Merge tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/linux
[linux-block.git] / block / blk-core.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
1da177e4
LT
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
1da177e4
LT
15#include <linux/kernel.h>
16#include <linux/module.h>
1da177e4
LT
17#include <linux/bio.h>
18#include <linux/blkdev.h>
52abca64 19#include <linux/blk-pm.h>
fe45e630 20#include <linux/blk-integrity.h>
1da177e4
LT
21#include <linux/highmem.h>
22#include <linux/mm.h>
cee9a0c4 23#include <linux/pagemap.h>
1da177e4
LT
24#include <linux/kernel_stat.h>
25#include <linux/string.h>
26#include <linux/init.h>
1da177e4
LT
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
faccbd4b 31#include <linux/task_io_accounting_ops.h>
c17bb495 32#include <linux/fault-inject.h>
73c10101 33#include <linux/list_sort.h>
e3c78ca5 34#include <linux/delay.h>
aaf7c680 35#include <linux/ratelimit.h>
6c954667 36#include <linux/pm_runtime.h>
54d4e6ab 37#include <linux/t10-pi.h>
18fbda91 38#include <linux/debugfs.h>
30abb3a6 39#include <linux/bpf.h>
82d981d4 40#include <linux/part_stat.h>
71ac860a 41#include <linux/sched/sysctl.h>
a892c8d5 42#include <linux/blk-crypto.h>
55782138
LZ
43
44#define CREATE_TRACE_POINTS
45#include <trace/events/block.h>
1da177e4 46
8324aa91 47#include "blk.h"
2aa7745b 48#include "blk-mq-sched.h"
bca6b067 49#include "blk-pm.h"
672fdcf0 50#include "blk-cgroup.h"
a7b36ee6 51#include "blk-throttle.h"
8324aa91 52
18fbda91 53struct dentry *blk_debugfs_root;
18fbda91 54
d07335e5 55EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 56EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 57EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 58EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 59EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
b357e4a6 60EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
0bfc2455 61
2bd85221 62static DEFINE_IDA(blk_queue_ida);
a73f730d 63
1da177e4
LT
64/*
65 * For queue allocation
66 */
2bd85221 67static struct kmem_cache *blk_requestq_cachep;
1da177e4 68
1da177e4
LT
69/*
70 * Controlling structure to kblockd
71 */
ff856bad 72static struct workqueue_struct *kblockd_workqueue;
1da177e4 73
8814ce8a
BVA
74/**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
78 */
79void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80{
57d74df9 81 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
82}
83EXPORT_SYMBOL(blk_queue_flag_set);
84
85/**
86 * blk_queue_flag_clear - atomically clear a queue flag
87 * @flag: flag to be cleared
88 * @q: request queue
89 */
90void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91{
57d74df9 92 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
93}
94EXPORT_SYMBOL(blk_queue_flag_clear);
95
96/**
97 * blk_queue_flag_test_and_set - atomically test and set a queue flag
98 * @flag: flag to be set
99 * @q: request queue
100 *
101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
102 * the flag was already set.
103 */
104bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105{
57d74df9 106 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
107}
108EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109
e47bc4ed
CK
110#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
111static const char *const blk_op_name[] = {
112 REQ_OP_NAME(READ),
113 REQ_OP_NAME(WRITE),
114 REQ_OP_NAME(FLUSH),
115 REQ_OP_NAME(DISCARD),
116 REQ_OP_NAME(SECURE_ERASE),
117 REQ_OP_NAME(ZONE_RESET),
6e33dbf2 118 REQ_OP_NAME(ZONE_RESET_ALL),
6c1b1da5
AJ
119 REQ_OP_NAME(ZONE_OPEN),
120 REQ_OP_NAME(ZONE_CLOSE),
121 REQ_OP_NAME(ZONE_FINISH),
0512a75b 122 REQ_OP_NAME(ZONE_APPEND),
e47bc4ed 123 REQ_OP_NAME(WRITE_ZEROES),
e47bc4ed
CK
124 REQ_OP_NAME(DRV_IN),
125 REQ_OP_NAME(DRV_OUT),
126};
127#undef REQ_OP_NAME
128
129/**
130 * blk_op_str - Return string XXX in the REQ_OP_XXX.
131 * @op: REQ_OP_XXX.
132 *
133 * Description: Centralize block layer function to convert REQ_OP_XXX into
134 * string format. Useful in the debugging and tracing bio or request. For
135 * invalid REQ_OP_XXX it returns string "UNKNOWN".
136 */
77e7ffd7 137inline const char *blk_op_str(enum req_op op)
e47bc4ed
CK
138{
139 const char *op_str = "UNKNOWN";
140
141 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
142 op_str = blk_op_name[op];
143
144 return op_str;
145}
146EXPORT_SYMBOL_GPL(blk_op_str);
147
2a842aca
CH
148static const struct {
149 int errno;
150 const char *name;
151} blk_errors[] = {
152 [BLK_STS_OK] = { 0, "" },
153 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
154 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
155 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
156 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
157 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
158 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
159 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
160 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
161 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 162 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 163 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
7d32c027 164 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
2a842aca 165
4e4cbee9
CH
166 /* device mapper special case, should not leak out: */
167 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
168
3b481d91
KB
169 /* zone device specific errors */
170 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
171 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
172
2a842aca
CH
173 /* everything else not covered above: */
174 [BLK_STS_IOERR] = { -EIO, "I/O" },
175};
176
177blk_status_t errno_to_blk_status(int errno)
178{
179 int i;
180
181 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
182 if (blk_errors[i].errno == errno)
183 return (__force blk_status_t)i;
184 }
185
186 return BLK_STS_IOERR;
187}
188EXPORT_SYMBOL_GPL(errno_to_blk_status);
189
190int blk_status_to_errno(blk_status_t status)
191{
192 int idx = (__force int)status;
193
34bd9c1c 194 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
195 return -EIO;
196 return blk_errors[idx].errno;
197}
198EXPORT_SYMBOL_GPL(blk_status_to_errno);
199
0d7a29a2 200const char *blk_status_to_str(blk_status_t status)
2a842aca
CH
201{
202 int idx = (__force int)status;
203
34bd9c1c 204 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
0d7a29a2
CH
205 return "<null>";
206 return blk_errors[idx].name;
2a842aca
CH
207}
208
1da177e4
LT
209/**
210 * blk_sync_queue - cancel any pending callbacks on a queue
211 * @q: the queue
212 *
213 * Description:
214 * The block layer may perform asynchronous callback activity
215 * on a queue, such as calling the unplug function after a timeout.
216 * A block device may call blk_sync_queue to ensure that any
217 * such activity is cancelled, thus allowing it to release resources
59c51591 218 * that the callbacks might use. The caller must already have made sure
c62b37d9 219 * that its ->submit_bio will not re-add plugging prior to calling
1da177e4
LT
220 * this function.
221 *
da527770 222 * This function does not cancel any asynchronous activity arising
da3dae54 223 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 224 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 225 *
1da177e4
LT
226 */
227void blk_sync_queue(struct request_queue *q)
228{
70ed28b9 229 del_timer_sync(&q->timeout);
4e9b6f20 230 cancel_work_sync(&q->timeout_work);
1da177e4
LT
231}
232EXPORT_SYMBOL(blk_sync_queue);
233
c9254f2d 234/**
cd84a62e 235 * blk_set_pm_only - increment pm_only counter
c9254f2d 236 * @q: request queue pointer
c9254f2d 237 */
cd84a62e 238void blk_set_pm_only(struct request_queue *q)
c9254f2d 239{
cd84a62e 240 atomic_inc(&q->pm_only);
c9254f2d 241}
cd84a62e 242EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 243
cd84a62e 244void blk_clear_pm_only(struct request_queue *q)
c9254f2d 245{
cd84a62e
BVA
246 int pm_only;
247
248 pm_only = atomic_dec_return(&q->pm_only);
249 WARN_ON_ONCE(pm_only < 0);
250 if (pm_only == 0)
251 wake_up_all(&q->mq_freeze_wq);
c9254f2d 252}
cd84a62e 253EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 254
2bd85221
CH
255static void blk_free_queue_rcu(struct rcu_head *rcu_head)
256{
d36a9ea5
ML
257 struct request_queue *q = container_of(rcu_head,
258 struct request_queue, rcu_head);
259
260 percpu_ref_exit(&q->q_usage_counter);
261 kmem_cache_free(blk_requestq_cachep, q);
2bd85221
CH
262}
263
264static void blk_free_queue(struct request_queue *q)
265{
2bd85221
CH
266 if (q->poll_stat)
267 blk_stat_remove_callback(q, q->poll_cb);
268 blk_stat_free_callback(q->poll_cb);
269
270 blk_free_queue_stats(q->stats);
271 kfree(q->poll_stat);
272
273 if (queue_is_mq(q))
274 blk_mq_release(q);
275
276 ida_free(&blk_queue_ida, q->id);
277 call_rcu(&q->rcu_head, blk_free_queue_rcu);
278}
279
b5bd357c
LC
280/**
281 * blk_put_queue - decrement the request_queue refcount
282 * @q: the request_queue structure to decrement the refcount for
283 *
2bd85221
CH
284 * Decrements the refcount of the request_queue and free it when the refcount
285 * reaches 0.
b5bd357c 286 */
165125e1 287void blk_put_queue(struct request_queue *q)
483f4afc 288{
2bd85221
CH
289 if (refcount_dec_and_test(&q->refs))
290 blk_free_queue(q);
483f4afc 291}
d86e0e83 292EXPORT_SYMBOL(blk_put_queue);
483f4afc 293
8e141f9e 294void blk_queue_start_drain(struct request_queue *q)
aed3ea94 295{
d3cfb2a0
ML
296 /*
297 * When queue DYING flag is set, we need to block new req
298 * entering queue, so we call blk_freeze_queue_start() to
299 * prevent I/O from crossing blk_queue_enter().
300 */
301 blk_freeze_queue_start(q);
344e9ffc 302 if (queue_is_mq(q))
aed3ea94 303 blk_mq_wake_waiters(q);
055f6e18
ML
304 /* Make blk_queue_enter() reexamine the DYING flag. */
305 wake_up_all(&q->mq_freeze_wq);
aed3ea94 306}
8e141f9e 307
3a0a5299
BVA
308/**
309 * blk_queue_enter() - try to increase q->q_usage_counter
310 * @q: request queue pointer
a4d34da7 311 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
3a0a5299 312 */
9a95e4ef 313int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 314{
a4d34da7 315 const bool pm = flags & BLK_MQ_REQ_PM;
3a0a5299 316
1f14a098 317 while (!blk_try_enter_queue(q, pm)) {
3a0a5299 318 if (flags & BLK_MQ_REQ_NOWAIT)
56f99b8d 319 return -EAGAIN;
3ef28e83 320
5ed61d3f 321 /*
1f14a098
CH
322 * read pair of barrier in blk_freeze_queue_start(), we need to
323 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
324 * reading .mq_freeze_depth or queue dying flag, otherwise the
325 * following wait may never return if the two reads are
326 * reordered.
5ed61d3f
ML
327 */
328 smp_rmb();
1dc3039b 329 wait_event(q->mq_freeze_wq,
7996a8b5 330 (!q->mq_freeze_depth &&
52abca64 331 blk_pm_resume_queue(pm, q)) ||
1dc3039b 332 blk_queue_dying(q));
3ef28e83
DW
333 if (blk_queue_dying(q))
334 return -ENODEV;
3ef28e83 335 }
1f14a098
CH
336
337 return 0;
3ef28e83
DW
338}
339
c98cb5bb 340int __bio_queue_enter(struct request_queue *q, struct bio *bio)
accea322 341{
a6741536 342 while (!blk_try_enter_queue(q, false)) {
eab4e027
PB
343 struct gendisk *disk = bio->bi_bdev->bd_disk;
344
a6741536 345 if (bio->bi_opf & REQ_NOWAIT) {
8e141f9e 346 if (test_bit(GD_DEAD, &disk->state))
a6741536 347 goto dead;
accea322 348 bio_wouldblock_error(bio);
56f99b8d 349 return -EAGAIN;
a6741536
CH
350 }
351
352 /*
353 * read pair of barrier in blk_freeze_queue_start(), we need to
354 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
355 * reading .mq_freeze_depth or queue dying flag, otherwise the
356 * following wait may never return if the two reads are
357 * reordered.
358 */
359 smp_rmb();
360 wait_event(q->mq_freeze_wq,
361 (!q->mq_freeze_depth &&
362 blk_pm_resume_queue(false, q)) ||
8e141f9e
CH
363 test_bit(GD_DEAD, &disk->state));
364 if (test_bit(GD_DEAD, &disk->state))
a6741536 365 goto dead;
accea322
CH
366 }
367
a6741536
CH
368 return 0;
369dead:
370 bio_io_error(bio);
371 return -ENODEV;
accea322
CH
372}
373
3ef28e83
DW
374void blk_queue_exit(struct request_queue *q)
375{
376 percpu_ref_put(&q->q_usage_counter);
377}
378
379static void blk_queue_usage_counter_release(struct percpu_ref *ref)
380{
381 struct request_queue *q =
382 container_of(ref, struct request_queue, q_usage_counter);
383
384 wake_up_all(&q->mq_freeze_wq);
385}
386
bca237a5 387static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 388{
bca237a5 389 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
390
391 kblockd_schedule_work(&q->timeout_work);
392}
393
2e3c18d0
TH
394static void blk_timeout_work(struct work_struct *work)
395{
396}
397
80bd4a7a 398struct request_queue *blk_alloc_queue(int node_id)
1946089a 399{
165125e1 400 struct request_queue *q;
1946089a 401
80bd4a7a
CH
402 q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
403 node_id);
1da177e4
LT
404 if (!q)
405 return NULL;
406
cbf62af3 407 q->last_merge = NULL;
cbf62af3 408
798f2a6f 409 q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
a73f730d 410 if (q->id < 0)
80bd4a7a 411 goto fail_q;
a73f730d 412
a83b576c
JA
413 q->stats = blk_alloc_queue_stats();
414 if (!q->stats)
46754bd0 415 goto fail_id;
a83b576c 416
5151412d 417 q->node = node_id;
0989a025 418
079a2e3e 419 atomic_set(&q->nr_active_requests_shared_tags, 0);
bccf5e26 420
bca237a5 421 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
2e3c18d0 422 INIT_WORK(&q->timeout_work, blk_timeout_work);
a612fddf 423 INIT_LIST_HEAD(&q->icq_list);
483f4afc 424
2bd85221 425 refcount_set(&q->refs, 1);
85e0cbbb 426 mutex_init(&q->debugfs_mutex);
483f4afc 427 mutex_init(&q->sysfs_lock);
cecf5d87 428 mutex_init(&q->sysfs_dir_lock);
0d945c1f 429 spin_lock_init(&q->queue_lock);
c94a96ac 430
320ae51f 431 init_waitqueue_head(&q->mq_freeze_wq);
7996a8b5 432 mutex_init(&q->mq_freeze_lock);
320ae51f 433
3ef28e83
DW
434 /*
435 * Init percpu_ref in atomic mode so that it's faster to shutdown.
436 * See blk_register_queue() for details.
437 */
438 if (percpu_ref_init(&q->q_usage_counter,
439 blk_queue_usage_counter_release,
440 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
edb0872f 441 goto fail_stats;
f51b802c 442
3d745ea5 443 blk_set_default_limits(&q->limits);
d2a27964 444 q->nr_requests = BLKDEV_DEFAULT_RQ;
3d745ea5 445
1da177e4 446 return q;
a73f730d 447
a83b576c 448fail_stats:
edb0872f 449 blk_free_queue_stats(q->stats);
a73f730d 450fail_id:
798f2a6f 451 ida_free(&blk_queue_ida, q->id);
a73f730d 452fail_q:
80bd4a7a 453 kmem_cache_free(blk_requestq_cachep, q);
a73f730d 454 return NULL;
1da177e4 455}
1da177e4 456
b5bd357c
LC
457/**
458 * blk_get_queue - increment the request_queue refcount
459 * @q: the request_queue structure to increment the refcount for
460 *
461 * Increment the refcount of the request_queue kobject.
763b5892
LC
462 *
463 * Context: Any context.
b5bd357c 464 */
09ac46c4 465bool blk_get_queue(struct request_queue *q)
1da177e4 466{
828b5f01
CH
467 if (unlikely(blk_queue_dying(q)))
468 return false;
2bd85221 469 refcount_inc(&q->refs);
828b5f01 470 return true;
1da177e4 471}
d86e0e83 472EXPORT_SYMBOL(blk_get_queue);
1da177e4 473
c17bb495
AM
474#ifdef CONFIG_FAIL_MAKE_REQUEST
475
476static DECLARE_FAULT_ATTR(fail_make_request);
477
478static int __init setup_fail_make_request(char *str)
479{
480 return setup_fault_attr(&fail_make_request, str);
481}
482__setup("fail_make_request=", setup_fail_make_request);
483
06c8c691 484bool should_fail_request(struct block_device *part, unsigned int bytes)
c17bb495 485{
8446fe92 486 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
487}
488
489static int __init fail_make_request_debugfs(void)
490{
dd48c085
AM
491 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
492 NULL, &fail_make_request);
493
21f9fcd8 494 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
495}
496
497late_initcall(fail_make_request_debugfs);
c17bb495
AM
498#endif /* CONFIG_FAIL_MAKE_REQUEST */
499
bdb7d420 500static inline void bio_check_ro(struct bio *bio)
721c7fc7 501{
2f9f6221 502 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
8b2ded1c 503 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
bdb7d420 504 return;
57e95e46
CH
505 pr_warn("Trying to write to read-only block-device %pg\n",
506 bio->bi_bdev);
a32e236e 507 /* Older lvm-tools actually trigger this */
721c7fc7 508 }
721c7fc7
ID
509}
510
30abb3a6
HM
511static noinline int should_fail_bio(struct bio *bio)
512{
309dca30 513 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
30abb3a6
HM
514 return -EIO;
515 return 0;
516}
517ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
518
52c5e62d
CH
519/*
520 * Check whether this bio extends beyond the end of the device or partition.
521 * This may well happen - the kernel calls bread() without checking the size of
522 * the device, e.g., when mounting a file system.
523 */
2f9f6221 524static inline int bio_check_eod(struct bio *bio)
52c5e62d 525{
2f9f6221 526 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
52c5e62d
CH
527 unsigned int nr_sectors = bio_sectors(bio);
528
529 if (nr_sectors && maxsector &&
530 (nr_sectors > maxsector ||
531 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
ad740780 532 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
069adbac
CH
533 "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
534 current->comm, bio->bi_bdev, bio->bi_opf,
535 bio->bi_iter.bi_sector, nr_sectors, maxsector);
52c5e62d
CH
536 return -EIO;
537 }
538 return 0;
539}
540
74d46992
CH
541/*
542 * Remap block n of partition p to block n+start(p) of the disk.
543 */
2f9f6221 544static int blk_partition_remap(struct bio *bio)
74d46992 545{
309dca30 546 struct block_device *p = bio->bi_bdev;
74d46992 547
52c5e62d 548 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2f9f6221 549 return -EIO;
5eac3eb3 550 if (bio_sectors(bio)) {
8446fe92 551 bio->bi_iter.bi_sector += p->bd_start_sect;
1c02fca6 552 trace_block_bio_remap(bio, p->bd_dev,
29ff57c6 553 bio->bi_iter.bi_sector -
8446fe92 554 p->bd_start_sect);
52c5e62d 555 }
30c5d345 556 bio_set_flag(bio, BIO_REMAPPED);
2f9f6221 557 return 0;
74d46992
CH
558}
559
0512a75b
KB
560/*
561 * Check write append to a zoned block device.
562 */
563static inline blk_status_t blk_check_zone_append(struct request_queue *q,
564 struct bio *bio)
565{
0512a75b
KB
566 int nr_sectors = bio_sectors(bio);
567
568 /* Only applicable to zoned block devices */
edd1dbc8 569 if (!bdev_is_zoned(bio->bi_bdev))
0512a75b
KB
570 return BLK_STS_NOTSUPP;
571
572 /* The bio sector must point to the start of a sequential zone */
e29b2100 573 if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector) ||
052e545c 574 !bio_zone_is_seq(bio))
0512a75b
KB
575 return BLK_STS_IOERR;
576
577 /*
578 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
579 * split and could result in non-contiguous sectors being written in
580 * different zones.
581 */
582 if (nr_sectors > q->limits.chunk_sectors)
583 return BLK_STS_IOERR;
584
585 /* Make sure the BIO is small enough and will not get split */
586 if (nr_sectors > q->limits.max_zone_append_sectors)
587 return BLK_STS_IOERR;
588
589 bio->bi_opf |= REQ_NOMERGE;
590
591 return BLK_STS_OK;
592}
593
900e0807
JA
594static void __submit_bio(struct bio *bio)
595{
596 struct gendisk *disk = bio->bi_bdev->bd_disk;
cc9c884d 597
7f36b7d0
ML
598 if (unlikely(!blk_crypto_bio_prep(&bio)))
599 return;
600
601 if (!disk->fops->submit_bio) {
3e08773c 602 blk_mq_submit_bio(bio);
7f36b7d0
ML
603 } else if (likely(bio_queue_enter(bio) == 0)) {
604 disk->fops->submit_bio(bio);
605 blk_queue_exit(disk->queue);
606 }
ac7c5675
CH
607}
608
566acf2d
CH
609/*
610 * The loop in this function may be a bit non-obvious, and so deserves some
611 * explanation:
612 *
613 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
614 * that), so we have a list with a single bio.
615 * - We pretend that we have just taken it off a longer list, so we assign
616 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
617 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
618 * bios through a recursive call to submit_bio_noacct. If it did, we find a
619 * non-NULL value in bio_list and re-enter the loop from the top.
620 * - In this case we really did just take the bio of the top of the list (no
621 * pretending) and so remove it from bio_list, and call into ->submit_bio()
622 * again.
623 *
624 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
625 * bio_list_on_stack[1] contains bios that were submitted before the current
69fe0f29 626 * ->submit_bio, but that haven't been processed yet.
566acf2d 627 */
3e08773c 628static void __submit_bio_noacct(struct bio *bio)
566acf2d
CH
629{
630 struct bio_list bio_list_on_stack[2];
566acf2d
CH
631
632 BUG_ON(bio->bi_next);
633
634 bio_list_init(&bio_list_on_stack[0]);
635 current->bio_list = bio_list_on_stack;
636
637 do {
eab4e027 638 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
566acf2d
CH
639 struct bio_list lower, same;
640
566acf2d
CH
641 /*
642 * Create a fresh bio_list for all subordinate requests.
643 */
644 bio_list_on_stack[1] = bio_list_on_stack[0];
645 bio_list_init(&bio_list_on_stack[0]);
646
3e08773c 647 __submit_bio(bio);
566acf2d
CH
648
649 /*
650 * Sort new bios into those for a lower level and those for the
651 * same level.
652 */
653 bio_list_init(&lower);
654 bio_list_init(&same);
655 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
eab4e027 656 if (q == bdev_get_queue(bio->bi_bdev))
566acf2d
CH
657 bio_list_add(&same, bio);
658 else
659 bio_list_add(&lower, bio);
660
661 /*
662 * Now assemble so we handle the lowest level first.
663 */
664 bio_list_merge(&bio_list_on_stack[0], &lower);
665 bio_list_merge(&bio_list_on_stack[0], &same);
666 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
667 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
668
669 current->bio_list = NULL;
566acf2d
CH
670}
671
3e08773c 672static void __submit_bio_noacct_mq(struct bio *bio)
ff93ea0c 673{
7c792f33 674 struct bio_list bio_list[2] = { };
ff93ea0c 675
7c792f33 676 current->bio_list = bio_list;
ff93ea0c
CH
677
678 do {
3e08773c 679 __submit_bio(bio);
7c792f33 680 } while ((bio = bio_list_pop(&bio_list[0])));
ff93ea0c
CH
681
682 current->bio_list = NULL;
ff93ea0c
CH
683}
684
3f98c753 685void submit_bio_noacct_nocheck(struct bio *bio)
d89d8796 686{
0f7c8f0f
JH
687 blk_cgroup_bio_start(bio);
688 blkcg_bio_issue_init(bio);
689
690 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
691 trace_block_bio_queue(bio);
692 /*
693 * Now that enqueuing has been traced, we need to trace
694 * completion as well.
695 */
696 bio_set_flag(bio, BIO_TRACE_COMPLETION);
697 }
698
27a84d54 699 /*
566acf2d
CH
700 * We only want one ->submit_bio to be active at a time, else stack
701 * usage with stacked devices could be a problem. Use current->bio_list
702 * to collect a list of requests submited by a ->submit_bio method while
703 * it is active, and then process them after it returned.
27a84d54 704 */
3e08773c 705 if (current->bio_list)
f5fe1b51 706 bio_list_add(&current->bio_list[0], bio);
3e08773c
CH
707 else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
708 __submit_bio_noacct_mq(bio);
709 else
710 __submit_bio_noacct(bio);
d89d8796 711}
3f98c753
ML
712
713/**
714 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
715 * @bio: The bio describing the location in memory and on the device.
716 *
717 * This is a version of submit_bio() that shall only be used for I/O that is
718 * resubmitted to lower level drivers by stacking block drivers. All file
719 * systems and other upper level users of the block layer should use
720 * submit_bio() instead.
721 */
722void submit_bio_noacct(struct bio *bio)
1da177e4 723{
309dca30 724 struct block_device *bdev = bio->bi_bdev;
eab4e027 725 struct request_queue *q = bdev_get_queue(bdev);
4e4cbee9 726 blk_status_t status = BLK_STS_IOERR;
5a473e83 727 struct blk_plug *plug;
1da177e4
LT
728
729 might_sleep();
1da177e4 730
6deacb3b 731 plug = blk_mq_plug(bio);
5a473e83
JA
732 if (plug && plug->nowait)
733 bio->bi_opf |= REQ_NOWAIT;
734
03a07c92 735 /*
b0beb280 736 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
021a2446 737 * if queue does not support NOWAIT.
03a07c92 738 */
568ec936 739 if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
b0beb280 740 goto not_supported;
03a07c92 741
30abb3a6 742 if (should_fail_bio(bio))
5a7bbad2 743 goto end_io;
bdb7d420 744 bio_check_ro(bio);
3a905c37
CH
745 if (!bio_flagged(bio, BIO_REMAPPED)) {
746 if (unlikely(bio_check_eod(bio)))
747 goto end_io;
748 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
749 goto end_io;
750 }
2056a782 751
5a7bbad2 752 /*
ed00aabd
CH
753 * Filter flush bio's early so that bio based drivers without flush
754 * support don't have to worry about them.
5a7bbad2 755 */
b4a6bb3a
CH
756 if (op_is_flush(bio->bi_opf)) {
757 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
758 bio_op(bio) != REQ_OP_ZONE_APPEND))
51fd77bd 759 goto end_io;
b4a6bb3a
CH
760 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
761 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
762 if (!bio_sectors(bio)) {
763 status = BLK_STS_OK;
764 goto end_io;
765 }
51fd77bd 766 }
5a7bbad2 767 }
5ddfe969 768
d04c406f 769 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
6ce913fe 770 bio_clear_polled(bio);
d04c406f 771
288dab8a
CH
772 switch (bio_op(bio)) {
773 case REQ_OP_DISCARD:
70200574 774 if (!bdev_max_discard_sectors(bdev))
288dab8a
CH
775 goto not_supported;
776 break;
777 case REQ_OP_SECURE_ERASE:
44abff2c 778 if (!bdev_max_secure_erase_sectors(bdev))
288dab8a
CH
779 goto not_supported;
780 break;
0512a75b
KB
781 case REQ_OP_ZONE_APPEND:
782 status = blk_check_zone_append(q, bio);
783 if (status != BLK_STS_OK)
784 goto end_io;
785 break;
2d253440 786 case REQ_OP_ZONE_RESET:
6c1b1da5
AJ
787 case REQ_OP_ZONE_OPEN:
788 case REQ_OP_ZONE_CLOSE:
789 case REQ_OP_ZONE_FINISH:
edd1dbc8 790 if (!bdev_is_zoned(bio->bi_bdev))
2d253440 791 goto not_supported;
288dab8a 792 break;
6e33dbf2 793 case REQ_OP_ZONE_RESET_ALL:
edd1dbc8 794 if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q))
6e33dbf2
CK
795 goto not_supported;
796 break;
a6f0788e 797 case REQ_OP_WRITE_ZEROES:
74d46992 798 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
799 goto not_supported;
800 break;
288dab8a
CH
801 default:
802 break;
5a7bbad2 803 }
01edede4 804
b781d8db 805 if (blk_throtl_bio(bio))
3f98c753
ML
806 return;
807 submit_bio_noacct_nocheck(bio);
d24c670e 808 return;
a7384677 809
288dab8a 810not_supported:
4e4cbee9 811 status = BLK_STS_NOTSUPP;
a7384677 812end_io:
4e4cbee9 813 bio->bi_status = status;
4246a0b6 814 bio_endio(bio);
d89d8796 815}
ed00aabd 816EXPORT_SYMBOL(submit_bio_noacct);
1da177e4
LT
817
818/**
710027a4 819 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
820 * @bio: The &struct bio which describes the I/O
821 *
3fdd4086
CH
822 * submit_bio() is used to submit I/O requests to block devices. It is passed a
823 * fully set up &struct bio that describes the I/O that needs to be done. The
309dca30 824 * bio will be send to the device described by the bi_bdev field.
1da177e4 825 *
3fdd4086
CH
826 * The success/failure status of the request, along with notification of
827 * completion, is delivered asynchronously through the ->bi_end_io() callback
e8848087 828 * in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has
3fdd4086 829 * been called.
1da177e4 830 */
3e08773c 831void submit_bio(struct bio *bio)
1da177e4 832{
d3f77dfd 833 if (blkcg_punt_bio_submit(bio))
3e08773c 834 return;
d3f77dfd 835
a3e7689b
CH
836 if (bio_op(bio) == REQ_OP_READ) {
837 task_io_account_read(bio->bi_iter.bi_size);
838 count_vm_events(PGPGIN, bio_sectors(bio));
839 } else if (bio_op(bio) == REQ_OP_WRITE) {
840 count_vm_events(PGPGOUT, bio_sectors(bio));
1da177e4
LT
841 }
842
3e08773c 843 submit_bio_noacct(bio);
1da177e4 844}
1da177e4
LT
845EXPORT_SYMBOL(submit_bio);
846
3e08773c
CH
847/**
848 * bio_poll - poll for BIO completions
849 * @bio: bio to poll for
e30028ac 850 * @iob: batches of IO
3e08773c
CH
851 * @flags: BLK_POLL_* flags that control the behavior
852 *
853 * Poll for completions on queue associated with the bio. Returns number of
854 * completed entries found.
855 *
856 * Note: the caller must either be the context that submitted @bio, or
857 * be in a RCU critical section to prevent freeing of @bio.
858 */
5a72e899 859int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
3e08773c 860{
3e08773c 861 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
310726c3
JA
862 struct block_device *bdev;
863 struct request_queue *q;
69fe0f29 864 int ret = 0;
3e08773c 865
310726c3
JA
866 bdev = READ_ONCE(bio->bi_bdev);
867 if (!bdev)
868 return 0;
869
870 q = bdev_get_queue(bdev);
3e08773c
CH
871 if (cookie == BLK_QC_T_NONE ||
872 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
873 return 0;
874
110fdb44
PR
875 /*
876 * As the requests that require a zone lock are not plugged in the
877 * first place, directly accessing the plug instead of using
878 * blk_mq_plug() should not have any consequences during flushing for
879 * zoned devices.
880 */
aa8dccca 881 blk_flush_plug(current->plug, false);
3e08773c 882
33391eec
JA
883 /*
884 * We need to be able to enter a frozen queue, similar to how
885 * timeouts also need to do that. If that is blocked, then we can
886 * have pending IO when a queue freeze is started, and then the
887 * wait for the freeze to finish will wait for polled requests to
888 * timeout as the poller is preventer from entering the queue and
889 * completing them. As long as we prevent new IO from being queued,
890 * that should be all that matters.
891 */
892 if (!percpu_ref_tryget(&q->q_usage_counter))
3e08773c 893 return 0;
69fe0f29 894 if (queue_is_mq(q)) {
5a72e899 895 ret = blk_mq_poll(q, cookie, iob, flags);
69fe0f29
ML
896 } else {
897 struct gendisk *disk = q->disk;
898
899 if (disk && disk->fops->poll_bio)
900 ret = disk->fops->poll_bio(bio, iob, flags);
901 }
3e08773c
CH
902 blk_queue_exit(q);
903 return ret;
904}
905EXPORT_SYMBOL_GPL(bio_poll);
906
907/*
908 * Helper to implement file_operations.iopoll. Requires the bio to be stored
909 * in iocb->private, and cleared before freeing the bio.
910 */
5a72e899
JA
911int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
912 unsigned int flags)
3e08773c
CH
913{
914 struct bio *bio;
915 int ret = 0;
916
917 /*
918 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
919 * point to a freshly allocated bio at this point. If that happens
920 * we have a few cases to consider:
921 *
922 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
923 * simply nothing in this case
924 * 2) the bio points to a not poll enabled device. bio_poll will catch
925 * this and return 0
926 * 3) the bio points to a poll capable device, including but not
927 * limited to the one that the original bio pointed to. In this
928 * case we will call into the actual poll method and poll for I/O,
929 * even if we don't need to, but it won't cause harm either.
930 *
931 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
932 * is still allocated. Because partitions hold a reference to the whole
933 * device bdev and thus disk, the disk is also still valid. Grabbing
934 * a reference to the queue in bio_poll() ensures the hctxs and requests
935 * are still valid as well.
936 */
937 rcu_read_lock();
938 bio = READ_ONCE(kiocb->private);
310726c3 939 if (bio)
5a72e899 940 ret = bio_poll(bio, iob, flags);
3e08773c
CH
941 rcu_read_unlock();
942
943 return ret;
944}
945EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
946
450b7879 947void update_io_ticks(struct block_device *part, unsigned long now, bool end)
9123bf6f
CH
948{
949 unsigned long stamp;
950again:
8446fe92 951 stamp = READ_ONCE(part->bd_stamp);
d80c228d 952 if (unlikely(time_after(now, stamp))) {
939f9dd0 953 if (likely(try_cmpxchg(&part->bd_stamp, &stamp, now)))
9123bf6f
CH
954 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
955 }
8446fe92
CH
956 if (part->bd_partno) {
957 part = bdev_whole(part);
9123bf6f
CH
958 goto again;
959 }
960}
961
5f275713 962unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
5f0614a5 963 unsigned long start_time)
956d510e 964{
956d510e 965 part_stat_lock();
5f0614a5 966 update_io_ticks(bdev, start_time, false);
5f0614a5 967 part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
956d510e 968 part_stat_unlock();
320ae51f 969
e45c47d1
MS
970 return start_time;
971}
5f0614a5 972EXPORT_SYMBOL(bdev_start_io_acct);
e45c47d1 973
99dfc43e
CH
974/**
975 * bio_start_io_acct - start I/O accounting for bio based drivers
976 * @bio: bio to start account for
977 *
978 * Returns the start time that should be passed back to bio_end_io_acct().
979 */
980unsigned long bio_start_io_acct(struct bio *bio)
7b26410b 981{
5f275713 982 return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
7b26410b 983}
99dfc43e 984EXPORT_SYMBOL_GPL(bio_start_io_acct);
7b26410b 985
77e7ffd7 986void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
5f275713 987 unsigned int sectors, unsigned long start_time)
956d510e 988{
956d510e
CH
989 const int sgrp = op_stat_group(op);
990 unsigned long now = READ_ONCE(jiffies);
991 unsigned long duration = now - start_time;
5b18b5a7 992
956d510e 993 part_stat_lock();
5f0614a5 994 update_io_ticks(bdev, now, true);
5f275713
YK
995 part_stat_inc(bdev, ios[sgrp]);
996 part_stat_add(bdev, sectors[sgrp], sectors);
5f0614a5
ML
997 part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
998 part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
320ae51f
JA
999 part_stat_unlock();
1000}
5f0614a5 1001EXPORT_SYMBOL(bdev_end_io_acct);
7b26410b 1002
99dfc43e 1003void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
5f0614a5 1004 struct block_device *orig_bdev)
7b26410b 1005{
5f275713 1006 bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
7b26410b 1007}
99dfc43e 1008EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
7b26410b 1009
ef9e3fac
KU
1010/**
1011 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1012 * @q : the queue of the device being checked
1013 *
1014 * Description:
1015 * Check if underlying low-level drivers of a device are busy.
1016 * If the drivers want to export their busy state, they must set own
1017 * exporting function using blk_queue_lld_busy() first.
1018 *
1019 * Basically, this function is used only by request stacking drivers
1020 * to stop dispatching requests to underlying devices when underlying
1021 * devices are busy. This behavior helps more I/O merging on the queue
1022 * of the request stacking driver and prevents I/O throughput regression
1023 * on burst I/O load.
1024 *
1025 * Return:
1026 * 0 - Not busy (The request stacking driver should dispatch request)
1027 * 1 - Busy (The request stacking driver should stop dispatching request)
1028 */
1029int blk_lld_busy(struct request_queue *q)
1030{
344e9ffc 1031 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1032 return q->mq_ops->busy(q);
ef9e3fac
KU
1033
1034 return 0;
1035}
1036EXPORT_SYMBOL_GPL(blk_lld_busy);
1037
59c3d45e 1038int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1039{
1040 return queue_work(kblockd_workqueue, work);
1041}
1da177e4
LT
1042EXPORT_SYMBOL(kblockd_schedule_work);
1043
818cd1cb
JA
1044int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1045 unsigned long delay)
1046{
1047 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1048}
1049EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1050
47c122e3
JA
1051void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1052{
1053 struct task_struct *tsk = current;
1054
1055 /*
1056 * If this is a nested plug, don't actually assign it.
1057 */
1058 if (tsk->plug)
1059 return;
1060
bc490f81 1061 plug->mq_list = NULL;
47c122e3
JA
1062 plug->cached_rq = NULL;
1063 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1064 plug->rq_count = 0;
1065 plug->multiple_queues = false;
dc5fc361 1066 plug->has_elevator = false;
47c122e3
JA
1067 plug->nowait = false;
1068 INIT_LIST_HEAD(&plug->cb_list);
1069
1070 /*
1071 * Store ordering should not be needed here, since a potential
1072 * preempt will imply a full memory barrier
1073 */
1074 tsk->plug = plug;
1075}
1076
75df7136
SJ
1077/**
1078 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1079 * @plug: The &struct blk_plug that needs to be initialized
1080 *
1081 * Description:
40405851
JM
1082 * blk_start_plug() indicates to the block layer an intent by the caller
1083 * to submit multiple I/O requests in a batch. The block layer may use
1084 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1085 * is called. However, the block layer may choose to submit requests
1086 * before a call to blk_finish_plug() if the number of queued I/Os
1087 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1088 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1089 * the task schedules (see below).
1090 *
75df7136
SJ
1091 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1092 * pending I/O should the task end up blocking between blk_start_plug() and
1093 * blk_finish_plug(). This is important from a performance perspective, but
1094 * also ensures that we don't deadlock. For instance, if the task is blocking
1095 * for a memory allocation, memory reclaim could end up wanting to free a
1096 * page belonging to that request that is currently residing in our private
1097 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1098 * this kind of deadlock.
1099 */
73c10101
JA
1100void blk_start_plug(struct blk_plug *plug)
1101{
47c122e3 1102 blk_start_plug_nr_ios(plug, 1);
73c10101
JA
1103}
1104EXPORT_SYMBOL(blk_start_plug);
1105
74018dc3 1106static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1107{
1108 LIST_HEAD(callbacks);
1109
2a7d5559
SL
1110 while (!list_empty(&plug->cb_list)) {
1111 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1112
2a7d5559
SL
1113 while (!list_empty(&callbacks)) {
1114 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1115 struct blk_plug_cb,
1116 list);
2a7d5559 1117 list_del(&cb->list);
74018dc3 1118 cb->callback(cb, from_schedule);
2a7d5559 1119 }
048c9374
N
1120 }
1121}
1122
9cbb1750
N
1123struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1124 int size)
1125{
1126 struct blk_plug *plug = current->plug;
1127 struct blk_plug_cb *cb;
1128
1129 if (!plug)
1130 return NULL;
1131
1132 list_for_each_entry(cb, &plug->cb_list, list)
1133 if (cb->callback == unplug && cb->data == data)
1134 return cb;
1135
1136 /* Not currently on the callback list */
1137 BUG_ON(size < sizeof(*cb));
1138 cb = kzalloc(size, GFP_ATOMIC);
1139 if (cb) {
1140 cb->data = data;
1141 cb->callback = unplug;
1142 list_add(&cb->list, &plug->cb_list);
1143 }
1144 return cb;
1145}
1146EXPORT_SYMBOL(blk_check_plugged);
1147
aa8dccca 1148void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
73c10101 1149{
b600455d
PB
1150 if (!list_empty(&plug->cb_list))
1151 flush_plug_callbacks(plug, from_schedule);
bc490f81 1152 if (!rq_list_empty(plug->mq_list))
320ae51f 1153 blk_mq_flush_plug_list(plug, from_schedule);
c5fc7b93
JA
1154 /*
1155 * Unconditionally flush out cached requests, even if the unplug
1156 * event came from schedule. Since we know hold references to the
1157 * queue for cached requests, we don't want a blocked task holding
1158 * up a queue freeze/quiesce event.
1159 */
1160 if (unlikely(!rq_list_empty(plug->cached_rq)))
47c122e3 1161 blk_mq_free_plug_rqs(plug);
73c10101 1162}
73c10101 1163
40405851
JM
1164/**
1165 * blk_finish_plug - mark the end of a batch of submitted I/O
1166 * @plug: The &struct blk_plug passed to blk_start_plug()
1167 *
1168 * Description:
1169 * Indicate that a batch of I/O submissions is complete. This function
1170 * must be paired with an initial call to blk_start_plug(). The intent
1171 * is to allow the block layer to optimize I/O submission. See the
1172 * documentation for blk_start_plug() for more information.
1173 */
73c10101
JA
1174void blk_finish_plug(struct blk_plug *plug)
1175{
008f75a2 1176 if (plug == current->plug) {
aa8dccca 1177 __blk_flush_plug(plug, false);
008f75a2
CH
1178 current->plug = NULL;
1179 }
73c10101 1180}
88b996cd 1181EXPORT_SYMBOL(blk_finish_plug);
73c10101 1182
71ac860a
ML
1183void blk_io_schedule(void)
1184{
1185 /* Prevent hang_check timer from firing at us during very long I/O */
1186 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1187
1188 if (timeout)
1189 io_schedule_timeout(timeout);
1190 else
1191 io_schedule();
1192}
1193EXPORT_SYMBOL_GPL(blk_io_schedule);
1194
1da177e4
LT
1195int __init blk_dev_init(void)
1196{
16458cf3 1197 BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
ef295ecf 1198 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1199 sizeof_field(struct request, cmd_flags));
ef295ecf 1200 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1201 sizeof_field(struct bio, bi_opf));
9eb55b03 1202
89b90be2
TH
1203 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1204 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1205 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1206 if (!kblockd_workqueue)
1207 panic("Failed to create kblockd\n");
1208
c2789bd4 1209 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1210 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1211
18fbda91 1212 blk_debugfs_root = debugfs_create_dir("block", NULL);
18fbda91 1213
d38ecf93 1214 return 0;
1da177e4 1215}