Merge tag 'mailbox-v5.4' of git://git.linaro.org/landing-teams/working/fujitsu/integr...
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
1da177e4
LT
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
1da177e4
LT
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/backing-dev.h>
18#include <linux/bio.h>
19#include <linux/blkdev.h>
320ae51f 20#include <linux/blk-mq.h>
1da177e4
LT
21#include <linux/highmem.h>
22#include <linux/mm.h>
23#include <linux/kernel_stat.h>
24#include <linux/string.h>
25#include <linux/init.h>
1da177e4
LT
26#include <linux/completion.h>
27#include <linux/slab.h>
28#include <linux/swap.h>
29#include <linux/writeback.h>
faccbd4b 30#include <linux/task_io_accounting_ops.h>
c17bb495 31#include <linux/fault-inject.h>
73c10101 32#include <linux/list_sort.h>
e3c78ca5 33#include <linux/delay.h>
aaf7c680 34#include <linux/ratelimit.h>
6c954667 35#include <linux/pm_runtime.h>
eea8f41c 36#include <linux/blk-cgroup.h>
18fbda91 37#include <linux/debugfs.h>
30abb3a6 38#include <linux/bpf.h>
b8e24a93 39#include <linux/psi.h>
55782138
LZ
40
41#define CREATE_TRACE_POINTS
42#include <trace/events/block.h>
1da177e4 43
8324aa91 44#include "blk.h"
43a5e4e2 45#include "blk-mq.h"
bd166ef1 46#include "blk-mq-sched.h"
bca6b067 47#include "blk-pm.h"
c1c80384 48#include "blk-rq-qos.h"
8324aa91 49
18fbda91
OS
50#ifdef CONFIG_DEBUG_FS
51struct dentry *blk_debugfs_root;
52#endif
53
d07335e5 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 55EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 56EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 57EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 58EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 59
a73f730d
TH
60DEFINE_IDA(blk_queue_ida);
61
1da177e4
LT
62/*
63 * For queue allocation
64 */
6728cb0e 65struct kmem_cache *blk_requestq_cachep;
1da177e4 66
1da177e4
LT
67/*
68 * Controlling structure to kblockd
69 */
ff856bad 70static struct workqueue_struct *kblockd_workqueue;
1da177e4 71
8814ce8a
BVA
72/**
73 * blk_queue_flag_set - atomically set a queue flag
74 * @flag: flag to be set
75 * @q: request queue
76 */
77void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
78{
57d74df9 79 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
80}
81EXPORT_SYMBOL(blk_queue_flag_set);
82
83/**
84 * blk_queue_flag_clear - atomically clear a queue flag
85 * @flag: flag to be cleared
86 * @q: request queue
87 */
88void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
89{
57d74df9 90 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
91}
92EXPORT_SYMBOL(blk_queue_flag_clear);
93
94/**
95 * blk_queue_flag_test_and_set - atomically test and set a queue flag
96 * @flag: flag to be set
97 * @q: request queue
98 *
99 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
100 * the flag was already set.
101 */
102bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
103{
57d74df9 104 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
105}
106EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
107
2a4aa30c 108void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 109{
1afb20f3
FT
110 memset(rq, 0, sizeof(*rq));
111
1da177e4 112 INIT_LIST_HEAD(&rq->queuelist);
63a71386 113 rq->q = q;
a2dec7b3 114 rq->__sector = (sector_t) -1;
2e662b65
JA
115 INIT_HLIST_NODE(&rq->hash);
116 RB_CLEAR_NODE(&rq->rb_node);
63a71386 117 rq->tag = -1;
bd166ef1 118 rq->internal_tag = -1;
522a7775 119 rq->start_time_ns = ktime_get_ns();
09e099d4 120 rq->part = NULL;
b554db14 121 refcount_set(&rq->ref, 1);
1da177e4 122}
2a4aa30c 123EXPORT_SYMBOL(blk_rq_init);
1da177e4 124
e47bc4ed
CK
125#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
126static const char *const blk_op_name[] = {
127 REQ_OP_NAME(READ),
128 REQ_OP_NAME(WRITE),
129 REQ_OP_NAME(FLUSH),
130 REQ_OP_NAME(DISCARD),
131 REQ_OP_NAME(SECURE_ERASE),
132 REQ_OP_NAME(ZONE_RESET),
6e33dbf2 133 REQ_OP_NAME(ZONE_RESET_ALL),
e47bc4ed
CK
134 REQ_OP_NAME(WRITE_SAME),
135 REQ_OP_NAME(WRITE_ZEROES),
136 REQ_OP_NAME(SCSI_IN),
137 REQ_OP_NAME(SCSI_OUT),
138 REQ_OP_NAME(DRV_IN),
139 REQ_OP_NAME(DRV_OUT),
140};
141#undef REQ_OP_NAME
142
143/**
144 * blk_op_str - Return string XXX in the REQ_OP_XXX.
145 * @op: REQ_OP_XXX.
146 *
147 * Description: Centralize block layer function to convert REQ_OP_XXX into
148 * string format. Useful in the debugging and tracing bio or request. For
149 * invalid REQ_OP_XXX it returns string "UNKNOWN".
150 */
151inline const char *blk_op_str(unsigned int op)
152{
153 const char *op_str = "UNKNOWN";
154
155 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
156 op_str = blk_op_name[op];
157
158 return op_str;
159}
160EXPORT_SYMBOL_GPL(blk_op_str);
161
2a842aca
CH
162static const struct {
163 int errno;
164 const char *name;
165} blk_errors[] = {
166 [BLK_STS_OK] = { 0, "" },
167 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
168 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
169 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
170 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
171 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
172 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
173 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
174 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
175 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 176 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 177 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 178
4e4cbee9
CH
179 /* device mapper special case, should not leak out: */
180 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
181
2a842aca
CH
182 /* everything else not covered above: */
183 [BLK_STS_IOERR] = { -EIO, "I/O" },
184};
185
186blk_status_t errno_to_blk_status(int errno)
187{
188 int i;
189
190 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
191 if (blk_errors[i].errno == errno)
192 return (__force blk_status_t)i;
193 }
194
195 return BLK_STS_IOERR;
196}
197EXPORT_SYMBOL_GPL(errno_to_blk_status);
198
199int blk_status_to_errno(blk_status_t status)
200{
201 int idx = (__force int)status;
202
34bd9c1c 203 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
204 return -EIO;
205 return blk_errors[idx].errno;
206}
207EXPORT_SYMBOL_GPL(blk_status_to_errno);
208
178cc590
CH
209static void print_req_error(struct request *req, blk_status_t status,
210 const char *caller)
2a842aca
CH
211{
212 int idx = (__force int)status;
213
34bd9c1c 214 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
215 return;
216
178cc590 217 printk_ratelimited(KERN_ERR
b0e5168a
CK
218 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
219 "phys_seg %u prio class %u\n",
178cc590 220 caller, blk_errors[idx].name,
b0e5168a
CK
221 req->rq_disk ? req->rq_disk->disk_name : "?",
222 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
223 req->cmd_flags & ~REQ_OP_MASK,
224 req->nr_phys_segments,
225 IOPRIO_PRIO_CLASS(req->ioprio));
2a842aca
CH
226}
227
5bb23a68 228static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 229 unsigned int nbytes, blk_status_t error)
1da177e4 230{
78d8e58a 231 if (error)
4e4cbee9 232 bio->bi_status = error;
797e7dbb 233
e8064021 234 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 235 bio_set_flag(bio, BIO_QUIET);
08bafc03 236
f79ea416 237 bio_advance(bio, nbytes);
7ba1ba12 238
143a87f4 239 /* don't actually finish bio if it's part of flush sequence */
e8064021 240 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 241 bio_endio(bio);
1da177e4 242}
1da177e4 243
1da177e4
LT
244void blk_dump_rq_flags(struct request *rq, char *msg)
245{
aebf526b
CH
246 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
247 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 248 (unsigned long long) rq->cmd_flags);
1da177e4 249
83096ebf
TH
250 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
251 (unsigned long long)blk_rq_pos(rq),
252 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
253 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
254 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 255}
1da177e4
LT
256EXPORT_SYMBOL(blk_dump_rq_flags);
257
1da177e4
LT
258/**
259 * blk_sync_queue - cancel any pending callbacks on a queue
260 * @q: the queue
261 *
262 * Description:
263 * The block layer may perform asynchronous callback activity
264 * on a queue, such as calling the unplug function after a timeout.
265 * A block device may call blk_sync_queue to ensure that any
266 * such activity is cancelled, thus allowing it to release resources
59c51591 267 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
268 * that its ->make_request_fn will not re-add plugging prior to calling
269 * this function.
270 *
da527770 271 * This function does not cancel any asynchronous activity arising
da3dae54 272 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 273 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 274 *
1da177e4
LT
275 */
276void blk_sync_queue(struct request_queue *q)
277{
70ed28b9 278 del_timer_sync(&q->timeout);
4e9b6f20 279 cancel_work_sync(&q->timeout_work);
1da177e4
LT
280}
281EXPORT_SYMBOL(blk_sync_queue);
282
c9254f2d 283/**
cd84a62e 284 * blk_set_pm_only - increment pm_only counter
c9254f2d 285 * @q: request queue pointer
c9254f2d 286 */
cd84a62e 287void blk_set_pm_only(struct request_queue *q)
c9254f2d 288{
cd84a62e 289 atomic_inc(&q->pm_only);
c9254f2d 290}
cd84a62e 291EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 292
cd84a62e 293void blk_clear_pm_only(struct request_queue *q)
c9254f2d 294{
cd84a62e
BVA
295 int pm_only;
296
297 pm_only = atomic_dec_return(&q->pm_only);
298 WARN_ON_ONCE(pm_only < 0);
299 if (pm_only == 0)
300 wake_up_all(&q->mq_freeze_wq);
c9254f2d 301}
cd84a62e 302EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 303
165125e1 304void blk_put_queue(struct request_queue *q)
483f4afc
AV
305{
306 kobject_put(&q->kobj);
307}
d86e0e83 308EXPORT_SYMBOL(blk_put_queue);
483f4afc 309
aed3ea94
JA
310void blk_set_queue_dying(struct request_queue *q)
311{
8814ce8a 312 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
aed3ea94 313
d3cfb2a0
ML
314 /*
315 * When queue DYING flag is set, we need to block new req
316 * entering queue, so we call blk_freeze_queue_start() to
317 * prevent I/O from crossing blk_queue_enter().
318 */
319 blk_freeze_queue_start(q);
320
344e9ffc 321 if (queue_is_mq(q))
aed3ea94 322 blk_mq_wake_waiters(q);
055f6e18
ML
323
324 /* Make blk_queue_enter() reexamine the DYING flag. */
325 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
326}
327EXPORT_SYMBOL_GPL(blk_set_queue_dying);
328
c9a929dd
TH
329/**
330 * blk_cleanup_queue - shutdown a request queue
331 * @q: request queue to shutdown
332 *
c246e80d
BVA
333 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
334 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 335 */
6728cb0e 336void blk_cleanup_queue(struct request_queue *q)
483f4afc 337{
3f3299d5 338 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 339 mutex_lock(&q->sysfs_lock);
aed3ea94 340 blk_set_queue_dying(q);
6ecf23af 341
57d74df9
CH
342 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
343 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
344 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
345 mutex_unlock(&q->sysfs_lock);
346
c246e80d
BVA
347 /*
348 * Drain all requests queued before DYING marking. Set DEAD flag to
67ed8b73
BVA
349 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
350 * after draining finished.
c246e80d 351 */
3ef28e83 352 blk_freeze_queue(q);
c57cdf7a
ML
353
354 rq_qos_exit(q);
355
57d74df9 356 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
c9a929dd 357
5a48fc14
DW
358 /* for synchronous bio-based driver finish in-flight integrity i/o */
359 blk_flush_integrity();
360
c9a929dd 361 /* @q won't process any more request, flush async actions */
dc3b17cc 362 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
363 blk_sync_queue(q);
364
344e9ffc 365 if (queue_is_mq(q))
c7e2d94b 366 blk_mq_exit_queue(q);
a1ce35fa 367
c3e22192
ML
368 /*
369 * In theory, request pool of sched_tags belongs to request queue.
370 * However, the current implementation requires tag_set for freeing
371 * requests, so free the pool now.
372 *
373 * Queue has become frozen, there can't be any in-queue requests, so
374 * it is safe to free requests now.
375 */
376 mutex_lock(&q->sysfs_lock);
377 if (q->elevator)
378 blk_mq_sched_free_requests(q);
379 mutex_unlock(&q->sysfs_lock);
380
3ef28e83 381 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 382
c9a929dd 383 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
384 blk_put_queue(q);
385}
1da177e4
LT
386EXPORT_SYMBOL(blk_cleanup_queue);
387
165125e1 388struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 389{
6d469642 390 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
391}
392EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 393
3a0a5299
BVA
394/**
395 * blk_queue_enter() - try to increase q->q_usage_counter
396 * @q: request queue pointer
397 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
398 */
9a95e4ef 399int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 400{
cd84a62e 401 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
3a0a5299 402
3ef28e83 403 while (true) {
3a0a5299 404 bool success = false;
3ef28e83 405
818e0fa2 406 rcu_read_lock();
3a0a5299
BVA
407 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
408 /*
cd84a62e
BVA
409 * The code that increments the pm_only counter is
410 * responsible for ensuring that that counter is
411 * globally visible before the queue is unfrozen.
3a0a5299 412 */
cd84a62e 413 if (pm || !blk_queue_pm_only(q)) {
3a0a5299
BVA
414 success = true;
415 } else {
416 percpu_ref_put(&q->q_usage_counter);
417 }
418 }
818e0fa2 419 rcu_read_unlock();
3a0a5299
BVA
420
421 if (success)
3ef28e83
DW
422 return 0;
423
3a0a5299 424 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
425 return -EBUSY;
426
5ed61d3f 427 /*
1671d522 428 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 429 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
430 * .q_usage_counter and reading .mq_freeze_depth or
431 * queue dying flag, otherwise the following wait may
432 * never return if the two reads are reordered.
5ed61d3f
ML
433 */
434 smp_rmb();
435
1dc3039b 436 wait_event(q->mq_freeze_wq,
7996a8b5 437 (!q->mq_freeze_depth &&
0d25bd07
BVA
438 (pm || (blk_pm_request_resume(q),
439 !blk_queue_pm_only(q)))) ||
1dc3039b 440 blk_queue_dying(q));
3ef28e83
DW
441 if (blk_queue_dying(q))
442 return -ENODEV;
3ef28e83
DW
443 }
444}
445
446void blk_queue_exit(struct request_queue *q)
447{
448 percpu_ref_put(&q->q_usage_counter);
449}
450
451static void blk_queue_usage_counter_release(struct percpu_ref *ref)
452{
453 struct request_queue *q =
454 container_of(ref, struct request_queue, q_usage_counter);
455
456 wake_up_all(&q->mq_freeze_wq);
457}
458
bca237a5 459static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 460{
bca237a5 461 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
462
463 kblockd_schedule_work(&q->timeout_work);
464}
465
2e3c18d0
TH
466static void blk_timeout_work(struct work_struct *work)
467{
468}
469
498f6650
BVA
470/**
471 * blk_alloc_queue_node - allocate a request queue
472 * @gfp_mask: memory allocation flags
473 * @node_id: NUMA node to allocate memory from
498f6650 474 */
6d469642 475struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 476{
165125e1 477 struct request_queue *q;
338aa96d 478 int ret;
1946089a 479
8324aa91 480 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 481 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
482 if (!q)
483 return NULL;
484
cbf62af3 485 q->last_merge = NULL;
cbf62af3 486
00380a40 487 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 488 if (q->id < 0)
3d2936f4 489 goto fail_q;
a73f730d 490
338aa96d
KO
491 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
492 if (ret)
54efd50b
KO
493 goto fail_id;
494
d03f6cdc
JK
495 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
496 if (!q->backing_dev_info)
497 goto fail_split;
498
a83b576c
JA
499 q->stats = blk_alloc_queue_stats();
500 if (!q->stats)
501 goto fail_stats;
502
b5420237 503 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
dc3b17cc
JK
504 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
505 q->backing_dev_info->name = "block";
5151412d 506 q->node = node_id;
0989a025 507
bca237a5
KC
508 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
509 laptop_mode_timer_fn, 0);
510 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
2e3c18d0 511 INIT_WORK(&q->timeout_work, blk_timeout_work);
a612fddf 512 INIT_LIST_HEAD(&q->icq_list);
4eef3049 513#ifdef CONFIG_BLK_CGROUP
e8989fae 514 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 515#endif
483f4afc 516
8324aa91 517 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 518
5acb3cc2
WL
519#ifdef CONFIG_BLK_DEV_IO_TRACE
520 mutex_init(&q->blk_trace_mutex);
521#endif
483f4afc 522 mutex_init(&q->sysfs_lock);
cecf5d87 523 mutex_init(&q->sysfs_dir_lock);
0d945c1f 524 spin_lock_init(&q->queue_lock);
c94a96ac 525
320ae51f 526 init_waitqueue_head(&q->mq_freeze_wq);
7996a8b5 527 mutex_init(&q->mq_freeze_lock);
320ae51f 528
3ef28e83
DW
529 /*
530 * Init percpu_ref in atomic mode so that it's faster to shutdown.
531 * See blk_register_queue() for details.
532 */
533 if (percpu_ref_init(&q->q_usage_counter,
534 blk_queue_usage_counter_release,
535 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 536 goto fail_bdi;
f51b802c 537
3ef28e83
DW
538 if (blkcg_init_queue(q))
539 goto fail_ref;
540
1da177e4 541 return q;
a73f730d 542
3ef28e83
DW
543fail_ref:
544 percpu_ref_exit(&q->q_usage_counter);
fff4996b 545fail_bdi:
a83b576c
JA
546 blk_free_queue_stats(q->stats);
547fail_stats:
d03f6cdc 548 bdi_put(q->backing_dev_info);
54efd50b 549fail_split:
338aa96d 550 bioset_exit(&q->bio_split);
a73f730d
TH
551fail_id:
552 ida_simple_remove(&blk_queue_ida, q->id);
553fail_q:
554 kmem_cache_free(blk_requestq_cachep, q);
555 return NULL;
1da177e4 556}
1946089a 557EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4 558
09ac46c4 559bool blk_get_queue(struct request_queue *q)
1da177e4 560{
3f3299d5 561 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
562 __blk_get_queue(q);
563 return true;
1da177e4
LT
564 }
565
09ac46c4 566 return false;
1da177e4 567}
d86e0e83 568EXPORT_SYMBOL(blk_get_queue);
1da177e4 569
a1ce35fa
JA
570/**
571 * blk_get_request - allocate a request
572 * @q: request queue to allocate a request for
573 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
574 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1da177e4 575 */
a1ce35fa
JA
576struct request *blk_get_request(struct request_queue *q, unsigned int op,
577 blk_mq_req_flags_t flags)
1da177e4 578{
a1ce35fa 579 struct request *req;
1da177e4 580
a1ce35fa
JA
581 WARN_ON_ONCE(op & REQ_NOWAIT);
582 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1da177e4 583
a1ce35fa
JA
584 req = blk_mq_alloc_request(q, op, flags);
585 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
586 q->mq_ops->initialize_rq_fn(req);
1da177e4 587
a1ce35fa 588 return req;
1da177e4 589}
a1ce35fa 590EXPORT_SYMBOL(blk_get_request);
1da177e4 591
1da177e4
LT
592void blk_put_request(struct request *req)
593{
a1ce35fa 594 blk_mq_free_request(req);
1da177e4 595}
1da177e4
LT
596EXPORT_SYMBOL(blk_put_request);
597
14ccb66b
CH
598bool bio_attempt_back_merge(struct request *req, struct bio *bio,
599 unsigned int nr_segs)
73c10101 600{
1eff9d32 601 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 602
14ccb66b 603 if (!ll_back_merge_fn(req, bio, nr_segs))
73c10101
JA
604 return false;
605
14ccb66b 606 trace_block_bio_backmerge(req->q, req, bio);
d3e65fff 607 rq_qos_merge(req->q, req, bio);
73c10101
JA
608
609 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
610 blk_rq_set_mixed_merge(req);
611
612 req->biotail->bi_next = bio;
613 req->biotail = bio;
4f024f37 614 req->__data_len += bio->bi_iter.bi_size;
73c10101 615
320ae51f 616 blk_account_io_start(req, false);
73c10101
JA
617 return true;
618}
619
14ccb66b
CH
620bool bio_attempt_front_merge(struct request *req, struct bio *bio,
621 unsigned int nr_segs)
73c10101 622{
1eff9d32 623 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 624
14ccb66b 625 if (!ll_front_merge_fn(req, bio, nr_segs))
73c10101
JA
626 return false;
627
14ccb66b 628 trace_block_bio_frontmerge(req->q, req, bio);
d3e65fff 629 rq_qos_merge(req->q, req, bio);
73c10101
JA
630
631 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
632 blk_rq_set_mixed_merge(req);
633
73c10101
JA
634 bio->bi_next = req->bio;
635 req->bio = bio;
636
4f024f37
KO
637 req->__sector = bio->bi_iter.bi_sector;
638 req->__data_len += bio->bi_iter.bi_size;
73c10101 639
320ae51f 640 blk_account_io_start(req, false);
73c10101
JA
641 return true;
642}
643
1e739730
CH
644bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
645 struct bio *bio)
646{
647 unsigned short segments = blk_rq_nr_discard_segments(req);
648
649 if (segments >= queue_max_discard_segments(q))
650 goto no_merge;
651 if (blk_rq_sectors(req) + bio_sectors(bio) >
652 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
653 goto no_merge;
654
d3e65fff
TH
655 rq_qos_merge(q, req, bio);
656
1e739730
CH
657 req->biotail->bi_next = bio;
658 req->biotail = bio;
659 req->__data_len += bio->bi_iter.bi_size;
1e739730
CH
660 req->nr_phys_segments = segments + 1;
661
662 blk_account_io_start(req, false);
663 return true;
664no_merge:
665 req_set_nomerge(q, req);
666 return false;
667}
668
bd87b589 669/**
320ae51f 670 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
671 * @q: request_queue new bio is being queued at
672 * @bio: new bio being queued
14ccb66b 673 * @nr_segs: number of segments in @bio
ccc2600b
RD
674 * @same_queue_rq: pointer to &struct request that gets filled in when
675 * another request associated with @q is found on the plug list
676 * (optional, may be %NULL)
bd87b589
TH
677 *
678 * Determine whether @bio being queued on @q can be merged with a request
679 * on %current's plugged list. Returns %true if merge was successful,
680 * otherwise %false.
681 *
07c2bd37
TH
682 * Plugging coalesces IOs from the same issuer for the same purpose without
683 * going through @q->queue_lock. As such it's more of an issuing mechanism
684 * than scheduling, and the request, while may have elvpriv data, is not
685 * added on the elevator at this point. In addition, we don't have
686 * reliable access to the elevator outside queue lock. Only check basic
687 * merging parameters without querying the elevator.
da41a589
RE
688 *
689 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 690 */
320ae51f 691bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
14ccb66b 692 unsigned int nr_segs, struct request **same_queue_rq)
73c10101
JA
693{
694 struct blk_plug *plug;
695 struct request *rq;
92f399c7 696 struct list_head *plug_list;
73c10101 697
b49773e7 698 plug = blk_mq_plug(q, bio);
73c10101 699 if (!plug)
34fe7c05 700 return false;
73c10101 701
a1ce35fa 702 plug_list = &plug->mq_list;
92f399c7
SL
703
704 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 705 bool merged = false;
73c10101 706
5f0ed774 707 if (rq->q == q && same_queue_rq) {
5b3f341f
SL
708 /*
709 * Only blk-mq multiple hardware queues case checks the
710 * rq in the same queue, there should be only one such
711 * rq in a queue
712 **/
5f0ed774 713 *same_queue_rq = rq;
5b3f341f 714 }
56ebdaf2 715
07c2bd37 716 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
717 continue;
718
34fe7c05
CH
719 switch (blk_try_merge(rq, bio)) {
720 case ELEVATOR_BACK_MERGE:
14ccb66b 721 merged = bio_attempt_back_merge(rq, bio, nr_segs);
34fe7c05
CH
722 break;
723 case ELEVATOR_FRONT_MERGE:
14ccb66b 724 merged = bio_attempt_front_merge(rq, bio, nr_segs);
34fe7c05 725 break;
1e739730
CH
726 case ELEVATOR_DISCARD_MERGE:
727 merged = bio_attempt_discard_merge(q, rq, bio);
728 break;
34fe7c05
CH
729 default:
730 break;
73c10101 731 }
34fe7c05
CH
732
733 if (merged)
734 return true;
73c10101 735 }
34fe7c05
CH
736
737 return false;
73c10101
JA
738}
739
52c5e62d 740static void handle_bad_sector(struct bio *bio, sector_t maxsector)
1da177e4
LT
741{
742 char b[BDEVNAME_SIZE];
743
744 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 745 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 746 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 747 (unsigned long long)bio_end_sector(bio),
52c5e62d 748 (long long)maxsector);
1da177e4
LT
749}
750
c17bb495
AM
751#ifdef CONFIG_FAIL_MAKE_REQUEST
752
753static DECLARE_FAULT_ATTR(fail_make_request);
754
755static int __init setup_fail_make_request(char *str)
756{
757 return setup_fault_attr(&fail_make_request, str);
758}
759__setup("fail_make_request=", setup_fail_make_request);
760
b2c9cd37 761static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 762{
b2c9cd37 763 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
764}
765
766static int __init fail_make_request_debugfs(void)
767{
dd48c085
AM
768 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
769 NULL, &fail_make_request);
770
21f9fcd8 771 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
772}
773
774late_initcall(fail_make_request_debugfs);
775
776#else /* CONFIG_FAIL_MAKE_REQUEST */
777
b2c9cd37
AM
778static inline bool should_fail_request(struct hd_struct *part,
779 unsigned int bytes)
c17bb495 780{
b2c9cd37 781 return false;
c17bb495
AM
782}
783
784#endif /* CONFIG_FAIL_MAKE_REQUEST */
785
721c7fc7
ID
786static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
787{
b089cfd9
JA
788 const int op = bio_op(bio);
789
8b2ded1c 790 if (part->policy && op_is_write(op)) {
721c7fc7
ID
791 char b[BDEVNAME_SIZE];
792
8b2ded1c
MP
793 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
794 return false;
795
a32e236e 796 WARN_ONCE(1,
721c7fc7
ID
797 "generic_make_request: Trying to write "
798 "to read-only block-device %s (partno %d)\n",
799 bio_devname(bio, b), part->partno);
a32e236e
LT
800 /* Older lvm-tools actually trigger this */
801 return false;
721c7fc7
ID
802 }
803
804 return false;
805}
806
30abb3a6
HM
807static noinline int should_fail_bio(struct bio *bio)
808{
809 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
810 return -EIO;
811 return 0;
812}
813ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
814
52c5e62d
CH
815/*
816 * Check whether this bio extends beyond the end of the device or partition.
817 * This may well happen - the kernel calls bread() without checking the size of
818 * the device, e.g., when mounting a file system.
819 */
820static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
821{
822 unsigned int nr_sectors = bio_sectors(bio);
823
824 if (nr_sectors && maxsector &&
825 (nr_sectors > maxsector ||
826 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
827 handle_bad_sector(bio, maxsector);
828 return -EIO;
829 }
830 return 0;
831}
832
74d46992
CH
833/*
834 * Remap block n of partition p to block n+start(p) of the disk.
835 */
836static inline int blk_partition_remap(struct bio *bio)
837{
838 struct hd_struct *p;
52c5e62d 839 int ret = -EIO;
74d46992 840
721c7fc7
ID
841 rcu_read_lock();
842 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
52c5e62d
CH
843 if (unlikely(!p))
844 goto out;
845 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
846 goto out;
847 if (unlikely(bio_check_ro(bio, p)))
721c7fc7 848 goto out;
721c7fc7 849
74d46992
CH
850 /*
851 * Zone reset does not include bi_size so bio_sectors() is always 0.
852 * Include a test for the reset op code and perform the remap if needed.
853 */
52c5e62d
CH
854 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
855 if (bio_check_eod(bio, part_nr_sects_read(p)))
856 goto out;
857 bio->bi_iter.bi_sector += p->start_sect;
52c5e62d
CH
858 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
859 bio->bi_iter.bi_sector - p->start_sect);
860 }
c04fa44b 861 bio->bi_partno = 0;
52c5e62d 862 ret = 0;
721c7fc7
ID
863out:
864 rcu_read_unlock();
74d46992
CH
865 return ret;
866}
867
27a84d54
CH
868static noinline_for_stack bool
869generic_make_request_checks(struct bio *bio)
1da177e4 870{
165125e1 871 struct request_queue *q;
5a7bbad2 872 int nr_sectors = bio_sectors(bio);
4e4cbee9 873 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 874 char b[BDEVNAME_SIZE];
1da177e4
LT
875
876 might_sleep();
1da177e4 877
74d46992 878 q = bio->bi_disk->queue;
5a7bbad2
CH
879 if (unlikely(!q)) {
880 printk(KERN_ERR
881 "generic_make_request: Trying to access "
882 "nonexistent block-device %s (%Lu)\n",
74d46992 883 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
884 goto end_io;
885 }
c17bb495 886
03a07c92
GR
887 /*
888 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
889 * if queue is not a request based queue.
890 */
344e9ffc 891 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
03a07c92
GR
892 goto not_supported;
893
30abb3a6 894 if (should_fail_bio(bio))
5a7bbad2 895 goto end_io;
2056a782 896
52c5e62d
CH
897 if (bio->bi_partno) {
898 if (unlikely(blk_partition_remap(bio)))
721c7fc7
ID
899 goto end_io;
900 } else {
52c5e62d
CH
901 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
902 goto end_io;
903 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
721c7fc7
ID
904 goto end_io;
905 }
2056a782 906
5a7bbad2
CH
907 /*
908 * Filter flush bio's early so that make_request based
909 * drivers without flush support don't have to worry
910 * about them.
911 */
f3a8ab7d 912 if (op_is_flush(bio->bi_opf) &&
c888a8f9 913 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 914 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 915 if (!nr_sectors) {
4e4cbee9 916 status = BLK_STS_OK;
51fd77bd
JA
917 goto end_io;
918 }
5a7bbad2 919 }
5ddfe969 920
d04c406f
CH
921 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
922 bio->bi_opf &= ~REQ_HIPRI;
923
288dab8a
CH
924 switch (bio_op(bio)) {
925 case REQ_OP_DISCARD:
926 if (!blk_queue_discard(q))
927 goto not_supported;
928 break;
929 case REQ_OP_SECURE_ERASE:
930 if (!blk_queue_secure_erase(q))
931 goto not_supported;
932 break;
933 case REQ_OP_WRITE_SAME:
74d46992 934 if (!q->limits.max_write_same_sectors)
288dab8a 935 goto not_supported;
58886785 936 break;
2d253440 937 case REQ_OP_ZONE_RESET:
74d46992 938 if (!blk_queue_is_zoned(q))
2d253440 939 goto not_supported;
288dab8a 940 break;
6e33dbf2
CK
941 case REQ_OP_ZONE_RESET_ALL:
942 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
943 goto not_supported;
944 break;
a6f0788e 945 case REQ_OP_WRITE_ZEROES:
74d46992 946 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
947 goto not_supported;
948 break;
288dab8a
CH
949 default:
950 break;
5a7bbad2 951 }
01edede4 952
7f4b35d1
TH
953 /*
954 * Various block parts want %current->io_context and lazy ioc
955 * allocation ends up trading a lot of pain for a small amount of
956 * memory. Just allocate it upfront. This may fail and block
957 * layer knows how to live with it.
958 */
959 create_io_context(GFP_ATOMIC, q->node);
960
ae118896
TH
961 if (!blkcg_bio_issue_check(q, bio))
962 return false;
27a84d54 963
fbbaf700
N
964 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
965 trace_block_bio_queue(q, bio);
966 /* Now that enqueuing has been traced, we need to trace
967 * completion as well.
968 */
969 bio_set_flag(bio, BIO_TRACE_COMPLETION);
970 }
27a84d54 971 return true;
a7384677 972
288dab8a 973not_supported:
4e4cbee9 974 status = BLK_STS_NOTSUPP;
a7384677 975end_io:
4e4cbee9 976 bio->bi_status = status;
4246a0b6 977 bio_endio(bio);
27a84d54 978 return false;
1da177e4
LT
979}
980
27a84d54
CH
981/**
982 * generic_make_request - hand a buffer to its device driver for I/O
983 * @bio: The bio describing the location in memory and on the device.
984 *
985 * generic_make_request() is used to make I/O requests of block
986 * devices. It is passed a &struct bio, which describes the I/O that needs
987 * to be done.
988 *
989 * generic_make_request() does not return any status. The
990 * success/failure status of the request, along with notification of
991 * completion, is delivered asynchronously through the bio->bi_end_io
992 * function described (one day) else where.
993 *
994 * The caller of generic_make_request must make sure that bi_io_vec
995 * are set to describe the memory buffer, and that bi_dev and bi_sector are
996 * set to describe the device address, and the
997 * bi_end_io and optionally bi_private are set to describe how
998 * completion notification should be signaled.
999 *
1000 * generic_make_request and the drivers it calls may use bi_next if this
1001 * bio happens to be merged with someone else, and may resubmit the bio to
1002 * a lower device by calling into generic_make_request recursively, which
1003 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 1004 */
dece1635 1005blk_qc_t generic_make_request(struct bio *bio)
d89d8796 1006{
f5fe1b51
N
1007 /*
1008 * bio_list_on_stack[0] contains bios submitted by the current
1009 * make_request_fn.
1010 * bio_list_on_stack[1] contains bios that were submitted before
1011 * the current make_request_fn, but that haven't been processed
1012 * yet.
1013 */
1014 struct bio_list bio_list_on_stack[2];
dece1635 1015 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 1016
27a84d54 1017 if (!generic_make_request_checks(bio))
dece1635 1018 goto out;
27a84d54
CH
1019
1020 /*
1021 * We only want one ->make_request_fn to be active at a time, else
1022 * stack usage with stacked devices could be a problem. So use
1023 * current->bio_list to keep a list of requests submited by a
1024 * make_request_fn function. current->bio_list is also used as a
1025 * flag to say if generic_make_request is currently active in this
1026 * task or not. If it is NULL, then no make_request is active. If
1027 * it is non-NULL, then a make_request is active, and new requests
1028 * should be added at the tail
1029 */
bddd87c7 1030 if (current->bio_list) {
f5fe1b51 1031 bio_list_add(&current->bio_list[0], bio);
dece1635 1032 goto out;
d89d8796 1033 }
27a84d54 1034
d89d8796
NB
1035 /* following loop may be a bit non-obvious, and so deserves some
1036 * explanation.
1037 * Before entering the loop, bio->bi_next is NULL (as all callers
1038 * ensure that) so we have a list with a single bio.
1039 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1040 * we assign bio_list to a pointer to the bio_list_on_stack,
1041 * thus initialising the bio_list of new bios to be
27a84d54 1042 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1043 * through a recursive call to generic_make_request. If it
1044 * did, we find a non-NULL value in bio_list and re-enter the loop
1045 * from the top. In this case we really did just take the bio
bddd87c7 1046 * of the top of the list (no pretending) and so remove it from
27a84d54 1047 * bio_list, and call into ->make_request() again.
d89d8796
NB
1048 */
1049 BUG_ON(bio->bi_next);
f5fe1b51
N
1050 bio_list_init(&bio_list_on_stack[0]);
1051 current->bio_list = bio_list_on_stack;
d89d8796 1052 do {
fe200864
ML
1053 struct request_queue *q = bio->bi_disk->queue;
1054 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1055 BLK_MQ_REQ_NOWAIT : 0;
27a84d54 1056
fe200864 1057 if (likely(blk_queue_enter(q, flags) == 0)) {
79bd9959
N
1058 struct bio_list lower, same;
1059
1060 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
1061 bio_list_on_stack[1] = bio_list_on_stack[0];
1062 bio_list_init(&bio_list_on_stack[0]);
dece1635 1063 ret = q->make_request_fn(q, bio);
3ef28e83 1064
fe200864
ML
1065 blk_queue_exit(q);
1066
79bd9959
N
1067 /* sort new bios into those for a lower level
1068 * and those for the same level
1069 */
1070 bio_list_init(&lower);
1071 bio_list_init(&same);
f5fe1b51 1072 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 1073 if (q == bio->bi_disk->queue)
79bd9959
N
1074 bio_list_add(&same, bio);
1075 else
1076 bio_list_add(&lower, bio);
1077 /* now assemble so we handle the lowest level first */
f5fe1b51
N
1078 bio_list_merge(&bio_list_on_stack[0], &lower);
1079 bio_list_merge(&bio_list_on_stack[0], &same);
1080 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 1081 } else {
03a07c92
GR
1082 if (unlikely(!blk_queue_dying(q) &&
1083 (bio->bi_opf & REQ_NOWAIT)))
1084 bio_wouldblock_error(bio);
1085 else
1086 bio_io_error(bio);
3ef28e83 1087 }
f5fe1b51 1088 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 1089 } while (bio);
bddd87c7 1090 current->bio_list = NULL; /* deactivate */
dece1635
JA
1091
1092out:
1093 return ret;
d89d8796 1094}
1da177e4
LT
1095EXPORT_SYMBOL(generic_make_request);
1096
f421e1d9
CH
1097/**
1098 * direct_make_request - hand a buffer directly to its device driver for I/O
1099 * @bio: The bio describing the location in memory and on the device.
1100 *
1101 * This function behaves like generic_make_request(), but does not protect
1102 * against recursion. Must only be used if the called driver is known
1103 * to not call generic_make_request (or direct_make_request) again from
1104 * its make_request function. (Calling direct_make_request again from
1105 * a workqueue is perfectly fine as that doesn't recurse).
1106 */
1107blk_qc_t direct_make_request(struct bio *bio)
1108{
1109 struct request_queue *q = bio->bi_disk->queue;
1110 bool nowait = bio->bi_opf & REQ_NOWAIT;
1111 blk_qc_t ret;
1112
1113 if (!generic_make_request_checks(bio))
1114 return BLK_QC_T_NONE;
1115
3a0a5299 1116 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
f421e1d9
CH
1117 if (nowait && !blk_queue_dying(q))
1118 bio->bi_status = BLK_STS_AGAIN;
1119 else
1120 bio->bi_status = BLK_STS_IOERR;
1121 bio_endio(bio);
1122 return BLK_QC_T_NONE;
1123 }
1124
1125 ret = q->make_request_fn(q, bio);
1126 blk_queue_exit(q);
1127 return ret;
1128}
1129EXPORT_SYMBOL_GPL(direct_make_request);
1130
1da177e4 1131/**
710027a4 1132 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1133 * @bio: The &struct bio which describes the I/O
1134 *
1135 * submit_bio() is very similar in purpose to generic_make_request(), and
1136 * uses that function to do most of the work. Both are fairly rough
710027a4 1137 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1138 *
1139 */
4e49ea4a 1140blk_qc_t submit_bio(struct bio *bio)
1da177e4 1141{
b8e24a93
JW
1142 bool workingset_read = false;
1143 unsigned long pflags;
1144 blk_qc_t ret;
1145
d3f77dfd
TH
1146 if (blkcg_punt_bio_submit(bio))
1147 return BLK_QC_T_NONE;
1148
bf2de6f5
JA
1149 /*
1150 * If it's a regular read/write or a barrier with data attached,
1151 * go through the normal accounting stuff before submission.
1152 */
e2a60da7 1153 if (bio_has_data(bio)) {
4363ac7c
MP
1154 unsigned int count;
1155
95fe6c1a 1156 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
7c5a0dcf 1157 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
4363ac7c
MP
1158 else
1159 count = bio_sectors(bio);
1160
a8ebb056 1161 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
1162 count_vm_events(PGPGOUT, count);
1163 } else {
b8e24a93
JW
1164 if (bio_flagged(bio, BIO_WORKINGSET))
1165 workingset_read = true;
4f024f37 1166 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1167 count_vm_events(PGPGIN, count);
1168 }
1169
1170 if (unlikely(block_dump)) {
1171 char b[BDEVNAME_SIZE];
8dcbdc74 1172 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1173 current->comm, task_pid_nr(current),
a8ebb056 1174 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 1175 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 1176 bio_devname(bio, b), count);
bf2de6f5 1177 }
1da177e4
LT
1178 }
1179
b8e24a93
JW
1180 /*
1181 * If we're reading data that is part of the userspace
1182 * workingset, count submission time as memory stall. When the
1183 * device is congested, or the submitting cgroup IO-throttled,
1184 * submission can be a significant part of overall IO time.
1185 */
1186 if (workingset_read)
1187 psi_memstall_enter(&pflags);
1188
1189 ret = generic_make_request(bio);
1190
1191 if (workingset_read)
1192 psi_memstall_leave(&pflags);
1193
1194 return ret;
1da177e4 1195}
1da177e4
LT
1196EXPORT_SYMBOL(submit_bio);
1197
82124d60 1198/**
bf4e6b4e
HR
1199 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1200 * for new the queue limits
82124d60
KU
1201 * @q: the queue
1202 * @rq: the request being checked
1203 *
1204 * Description:
1205 * @rq may have been made based on weaker limitations of upper-level queues
1206 * in request stacking drivers, and it may violate the limitation of @q.
1207 * Since the block layer and the underlying device driver trust @rq
1208 * after it is inserted to @q, it should be checked against @q before
1209 * the insertion using this generic function.
1210 *
82124d60 1211 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
1212 * limits when retrying requests on other queues. Those requests need
1213 * to be checked against the new queue limits again during dispatch.
82124d60 1214 */
bf4e6b4e
HR
1215static int blk_cloned_rq_check_limits(struct request_queue *q,
1216 struct request *rq)
82124d60 1217{
8fe0d473 1218 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
61939b12
JP
1219 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1220 __func__, blk_rq_sectors(rq),
1221 blk_queue_get_max_sectors(q, req_op(rq)));
82124d60
KU
1222 return -EIO;
1223 }
1224
1225 /*
1226 * queue's settings related to segment counting like q->bounce_pfn
1227 * may differ from that of other stacking queues.
1228 * Recalculate it to check the request correctly on this queue's
1229 * limitation.
1230 */
e9cd19c0 1231 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
8a78362c 1232 if (rq->nr_phys_segments > queue_max_segments(q)) {
61939b12
JP
1233 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1234 __func__, rq->nr_phys_segments, queue_max_segments(q));
82124d60
KU
1235 return -EIO;
1236 }
1237
1238 return 0;
1239}
82124d60
KU
1240
1241/**
1242 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1243 * @q: the queue to submit the request
1244 * @rq: the request being queued
1245 */
2a842aca 1246blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60 1247{
bf4e6b4e 1248 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 1249 return BLK_STS_IOERR;
82124d60 1250
b2c9cd37
AM
1251 if (rq->rq_disk &&
1252 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 1253 return BLK_STS_IOERR;
82124d60 1254
a1ce35fa
JA
1255 if (blk_queue_io_stat(q))
1256 blk_account_io_start(rq, true);
82124d60
KU
1257
1258 /*
a1ce35fa
JA
1259 * Since we have a scheduler attached on the top device,
1260 * bypass a potential scheduler on the bottom device for
1261 * insert.
82124d60 1262 */
fd9c40f6 1263 return blk_mq_request_issue_directly(rq, true);
82124d60
KU
1264}
1265EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1266
80a761fd
TH
1267/**
1268 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1269 * @rq: request to examine
1270 *
1271 * Description:
1272 * A request could be merge of IOs which require different failure
1273 * handling. This function determines the number of bytes which
1274 * can be failed from the beginning of the request without
1275 * crossing into area which need to be retried further.
1276 *
1277 * Return:
1278 * The number of bytes to fail.
80a761fd
TH
1279 */
1280unsigned int blk_rq_err_bytes(const struct request *rq)
1281{
1282 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1283 unsigned int bytes = 0;
1284 struct bio *bio;
1285
e8064021 1286 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
1287 return blk_rq_bytes(rq);
1288
1289 /*
1290 * Currently the only 'mixing' which can happen is between
1291 * different fastfail types. We can safely fail portions
1292 * which have all the failfast bits that the first one has -
1293 * the ones which are at least as eager to fail as the first
1294 * one.
1295 */
1296 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 1297 if ((bio->bi_opf & ff) != ff)
80a761fd 1298 break;
4f024f37 1299 bytes += bio->bi_iter.bi_size;
80a761fd
TH
1300 }
1301
1302 /* this could lead to infinite loop */
1303 BUG_ON(blk_rq_bytes(rq) && !bytes);
1304 return bytes;
1305}
1306EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1307
320ae51f 1308void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 1309{
c2553b58 1310 if (blk_do_io_stat(req)) {
ddcf35d3 1311 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1312 struct hd_struct *part;
bc58ba94 1313
112f158f 1314 part_stat_lock();
09e099d4 1315 part = req->part;
112f158f 1316 part_stat_add(part, sectors[sgrp], bytes >> 9);
bc58ba94
JA
1317 part_stat_unlock();
1318 }
1319}
1320
522a7775 1321void blk_account_io_done(struct request *req, u64 now)
bc58ba94 1322{
bc58ba94 1323 /*
dd4c133f
TH
1324 * Account IO completion. flush_rq isn't accounted as a
1325 * normal IO on queueing nor completion. Accounting the
1326 * containing request is enough.
bc58ba94 1327 */
e8064021 1328 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
ddcf35d3 1329 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1330 struct hd_struct *part;
bc58ba94 1331
112f158f 1332 part_stat_lock();
09e099d4 1333 part = req->part;
bc58ba94 1334
5b18b5a7 1335 update_io_ticks(part, jiffies);
112f158f
MS
1336 part_stat_inc(part, ios[sgrp]);
1337 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
5b18b5a7 1338 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
ddcf35d3 1339 part_dec_in_flight(req->q, part, rq_data_dir(req));
bc58ba94 1340
6c23a968 1341 hd_struct_put(part);
bc58ba94
JA
1342 part_stat_unlock();
1343 }
1344}
1345
320ae51f
JA
1346void blk_account_io_start(struct request *rq, bool new_io)
1347{
1348 struct hd_struct *part;
1349 int rw = rq_data_dir(rq);
320ae51f
JA
1350
1351 if (!blk_do_io_stat(rq))
1352 return;
1353
112f158f 1354 part_stat_lock();
320ae51f
JA
1355
1356 if (!new_io) {
1357 part = rq->part;
112f158f 1358 part_stat_inc(part, merges[rw]);
320ae51f
JA
1359 } else {
1360 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1361 if (!hd_struct_try_get(part)) {
1362 /*
1363 * The partition is already being removed,
1364 * the request will be accounted on the disk only
1365 *
1366 * We take a reference on disk->part0 although that
1367 * partition will never be deleted, so we can treat
1368 * it as any other partition.
1369 */
1370 part = &rq->rq_disk->part0;
1371 hd_struct_get(part);
1372 }
d62e26b3 1373 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
1374 rq->part = part;
1375 }
1376
5b18b5a7
MP
1377 update_io_ticks(part, jiffies);
1378
320ae51f
JA
1379 part_stat_unlock();
1380}
1381
ef71de8b
CH
1382/*
1383 * Steal bios from a request and add them to a bio list.
1384 * The request must not have been partially completed before.
1385 */
1386void blk_steal_bios(struct bio_list *list, struct request *rq)
1387{
1388 if (rq->bio) {
1389 if (list->tail)
1390 list->tail->bi_next = rq->bio;
1391 else
1392 list->head = rq->bio;
1393 list->tail = rq->biotail;
1394
1395 rq->bio = NULL;
1396 rq->biotail = NULL;
1397 }
1398
1399 rq->__data_len = 0;
1400}
1401EXPORT_SYMBOL_GPL(blk_steal_bios);
1402
3bcddeac 1403/**
2e60e022 1404 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1405 * @req: the request being processed
2a842aca 1406 * @error: block status code
8ebf9756 1407 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1408 *
1409 * Description:
8ebf9756
RD
1410 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1411 * the request structure even if @req doesn't have leftover.
1412 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1413 *
1414 * This special helper function is only for request stacking drivers
1415 * (e.g. request-based dm) so that they can handle partial completion.
3a211b71 1416 * Actual device drivers should use blk_mq_end_request instead.
2e60e022
TH
1417 *
1418 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1419 * %false return from this function.
3bcddeac 1420 *
1954e9a9
BVA
1421 * Note:
1422 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1423 * blk_rq_bytes() and in blk_update_request().
1424 *
3bcddeac 1425 * Return:
2e60e022
TH
1426 * %false - this request doesn't have any more data
1427 * %true - this request has more data
3bcddeac 1428 **/
2a842aca
CH
1429bool blk_update_request(struct request *req, blk_status_t error,
1430 unsigned int nr_bytes)
1da177e4 1431{
f79ea416 1432 int total_bytes;
1da177e4 1433
2a842aca 1434 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 1435
2e60e022
TH
1436 if (!req->bio)
1437 return false;
1438
2a842aca
CH
1439 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1440 !(req->rq_flags & RQF_QUIET)))
178cc590 1441 print_req_error(req, error, __func__);
1da177e4 1442
bc58ba94 1443 blk_account_io_completion(req, nr_bytes);
d72d904a 1444
f79ea416
KO
1445 total_bytes = 0;
1446 while (req->bio) {
1447 struct bio *bio = req->bio;
4f024f37 1448 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 1449
9c24c10a 1450 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 1451 req->bio = bio->bi_next;
1da177e4 1452
fbbaf700
N
1453 /* Completion has already been traced */
1454 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 1455 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 1456
f79ea416
KO
1457 total_bytes += bio_bytes;
1458 nr_bytes -= bio_bytes;
1da177e4 1459
f79ea416
KO
1460 if (!nr_bytes)
1461 break;
1da177e4
LT
1462 }
1463
1464 /*
1465 * completely done
1466 */
2e60e022
TH
1467 if (!req->bio) {
1468 /*
1469 * Reset counters so that the request stacking driver
1470 * can find how many bytes remain in the request
1471 * later.
1472 */
a2dec7b3 1473 req->__data_len = 0;
2e60e022
TH
1474 return false;
1475 }
1da177e4 1476
a2dec7b3 1477 req->__data_len -= total_bytes;
2e46e8b2
TH
1478
1479 /* update sector only for requests with clear definition of sector */
57292b58 1480 if (!blk_rq_is_passthrough(req))
a2dec7b3 1481 req->__sector += total_bytes >> 9;
2e46e8b2 1482
80a761fd 1483 /* mixed attributes always follow the first bio */
e8064021 1484 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 1485 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 1486 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
1487 }
1488
ed6565e7
CH
1489 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1490 /*
1491 * If total number of sectors is less than the first segment
1492 * size, something has gone terribly wrong.
1493 */
1494 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1495 blk_dump_rq_flags(req, "request botched");
1496 req->__data_len = blk_rq_cur_bytes(req);
1497 }
2e46e8b2 1498
ed6565e7 1499 /* recalculate the number of segments */
e9cd19c0 1500 req->nr_phys_segments = blk_recalc_rq_segments(req);
ed6565e7 1501 }
2e46e8b2 1502
2e60e022 1503 return true;
1da177e4 1504}
2e60e022 1505EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 1506
2d4dc890
IL
1507#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1508/**
1509 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1510 * @rq: the request to be flushed
1511 *
1512 * Description:
1513 * Flush all pages in @rq.
1514 */
1515void rq_flush_dcache_pages(struct request *rq)
1516{
1517 struct req_iterator iter;
7988613b 1518 struct bio_vec bvec;
2d4dc890
IL
1519
1520 rq_for_each_segment(bvec, rq, iter)
7988613b 1521 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1522}
1523EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1524#endif
1525
ef9e3fac
KU
1526/**
1527 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1528 * @q : the queue of the device being checked
1529 *
1530 * Description:
1531 * Check if underlying low-level drivers of a device are busy.
1532 * If the drivers want to export their busy state, they must set own
1533 * exporting function using blk_queue_lld_busy() first.
1534 *
1535 * Basically, this function is used only by request stacking drivers
1536 * to stop dispatching requests to underlying devices when underlying
1537 * devices are busy. This behavior helps more I/O merging on the queue
1538 * of the request stacking driver and prevents I/O throughput regression
1539 * on burst I/O load.
1540 *
1541 * Return:
1542 * 0 - Not busy (The request stacking driver should dispatch request)
1543 * 1 - Busy (The request stacking driver should stop dispatching request)
1544 */
1545int blk_lld_busy(struct request_queue *q)
1546{
344e9ffc 1547 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1548 return q->mq_ops->busy(q);
ef9e3fac
KU
1549
1550 return 0;
1551}
1552EXPORT_SYMBOL_GPL(blk_lld_busy);
1553
78d8e58a
MS
1554/**
1555 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1556 * @rq: the clone request to be cleaned up
1557 *
1558 * Description:
1559 * Free all bios in @rq for a cloned request.
1560 */
1561void blk_rq_unprep_clone(struct request *rq)
1562{
1563 struct bio *bio;
1564
1565 while ((bio = rq->bio) != NULL) {
1566 rq->bio = bio->bi_next;
1567
1568 bio_put(bio);
1569 }
1570}
1571EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1572
1573/*
1574 * Copy attributes of the original request to the clone request.
1575 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1576 */
1577static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d 1578{
b0fd271d
KU
1579 dst->__sector = blk_rq_pos(src);
1580 dst->__data_len = blk_rq_bytes(src);
297ba57d
BVA
1581 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1582 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1583 dst->special_vec = src->special_vec;
1584 }
b0fd271d
KU
1585 dst->nr_phys_segments = src->nr_phys_segments;
1586 dst->ioprio = src->ioprio;
1587 dst->extra_len = src->extra_len;
78d8e58a
MS
1588}
1589
1590/**
1591 * blk_rq_prep_clone - Helper function to setup clone request
1592 * @rq: the request to be setup
1593 * @rq_src: original request to be cloned
1594 * @bs: bio_set that bios for clone are allocated from
1595 * @gfp_mask: memory allocation mask for bio
1596 * @bio_ctr: setup function to be called for each clone bio.
1597 * Returns %0 for success, non %0 for failure.
1598 * @data: private data to be passed to @bio_ctr
1599 *
1600 * Description:
1601 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1602 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1603 * are not copied, and copying such parts is the caller's responsibility.
1604 * Also, pages which the original bios are pointing to are not copied
1605 * and the cloned bios just point same pages.
1606 * So cloned bios must be completed before original bios, which means
1607 * the caller must complete @rq before @rq_src.
1608 */
1609int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1610 struct bio_set *bs, gfp_t gfp_mask,
1611 int (*bio_ctr)(struct bio *, struct bio *, void *),
1612 void *data)
1613{
1614 struct bio *bio, *bio_src;
1615
1616 if (!bs)
f4f8154a 1617 bs = &fs_bio_set;
78d8e58a
MS
1618
1619 __rq_for_each_bio(bio_src, rq_src) {
1620 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1621 if (!bio)
1622 goto free_and_out;
1623
1624 if (bio_ctr && bio_ctr(bio, bio_src, data))
1625 goto free_and_out;
1626
1627 if (rq->bio) {
1628 rq->biotail->bi_next = bio;
1629 rq->biotail = bio;
1630 } else
1631 rq->bio = rq->biotail = bio;
1632 }
1633
1634 __blk_rq_prep_clone(rq, rq_src);
1635
1636 return 0;
1637
1638free_and_out:
1639 if (bio)
1640 bio_put(bio);
1641 blk_rq_unprep_clone(rq);
1642
1643 return -ENOMEM;
b0fd271d
KU
1644}
1645EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1646
59c3d45e 1647int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1648{
1649 return queue_work(kblockd_workqueue, work);
1650}
1da177e4
LT
1651EXPORT_SYMBOL(kblockd_schedule_work);
1652
ee63cfa7
JA
1653int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1654{
1655 return queue_work_on(cpu, kblockd_workqueue, work);
1656}
1657EXPORT_SYMBOL(kblockd_schedule_work_on);
1658
818cd1cb
JA
1659int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1660 unsigned long delay)
1661{
1662 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1663}
1664EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1665
75df7136
SJ
1666/**
1667 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1668 * @plug: The &struct blk_plug that needs to be initialized
1669 *
1670 * Description:
40405851
JM
1671 * blk_start_plug() indicates to the block layer an intent by the caller
1672 * to submit multiple I/O requests in a batch. The block layer may use
1673 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1674 * is called. However, the block layer may choose to submit requests
1675 * before a call to blk_finish_plug() if the number of queued I/Os
1676 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1677 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1678 * the task schedules (see below).
1679 *
75df7136
SJ
1680 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1681 * pending I/O should the task end up blocking between blk_start_plug() and
1682 * blk_finish_plug(). This is important from a performance perspective, but
1683 * also ensures that we don't deadlock. For instance, if the task is blocking
1684 * for a memory allocation, memory reclaim could end up wanting to free a
1685 * page belonging to that request that is currently residing in our private
1686 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1687 * this kind of deadlock.
1688 */
73c10101
JA
1689void blk_start_plug(struct blk_plug *plug)
1690{
1691 struct task_struct *tsk = current;
1692
dd6cf3e1
SL
1693 /*
1694 * If this is a nested plug, don't actually assign it.
1695 */
1696 if (tsk->plug)
1697 return;
1698
320ae51f 1699 INIT_LIST_HEAD(&plug->mq_list);
048c9374 1700 INIT_LIST_HEAD(&plug->cb_list);
5f0ed774 1701 plug->rq_count = 0;
ce5b009c 1702 plug->multiple_queues = false;
5f0ed774 1703
73c10101 1704 /*
dd6cf3e1
SL
1705 * Store ordering should not be needed here, since a potential
1706 * preempt will imply a full memory barrier
73c10101 1707 */
dd6cf3e1 1708 tsk->plug = plug;
73c10101
JA
1709}
1710EXPORT_SYMBOL(blk_start_plug);
1711
74018dc3 1712static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1713{
1714 LIST_HEAD(callbacks);
1715
2a7d5559
SL
1716 while (!list_empty(&plug->cb_list)) {
1717 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1718
2a7d5559
SL
1719 while (!list_empty(&callbacks)) {
1720 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1721 struct blk_plug_cb,
1722 list);
2a7d5559 1723 list_del(&cb->list);
74018dc3 1724 cb->callback(cb, from_schedule);
2a7d5559 1725 }
048c9374
N
1726 }
1727}
1728
9cbb1750
N
1729struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1730 int size)
1731{
1732 struct blk_plug *plug = current->plug;
1733 struct blk_plug_cb *cb;
1734
1735 if (!plug)
1736 return NULL;
1737
1738 list_for_each_entry(cb, &plug->cb_list, list)
1739 if (cb->callback == unplug && cb->data == data)
1740 return cb;
1741
1742 /* Not currently on the callback list */
1743 BUG_ON(size < sizeof(*cb));
1744 cb = kzalloc(size, GFP_ATOMIC);
1745 if (cb) {
1746 cb->data = data;
1747 cb->callback = unplug;
1748 list_add(&cb->list, &plug->cb_list);
1749 }
1750 return cb;
1751}
1752EXPORT_SYMBOL(blk_check_plugged);
1753
49cac01e 1754void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101 1755{
74018dc3 1756 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
1757
1758 if (!list_empty(&plug->mq_list))
1759 blk_mq_flush_plug_list(plug, from_schedule);
73c10101 1760}
73c10101 1761
40405851
JM
1762/**
1763 * blk_finish_plug - mark the end of a batch of submitted I/O
1764 * @plug: The &struct blk_plug passed to blk_start_plug()
1765 *
1766 * Description:
1767 * Indicate that a batch of I/O submissions is complete. This function
1768 * must be paired with an initial call to blk_start_plug(). The intent
1769 * is to allow the block layer to optimize I/O submission. See the
1770 * documentation for blk_start_plug() for more information.
1771 */
73c10101
JA
1772void blk_finish_plug(struct blk_plug *plug)
1773{
dd6cf3e1
SL
1774 if (plug != current->plug)
1775 return;
f6603783 1776 blk_flush_plug_list(plug, false);
73c10101 1777
dd6cf3e1 1778 current->plug = NULL;
73c10101 1779}
88b996cd 1780EXPORT_SYMBOL(blk_finish_plug);
73c10101 1781
1da177e4
LT
1782int __init blk_dev_init(void)
1783{
ef295ecf
CH
1784 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1785 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 1786 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
1787 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1788 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 1789
89b90be2
TH
1790 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1791 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1792 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1793 if (!kblockd_workqueue)
1794 panic("Failed to create kblockd\n");
1795
c2789bd4 1796 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1797 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1798
18fbda91
OS
1799#ifdef CONFIG_DEBUG_FS
1800 blk_debugfs_root = debugfs_create_dir("block", NULL);
1801#endif
1802
d38ecf93 1803 return 0;
1da177e4 1804}