24 2770 }
c8158819
LM
2771}
2772#else
e4f36b24 2773static bool blk_pm_allow_request(struct request *rq)
c8158819 2774{
e4f36b24 2775 return true;
c8158819
LM
2776}
2777#endif
2778
320ae51f
JA
2779void blk_account_io_start(struct request *rq, bool new_io)
2780{
2781 struct hd_struct *part;
2782 int rw = rq_data_dir(rq);
2783 int cpu;
2784
2785 if (!blk_do_io_stat(rq))
2786 return;
2787
2788 cpu = part_stat_lock();
2789
2790 if (!new_io) {
2791 part = rq->part;
2792 part_stat_inc(cpu, part, merges[rw]);
2793 } else {
2794 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2795 if (!hd_struct_try_get(part)) {
2796 /*
2797 * The partition is already being removed,
2798 * the request will be accounted on the disk only
2799 *
2800 * We take a reference on disk->part0 although that
2801 * partition will never be deleted, so we can treat
2802 * it as any other partition.
2803 */
2804 part = &rq->rq_disk->part0;
2805 hd_struct_get(part);
2806 }
d62e26b3
JA
2807 part_round_stats(rq->q, cpu, part);
2808 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
2809 rq->part = part;
2810 }
2811
2812 part_stat_unlock();
2813}
2814
9c988374
CH
2815static struct request *elv_next_request(struct request_queue *q)
2816{
2817 struct request *rq;
2818 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2819
2820 WARN_ON_ONCE(q->mq_ops);
2821
2822 while (1) {
e4f36b24
CH
2823 list_for_each_entry(rq, &q->queue_head, queuelist) {
2824 if (blk_pm_allow_request(rq))
2825 return rq;
2826
2827 if (rq->rq_flags & RQF_SOFTBARRIER)
2828 break;
9c988374
CH
2829 }
2830
2831 /*
2832 * Flush request is running and flush request isn't queueable
2833 * in the drive, we can hold the queue till flush request is
2834 * finished. Even we don't do this, driver can't dispatch next
2835 * requests and will requeue them. And this can improve
2836 * throughput too. For example, we have request flush1, write1,
2837 * flush 2. flush1 is dispatched, then queue is hold, write1
2838 * isn't inserted to queue. After flush1 is finished, flush2
2839 * will be dispatched. Since disk cache is already clean,
2840 * flush2 will be finished very soon, so looks like flush2 is
2841 * folded to flush1.
2842 * Since the queue is hold, a flag is set to indicate the queue
2843 * should be restarted later. Please see flush_end_io() for
2844 * details.
2845 */
2846 if (fq->flush_pending_idx != fq->flush_running_idx &&
2847 !queue_flush_queueable(q)) {
2848 fq->flush_queue_delayed = 1;
2849 return NULL;
2850 }
2851 if (unlikely(blk_queue_bypass(q)) ||
2852 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2853 return NULL;
2854 }
2855}
2856
3bcddeac 2857/**
9934c8c0
TH
2858 * blk_peek_request - peek at the top of a request queue
2859 * @q: request queue to peek at
2860 *
2861 * Description:
2862 * Return the request at the top of @q. The returned request
2863 * should be started using blk_start_request() before LLD starts
2864 * processing it.
2865 *
2866 * Return:
2867 * Pointer to the request at the top of @q if available. Null
2868 * otherwise.
9934c8c0
TH
2869 */
2870struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2871{
2872 struct request *rq;
2873 int ret;
2874
2fff8a92 2875 lockdep_assert_held(q->queue_lock);
332ebbf7 2876 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2877
9c988374 2878 while ((rq = elv_next_request(q)) != NULL) {
e8064021 2879 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2880 /*
2881 * This is the first time the device driver
2882 * sees this request (possibly after
2883 * requeueing). Notify IO scheduler.
2884 */
e8064021 2885 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2886 elv_activate_rq(q, rq);
2887
2888 /*
2889 * just mark as started even if we don't start
2890 * it, a request that has been delayed should
2891 * not be passed by new incoming requests
2892 */
e8064021 2893 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2894 trace_block_rq_issue(q, rq);
2895 }
2896
2897 if (!q->boundary_rq || q->boundary_rq == rq) {
2898 q->end_sector = rq_end_sector(rq);
2899 q->boundary_rq = NULL;
2900 }
2901
e8064021 2902 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2903 break;
2904
2e46e8b2 2905 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2906 /*
2907 * make sure space for the drain appears we
2908 * know we can do this because max_hw_segments
2909 * has been adjusted to be one fewer than the
2910 * device can handle
2911 */
2912 rq->nr_phys_segments++;
2913 }
2914
2915 if (!q->prep_rq_fn)
2916 break;
2917
2918 ret = q->prep_rq_fn(q, rq);
2919 if (ret == BLKPREP_OK) {
2920 break;
2921 } else if (ret == BLKPREP_DEFER) {
2922 /*
2923 * the request may have been (partially) prepped.
2924 * we need to keep this request in the front to
e8064021 2925 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2926 * prevent other fs requests from passing this one.
2927 */
2e46e8b2 2928 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2929 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2930 /*
2931 * remove the space for the drain we added
2932 * so that we don't add it again
2933 */
2934 --rq->nr_phys_segments;
2935 }
2936
2937 rq = NULL;
2938 break;
0fb5b1fb 2939 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2940 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2941 /*
2942 * Mark this request as started so we don't trigger
2943 * any debug logic in the end I/O path.
2944 */
2945 blk_start_request(rq);
2a842aca
CH
2946 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2947 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2948 } else {
2949 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2950 break;
2951 }
2952 }
2953
2954 return rq;
2955}
9934c8c0 2956EXPORT_SYMBOL(blk_peek_request);
158dbda0 2957
5034435c 2958static void blk_dequeue_request(struct request *rq)
158dbda0 2959{
9934c8c0
TH
2960 struct request_queue *q = rq->q;
2961
158dbda0
TH
2962 BUG_ON(list_empty(&rq->queuelist));
2963 BUG_ON(ELV_ON_HASH(rq));
2964
2965 list_del_init(&rq->queuelist);
2966
2967 /*
2968 * the time frame between a request being removed from the lists
2969 * and to it is freed is accounted as io that is in progress at
2970 * the driver side.
2971 */
522a7775 2972 if (blk_account_rq(rq))
0a7ae2ff 2973 q->in_flight[rq_is_sync(rq)]++;
158dbda0
TH
2974}
2975
9934c8c0
TH
2976/**
2977 * blk_start_request - start request processing on the driver
2978 * @req: request to dequeue
2979 *
2980 * Description:
2981 * Dequeue @req and start timeout timer on it. This hands off the
2982 * request to the driver.
9934c8c0
TH
2983 */
2984void blk_start_request(struct request *req)
2985{
2fff8a92 2986 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2987 WARN_ON_ONCE(req->q->mq_ops);
2fff8a92 2988
9934c8c0
TH
2989 blk_dequeue_request(req);
2990
cf43e6be 2991 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
544ccc8d
OS
2992 req->io_start_time_ns = ktime_get_ns();
2993#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2994 req->throtl_size = blk_rq_sectors(req);
2995#endif
cf43e6be 2996 req->rq_flags |= RQF_STATS;
a7905043 2997 rq_qos_issue(req->q, req);
cf43e6be
JA
2998 }
2999
e14575b3 3000 BUG_ON(blk_rq_is_complete(req));
9934c8c0
TH
3001 blk_add_timer(req);
3002}
3003EXPORT_SYMBOL(blk_start_request);
3004
3005/**
3006 * blk_fetch_request - fetch a request from a request queue
3007 * @q: request queue to fetch a request from
3008 *
3009 * Description:
3010 * Return the request at the top of @q. The request is started on
3011 * return and LLD can start processing it immediately.
3012 *
3013 * Return:
3014 * Pointer to the request at the top of @q if available. Null
3015 * otherwise.
9934c8c0
TH
3016 */
3017struct request *blk_fetch_request(struct request_queue *q)
3018{
3019 struct request *rq;
3020
2fff8a92 3021 lockdep_assert_held(q->queue_lock);
332ebbf7 3022 WARN_ON_ONCE(q->mq_ops);
2fff8a92 3023
9934c8c0
TH
3024 rq = blk_peek_request(q);
3025 if (rq)
3026 blk_start_request(rq);
3027 return rq;
3028}
3029EXPORT_SYMBOL(blk_fetch_request);
3030
ef71de8b
CH
3031/*
3032 * Steal bios from a request and add them to a bio list.
3033 * The request must not have been partially completed before.
3034 */
3035void blk_steal_bios(struct bio_list *list, struct request *rq)
3036{
3037 if (rq->bio) {
3038 if (list->tail)
3039 list->tail->bi_next = rq->bio;
3040 else
3041 list->head = rq->bio;
3042 list->tail = rq->biotail;
3043
3044 rq->bio = NULL;
3045 rq->biotail = NULL;
3046 }
3047
3048 rq->__data_len = 0;
3049}
3050EXPORT_SYMBOL_GPL(blk_steal_bios);
3051
3bcddeac 3052/**
2e60e022 3053 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 3054 * @req: the request being processed
2a842aca 3055 * @error: block status code
8ebf9756 3056 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
3057 *
3058 * Description:
8ebf9756
RD
3059 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3060 * the request structure even if @req doesn't have leftover.
3061 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
3062 *
3063 * This special helper function is only for request stacking drivers
3064 * (e.g. request-based dm) so that they can handle partial completion.
3065 * Actual device drivers should use blk_end_request instead.
3066 *
3067 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3068 * %false return from this function.
3bcddeac 3069 *
1954e9a9
BVA
3070 * Note:
3071 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
3072 * blk_rq_bytes() and in blk_update_request().
3073 *
3bcddeac 3074 * Return:
2e60e022
TH
3075 * %false - this request doesn't have any more data
3076 * %true - this request has more data
3bcddeac 3077 **/
2a842aca
CH
3078bool blk_update_request(struct request *req, blk_status_t error,
3079 unsigned int nr_bytes)
1da177e4 3080{
f79ea416 3081 int total_bytes;
1da177e4 3082
2a842aca 3083 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 3084
2e60e022
TH
3085 if (!req->bio)
3086 return false;
3087
2a842aca
CH
3088 if (unlikely(error && !blk_rq_is_passthrough(req) &&
3089 !(req->rq_flags & RQF_QUIET)))
3090 print_req_error(req, error);
1da177e4 3091
bc58ba94 3092 blk_account_io_completion(req, nr_bytes);
d72d904a 3093
f79ea416
KO
3094 total_bytes = 0;
3095 while (req->bio) {
3096 struct bio *bio = req->bio;
4f024f37 3097 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 3098
9c24c10a 3099 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 3100 req->bio = bio->bi_next;
1da177e4 3101
fbbaf700
N
3102 /* Completion has already been traced */
3103 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 3104 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 3105
f79ea416
KO
3106 total_bytes += bio_bytes;
3107 nr_bytes -= bio_bytes;
1da177e4 3108
f79ea416
KO
3109 if (!nr_bytes)
3110 break;
1da177e4
LT
3111 }
3112
3113 /*
3114 * completely done
3115 */
2e60e022
TH
3116 if (!req->bio) {
3117 /*
3118 * Reset counters so that the request stacking driver
3119 * can find how many bytes remain in the request
3120 * later.
3121 */
a2dec7b3 3122 req->__data_len = 0;
2e60e022
TH
3123 return false;
3124 }
1da177e4 3125
a2dec7b3 3126 req->__data_len -= total_bytes;
2e46e8b2
TH
3127
3128 /* update sector only for requests with clear definition of sector */
57292b58 3129 if (!blk_rq_is_passthrough(req))
a2dec7b3 3130 req->__sector += total_bytes >> 9;
2e46e8b2 3131
80a761fd 3132 /* mixed attributes always follow the first bio */
e8064021 3133 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 3134 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 3135 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
3136 }
3137
ed6565e7
CH
3138 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3139 /*
3140 * If total number of sectors is less than the first segment
3141 * size, something has gone terribly wrong.
3142 */
3143 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3144 blk_dump_rq_flags(req, "request botched");
3145 req->__data_len = blk_rq_cur_bytes(req);
3146 }
2e46e8b2 3147
ed6565e7
CH
3148 /* recalculate the number of segments */
3149 blk_recalc_rq_segments(req);
3150 }
2e46e8b2 3151
2e60e022 3152 return true;
1da177e4 3153}
2e60e022 3154EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 3155
2a842aca 3156static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
3157 unsigned int nr_bytes,
3158 unsigned int bidi_bytes)
5efccd17 3159{
2e60e022
TH
3160 if (blk_update_request(rq, error, nr_bytes))
3161 return true;
5efccd17 3162
2e60e022
TH
3163 /* Bidi request must be completed as a whole */
3164 if (unlikely(blk_bidi_rq(rq)) &&
3165 blk_update_request(rq->next_rq, error, bidi_bytes))
3166 return true;
5efccd17 3167
e2e1a148
JA
3168 if (blk_queue_add_random(rq->q))
3169 add_disk_randomness(rq->rq_disk);
2e60e022
TH
3170
3171 return false;
1da177e4
LT
3172}
3173
28018c24
JB
3174/**
3175 * blk_unprep_request - unprepare a request
3176 * @req: the request
3177 *
3178 * This function makes a request ready for complete resubmission (or
3179 * completion). It happens only after all error handling is complete,
3180 * so represents the appropriate moment to deallocate any resources
3181 * that were allocated to the request in the prep_rq_fn. The queue
3182 * lock is held when calling this.
3183 */
3184void blk_unprep_request(struct request *req)
3185{
3186 struct request_queue *q = req->q;
3187
e8064021 3188 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
3189 if (q->unprep_rq_fn)
3190 q->unprep_rq_fn(q, req);
3191}
3192EXPORT_SYMBOL_GPL(blk_unprep_request);
3193
2a842aca 3194void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 3195{
cf43e6be 3196 struct request_queue *q = req->q;
522a7775 3197 u64 now = ktime_get_ns();
cf43e6be 3198
2fff8a92 3199 lockdep_assert_held(req->q->queue_lock);
332ebbf7 3200 WARN_ON_ONCE(q->mq_ops);
2fff8a92 3201
cf43e6be 3202 if (req->rq_flags & RQF_STATS)
522a7775 3203 blk_stat_add(req, now);
cf43e6be 3204
e8064021 3205 if (req->rq_flags & RQF_QUEUED)
cf43e6be 3206 blk_queue_end_tag(q, req);
b8286239 3207
ba396a6c 3208 BUG_ON(blk_queued_rq(req));
1da177e4 3209
57292b58 3210 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 3211 laptop_io_completion(req->q->backing_dev_info);
1da177e4 3212
e78042e5
MA
3213 blk_delete_timer(req);
3214
e8064021 3215 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
3216 blk_unprep_request(req);
3217
522a7775 3218 blk_account_io_done(req, now);
b8286239 3219
87760e5e 3220 if (req->end_io) {
a7905043 3221 rq_qos_done(q, req);
8ffdc655 3222 req->end_io(req, error);
87760e5e 3223 } else {
b8286239
KU
3224 if (blk_bidi_rq(req))
3225 __blk_put_request(req->next_rq->q, req->next_rq);
3226
cf43e6be 3227 __blk_put_request(q, req);
b8286239 3228 }
1da177e4 3229}
12120077 3230EXPORT_SYMBOL(blk_finish_request);
1da177e4 3231
3b11313a 3232/**
2e60e022
TH
3233 * blk_end_bidi_request - Complete a bidi request
3234 * @rq: the request to complete
2a842aca 3235 * @error: block status code
2e60e022
TH
3236 * @nr_bytes: number of bytes to complete @rq
3237 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
3238 *
3239 * Description:
e3a04fe3 3240 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
3241 * Drivers that supports bidi can safely call this member for any
3242 * type of request, bidi or uni. In the later case @bidi_bytes is
3243 * just ignored.
336cdb40
KU
3244 *
3245 * Return:
2e60e022
TH
3246 * %false - we are done with this request
3247 * %true - still buffers pending for this request
a0cd1285 3248 **/
2a842aca 3249static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
3250 unsigned int nr_bytes, unsigned int bidi_bytes)
3251{
336cdb40 3252 struct request_queue *q = rq->q;
2e60e022 3253 unsigned long flags;
32fab448 3254
332ebbf7
BVA
3255 WARN_ON_ONCE(q->mq_ops);
3256
2e60e022
TH
3257 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3258 return true;
32fab448 3259
336cdb40 3260 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 3261 blk_finish_request(rq, error);
336cdb40
KU
3262 spin_unlock_irqrestore(q->queue_lock, flags);
3263
2e60e022 3264 return false;
32fab448
KU
3265}
3266
336cdb40 3267/**
2e60e022
TH
3268 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3269 * @rq: the request to complete
2a842aca 3270 * @error: block status code
e3a04fe3
KU
3271 * @nr_bytes: number of bytes to complete @rq
3272 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
3273 *
3274 * Description:
2e60e022
TH
3275 * Identical to blk_end_bidi_request() except that queue lock is
3276 * assumed to be locked on entry and remains so on return.
336cdb40
KU
3277 *
3278 * Return:
2e60e022
TH
3279 * %false - we are done with this request
3280 * %true - still buffers pending for this request
336cdb40 3281 **/
2a842aca 3282static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 3283 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 3284{
2fff8a92 3285 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3286 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3287
2e60e022
TH
3288 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3289 return true;
336cdb40 3290
2e60e022 3291 blk_finish_request(rq, error);
336cdb40 3292
2e60e022 3293 return false;
336cdb40 3294}
e19a3ab0
KU
3295
3296/**
3297 * blk_end_request - Helper function for drivers to complete the request.
3298 * @rq: the request being processed
2a842aca 3299 * @error: block status code
e19a3ab0
KU
3300 * @nr_bytes: number of bytes to complete
3301 *
3302 * Description:
3303 * Ends I/O on a number of bytes attached to @rq.
3304 * If @rq has leftover, sets it up for the next range of segments.
3305 *
3306 * Return:
b1f74493
FT
3307 * %false - we are done with this request
3308 * %true - still buffers pending for this request
e19a3ab0 3309 **/
2a842aca
CH
3310bool blk_end_request(struct request *rq, blk_status_t error,
3311 unsigned int nr_bytes)
e19a3ab0 3312{
332ebbf7 3313 WARN_ON_ONCE(rq->q->mq_ops);
b1f74493 3314 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 3315}
56ad1740 3316EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
3317
3318/**
b1f74493
FT
3319 * blk_end_request_all - Helper function for drives to finish the request.
3320 * @rq: the request to finish
2a842aca 3321 * @error: block status code
336cdb40
KU
3322 *
3323 * Description:
b1f74493
FT
3324 * Completely finish @rq.
3325 */
2a842aca 3326void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 3327{
b1f74493
FT
3328 bool pending;
3329 unsigned int bidi_bytes = 0;
336cdb40 3330
b1f74493
FT
3331 if (unlikely(blk_bidi_rq(rq)))
3332 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 3333
b1f74493
FT
3334 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3335 BUG_ON(pending);
3336}
56ad1740 3337EXPORT_SYMBOL(blk_end_request_all);
336cdb40 3338
e3a04fe3 3339/**
b1f74493
FT
3340 * __blk_end_request - Helper function for drivers to complete the request.
3341 * @rq: the request being processed
2a842aca 3342 * @error: block status code
b1f74493 3343 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
3344 *
3345 * Description:
b1f74493 3346 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
3347 *
3348 * Return:
b1f74493
FT
3349 * %false - we are done with this request
3350 * %true - still buffers pending for this request
e3a04fe3 3351 **/
2a842aca
CH
3352bool __blk_end_request(struct request *rq, blk_status_t error,
3353 unsigned int nr_bytes)
e3a04fe3 3354{
2fff8a92 3355 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3356 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3357
b1f74493 3358 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 3359}
56ad1740 3360EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 3361
32fab448 3362/**
b1f74493
FT
3363 * __blk_end_request_all - Helper function for drives to finish the request.
3364 * @rq: the request to finish
2a842aca 3365 * @error: block status code
32fab448
KU
3366 *
3367 * Description:
b1f74493 3368 * Completely finish @rq. Must be called with queue lock held.
32fab448 3369 */
2a842aca 3370void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 3371{
b1f74493
FT
3372 bool pending;
3373 unsigned int bidi_bytes = 0;
3374
2fff8a92 3375 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3376 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3377
b1f74493
FT
3378 if (unlikely(blk_bidi_rq(rq)))
3379 bidi_bytes = blk_rq_bytes(rq->next_rq);
3380
3381 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3382 BUG_ON(pending);
32fab448 3383}
56ad1740 3384EXPORT_SYMBOL(__blk_end_request_all);
32fab448 3385
e19a3ab0 3386/**
b1f74493
FT
3387 * __blk_end_request_cur - Helper function to finish the current request chunk.
3388 * @rq: the request to finish the current chunk for
2a842aca 3389 * @error: block status code
e19a3ab0
KU
3390 *
3391 * Description:
b1f74493
FT
3392 * Complete the current consecutively mapped chunk from @rq. Must
3393 * be called with queue lock held.
e19a3ab0
KU
3394 *
3395 * Return:
b1f74493
FT
3396 * %false - we are done with this request
3397 * %true - still buffers pending for this request
3398 */
2a842aca 3399bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 3400{
b1f74493 3401 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 3402}
56ad1740 3403EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 3404
86db1e29
JA
3405void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3406 struct bio *bio)
1da177e4 3407{
b4f42e28 3408 if (bio_has_data(bio))
fb2dce86 3409 rq->nr_phys_segments = bio_phys_segments(q, bio);
445251d0
JA
3410 else if (bio_op(bio) == REQ_OP_DISCARD)
3411 rq->nr_phys_segments = 1;
b4f42e28 3412
4f024f37 3413 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 3414 rq->bio = rq->biotail = bio;
1da177e4 3415
74d46992
CH
3416 if (bio->bi_disk)
3417 rq->rq_disk = bio->bi_disk;
66846572 3418}
1da177e4 3419
2d4dc890
IL
3420#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3421/**
3422 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3423 * @rq: the request to be flushed
3424 *
3425 * Description:
3426 * Flush all pages in @rq.
3427 */
3428void rq_flush_dcache_pages(struct request *rq)
3429{
3430 struct req_iterator iter;
7988613b 3431 struct bio_vec bvec;
2d4dc890
IL
3432
3433 rq_for_each_segment(bvec, rq, iter)
7988613b 3434 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3435}
3436EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3437#endif
3438
ef9e3fac
KU
3439/**
3440 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3441 * @q : the queue of the device being checked
3442 *
3443 * Description:
3444 * Check if underlying low-level drivers of a device are busy.
3445 * If the drivers want to export their busy state, they must set own
3446 * exporting function using blk_queue_lld_busy() first.
3447 *
3448 * Basically, this function is used only by request stacking drivers
3449 * to stop dispatching requests to underlying devices when underlying
3450 * devices are busy. This behavior helps more I/O merging on the queue
3451 * of the request stacking driver and prevents I/O throughput regression
3452 * on burst I/O load.
3453 *
3454 * Return:
3455 * 0 - Not busy (The request stacking driver should dispatch request)
3456 * 1 - Busy (The request stacking driver should stop dispatching request)
3457 */
3458int blk_lld_busy(struct request_queue *q)
3459{
3460 if (q->lld_busy_fn)
3461 return q->lld_busy_fn(q);
3462
3463 return 0;
3464}
3465EXPORT_SYMBOL_GPL(blk_lld_busy);
3466
78d8e58a
MS
3467/**
3468 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3469 * @rq: the clone request to be cleaned up
3470 *
3471 * Description:
3472 * Free all bios in @rq for a cloned request.
3473 */
3474void blk_rq_unprep_clone(struct request *rq)
3475{
3476 struct bio *bio;
3477
3478 while ((bio = rq->bio) != NULL) {
3479 rq->bio = bio->bi_next;
3480
3481 bio_put(bio);
3482 }
3483}
3484EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3485
3486/*
3487 * Copy attributes of the original request to the clone request.
3488 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3489 */
3490static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3491{
3492 dst->cpu = src->cpu;
b0fd271d
KU
3493 dst->__sector = blk_rq_pos(src);
3494 dst->__data_len = blk_rq_bytes(src);
297ba57d
BVA
3495 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3496 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3497 dst->special_vec = src->special_vec;
3498 }
b0fd271d
KU
3499 dst->nr_phys_segments = src->nr_phys_segments;
3500 dst->ioprio = src->ioprio;
3501 dst->extra_len = src->extra_len;
78d8e58a
MS
3502}
3503
3504/**
3505 * blk_rq_prep_clone - Helper function to setup clone request
3506 * @rq: the request to be setup
3507 * @rq_src: original request to be cloned
3508 * @bs: bio_set that bios for clone are allocated from
3509 * @gfp_mask: memory allocation mask for bio
3510 * @bio_ctr: setup function to be called for each clone bio.
3511 * Returns %0 for success, non %0 for failure.
3512 * @data: private data to be passed to @bio_ctr
3513 *
3514 * Description:
3515 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3516 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3517 * are not copied, and copying such parts is the caller's responsibility.
3518 * Also, pages which the original bios are pointing to are not copied
3519 * and the cloned bios just point same pages.
3520 * So cloned bios must be completed before original bios, which means
3521 * the caller must complete @rq before @rq_src.
3522 */
3523int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3524 struct bio_set *bs, gfp_t gfp_mask,
3525 int (*bio_ctr)(struct bio *, struct bio *, void *),
3526 void *data)
3527{
3528 struct bio *bio, *bio_src;
3529
3530 if (!bs)
f4f8154a 3531 bs = &fs_bio_set;
78d8e58a
MS
3532
3533 __rq_for_each_bio(bio_src, rq_src) {
3534 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3535 if (!bio)
3536 goto free_and_out;
3537
3538 if (bio_ctr && bio_ctr(bio, bio_src, data))
3539 goto free_and_out;
3540
3541 if (rq->bio) {
3542 rq->biotail->bi_next = bio;
3543 rq->biotail = bio;
3544 } else
3545 rq->bio = rq->biotail = bio;
3546 }
3547
3548 __blk_rq_prep_clone(rq, rq_src);
3549
3550 return 0;
3551
3552free_and_out:
3553 if (bio)
3554 bio_put(bio);
3555 blk_rq_unprep_clone(rq);
3556
3557 return -ENOMEM;
b0fd271d
KU
3558}
3559EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3560
59c3d45e 3561int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3562{
3563 return queue_work(kblockd_workqueue, work);
3564}
1da177e4
LT
3565EXPORT_SYMBOL(kblockd_schedule_work);
3566
ee63cfa7
JA
3567int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3568{
3569 return queue_work_on(cpu, kblockd_workqueue, work);
3570}
3571EXPORT_SYMBOL(kblockd_schedule_work_on);
3572
818cd1cb
JA
3573int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3574 unsigned long delay)
3575{
3576 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3577}
3578EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3579
75df7136
SJ
3580/**
3581 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3582 * @plug: The &struct blk_plug that needs to be initialized
3583 *
3584 * Description:
3585 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3586 * pending I/O should the task end up blocking between blk_start_plug() and
3587 * blk_finish_plug(). This is important from a performance perspective, but
3588 * also ensures that we don't deadlock. For instance, if the task is blocking
3589 * for a memory allocation, memory reclaim could end up wanting to free a
3590 * page belonging to that request that is currently residing in our private
3591 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3592 * this kind of deadlock.
3593 */
73c10101
JA
3594void blk_start_plug(struct blk_plug *plug)
3595{
3596 struct task_struct *tsk = current;
3597
dd6cf3e1
SL
3598 /*
3599 * If this is a nested plug, don't actually assign it.
3600 */
3601 if (tsk->plug)
3602 return;
3603
73c10101 3604 INIT_LIST_HEAD(&plug->list);
320ae51f 3605 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3606 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3607 /*
dd6cf3e1
SL
3608 * Store ordering should not be needed here, since a potential
3609 * preempt will imply a full memory barrier
73c10101 3610 */
dd6cf3e1 3611 tsk->plug = plug;
73c10101
JA
3612}
3613EXPORT_SYMBOL(blk_start_plug);
3614
3615static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3616{
3617 struct request *rqa = container_of(a, struct request, queuelist);
3618 struct request *rqb = container_of(b, struct request, queuelist);
3619
975927b9
JM
3620 return !(rqa->q < rqb->q ||
3621 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3622}
3623
49cac01e
JA
3624/*
3625 * If 'from_schedule' is true, then postpone the dispatch of requests
3626 * until a safe kblockd context. We due this to avoid accidental big
3627 * additional stack usage in driver dispatch, in places where the originally
3628 * plugger did not intend it.
3629 */
f6603783 3630static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3631 bool from_schedule)
99e22598 3632 __releases(q->queue_lock)
94b5eb28 3633{
2fff8a92
BVA
3634 lockdep_assert_held(q->queue_lock);
3635
49cac01e 3636 trace_block_unplug(q, depth, !from_schedule);
99e22598 3637
70460571 3638 if (from_schedule)
24ecfbe2 3639 blk_run_queue_async(q);
70460571 3640 else
24ecfbe2 3641 __blk_run_queue(q);
50864670 3642 spin_unlock_irq(q->queue_lock);
94b5eb28
JA
3643}
3644
74018dc3 3645static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3646{
3647 LIST_HEAD(callbacks);
3648
2a7d5559
SL
3649 while (!list_empty(&plug->cb_list)) {
3650 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3651
2a7d5559
SL
3652 while (!list_empty(&callbacks)) {
3653 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3654 struct blk_plug_cb,
3655 list);
2a7d5559 3656 list_del(&cb->list);
74018dc3 3657 cb->callback(cb, from_schedule);
2a7d5559 3658 }
048c9374
N
3659 }
3660}
3661
9cbb1750
N
3662struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3663 int size)
3664{
3665 struct blk_plug *plug = current->plug;
3666 struct blk_plug_cb *cb;
3667
3668 if (!plug)
3669 return NULL;
3670
3671 list_for_each_entry(cb, &plug->cb_list, list)
3672 if (cb->callback == unplug && cb->data == data)
3673 return cb;
3674
3675 /* Not currently on the callback list */
3676 BUG_ON(size < sizeof(*cb));
3677 cb = kzalloc(size, GFP_ATOMIC);
3678 if (cb) {
3679 cb->data = data;
3680 cb->callback = unplug;
3681 list_add(&cb->list, &plug->cb_list);
3682 }
3683 return cb;
3684}
3685EXPORT_SYMBOL(blk_check_plugged);
3686
49cac01e 3687void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3688{
3689 struct request_queue *q;
73c10101 3690 struct request *rq;
109b8129 3691 LIST_HEAD(list);
94b5eb28 3692 unsigned int depth;
73c10101 3693
74018dc3 3694 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3695
3696 if (!list_empty(&plug->mq_list))
3697 blk_mq_flush_plug_list(plug, from_schedule);
3698
73c10101
JA
3699 if (list_empty(&plug->list))
3700 return;
3701
109b8129
N
3702 list_splice_init(&plug->list, &list);
3703
422765c2 3704 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3705
3706 q = NULL;
94b5eb28 3707 depth = 0;
18811272 3708
109b8129
N
3709 while (!list_empty(&list)) {
3710 rq = list_entry_rq(list.next);
73c10101 3711 list_del_init(&rq->queuelist);
73c10101
JA
3712 BUG_ON(!rq->q);
3713 if (rq->q != q) {
99e22598
JA
3714 /*
3715 * This drops the queue lock
3716 */
3717 if (q)
49cac01e 3718 queue_unplugged(q, depth, from_schedule);
73c10101 3719 q = rq->q;
94b5eb28 3720 depth = 0;
50864670 3721 spin_lock_irq(q->queue_lock);
73c10101 3722 }
8ba61435
TH
3723
3724 /*
3725 * Short-circuit if @q is dead
3726 */
3f3299d5 3727 if (unlikely(blk_queue_dying(q))) {
2a842aca 3728 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3729 continue;
3730 }
3731
73c10101
JA
3732 /*
3733 * rq is already accounted, so use raw insert
3734 */
f73f44eb 3735 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3736 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3737 else
3738 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3739
3740 depth++;
73c10101
JA
3741 }
3742
99e22598
JA
3743 /*
3744 * This drops the queue lock
3745 */
3746 if (q)
49cac01e 3747 queue_unplugged(q, depth, from_schedule);
73c10101 3748}
73c10101
JA
3749
3750void blk_finish_plug(struct blk_plug *plug)
3751{
dd6cf3e1
SL
3752 if (plug != current->plug)
3753 return;
f6603783 3754 blk_flush_plug_list(plug, false);
73c10101 3755
dd6cf3e1 3756 current->plug = NULL;
73c10101 3757}
88b996cd 3758EXPORT_SYMBOL(blk_finish_plug);
73c10101 3759
47fafbc7 3760#ifdef CONFIG_PM
6c954667
LM
3761/**
3762 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3763 * @q: the queue of the device
3764 * @dev: the device the queue belongs to
3765 *
3766 * Description:
3767 * Initialize runtime-PM-related fields for @q and start auto suspend for
3768 * @dev. Drivers that want to take advantage of request-based runtime PM
3769 * should call this function after @dev has been initialized, and its
3770 * request queue @q has been allocated, and runtime PM for it can not happen
3771 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3772 * cases, driver should call this function before any I/O has taken place.
3773 *
3774 * This function takes care of setting up using auto suspend for the device,
3775 * the autosuspend delay is set to -1 to make runtime suspend impossible
3776 * until an updated value is either set by user or by driver. Drivers do
3777 * not need to touch other autosuspend settings.
3778 *
3779 * The block layer runtime PM is request based, so only works for drivers
3780 * that use request as their IO unit instead of those directly use bio's.
3781 */
3782void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3783{
b233f127
ML
3784 /* Don't enable runtime PM for blk-mq until it is ready */
3785 if (q->mq_ops) {
3786 pm_runtime_disable(dev);
765e40b6 3787 return;
b233f127 3788 }
765e40b6 3789
6c954667
LM
3790 q->dev = dev;
3791 q->rpm_status = RPM_ACTIVE;
3792 pm_runtime_set_autosuspend_delay(q->dev, -1);
3793 pm_runtime_use_autosuspend(q->dev);
3794}
3795EXPORT_SYMBOL(blk_pm_runtime_init);
3796
3797/**
3798 * blk_pre_runtime_suspend - Pre runtime suspend check
3799 * @q: the queue of the device
3800 *
3801 * Description:
3802 * This function will check if runtime suspend is allowed for the device
3803 * by examining if there are any requests pending in the queue. If there
3804 * are requests pending, the device can not be runtime suspended; otherwise,
3805 * the queue's status will be updated to SUSPENDING and the driver can
3806 * proceed to suspend the device.
3807 *
3808 * For the not allowed case, we mark last busy for the device so that
3809 * runtime PM core will try to autosuspend it some time later.
3810 *
3811 * This function should be called near the start of the device's
3812 * runtime_suspend callback.
3813 *
3814 * Return:
3815 * 0 - OK to runtime suspend the device
3816 * -EBUSY - Device should not be runtime suspended
3817 */
3818int blk_pre_runtime_suspend(struct request_queue *q)
3819{
3820 int ret = 0;
3821
4fd41a85
KX
3822 if (!q->dev)
3823 return ret;
3824
6c954667
LM
3825 spin_lock_irq(q->queue_lock);
3826 if (q->nr_pending) {
3827 ret = -EBUSY;
3828 pm_runtime_mark_last_busy(q->dev);
3829 } else {
3830 q->rpm_status = RPM_SUSPENDING;
3831 }
3832 spin_unlock_irq(q->queue_lock);
3833 return ret;
3834}
3835EXPORT_SYMBOL(blk_pre_runtime_suspend);
3836
3837/**
3838 * blk_post_runtime_suspend - Post runtime suspend processing
3839 * @q: the queue of the device
3840 * @err: return value of the device's runtime_suspend function
3841 *
3842 * Description:
3843 * Update the queue's runtime status according to the return value of the
3844 * device's runtime suspend function and mark last busy for the device so
3845 * that PM core will try to auto suspend the device at a later time.
3846 *
3847 * This function should be called near the end of the device's
3848 * runtime_suspend callback.
3849 */
3850void blk_post_runtime_suspend(struct request_queue *q, int err)
3851{
4fd41a85
KX
3852 if (!q->dev)
3853 return;
3854
6c954667
LM
3855 spin_lock_irq(q->queue_lock);
3856 if (!err) {
3857 q->rpm_status = RPM_SUSPENDED;
3858 } else {
3859 q->rpm_status = RPM_ACTIVE;
3860 pm_runtime_mark_last_busy(q->dev);
3861 }
3862 spin_unlock_irq(q->queue_lock);
3863}
3864EXPORT_SYMBOL(blk_post_runtime_suspend);
3865
3866/**
3867 * blk_pre_runtime_resume - Pre runtime resume processing
3868 * @q: the queue of the device
3869 *
3870 * Description:
3871 * Update the queue's runtime status to RESUMING in preparation for the
3872 * runtime resume of the device.
3873 *
3874 * This function should be called near the start of the device's
3875 * runtime_resume callback.
3876 */
3877void blk_pre_runtime_resume(struct request_queue *q)
3878{
4fd41a85
KX
3879 if (!q->dev)
3880 return;
3881
6c954667
LM
3882 spin_lock_irq(q->queue_lock);
3883 q->rpm_status = RPM_RESUMING;
3884 spin_unlock_irq(q->queue_lock);
3885}
3886EXPORT_SYMBOL(blk_pre_runtime_resume);
3887
3888/**
3889 * blk_post_runtime_resume - Post runtime resume processing
3890 * @q: the queue of the device
3891 * @err: return value of the device's runtime_resume function
3892 *
3893 * Description:
3894 * Update the queue's runtime status according to the return value of the
3895 * device's runtime_resume function. If it is successfully resumed, process
3896 * the requests that are queued into the device's queue when it is resuming
3897 * and then mark last busy and initiate autosuspend for it.
3898 *
3899 * This function should be called near the end of the device's
3900 * runtime_resume callback.
3901 */
3902void blk_post_runtime_resume(struct request_queue *q, int err)
3903{
4fd41a85
KX
3904 if (!q->dev)
3905 return;
3906
6c954667
LM
3907 spin_lock_irq(q->queue_lock);
3908 if (!err) {
3909 q->rpm_status = RPM_ACTIVE;
3910 __blk_run_queue(q);
3911 pm_runtime_mark_last_busy(q->dev);
c60855cd 3912 pm_request_autosuspend(q->dev);
6c954667
LM
3913 } else {
3914 q->rpm_status = RPM_SUSPENDED;
3915 }
3916 spin_unlock_irq(q->queue_lock);
3917}
3918EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3919
3920/**
3921 * blk_set_runtime_active - Force runtime status of the queue to be active
3922 * @q: the queue of the device
3923 *
3924 * If the device is left runtime suspended during system suspend the resume
3925 * hook typically resumes the device and corrects runtime status
3926 * accordingly. However, that does not affect the queue runtime PM status
3927 * which is still "suspended". This prevents processing requests from the
3928 * queue.
3929 *
3930 * This function can be used in driver's resume hook to correct queue
3931 * runtime PM status and re-enable peeking requests from the queue. It
3932 * should be called before first request is added to the queue.
3933 */
3934void blk_set_runtime_active(struct request_queue *q)
3935{
3936 spin_lock_irq(q->queue_lock);
3937 q->rpm_status = RPM_ACTIVE;
3938 pm_runtime_mark_last_busy(q->dev);
3939 pm_request_autosuspend(q->dev);
3940 spin_unlock_irq(q->queue_lock);
3941}
3942EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3943#endif
3944
1da177e4
LT
3945int __init blk_dev_init(void)
3946{
ef295ecf
CH
3947 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3948 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3949 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3950 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3951 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3952
89b90be2
TH
3953 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3954 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3955 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3956 if (!kblockd_workqueue)
3957 panic("Failed to create kblockd\n");
3958
3959 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3960 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3961
c2789bd4 3962 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3963 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3964
18fbda91
OS
3965#ifdef CONFIG_DEBUG_FS
3966 blk_debugfs_root = debugfs_create_dir("block", NULL);
3967#endif
3968
d38ecf93 3969 return 0;
1da177e4 3970}