staging: most: dim2: use if statements instead of ?: expressions
[linux-block.git] / block / blk-core.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
1da177e4
LT
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
1da177e4
LT
15#include <linux/kernel.h>
16#include <linux/module.h>
1da177e4
LT
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
52abca64 20#include <linux/blk-pm.h>
1da177e4
LT
21#include <linux/highmem.h>
22#include <linux/mm.h>
cee9a0c4 23#include <linux/pagemap.h>
1da177e4
LT
24#include <linux/kernel_stat.h>
25#include <linux/string.h>
26#include <linux/init.h>
1da177e4
LT
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
faccbd4b 31#include <linux/task_io_accounting_ops.h>
c17bb495 32#include <linux/fault-inject.h>
73c10101 33#include <linux/list_sort.h>
e3c78ca5 34#include <linux/delay.h>
aaf7c680 35#include <linux/ratelimit.h>
6c954667 36#include <linux/pm_runtime.h>
eea8f41c 37#include <linux/blk-cgroup.h>
54d4e6ab 38#include <linux/t10-pi.h>
18fbda91 39#include <linux/debugfs.h>
30abb3a6 40#include <linux/bpf.h>
b8e24a93 41#include <linux/psi.h>
71ac860a 42#include <linux/sched/sysctl.h>
a892c8d5 43#include <linux/blk-crypto.h>
55782138
LZ
44
45#define CREATE_TRACE_POINTS
46#include <trace/events/block.h>
1da177e4 47
8324aa91 48#include "blk.h"
43a5e4e2 49#include "blk-mq.h"
bd166ef1 50#include "blk-mq-sched.h"
bca6b067 51#include "blk-pm.h"
c1c80384 52#include "blk-rq-qos.h"
8324aa91 53
18fbda91 54struct dentry *blk_debugfs_root;
18fbda91 55
d07335e5 56EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 57EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 58EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 59EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 60EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
b357e4a6 61EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
0bfc2455 62
a73f730d
TH
63DEFINE_IDA(blk_queue_ida);
64
1da177e4
LT
65/*
66 * For queue allocation
67 */
6728cb0e 68struct kmem_cache *blk_requestq_cachep;
1da177e4 69
1da177e4
LT
70/*
71 * Controlling structure to kblockd
72 */
ff856bad 73static struct workqueue_struct *kblockd_workqueue;
1da177e4 74
8814ce8a
BVA
75/**
76 * blk_queue_flag_set - atomically set a queue flag
77 * @flag: flag to be set
78 * @q: request queue
79 */
80void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81{
57d74df9 82 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
83}
84EXPORT_SYMBOL(blk_queue_flag_set);
85
86/**
87 * blk_queue_flag_clear - atomically clear a queue flag
88 * @flag: flag to be cleared
89 * @q: request queue
90 */
91void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92{
57d74df9 93 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
94}
95EXPORT_SYMBOL(blk_queue_flag_clear);
96
97/**
98 * blk_queue_flag_test_and_set - atomically test and set a queue flag
99 * @flag: flag to be set
100 * @q: request queue
101 *
102 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
103 * the flag was already set.
104 */
105bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
106{
57d74df9 107 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
108}
109EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
110
2a4aa30c 111void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 112{
1afb20f3
FT
113 memset(rq, 0, sizeof(*rq));
114
1da177e4 115 INIT_LIST_HEAD(&rq->queuelist);
63a71386 116 rq->q = q;
a2dec7b3 117 rq->__sector = (sector_t) -1;
2e662b65
JA
118 INIT_HLIST_NODE(&rq->hash);
119 RB_CLEAR_NODE(&rq->rb_node);
e44a6a23
XT
120 rq->tag = BLK_MQ_NO_TAG;
121 rq->internal_tag = BLK_MQ_NO_TAG;
522a7775 122 rq->start_time_ns = ktime_get_ns();
09e099d4 123 rq->part = NULL;
a892c8d5 124 blk_crypto_rq_set_defaults(rq);
1da177e4 125}
2a4aa30c 126EXPORT_SYMBOL(blk_rq_init);
1da177e4 127
e47bc4ed
CK
128#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
129static const char *const blk_op_name[] = {
130 REQ_OP_NAME(READ),
131 REQ_OP_NAME(WRITE),
132 REQ_OP_NAME(FLUSH),
133 REQ_OP_NAME(DISCARD),
134 REQ_OP_NAME(SECURE_ERASE),
135 REQ_OP_NAME(ZONE_RESET),
6e33dbf2 136 REQ_OP_NAME(ZONE_RESET_ALL),
6c1b1da5
AJ
137 REQ_OP_NAME(ZONE_OPEN),
138 REQ_OP_NAME(ZONE_CLOSE),
139 REQ_OP_NAME(ZONE_FINISH),
0512a75b 140 REQ_OP_NAME(ZONE_APPEND),
e47bc4ed
CK
141 REQ_OP_NAME(WRITE_SAME),
142 REQ_OP_NAME(WRITE_ZEROES),
e47bc4ed
CK
143 REQ_OP_NAME(DRV_IN),
144 REQ_OP_NAME(DRV_OUT),
145};
146#undef REQ_OP_NAME
147
148/**
149 * blk_op_str - Return string XXX in the REQ_OP_XXX.
150 * @op: REQ_OP_XXX.
151 *
152 * Description: Centralize block layer function to convert REQ_OP_XXX into
153 * string format. Useful in the debugging and tracing bio or request. For
154 * invalid REQ_OP_XXX it returns string "UNKNOWN".
155 */
156inline const char *blk_op_str(unsigned int op)
157{
158 const char *op_str = "UNKNOWN";
159
160 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
161 op_str = blk_op_name[op];
162
163 return op_str;
164}
165EXPORT_SYMBOL_GPL(blk_op_str);
166
2a842aca
CH
167static const struct {
168 int errno;
169 const char *name;
170} blk_errors[] = {
171 [BLK_STS_OK] = { 0, "" },
172 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
173 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
174 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
175 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
176 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
177 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
178 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
179 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
180 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 181 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 182 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 183
4e4cbee9
CH
184 /* device mapper special case, should not leak out: */
185 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
186
3b481d91
KB
187 /* zone device specific errors */
188 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
189 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
190
2a842aca
CH
191 /* everything else not covered above: */
192 [BLK_STS_IOERR] = { -EIO, "I/O" },
193};
194
195blk_status_t errno_to_blk_status(int errno)
196{
197 int i;
198
199 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
200 if (blk_errors[i].errno == errno)
201 return (__force blk_status_t)i;
202 }
203
204 return BLK_STS_IOERR;
205}
206EXPORT_SYMBOL_GPL(errno_to_blk_status);
207
208int blk_status_to_errno(blk_status_t status)
209{
210 int idx = (__force int)status;
211
34bd9c1c 212 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
213 return -EIO;
214 return blk_errors[idx].errno;
215}
216EXPORT_SYMBOL_GPL(blk_status_to_errno);
217
178cc590
CH
218static void print_req_error(struct request *req, blk_status_t status,
219 const char *caller)
2a842aca
CH
220{
221 int idx = (__force int)status;
222
34bd9c1c 223 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
224 return;
225
178cc590 226 printk_ratelimited(KERN_ERR
b0e5168a
CK
227 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
228 "phys_seg %u prio class %u\n",
178cc590 229 caller, blk_errors[idx].name,
b0e5168a
CK
230 req->rq_disk ? req->rq_disk->disk_name : "?",
231 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
232 req->cmd_flags & ~REQ_OP_MASK,
233 req->nr_phys_segments,
234 IOPRIO_PRIO_CLASS(req->ioprio));
2a842aca
CH
235}
236
5bb23a68 237static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 238 unsigned int nbytes, blk_status_t error)
1da177e4 239{
78d8e58a 240 if (error)
4e4cbee9 241 bio->bi_status = error;
797e7dbb 242
e8064021 243 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 244 bio_set_flag(bio, BIO_QUIET);
08bafc03 245
f79ea416 246 bio_advance(bio, nbytes);
7ba1ba12 247
0512a75b
KB
248 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
249 /*
250 * Partial zone append completions cannot be supported as the
251 * BIO fragments may end up not being written sequentially.
252 */
253 if (bio->bi_iter.bi_size)
254 bio->bi_status = BLK_STS_IOERR;
255 else
256 bio->bi_iter.bi_sector = rq->__sector;
257 }
258
143a87f4 259 /* don't actually finish bio if it's part of flush sequence */
e8064021 260 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 261 bio_endio(bio);
1da177e4 262}
1da177e4 263
1da177e4
LT
264void blk_dump_rq_flags(struct request *rq, char *msg)
265{
aebf526b
CH
266 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
267 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 268 (unsigned long long) rq->cmd_flags);
1da177e4 269
83096ebf
TH
270 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
271 (unsigned long long)blk_rq_pos(rq),
272 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
273 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
274 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 275}
1da177e4
LT
276EXPORT_SYMBOL(blk_dump_rq_flags);
277
1da177e4
LT
278/**
279 * blk_sync_queue - cancel any pending callbacks on a queue
280 * @q: the queue
281 *
282 * Description:
283 * The block layer may perform asynchronous callback activity
284 * on a queue, such as calling the unplug function after a timeout.
285 * A block device may call blk_sync_queue to ensure that any
286 * such activity is cancelled, thus allowing it to release resources
59c51591 287 * that the callbacks might use. The caller must already have made sure
c62b37d9 288 * that its ->submit_bio will not re-add plugging prior to calling
1da177e4
LT
289 * this function.
290 *
da527770 291 * This function does not cancel any asynchronous activity arising
da3dae54 292 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 293 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 294 *
1da177e4
LT
295 */
296void blk_sync_queue(struct request_queue *q)
297{
70ed28b9 298 del_timer_sync(&q->timeout);
4e9b6f20 299 cancel_work_sync(&q->timeout_work);
1da177e4
LT
300}
301EXPORT_SYMBOL(blk_sync_queue);
302
c9254f2d 303/**
cd84a62e 304 * blk_set_pm_only - increment pm_only counter
c9254f2d 305 * @q: request queue pointer
c9254f2d 306 */
cd84a62e 307void blk_set_pm_only(struct request_queue *q)
c9254f2d 308{
cd84a62e 309 atomic_inc(&q->pm_only);
c9254f2d 310}
cd84a62e 311EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 312
cd84a62e 313void blk_clear_pm_only(struct request_queue *q)
c9254f2d 314{
cd84a62e
BVA
315 int pm_only;
316
317 pm_only = atomic_dec_return(&q->pm_only);
318 WARN_ON_ONCE(pm_only < 0);
319 if (pm_only == 0)
320 wake_up_all(&q->mq_freeze_wq);
c9254f2d 321}
cd84a62e 322EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 323
b5bd357c
LC
324/**
325 * blk_put_queue - decrement the request_queue refcount
326 * @q: the request_queue structure to decrement the refcount for
327 *
328 * Decrements the refcount of the request_queue kobject. When this reaches 0
329 * we'll have blk_release_queue() called.
e8c7d14a
LC
330 *
331 * Context: Any context, but the last reference must not be dropped from
332 * atomic context.
b5bd357c 333 */
165125e1 334void blk_put_queue(struct request_queue *q)
483f4afc
AV
335{
336 kobject_put(&q->kobj);
337}
d86e0e83 338EXPORT_SYMBOL(blk_put_queue);
483f4afc 339
aed3ea94
JA
340void blk_set_queue_dying(struct request_queue *q)
341{
8814ce8a 342 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
aed3ea94 343
d3cfb2a0
ML
344 /*
345 * When queue DYING flag is set, we need to block new req
346 * entering queue, so we call blk_freeze_queue_start() to
347 * prevent I/O from crossing blk_queue_enter().
348 */
349 blk_freeze_queue_start(q);
350
344e9ffc 351 if (queue_is_mq(q))
aed3ea94 352 blk_mq_wake_waiters(q);
055f6e18
ML
353
354 /* Make blk_queue_enter() reexamine the DYING flag. */
355 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
356}
357EXPORT_SYMBOL_GPL(blk_set_queue_dying);
358
c9a929dd
TH
359/**
360 * blk_cleanup_queue - shutdown a request queue
361 * @q: request queue to shutdown
362 *
c246e80d
BVA
363 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
364 * put it. All future requests will be failed immediately with -ENODEV.
e8c7d14a
LC
365 *
366 * Context: can sleep
c94a96ac 367 */
6728cb0e 368void blk_cleanup_queue(struct request_queue *q)
483f4afc 369{
e8c7d14a
LC
370 /* cannot be called from atomic context */
371 might_sleep();
372
bae85c15
BVA
373 WARN_ON_ONCE(blk_queue_registered(q));
374
3f3299d5 375 /* mark @q DYING, no new request or merges will be allowed afterwards */
aed3ea94 376 blk_set_queue_dying(q);
6ecf23af 377
57d74df9
CH
378 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
379 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
c9a929dd 380
c246e80d
BVA
381 /*
382 * Drain all requests queued before DYING marking. Set DEAD flag to
67ed8b73
BVA
383 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
384 * after draining finished.
c246e80d 385 */
3ef28e83 386 blk_freeze_queue(q);
c57cdf7a
ML
387
388 rq_qos_exit(q);
389
57d74df9 390 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
c9a929dd 391
5a48fc14
DW
392 /* for synchronous bio-based driver finish in-flight integrity i/o */
393 blk_flush_integrity();
394
c9a929dd 395 blk_sync_queue(q);
344e9ffc 396 if (queue_is_mq(q))
c7e2d94b 397 blk_mq_exit_queue(q);
a1ce35fa 398
c3e22192
ML
399 /*
400 * In theory, request pool of sched_tags belongs to request queue.
401 * However, the current implementation requires tag_set for freeing
402 * requests, so free the pool now.
403 *
404 * Queue has become frozen, there can't be any in-queue requests, so
405 * it is safe to free requests now.
406 */
407 mutex_lock(&q->sysfs_lock);
408 if (q->elevator)
409 blk_mq_sched_free_requests(q);
410 mutex_unlock(&q->sysfs_lock);
411
3ef28e83 412 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 413
c9a929dd 414 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
415 blk_put_queue(q);
416}
1da177e4
LT
417EXPORT_SYMBOL(blk_cleanup_queue);
418
3a0a5299
BVA
419/**
420 * blk_queue_enter() - try to increase q->q_usage_counter
421 * @q: request queue pointer
a4d34da7 422 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
3a0a5299 423 */
9a95e4ef 424int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 425{
a4d34da7 426 const bool pm = flags & BLK_MQ_REQ_PM;
3a0a5299 427
3ef28e83 428 while (true) {
3a0a5299 429 bool success = false;
3ef28e83 430
818e0fa2 431 rcu_read_lock();
3a0a5299
BVA
432 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
433 /*
cd84a62e
BVA
434 * The code that increments the pm_only counter is
435 * responsible for ensuring that that counter is
436 * globally visible before the queue is unfrozen.
3a0a5299 437 */
52abca64
AS
438 if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
439 !blk_queue_pm_only(q)) {
3a0a5299
BVA
440 success = true;
441 } else {
442 percpu_ref_put(&q->q_usage_counter);
443 }
444 }
818e0fa2 445 rcu_read_unlock();
3a0a5299
BVA
446
447 if (success)
3ef28e83
DW
448 return 0;
449
3a0a5299 450 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
451 return -EBUSY;
452
5ed61d3f 453 /*
1671d522 454 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 455 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
456 * .q_usage_counter and reading .mq_freeze_depth or
457 * queue dying flag, otherwise the following wait may
458 * never return if the two reads are reordered.
5ed61d3f
ML
459 */
460 smp_rmb();
461
1dc3039b 462 wait_event(q->mq_freeze_wq,
7996a8b5 463 (!q->mq_freeze_depth &&
52abca64 464 blk_pm_resume_queue(pm, q)) ||
1dc3039b 465 blk_queue_dying(q));
3ef28e83
DW
466 if (blk_queue_dying(q))
467 return -ENODEV;
3ef28e83
DW
468 }
469}
470
accea322
CH
471static inline int bio_queue_enter(struct bio *bio)
472{
309dca30 473 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
accea322
CH
474 bool nowait = bio->bi_opf & REQ_NOWAIT;
475 int ret;
476
477 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
478 if (unlikely(ret)) {
479 if (nowait && !blk_queue_dying(q))
480 bio_wouldblock_error(bio);
481 else
482 bio_io_error(bio);
483 }
484
485 return ret;
486}
487
3ef28e83
DW
488void blk_queue_exit(struct request_queue *q)
489{
490 percpu_ref_put(&q->q_usage_counter);
491}
492
493static void blk_queue_usage_counter_release(struct percpu_ref *ref)
494{
495 struct request_queue *q =
496 container_of(ref, struct request_queue, q_usage_counter);
497
498 wake_up_all(&q->mq_freeze_wq);
499}
500
bca237a5 501static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 502{
bca237a5 503 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
504
505 kblockd_schedule_work(&q->timeout_work);
506}
507
2e3c18d0
TH
508static void blk_timeout_work(struct work_struct *work)
509{
510}
511
c62b37d9 512struct request_queue *blk_alloc_queue(int node_id)
1946089a 513{
165125e1 514 struct request_queue *q;
338aa96d 515 int ret;
1946089a 516
8324aa91 517 q = kmem_cache_alloc_node(blk_requestq_cachep,
3d745ea5 518 GFP_KERNEL | __GFP_ZERO, node_id);
1da177e4
LT
519 if (!q)
520 return NULL;
521
cbf62af3 522 q->last_merge = NULL;
cbf62af3 523
3d745ea5 524 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
a73f730d 525 if (q->id < 0)
3d2936f4 526 goto fail_q;
a73f730d 527
c495a176 528 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
338aa96d 529 if (ret)
54efd50b
KO
530 goto fail_id;
531
a83b576c
JA
532 q->stats = blk_alloc_queue_stats();
533 if (!q->stats)
edb0872f 534 goto fail_split;
a83b576c 535
5151412d 536 q->node = node_id;
0989a025 537
bccf5e26
JG
538 atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
539
bca237a5 540 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
2e3c18d0 541 INIT_WORK(&q->timeout_work, blk_timeout_work);
a612fddf 542 INIT_LIST_HEAD(&q->icq_list);
4eef3049 543#ifdef CONFIG_BLK_CGROUP
e8989fae 544 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 545#endif
483f4afc 546
8324aa91 547 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 548
85e0cbbb 549 mutex_init(&q->debugfs_mutex);
483f4afc 550 mutex_init(&q->sysfs_lock);
cecf5d87 551 mutex_init(&q->sysfs_dir_lock);
0d945c1f 552 spin_lock_init(&q->queue_lock);
c94a96ac 553
320ae51f 554 init_waitqueue_head(&q->mq_freeze_wq);
7996a8b5 555 mutex_init(&q->mq_freeze_lock);
320ae51f 556
3ef28e83
DW
557 /*
558 * Init percpu_ref in atomic mode so that it's faster to shutdown.
559 * See blk_register_queue() for details.
560 */
561 if (percpu_ref_init(&q->q_usage_counter,
562 blk_queue_usage_counter_release,
563 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
edb0872f 564 goto fail_stats;
f51b802c 565
3ef28e83
DW
566 if (blkcg_init_queue(q))
567 goto fail_ref;
568
3d745ea5
CH
569 blk_queue_dma_alignment(q, 511);
570 blk_set_default_limits(&q->limits);
c62b37d9 571 q->nr_requests = BLKDEV_MAX_RQ;
3d745ea5 572
1da177e4 573 return q;
a73f730d 574
3ef28e83
DW
575fail_ref:
576 percpu_ref_exit(&q->q_usage_counter);
a83b576c 577fail_stats:
edb0872f 578 blk_free_queue_stats(q->stats);
54efd50b 579fail_split:
338aa96d 580 bioset_exit(&q->bio_split);
a73f730d
TH
581fail_id:
582 ida_simple_remove(&blk_queue_ida, q->id);
583fail_q:
584 kmem_cache_free(blk_requestq_cachep, q);
585 return NULL;
1da177e4 586}
1da177e4 587
b5bd357c
LC
588/**
589 * blk_get_queue - increment the request_queue refcount
590 * @q: the request_queue structure to increment the refcount for
591 *
592 * Increment the refcount of the request_queue kobject.
763b5892
LC
593 *
594 * Context: Any context.
b5bd357c 595 */
09ac46c4 596bool blk_get_queue(struct request_queue *q)
1da177e4 597{
3f3299d5 598 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
599 __blk_get_queue(q);
600 return true;
1da177e4
LT
601 }
602
09ac46c4 603 return false;
1da177e4 604}
d86e0e83 605EXPORT_SYMBOL(blk_get_queue);
1da177e4 606
a1ce35fa
JA
607/**
608 * blk_get_request - allocate a request
609 * @q: request queue to allocate a request for
610 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
611 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1da177e4 612 */
a1ce35fa
JA
613struct request *blk_get_request(struct request_queue *q, unsigned int op,
614 blk_mq_req_flags_t flags)
1da177e4 615{
a1ce35fa 616 struct request *req;
1da177e4 617
a1ce35fa 618 WARN_ON_ONCE(op & REQ_NOWAIT);
a4d34da7 619 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
1da177e4 620
a1ce35fa
JA
621 req = blk_mq_alloc_request(q, op, flags);
622 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
623 q->mq_ops->initialize_rq_fn(req);
1da177e4 624
a1ce35fa 625 return req;
1da177e4 626}
a1ce35fa 627EXPORT_SYMBOL(blk_get_request);
1da177e4 628
1da177e4
LT
629void blk_put_request(struct request *req)
630{
a1ce35fa 631 blk_mq_free_request(req);
1da177e4 632}
1da177e4
LT
633EXPORT_SYMBOL(blk_put_request);
634
52c5e62d 635static void handle_bad_sector(struct bio *bio, sector_t maxsector)
1da177e4
LT
636{
637 char b[BDEVNAME_SIZE];
638
f4ac712e
TH
639 pr_info_ratelimited("attempt to access beyond end of device\n"
640 "%s: rw=%d, want=%llu, limit=%llu\n",
641 bio_devname(bio, b), bio->bi_opf,
642 bio_end_sector(bio), maxsector);
1da177e4
LT
643}
644
c17bb495
AM
645#ifdef CONFIG_FAIL_MAKE_REQUEST
646
647static DECLARE_FAULT_ATTR(fail_make_request);
648
649static int __init setup_fail_make_request(char *str)
650{
651 return setup_fault_attr(&fail_make_request, str);
652}
653__setup("fail_make_request=", setup_fail_make_request);
654
8446fe92 655static bool should_fail_request(struct block_device *part, unsigned int bytes)
c17bb495 656{
8446fe92 657 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
658}
659
660static int __init fail_make_request_debugfs(void)
661{
dd48c085
AM
662 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
663 NULL, &fail_make_request);
664
21f9fcd8 665 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
666}
667
668late_initcall(fail_make_request_debugfs);
669
670#else /* CONFIG_FAIL_MAKE_REQUEST */
671
8446fe92 672static inline bool should_fail_request(struct block_device *part,
b2c9cd37 673 unsigned int bytes)
c17bb495 674{
b2c9cd37 675 return false;
c17bb495
AM
676}
677
678#endif /* CONFIG_FAIL_MAKE_REQUEST */
679
2f9f6221 680static inline bool bio_check_ro(struct bio *bio)
721c7fc7 681{
2f9f6221 682 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
721c7fc7
ID
683 char b[BDEVNAME_SIZE];
684
8b2ded1c
MP
685 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
686 return false;
687
a32e236e 688 WARN_ONCE(1,
c8178674 689 "Trying to write to read-only block-device %s (partno %d)\n",
2f9f6221 690 bio_devname(bio, b), bio->bi_bdev->bd_partno);
a32e236e
LT
691 /* Older lvm-tools actually trigger this */
692 return false;
721c7fc7
ID
693 }
694
695 return false;
696}
697
30abb3a6
HM
698static noinline int should_fail_bio(struct bio *bio)
699{
309dca30 700 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
30abb3a6
HM
701 return -EIO;
702 return 0;
703}
704ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
705
52c5e62d
CH
706/*
707 * Check whether this bio extends beyond the end of the device or partition.
708 * This may well happen - the kernel calls bread() without checking the size of
709 * the device, e.g., when mounting a file system.
710 */
2f9f6221 711static inline int bio_check_eod(struct bio *bio)
52c5e62d 712{
2f9f6221 713 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
52c5e62d
CH
714 unsigned int nr_sectors = bio_sectors(bio);
715
716 if (nr_sectors && maxsector &&
717 (nr_sectors > maxsector ||
718 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
719 handle_bad_sector(bio, maxsector);
720 return -EIO;
721 }
722 return 0;
723}
724
74d46992
CH
725/*
726 * Remap block n of partition p to block n+start(p) of the disk.
727 */
2f9f6221 728static int blk_partition_remap(struct bio *bio)
74d46992 729{
309dca30 730 struct block_device *p = bio->bi_bdev;
74d46992 731
52c5e62d 732 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2f9f6221 733 return -EIO;
5eac3eb3 734 if (bio_sectors(bio)) {
8446fe92 735 bio->bi_iter.bi_sector += p->bd_start_sect;
1c02fca6 736 trace_block_bio_remap(bio, p->bd_dev,
29ff57c6 737 bio->bi_iter.bi_sector -
8446fe92 738 p->bd_start_sect);
52c5e62d 739 }
30c5d345 740 bio_set_flag(bio, BIO_REMAPPED);
2f9f6221 741 return 0;
74d46992
CH
742}
743
0512a75b
KB
744/*
745 * Check write append to a zoned block device.
746 */
747static inline blk_status_t blk_check_zone_append(struct request_queue *q,
748 struct bio *bio)
749{
750 sector_t pos = bio->bi_iter.bi_sector;
751 int nr_sectors = bio_sectors(bio);
752
753 /* Only applicable to zoned block devices */
754 if (!blk_queue_is_zoned(q))
755 return BLK_STS_NOTSUPP;
756
757 /* The bio sector must point to the start of a sequential zone */
758 if (pos & (blk_queue_zone_sectors(q) - 1) ||
759 !blk_queue_zone_is_seq(q, pos))
760 return BLK_STS_IOERR;
761
762 /*
763 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
764 * split and could result in non-contiguous sectors being written in
765 * different zones.
766 */
767 if (nr_sectors > q->limits.chunk_sectors)
768 return BLK_STS_IOERR;
769
770 /* Make sure the BIO is small enough and will not get split */
771 if (nr_sectors > q->limits.max_zone_append_sectors)
772 return BLK_STS_IOERR;
773
774 bio->bi_opf |= REQ_NOMERGE;
775
776 return BLK_STS_OK;
777}
778
ed00aabd 779static noinline_for_stack bool submit_bio_checks(struct bio *bio)
1da177e4 780{
309dca30
CH
781 struct block_device *bdev = bio->bi_bdev;
782 struct request_queue *q = bdev->bd_disk->queue;
4e4cbee9 783 blk_status_t status = BLK_STS_IOERR;
5a473e83 784 struct blk_plug *plug;
1da177e4
LT
785
786 might_sleep();
1da177e4 787
5a473e83
JA
788 plug = blk_mq_plug(q, bio);
789 if (plug && plug->nowait)
790 bio->bi_opf |= REQ_NOWAIT;
791
03a07c92 792 /*
b0beb280 793 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
021a2446 794 * if queue does not support NOWAIT.
03a07c92 795 */
021a2446 796 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
b0beb280 797 goto not_supported;
03a07c92 798
30abb3a6 799 if (should_fail_bio(bio))
5a7bbad2 800 goto end_io;
2f9f6221
CH
801 if (unlikely(bio_check_ro(bio)))
802 goto end_io;
3a905c37
CH
803 if (!bio_flagged(bio, BIO_REMAPPED)) {
804 if (unlikely(bio_check_eod(bio)))
805 goto end_io;
806 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
807 goto end_io;
808 }
2056a782 809
5a7bbad2 810 /*
ed00aabd
CH
811 * Filter flush bio's early so that bio based drivers without flush
812 * support don't have to worry about them.
5a7bbad2 813 */
f3a8ab7d 814 if (op_is_flush(bio->bi_opf) &&
c888a8f9 815 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 816 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
e439ab71 817 if (!bio_sectors(bio)) {
4e4cbee9 818 status = BLK_STS_OK;
51fd77bd
JA
819 goto end_io;
820 }
5a7bbad2 821 }
5ddfe969 822
d04c406f 823 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
270a1c91 824 bio_clear_hipri(bio);
d04c406f 825
288dab8a
CH
826 switch (bio_op(bio)) {
827 case REQ_OP_DISCARD:
828 if (!blk_queue_discard(q))
829 goto not_supported;
830 break;
831 case REQ_OP_SECURE_ERASE:
832 if (!blk_queue_secure_erase(q))
833 goto not_supported;
834 break;
835 case REQ_OP_WRITE_SAME:
74d46992 836 if (!q->limits.max_write_same_sectors)
288dab8a 837 goto not_supported;
58886785 838 break;
0512a75b
KB
839 case REQ_OP_ZONE_APPEND:
840 status = blk_check_zone_append(q, bio);
841 if (status != BLK_STS_OK)
842 goto end_io;
843 break;
2d253440 844 case REQ_OP_ZONE_RESET:
6c1b1da5
AJ
845 case REQ_OP_ZONE_OPEN:
846 case REQ_OP_ZONE_CLOSE:
847 case REQ_OP_ZONE_FINISH:
74d46992 848 if (!blk_queue_is_zoned(q))
2d253440 849 goto not_supported;
288dab8a 850 break;
6e33dbf2
CK
851 case REQ_OP_ZONE_RESET_ALL:
852 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
853 goto not_supported;
854 break;
a6f0788e 855 case REQ_OP_WRITE_ZEROES:
74d46992 856 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
857 goto not_supported;
858 break;
288dab8a
CH
859 default:
860 break;
5a7bbad2 861 }
01edede4 862
7f4b35d1 863 /*
3e82c348
CH
864 * Various block parts want %current->io_context, so allocate it up
865 * front rather than dealing with lots of pain to allocate it only
866 * where needed. This may fail and the block layer knows how to live
867 * with it.
7f4b35d1 868 */
3e82c348
CH
869 if (unlikely(!current->io_context))
870 create_task_io_context(current, GFP_ATOMIC, q->node);
7f4b35d1 871
db18a53e
CH
872 if (blk_throtl_bio(bio)) {
873 blkcg_bio_issue_init(bio);
ae118896 874 return false;
db18a53e
CH
875 }
876
877 blk_cgroup_bio_start(bio);
878 blkcg_bio_issue_init(bio);
27a84d54 879
fbbaf700 880 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
e8a676d6 881 trace_block_bio_queue(bio);
fbbaf700
N
882 /* Now that enqueuing has been traced, we need to trace
883 * completion as well.
884 */
885 bio_set_flag(bio, BIO_TRACE_COMPLETION);
886 }
27a84d54 887 return true;
a7384677 888
288dab8a 889not_supported:
4e4cbee9 890 status = BLK_STS_NOTSUPP;
a7384677 891end_io:
4e4cbee9 892 bio->bi_status = status;
4246a0b6 893 bio_endio(bio);
27a84d54 894 return false;
1da177e4
LT
895}
896
ed00aabd 897static blk_qc_t __submit_bio(struct bio *bio)
ac7c5675 898{
309dca30 899 struct gendisk *disk = bio->bi_bdev->bd_disk;
ac7c5675
CH
900 blk_qc_t ret = BLK_QC_T_NONE;
901
902 if (blk_crypto_bio_prep(&bio)) {
c62b37d9
CH
903 if (!disk->fops->submit_bio)
904 return blk_mq_submit_bio(bio);
905 ret = disk->fops->submit_bio(bio);
ac7c5675 906 }
c62b37d9 907 blk_queue_exit(disk->queue);
ac7c5675
CH
908 return ret;
909}
910
566acf2d
CH
911/*
912 * The loop in this function may be a bit non-obvious, and so deserves some
913 * explanation:
914 *
915 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
916 * that), so we have a list with a single bio.
917 * - We pretend that we have just taken it off a longer list, so we assign
918 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
919 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
920 * bios through a recursive call to submit_bio_noacct. If it did, we find a
921 * non-NULL value in bio_list and re-enter the loop from the top.
922 * - In this case we really did just take the bio of the top of the list (no
923 * pretending) and so remove it from bio_list, and call into ->submit_bio()
924 * again.
925 *
926 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
927 * bio_list_on_stack[1] contains bios that were submitted before the current
928 * ->submit_bio_bio, but that haven't been processed yet.
929 */
930static blk_qc_t __submit_bio_noacct(struct bio *bio)
931{
932 struct bio_list bio_list_on_stack[2];
933 blk_qc_t ret = BLK_QC_T_NONE;
934
935 BUG_ON(bio->bi_next);
936
937 bio_list_init(&bio_list_on_stack[0]);
938 current->bio_list = bio_list_on_stack;
939
940 do {
309dca30 941 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
566acf2d
CH
942 struct bio_list lower, same;
943
944 if (unlikely(bio_queue_enter(bio) != 0))
945 continue;
946
947 /*
948 * Create a fresh bio_list for all subordinate requests.
949 */
950 bio_list_on_stack[1] = bio_list_on_stack[0];
951 bio_list_init(&bio_list_on_stack[0]);
952
953 ret = __submit_bio(bio);
954
955 /*
956 * Sort new bios into those for a lower level and those for the
957 * same level.
958 */
959 bio_list_init(&lower);
960 bio_list_init(&same);
961 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
309dca30 962 if (q == bio->bi_bdev->bd_disk->queue)
566acf2d
CH
963 bio_list_add(&same, bio);
964 else
965 bio_list_add(&lower, bio);
966
967 /*
968 * Now assemble so we handle the lowest level first.
969 */
970 bio_list_merge(&bio_list_on_stack[0], &lower);
971 bio_list_merge(&bio_list_on_stack[0], &same);
972 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
973 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
974
975 current->bio_list = NULL;
976 return ret;
977}
978
ff93ea0c
CH
979static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
980{
7c792f33 981 struct bio_list bio_list[2] = { };
ff93ea0c
CH
982 blk_qc_t ret = BLK_QC_T_NONE;
983
7c792f33 984 current->bio_list = bio_list;
ff93ea0c
CH
985
986 do {
309dca30 987 struct gendisk *disk = bio->bi_bdev->bd_disk;
ff93ea0c
CH
988
989 if (unlikely(bio_queue_enter(bio) != 0))
990 continue;
991
992 if (!blk_crypto_bio_prep(&bio)) {
993 blk_queue_exit(disk->queue);
994 ret = BLK_QC_T_NONE;
995 continue;
996 }
997
998 ret = blk_mq_submit_bio(bio);
7c792f33 999 } while ((bio = bio_list_pop(&bio_list[0])));
ff93ea0c
CH
1000
1001 current->bio_list = NULL;
1002 return ret;
1003}
1004
27a84d54 1005/**
ed00aabd 1006 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
27a84d54
CH
1007 * @bio: The bio describing the location in memory and on the device.
1008 *
3fdd4086
CH
1009 * This is a version of submit_bio() that shall only be used for I/O that is
1010 * resubmitted to lower level drivers by stacking block drivers. All file
1011 * systems and other upper level users of the block layer should use
1012 * submit_bio() instead.
d89d8796 1013 */
ed00aabd 1014blk_qc_t submit_bio_noacct(struct bio *bio)
d89d8796 1015{
ed00aabd 1016 if (!submit_bio_checks(bio))
566acf2d 1017 return BLK_QC_T_NONE;
27a84d54
CH
1018
1019 /*
566acf2d
CH
1020 * We only want one ->submit_bio to be active at a time, else stack
1021 * usage with stacked devices could be a problem. Use current->bio_list
1022 * to collect a list of requests submited by a ->submit_bio method while
1023 * it is active, and then process them after it returned.
27a84d54 1024 */
bddd87c7 1025 if (current->bio_list) {
f5fe1b51 1026 bio_list_add(&current->bio_list[0], bio);
566acf2d 1027 return BLK_QC_T_NONE;
d89d8796 1028 }
27a84d54 1029
309dca30 1030 if (!bio->bi_bdev->bd_disk->fops->submit_bio)
ff93ea0c 1031 return __submit_bio_noacct_mq(bio);
566acf2d 1032 return __submit_bio_noacct(bio);
d89d8796 1033}
ed00aabd 1034EXPORT_SYMBOL(submit_bio_noacct);
1da177e4
LT
1035
1036/**
710027a4 1037 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1038 * @bio: The &struct bio which describes the I/O
1039 *
3fdd4086
CH
1040 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1041 * fully set up &struct bio that describes the I/O that needs to be done. The
309dca30 1042 * bio will be send to the device described by the bi_bdev field.
1da177e4 1043 *
3fdd4086
CH
1044 * The success/failure status of the request, along with notification of
1045 * completion, is delivered asynchronously through the ->bi_end_io() callback
1046 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1047 * been called.
1da177e4 1048 */
4e49ea4a 1049blk_qc_t submit_bio(struct bio *bio)
1da177e4 1050{
d3f77dfd
TH
1051 if (blkcg_punt_bio_submit(bio))
1052 return BLK_QC_T_NONE;
1053
bf2de6f5
JA
1054 /*
1055 * If it's a regular read/write or a barrier with data attached,
1056 * go through the normal accounting stuff before submission.
1057 */
e2a60da7 1058 if (bio_has_data(bio)) {
4363ac7c
MP
1059 unsigned int count;
1060
95fe6c1a 1061 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
309dca30
CH
1062 count = queue_logical_block_size(
1063 bio->bi_bdev->bd_disk->queue) >> 9;
4363ac7c
MP
1064 else
1065 count = bio_sectors(bio);
1066
a8ebb056 1067 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
1068 count_vm_events(PGPGOUT, count);
1069 } else {
4f024f37 1070 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
1071 count_vm_events(PGPGIN, count);
1072 }
1da177e4
LT
1073 }
1074
b8e24a93 1075 /*
760f83ea
CH
1076 * If we're reading data that is part of the userspace workingset, count
1077 * submission time as memory stall. When the device is congested, or
1078 * the submitting cgroup IO-throttled, submission can be a significant
1079 * part of overall IO time.
b8e24a93 1080 */
760f83ea
CH
1081 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1082 bio_flagged(bio, BIO_WORKINGSET))) {
1083 unsigned long pflags;
1084 blk_qc_t ret;
b8e24a93 1085
760f83ea 1086 psi_memstall_enter(&pflags);
ed00aabd 1087 ret = submit_bio_noacct(bio);
b8e24a93
JW
1088 psi_memstall_leave(&pflags);
1089
760f83ea
CH
1090 return ret;
1091 }
1092
ed00aabd 1093 return submit_bio_noacct(bio);
1da177e4 1094}
1da177e4
LT
1095EXPORT_SYMBOL(submit_bio);
1096
82124d60 1097/**
bf4e6b4e 1098 * blk_cloned_rq_check_limits - Helper function to check a cloned request
0d720318 1099 * for the new queue limits
82124d60
KU
1100 * @q: the queue
1101 * @rq: the request being checked
1102 *
1103 * Description:
1104 * @rq may have been made based on weaker limitations of upper-level queues
1105 * in request stacking drivers, and it may violate the limitation of @q.
1106 * Since the block layer and the underlying device driver trust @rq
1107 * after it is inserted to @q, it should be checked against @q before
1108 * the insertion using this generic function.
1109 *
82124d60 1110 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
1111 * limits when retrying requests on other queues. Those requests need
1112 * to be checked against the new queue limits again during dispatch.
82124d60 1113 */
143d2600 1114static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
bf4e6b4e 1115 struct request *rq)
82124d60 1116{
8327cce5
RS
1117 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1118
1119 if (blk_rq_sectors(rq) > max_sectors) {
1120 /*
1121 * SCSI device does not have a good way to return if
1122 * Write Same/Zero is actually supported. If a device rejects
1123 * a non-read/write command (discard, write same,etc.) the
1124 * low-level device driver will set the relevant queue limit to
1125 * 0 to prevent blk-lib from issuing more of the offending
1126 * operations. Commands queued prior to the queue limit being
1127 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1128 * errors being propagated to upper layers.
1129 */
1130 if (max_sectors == 0)
1131 return BLK_STS_NOTSUPP;
1132
61939b12 1133 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
8327cce5 1134 __func__, blk_rq_sectors(rq), max_sectors);
143d2600 1135 return BLK_STS_IOERR;
82124d60
KU
1136 }
1137
1138 /*
9bb33f24
CH
1139 * The queue settings related to segment counting may differ from the
1140 * original queue.
82124d60 1141 */
e9cd19c0 1142 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
8a78362c 1143 if (rq->nr_phys_segments > queue_max_segments(q)) {
61939b12
JP
1144 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1145 __func__, rq->nr_phys_segments, queue_max_segments(q));
143d2600 1146 return BLK_STS_IOERR;
82124d60
KU
1147 }
1148
143d2600 1149 return BLK_STS_OK;
82124d60 1150}
82124d60
KU
1151
1152/**
1153 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1154 * @q: the queue to submit the request
1155 * @rq: the request being queued
1156 */
2a842aca 1157blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60 1158{
8327cce5
RS
1159 blk_status_t ret;
1160
1161 ret = blk_cloned_rq_check_limits(q, rq);
1162 if (ret != BLK_STS_OK)
1163 return ret;
82124d60 1164
b2c9cd37 1165 if (rq->rq_disk &&
8446fe92 1166 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 1167 return BLK_STS_IOERR;
82124d60 1168
a892c8d5
ST
1169 if (blk_crypto_insert_cloned_request(rq))
1170 return BLK_STS_IOERR;
1171
a1ce35fa 1172 if (blk_queue_io_stat(q))
b5af37ab 1173 blk_account_io_start(rq);
82124d60
KU
1174
1175 /*
a1ce35fa
JA
1176 * Since we have a scheduler attached on the top device,
1177 * bypass a potential scheduler on the bottom device for
1178 * insert.
82124d60 1179 */
fd9c40f6 1180 return blk_mq_request_issue_directly(rq, true);
82124d60
KU
1181}
1182EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1183
80a761fd
TH
1184/**
1185 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1186 * @rq: request to examine
1187 *
1188 * Description:
1189 * A request could be merge of IOs which require different failure
1190 * handling. This function determines the number of bytes which
1191 * can be failed from the beginning of the request without
1192 * crossing into area which need to be retried further.
1193 *
1194 * Return:
1195 * The number of bytes to fail.
80a761fd
TH
1196 */
1197unsigned int blk_rq_err_bytes(const struct request *rq)
1198{
1199 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1200 unsigned int bytes = 0;
1201 struct bio *bio;
1202
e8064021 1203 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
1204 return blk_rq_bytes(rq);
1205
1206 /*
1207 * Currently the only 'mixing' which can happen is between
1208 * different fastfail types. We can safely fail portions
1209 * which have all the failfast bits that the first one has -
1210 * the ones which are at least as eager to fail as the first
1211 * one.
1212 */
1213 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 1214 if ((bio->bi_opf & ff) != ff)
80a761fd 1215 break;
4f024f37 1216 bytes += bio->bi_iter.bi_size;
80a761fd
TH
1217 }
1218
1219 /* this could lead to infinite loop */
1220 BUG_ON(blk_rq_bytes(rq) && !bytes);
1221 return bytes;
1222}
1223EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1224
8446fe92
CH
1225static void update_io_ticks(struct block_device *part, unsigned long now,
1226 bool end)
9123bf6f
CH
1227{
1228 unsigned long stamp;
1229again:
8446fe92 1230 stamp = READ_ONCE(part->bd_stamp);
d80c228d 1231 if (unlikely(time_after(now, stamp))) {
8446fe92 1232 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
9123bf6f
CH
1233 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1234 }
8446fe92
CH
1235 if (part->bd_partno) {
1236 part = bdev_whole(part);
9123bf6f
CH
1237 goto again;
1238 }
1239}
1240
f1394b79 1241static void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 1242{
ecb6186c 1243 if (req->part && blk_do_io_stat(req)) {
ddcf35d3 1244 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1245
112f158f 1246 part_stat_lock();
8446fe92 1247 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
bc58ba94
JA
1248 part_stat_unlock();
1249 }
1250}
1251
522a7775 1252void blk_account_io_done(struct request *req, u64 now)
bc58ba94 1253{
bc58ba94 1254 /*
dd4c133f
TH
1255 * Account IO completion. flush_rq isn't accounted as a
1256 * normal IO on queueing nor completion. Accounting the
1257 * containing request is enough.
bc58ba94 1258 */
ecb6186c
LG
1259 if (req->part && blk_do_io_stat(req) &&
1260 !(req->rq_flags & RQF_FLUSH_SEQ)) {
ddcf35d3 1261 const int sgrp = op_stat_group(req_op(req));
bc58ba94 1262
112f158f 1263 part_stat_lock();
8446fe92
CH
1264 update_io_ticks(req->part, jiffies, true);
1265 part_stat_inc(req->part, ios[sgrp]);
1266 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
524f9ffd 1267 part_stat_unlock();
bc58ba94
JA
1268 }
1269}
1270
b5af37ab 1271void blk_account_io_start(struct request *rq)
320ae51f 1272{
320ae51f
JA
1273 if (!blk_do_io_stat(rq))
1274 return;
1275
0b6e522c
CH
1276 /* passthrough requests can hold bios that do not have ->bi_bdev set */
1277 if (rq->bio && rq->bio->bi_bdev)
1278 rq->part = rq->bio->bi_bdev;
1279 else
1280 rq->part = rq->rq_disk->part0;
524f9ffd 1281
112f158f 1282 part_stat_lock();
76268f3a 1283 update_io_ticks(rq->part, jiffies, false);
320ae51f
JA
1284 part_stat_unlock();
1285}
320ae51f 1286
8446fe92 1287static unsigned long __part_start_io_acct(struct block_device *part,
7b26410b 1288 unsigned int sectors, unsigned int op)
956d510e 1289{
956d510e
CH
1290 const int sgrp = op_stat_group(op);
1291 unsigned long now = READ_ONCE(jiffies);
1292
1293 part_stat_lock();
1294 update_io_ticks(part, now, false);
1295 part_stat_inc(part, ios[sgrp]);
1296 part_stat_add(part, sectors[sgrp], sectors);
1297 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1298 part_stat_unlock();
320ae51f 1299
956d510e
CH
1300 return now;
1301}
7b26410b 1302
99dfc43e
CH
1303/**
1304 * bio_start_io_acct - start I/O accounting for bio based drivers
1305 * @bio: bio to start account for
1306 *
1307 * Returns the start time that should be passed back to bio_end_io_acct().
1308 */
1309unsigned long bio_start_io_acct(struct bio *bio)
7b26410b 1310{
99dfc43e 1311 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio));
7b26410b 1312}
99dfc43e 1313EXPORT_SYMBOL_GPL(bio_start_io_acct);
7b26410b
SL
1314
1315unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1316 unsigned int op)
1317{
8446fe92 1318 return __part_start_io_acct(disk->part0, sectors, op);
7b26410b 1319}
956d510e
CH
1320EXPORT_SYMBOL(disk_start_io_acct);
1321
8446fe92 1322static void __part_end_io_acct(struct block_device *part, unsigned int op,
7b26410b 1323 unsigned long start_time)
956d510e 1324{
956d510e
CH
1325 const int sgrp = op_stat_group(op);
1326 unsigned long now = READ_ONCE(jiffies);
1327 unsigned long duration = now - start_time;
5b18b5a7 1328
956d510e
CH
1329 part_stat_lock();
1330 update_io_ticks(part, now, true);
1331 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1332 part_stat_local_dec(part, in_flight[op_is_write(op)]);
320ae51f
JA
1333 part_stat_unlock();
1334}
7b26410b 1335
99dfc43e
CH
1336void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1337 struct block_device *orig_bdev)
7b26410b 1338{
99dfc43e 1339 __part_end_io_acct(orig_bdev, bio_op(bio), start_time);
7b26410b 1340}
99dfc43e 1341EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
7b26410b
SL
1342
1343void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1344 unsigned long start_time)
1345{
8446fe92 1346 __part_end_io_acct(disk->part0, op, start_time);
7b26410b 1347}
956d510e 1348EXPORT_SYMBOL(disk_end_io_acct);
320ae51f 1349
ef71de8b
CH
1350/*
1351 * Steal bios from a request and add them to a bio list.
1352 * The request must not have been partially completed before.
1353 */
1354void blk_steal_bios(struct bio_list *list, struct request *rq)
1355{
1356 if (rq->bio) {
1357 if (list->tail)
1358 list->tail->bi_next = rq->bio;
1359 else
1360 list->head = rq->bio;
1361 list->tail = rq->biotail;
1362
1363 rq->bio = NULL;
1364 rq->biotail = NULL;
1365 }
1366
1367 rq->__data_len = 0;
1368}
1369EXPORT_SYMBOL_GPL(blk_steal_bios);
1370
3bcddeac 1371/**
7cc2623d 1372 * blk_update_request - Complete multiple bytes without completing the request
8ebf9756 1373 * @req: the request being processed
2a842aca 1374 * @error: block status code
7cc2623d 1375 * @nr_bytes: number of bytes to complete for @req
3bcddeac
KU
1376 *
1377 * Description:
8ebf9756
RD
1378 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1379 * the request structure even if @req doesn't have leftover.
1380 * If @req has leftover, sets it up for the next range of segments.
2e60e022 1381 *
2e60e022
TH
1382 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1383 * %false return from this function.
3bcddeac 1384 *
1954e9a9 1385 * Note:
7cc2623d
BVA
1386 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
1387 * except in the consistency check at the end of this function.
1954e9a9 1388 *
3bcddeac 1389 * Return:
2e60e022
TH
1390 * %false - this request doesn't have any more data
1391 * %true - this request has more data
3bcddeac 1392 **/
2a842aca
CH
1393bool blk_update_request(struct request *req, blk_status_t error,
1394 unsigned int nr_bytes)
1da177e4 1395{
f79ea416 1396 int total_bytes;
1da177e4 1397
2a842aca 1398 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 1399
2e60e022
TH
1400 if (!req->bio)
1401 return false;
1402
54d4e6ab
MG
1403#ifdef CONFIG_BLK_DEV_INTEGRITY
1404 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1405 error == BLK_STS_OK)
1406 req->q->integrity.profile->complete_fn(req, nr_bytes);
1407#endif
1408
2a842aca
CH
1409 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1410 !(req->rq_flags & RQF_QUIET)))
178cc590 1411 print_req_error(req, error, __func__);
1da177e4 1412
bc58ba94 1413 blk_account_io_completion(req, nr_bytes);
d72d904a 1414
f79ea416
KO
1415 total_bytes = 0;
1416 while (req->bio) {
1417 struct bio *bio = req->bio;
4f024f37 1418 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 1419
9c24c10a 1420 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 1421 req->bio = bio->bi_next;
1da177e4 1422
fbbaf700
N
1423 /* Completion has already been traced */
1424 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 1425 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 1426
f79ea416
KO
1427 total_bytes += bio_bytes;
1428 nr_bytes -= bio_bytes;
1da177e4 1429
f79ea416
KO
1430 if (!nr_bytes)
1431 break;
1da177e4
LT
1432 }
1433
1434 /*
1435 * completely done
1436 */
2e60e022
TH
1437 if (!req->bio) {
1438 /*
1439 * Reset counters so that the request stacking driver
1440 * can find how many bytes remain in the request
1441 * later.
1442 */
a2dec7b3 1443 req->__data_len = 0;
2e60e022
TH
1444 return false;
1445 }
1da177e4 1446
a2dec7b3 1447 req->__data_len -= total_bytes;
2e46e8b2
TH
1448
1449 /* update sector only for requests with clear definition of sector */
57292b58 1450 if (!blk_rq_is_passthrough(req))
a2dec7b3 1451 req->__sector += total_bytes >> 9;
2e46e8b2 1452
80a761fd 1453 /* mixed attributes always follow the first bio */
e8064021 1454 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 1455 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 1456 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
1457 }
1458
ed6565e7
CH
1459 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1460 /*
1461 * If total number of sectors is less than the first segment
1462 * size, something has gone terribly wrong.
1463 */
1464 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1465 blk_dump_rq_flags(req, "request botched");
1466 req->__data_len = blk_rq_cur_bytes(req);
1467 }
2e46e8b2 1468
ed6565e7 1469 /* recalculate the number of segments */
e9cd19c0 1470 req->nr_phys_segments = blk_recalc_rq_segments(req);
ed6565e7 1471 }
2e46e8b2 1472
2e60e022 1473 return true;
1da177e4 1474}
2e60e022 1475EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 1476
2d4dc890
IL
1477#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1478/**
1479 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1480 * @rq: the request to be flushed
1481 *
1482 * Description:
1483 * Flush all pages in @rq.
1484 */
1485void rq_flush_dcache_pages(struct request *rq)
1486{
1487 struct req_iterator iter;
7988613b 1488 struct bio_vec bvec;
2d4dc890
IL
1489
1490 rq_for_each_segment(bvec, rq, iter)
7988613b 1491 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1492}
1493EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1494#endif
1495
ef9e3fac
KU
1496/**
1497 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1498 * @q : the queue of the device being checked
1499 *
1500 * Description:
1501 * Check if underlying low-level drivers of a device are busy.
1502 * If the drivers want to export their busy state, they must set own
1503 * exporting function using blk_queue_lld_busy() first.
1504 *
1505 * Basically, this function is used only by request stacking drivers
1506 * to stop dispatching requests to underlying devices when underlying
1507 * devices are busy. This behavior helps more I/O merging on the queue
1508 * of the request stacking driver and prevents I/O throughput regression
1509 * on burst I/O load.
1510 *
1511 * Return:
1512 * 0 - Not busy (The request stacking driver should dispatch request)
1513 * 1 - Busy (The request stacking driver should stop dispatching request)
1514 */
1515int blk_lld_busy(struct request_queue *q)
1516{
344e9ffc 1517 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1518 return q->mq_ops->busy(q);
ef9e3fac
KU
1519
1520 return 0;
1521}
1522EXPORT_SYMBOL_GPL(blk_lld_busy);
1523
78d8e58a
MS
1524/**
1525 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1526 * @rq: the clone request to be cleaned up
1527 *
1528 * Description:
1529 * Free all bios in @rq for a cloned request.
1530 */
1531void blk_rq_unprep_clone(struct request *rq)
1532{
1533 struct bio *bio;
1534
1535 while ((bio = rq->bio) != NULL) {
1536 rq->bio = bio->bi_next;
1537
1538 bio_put(bio);
1539 }
1540}
1541EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1542
78d8e58a
MS
1543/**
1544 * blk_rq_prep_clone - Helper function to setup clone request
1545 * @rq: the request to be setup
1546 * @rq_src: original request to be cloned
1547 * @bs: bio_set that bios for clone are allocated from
1548 * @gfp_mask: memory allocation mask for bio
1549 * @bio_ctr: setup function to be called for each clone bio.
1550 * Returns %0 for success, non %0 for failure.
1551 * @data: private data to be passed to @bio_ctr
1552 *
1553 * Description:
1554 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
78d8e58a
MS
1555 * Also, pages which the original bios are pointing to are not copied
1556 * and the cloned bios just point same pages.
1557 * So cloned bios must be completed before original bios, which means
1558 * the caller must complete @rq before @rq_src.
1559 */
1560int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1561 struct bio_set *bs, gfp_t gfp_mask,
1562 int (*bio_ctr)(struct bio *, struct bio *, void *),
1563 void *data)
1564{
1565 struct bio *bio, *bio_src;
1566
1567 if (!bs)
f4f8154a 1568 bs = &fs_bio_set;
78d8e58a
MS
1569
1570 __rq_for_each_bio(bio_src, rq_src) {
1571 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1572 if (!bio)
1573 goto free_and_out;
1574
1575 if (bio_ctr && bio_ctr(bio, bio_src, data))
1576 goto free_and_out;
1577
1578 if (rq->bio) {
1579 rq->biotail->bi_next = bio;
1580 rq->biotail = bio;
93f221ae 1581 } else {
78d8e58a 1582 rq->bio = rq->biotail = bio;
93f221ae
EB
1583 }
1584 bio = NULL;
78d8e58a
MS
1585 }
1586
361301a2
GJ
1587 /* Copy attributes of the original request to the clone request. */
1588 rq->__sector = blk_rq_pos(rq_src);
1589 rq->__data_len = blk_rq_bytes(rq_src);
1590 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1591 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1592 rq->special_vec = rq_src->special_vec;
1593 }
1594 rq->nr_phys_segments = rq_src->nr_phys_segments;
1595 rq->ioprio = rq_src->ioprio;
78d8e58a 1596
93f221ae
EB
1597 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1598 goto free_and_out;
78d8e58a
MS
1599
1600 return 0;
1601
1602free_and_out:
1603 if (bio)
1604 bio_put(bio);
1605 blk_rq_unprep_clone(rq);
1606
1607 return -ENOMEM;
b0fd271d
KU
1608}
1609EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1610
59c3d45e 1611int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1612{
1613 return queue_work(kblockd_workqueue, work);
1614}
1da177e4
LT
1615EXPORT_SYMBOL(kblockd_schedule_work);
1616
818cd1cb
JA
1617int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1618 unsigned long delay)
1619{
1620 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1621}
1622EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1623
75df7136
SJ
1624/**
1625 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1626 * @plug: The &struct blk_plug that needs to be initialized
1627 *
1628 * Description:
40405851
JM
1629 * blk_start_plug() indicates to the block layer an intent by the caller
1630 * to submit multiple I/O requests in a batch. The block layer may use
1631 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1632 * is called. However, the block layer may choose to submit requests
1633 * before a call to blk_finish_plug() if the number of queued I/Os
1634 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1635 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1636 * the task schedules (see below).
1637 *
75df7136
SJ
1638 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1639 * pending I/O should the task end up blocking between blk_start_plug() and
1640 * blk_finish_plug(). This is important from a performance perspective, but
1641 * also ensures that we don't deadlock. For instance, if the task is blocking
1642 * for a memory allocation, memory reclaim could end up wanting to free a
1643 * page belonging to that request that is currently residing in our private
1644 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1645 * this kind of deadlock.
1646 */
73c10101
JA
1647void blk_start_plug(struct blk_plug *plug)
1648{
1649 struct task_struct *tsk = current;
1650
dd6cf3e1
SL
1651 /*
1652 * If this is a nested plug, don't actually assign it.
1653 */
1654 if (tsk->plug)
1655 return;
1656
320ae51f 1657 INIT_LIST_HEAD(&plug->mq_list);
048c9374 1658 INIT_LIST_HEAD(&plug->cb_list);
5f0ed774 1659 plug->rq_count = 0;
ce5b009c 1660 plug->multiple_queues = false;
5a473e83 1661 plug->nowait = false;
5f0ed774 1662
73c10101 1663 /*
dd6cf3e1
SL
1664 * Store ordering should not be needed here, since a potential
1665 * preempt will imply a full memory barrier
73c10101 1666 */
dd6cf3e1 1667 tsk->plug = plug;
73c10101
JA
1668}
1669EXPORT_SYMBOL(blk_start_plug);
1670
74018dc3 1671static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1672{
1673 LIST_HEAD(callbacks);
1674
2a7d5559
SL
1675 while (!list_empty(&plug->cb_list)) {
1676 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1677
2a7d5559
SL
1678 while (!list_empty(&callbacks)) {
1679 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1680 struct blk_plug_cb,
1681 list);
2a7d5559 1682 list_del(&cb->list);
74018dc3 1683 cb->callback(cb, from_schedule);
2a7d5559 1684 }
048c9374
N
1685 }
1686}
1687
9cbb1750
N
1688struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1689 int size)
1690{
1691 struct blk_plug *plug = current->plug;
1692 struct blk_plug_cb *cb;
1693
1694 if (!plug)
1695 return NULL;
1696
1697 list_for_each_entry(cb, &plug->cb_list, list)
1698 if (cb->callback == unplug && cb->data == data)
1699 return cb;
1700
1701 /* Not currently on the callback list */
1702 BUG_ON(size < sizeof(*cb));
1703 cb = kzalloc(size, GFP_ATOMIC);
1704 if (cb) {
1705 cb->data = data;
1706 cb->callback = unplug;
1707 list_add(&cb->list, &plug->cb_list);
1708 }
1709 return cb;
1710}
1711EXPORT_SYMBOL(blk_check_plugged);
1712
49cac01e 1713void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101 1714{
74018dc3 1715 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
1716
1717 if (!list_empty(&plug->mq_list))
1718 blk_mq_flush_plug_list(plug, from_schedule);
73c10101 1719}
73c10101 1720
40405851
JM
1721/**
1722 * blk_finish_plug - mark the end of a batch of submitted I/O
1723 * @plug: The &struct blk_plug passed to blk_start_plug()
1724 *
1725 * Description:
1726 * Indicate that a batch of I/O submissions is complete. This function
1727 * must be paired with an initial call to blk_start_plug(). The intent
1728 * is to allow the block layer to optimize I/O submission. See the
1729 * documentation for blk_start_plug() for more information.
1730 */
73c10101
JA
1731void blk_finish_plug(struct blk_plug *plug)
1732{
dd6cf3e1
SL
1733 if (plug != current->plug)
1734 return;
f6603783 1735 blk_flush_plug_list(plug, false);
73c10101 1736
dd6cf3e1 1737 current->plug = NULL;
73c10101 1738}
88b996cd 1739EXPORT_SYMBOL(blk_finish_plug);
73c10101 1740
71ac860a
ML
1741void blk_io_schedule(void)
1742{
1743 /* Prevent hang_check timer from firing at us during very long I/O */
1744 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1745
1746 if (timeout)
1747 io_schedule_timeout(timeout);
1748 else
1749 io_schedule();
1750}
1751EXPORT_SYMBOL_GPL(blk_io_schedule);
1752
1da177e4
LT
1753int __init blk_dev_init(void)
1754{
ef295ecf
CH
1755 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1756 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1757 sizeof_field(struct request, cmd_flags));
ef295ecf 1758 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1759 sizeof_field(struct bio, bi_opf));
9eb55b03 1760
89b90be2
TH
1761 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1762 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1763 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1764 if (!kblockd_workqueue)
1765 panic("Failed to create kblockd\n");
1766
c2789bd4 1767 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1768 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1769
18fbda91 1770 blk_debugfs_root = debugfs_create_dir("block", NULL);
18fbda91 1771
d38ecf93 1772 return 0;
1da177e4 1773}