Merge tag 'fs.mount.propagation.fix.v6.2-rc1' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
1da177e4
LT
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
1da177e4
LT
15#include <linux/kernel.h>
16#include <linux/module.h>
1da177e4
LT
17#include <linux/bio.h>
18#include <linux/blkdev.h>
52abca64 19#include <linux/blk-pm.h>
fe45e630 20#include <linux/blk-integrity.h>
1da177e4
LT
21#include <linux/highmem.h>
22#include <linux/mm.h>
cee9a0c4 23#include <linux/pagemap.h>
1da177e4
LT
24#include <linux/kernel_stat.h>
25#include <linux/string.h>
26#include <linux/init.h>
1da177e4
LT
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
faccbd4b 31#include <linux/task_io_accounting_ops.h>
c17bb495 32#include <linux/fault-inject.h>
73c10101 33#include <linux/list_sort.h>
e3c78ca5 34#include <linux/delay.h>
aaf7c680 35#include <linux/ratelimit.h>
6c954667 36#include <linux/pm_runtime.h>
54d4e6ab 37#include <linux/t10-pi.h>
18fbda91 38#include <linux/debugfs.h>
30abb3a6 39#include <linux/bpf.h>
82d981d4 40#include <linux/part_stat.h>
71ac860a 41#include <linux/sched/sysctl.h>
a892c8d5 42#include <linux/blk-crypto.h>
55782138
LZ
43
44#define CREATE_TRACE_POINTS
45#include <trace/events/block.h>
1da177e4 46
8324aa91 47#include "blk.h"
2aa7745b 48#include "blk-mq-sched.h"
bca6b067 49#include "blk-pm.h"
672fdcf0 50#include "blk-cgroup.h"
a7b36ee6 51#include "blk-throttle.h"
8324aa91 52
18fbda91 53struct dentry *blk_debugfs_root;
18fbda91 54
d07335e5 55EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 56EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 57EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 58EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 59EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
b357e4a6 60EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
0bfc2455 61
2bd85221 62static DEFINE_IDA(blk_queue_ida);
a73f730d 63
1da177e4
LT
64/*
65 * For queue allocation
66 */
2bd85221 67static struct kmem_cache *blk_requestq_cachep;
1da177e4 68
1da177e4
LT
69/*
70 * Controlling structure to kblockd
71 */
ff856bad 72static struct workqueue_struct *kblockd_workqueue;
1da177e4 73
8814ce8a
BVA
74/**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
78 */
79void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80{
57d74df9 81 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
82}
83EXPORT_SYMBOL(blk_queue_flag_set);
84
85/**
86 * blk_queue_flag_clear - atomically clear a queue flag
87 * @flag: flag to be cleared
88 * @q: request queue
89 */
90void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91{
57d74df9 92 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
93}
94EXPORT_SYMBOL(blk_queue_flag_clear);
95
96/**
97 * blk_queue_flag_test_and_set - atomically test and set a queue flag
98 * @flag: flag to be set
99 * @q: request queue
100 *
101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
102 * the flag was already set.
103 */
104bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105{
57d74df9 106 return test_and_set_bit(flag, &q->queue_flags);
8814ce8a
BVA
107}
108EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109
e47bc4ed
CK
110#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
111static const char *const blk_op_name[] = {
112 REQ_OP_NAME(READ),
113 REQ_OP_NAME(WRITE),
114 REQ_OP_NAME(FLUSH),
115 REQ_OP_NAME(DISCARD),
116 REQ_OP_NAME(SECURE_ERASE),
117 REQ_OP_NAME(ZONE_RESET),
6e33dbf2 118 REQ_OP_NAME(ZONE_RESET_ALL),
6c1b1da5
AJ
119 REQ_OP_NAME(ZONE_OPEN),
120 REQ_OP_NAME(ZONE_CLOSE),
121 REQ_OP_NAME(ZONE_FINISH),
0512a75b 122 REQ_OP_NAME(ZONE_APPEND),
e47bc4ed 123 REQ_OP_NAME(WRITE_ZEROES),
e47bc4ed
CK
124 REQ_OP_NAME(DRV_IN),
125 REQ_OP_NAME(DRV_OUT),
126};
127#undef REQ_OP_NAME
128
129/**
130 * blk_op_str - Return string XXX in the REQ_OP_XXX.
131 * @op: REQ_OP_XXX.
132 *
133 * Description: Centralize block layer function to convert REQ_OP_XXX into
134 * string format. Useful in the debugging and tracing bio or request. For
135 * invalid REQ_OP_XXX it returns string "UNKNOWN".
136 */
77e7ffd7 137inline const char *blk_op_str(enum req_op op)
e47bc4ed
CK
138{
139 const char *op_str = "UNKNOWN";
140
141 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
142 op_str = blk_op_name[op];
143
144 return op_str;
145}
146EXPORT_SYMBOL_GPL(blk_op_str);
147
2a842aca
CH
148static const struct {
149 int errno;
150 const char *name;
151} blk_errors[] = {
152 [BLK_STS_OK] = { 0, "" },
153 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
154 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
155 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
156 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
157 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
158 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
159 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
160 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
161 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 162 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 163 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
7d32c027 164 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
2a842aca 165
4e4cbee9
CH
166 /* device mapper special case, should not leak out: */
167 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
168
3b481d91
KB
169 /* zone device specific errors */
170 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
171 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
172
2a842aca
CH
173 /* everything else not covered above: */
174 [BLK_STS_IOERR] = { -EIO, "I/O" },
175};
176
177blk_status_t errno_to_blk_status(int errno)
178{
179 int i;
180
181 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
182 if (blk_errors[i].errno == errno)
183 return (__force blk_status_t)i;
184 }
185
186 return BLK_STS_IOERR;
187}
188EXPORT_SYMBOL_GPL(errno_to_blk_status);
189
190int blk_status_to_errno(blk_status_t status)
191{
192 int idx = (__force int)status;
193
34bd9c1c 194 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
195 return -EIO;
196 return blk_errors[idx].errno;
197}
198EXPORT_SYMBOL_GPL(blk_status_to_errno);
199
0d7a29a2 200const char *blk_status_to_str(blk_status_t status)
2a842aca
CH
201{
202 int idx = (__force int)status;
203
34bd9c1c 204 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
0d7a29a2
CH
205 return "<null>";
206 return blk_errors[idx].name;
2a842aca
CH
207}
208
1da177e4
LT
209/**
210 * blk_sync_queue - cancel any pending callbacks on a queue
211 * @q: the queue
212 *
213 * Description:
214 * The block layer may perform asynchronous callback activity
215 * on a queue, such as calling the unplug function after a timeout.
216 * A block device may call blk_sync_queue to ensure that any
217 * such activity is cancelled, thus allowing it to release resources
59c51591 218 * that the callbacks might use. The caller must already have made sure
c62b37d9 219 * that its ->submit_bio will not re-add plugging prior to calling
1da177e4
LT
220 * this function.
221 *
da527770 222 * This function does not cancel any asynchronous activity arising
da3dae54 223 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 224 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 225 *
1da177e4
LT
226 */
227void blk_sync_queue(struct request_queue *q)
228{
70ed28b9 229 del_timer_sync(&q->timeout);
4e9b6f20 230 cancel_work_sync(&q->timeout_work);
1da177e4
LT
231}
232EXPORT_SYMBOL(blk_sync_queue);
233
c9254f2d 234/**
cd84a62e 235 * blk_set_pm_only - increment pm_only counter
c9254f2d 236 * @q: request queue pointer
c9254f2d 237 */
cd84a62e 238void blk_set_pm_only(struct request_queue *q)
c9254f2d 239{
cd84a62e 240 atomic_inc(&q->pm_only);
c9254f2d 241}
cd84a62e 242EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 243
cd84a62e 244void blk_clear_pm_only(struct request_queue *q)
c9254f2d 245{
cd84a62e
BVA
246 int pm_only;
247
248 pm_only = atomic_dec_return(&q->pm_only);
249 WARN_ON_ONCE(pm_only < 0);
250 if (pm_only == 0)
251 wake_up_all(&q->mq_freeze_wq);
c9254f2d 252}
cd84a62e 253EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 254
2bd85221
CH
255static void blk_free_queue_rcu(struct rcu_head *rcu_head)
256{
257 kmem_cache_free(blk_requestq_cachep,
258 container_of(rcu_head, struct request_queue, rcu_head));
259}
260
261static void blk_free_queue(struct request_queue *q)
262{
2bd85221
CH
263 percpu_ref_exit(&q->q_usage_counter);
264
265 if (q->poll_stat)
266 blk_stat_remove_callback(q, q->poll_cb);
267 blk_stat_free_callback(q->poll_cb);
268
269 blk_free_queue_stats(q->stats);
270 kfree(q->poll_stat);
271
272 if (queue_is_mq(q))
273 blk_mq_release(q);
274
275 ida_free(&blk_queue_ida, q->id);
276 call_rcu(&q->rcu_head, blk_free_queue_rcu);
277}
278
b5bd357c
LC
279/**
280 * blk_put_queue - decrement the request_queue refcount
281 * @q: the request_queue structure to decrement the refcount for
282 *
2bd85221
CH
283 * Decrements the refcount of the request_queue and free it when the refcount
284 * reaches 0.
e8c7d14a 285 *
63f93fd6 286 * Context: Can sleep.
b5bd357c 287 */
165125e1 288void blk_put_queue(struct request_queue *q)
483f4afc 289{
63f93fd6 290 might_sleep();
2bd85221
CH
291 if (refcount_dec_and_test(&q->refs))
292 blk_free_queue(q);
483f4afc 293}
d86e0e83 294EXPORT_SYMBOL(blk_put_queue);
483f4afc 295
8e141f9e 296void blk_queue_start_drain(struct request_queue *q)
aed3ea94 297{
d3cfb2a0
ML
298 /*
299 * When queue DYING flag is set, we need to block new req
300 * entering queue, so we call blk_freeze_queue_start() to
301 * prevent I/O from crossing blk_queue_enter().
302 */
303 blk_freeze_queue_start(q);
344e9ffc 304 if (queue_is_mq(q))
aed3ea94 305 blk_mq_wake_waiters(q);
055f6e18
ML
306 /* Make blk_queue_enter() reexamine the DYING flag. */
307 wake_up_all(&q->mq_freeze_wq);
aed3ea94 308}
8e141f9e 309
3a0a5299
BVA
310/**
311 * blk_queue_enter() - try to increase q->q_usage_counter
312 * @q: request queue pointer
a4d34da7 313 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
3a0a5299 314 */
9a95e4ef 315int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 316{
a4d34da7 317 const bool pm = flags & BLK_MQ_REQ_PM;
3a0a5299 318
1f14a098 319 while (!blk_try_enter_queue(q, pm)) {
3a0a5299 320 if (flags & BLK_MQ_REQ_NOWAIT)
56f99b8d 321 return -EAGAIN;
3ef28e83 322
5ed61d3f 323 /*
1f14a098
CH
324 * read pair of barrier in blk_freeze_queue_start(), we need to
325 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
326 * reading .mq_freeze_depth or queue dying flag, otherwise the
327 * following wait may never return if the two reads are
328 * reordered.
5ed61d3f
ML
329 */
330 smp_rmb();
1dc3039b 331 wait_event(q->mq_freeze_wq,
7996a8b5 332 (!q->mq_freeze_depth &&
52abca64 333 blk_pm_resume_queue(pm, q)) ||
1dc3039b 334 blk_queue_dying(q));
3ef28e83
DW
335 if (blk_queue_dying(q))
336 return -ENODEV;
3ef28e83 337 }
1f14a098
CH
338
339 return 0;
3ef28e83
DW
340}
341
c98cb5bb 342int __bio_queue_enter(struct request_queue *q, struct bio *bio)
accea322 343{
a6741536 344 while (!blk_try_enter_queue(q, false)) {
eab4e027
PB
345 struct gendisk *disk = bio->bi_bdev->bd_disk;
346
a6741536 347 if (bio->bi_opf & REQ_NOWAIT) {
8e141f9e 348 if (test_bit(GD_DEAD, &disk->state))
a6741536 349 goto dead;
accea322 350 bio_wouldblock_error(bio);
56f99b8d 351 return -EAGAIN;
a6741536
CH
352 }
353
354 /*
355 * read pair of barrier in blk_freeze_queue_start(), we need to
356 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
357 * reading .mq_freeze_depth or queue dying flag, otherwise the
358 * following wait may never return if the two reads are
359 * reordered.
360 */
361 smp_rmb();
362 wait_event(q->mq_freeze_wq,
363 (!q->mq_freeze_depth &&
364 blk_pm_resume_queue(false, q)) ||
8e141f9e
CH
365 test_bit(GD_DEAD, &disk->state));
366 if (test_bit(GD_DEAD, &disk->state))
a6741536 367 goto dead;
accea322
CH
368 }
369
a6741536
CH
370 return 0;
371dead:
372 bio_io_error(bio);
373 return -ENODEV;
accea322
CH
374}
375
3ef28e83
DW
376void blk_queue_exit(struct request_queue *q)
377{
378 percpu_ref_put(&q->q_usage_counter);
379}
380
381static void blk_queue_usage_counter_release(struct percpu_ref *ref)
382{
383 struct request_queue *q =
384 container_of(ref, struct request_queue, q_usage_counter);
385
386 wake_up_all(&q->mq_freeze_wq);
387}
388
bca237a5 389static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 390{
bca237a5 391 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
392
393 kblockd_schedule_work(&q->timeout_work);
394}
395
2e3c18d0
TH
396static void blk_timeout_work(struct work_struct *work)
397{
398}
399
80bd4a7a 400struct request_queue *blk_alloc_queue(int node_id)
1946089a 401{
165125e1 402 struct request_queue *q;
1946089a 403
80bd4a7a
CH
404 q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
405 node_id);
1da177e4
LT
406 if (!q)
407 return NULL;
408
cbf62af3 409 q->last_merge = NULL;
cbf62af3 410
798f2a6f 411 q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
a73f730d 412 if (q->id < 0)
80bd4a7a 413 goto fail_q;
a73f730d 414
a83b576c
JA
415 q->stats = blk_alloc_queue_stats();
416 if (!q->stats)
46754bd0 417 goto fail_id;
a83b576c 418
5151412d 419 q->node = node_id;
0989a025 420
079a2e3e 421 atomic_set(&q->nr_active_requests_shared_tags, 0);
bccf5e26 422
bca237a5 423 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
2e3c18d0 424 INIT_WORK(&q->timeout_work, blk_timeout_work);
a612fddf 425 INIT_LIST_HEAD(&q->icq_list);
483f4afc 426
2bd85221 427 refcount_set(&q->refs, 1);
85e0cbbb 428 mutex_init(&q->debugfs_mutex);
483f4afc 429 mutex_init(&q->sysfs_lock);
cecf5d87 430 mutex_init(&q->sysfs_dir_lock);
0d945c1f 431 spin_lock_init(&q->queue_lock);
c94a96ac 432
320ae51f 433 init_waitqueue_head(&q->mq_freeze_wq);
7996a8b5 434 mutex_init(&q->mq_freeze_lock);
320ae51f 435
3ef28e83
DW
436 /*
437 * Init percpu_ref in atomic mode so that it's faster to shutdown.
438 * See blk_register_queue() for details.
439 */
440 if (percpu_ref_init(&q->q_usage_counter,
441 blk_queue_usage_counter_release,
442 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
edb0872f 443 goto fail_stats;
f51b802c 444
3d745ea5 445 blk_set_default_limits(&q->limits);
d2a27964 446 q->nr_requests = BLKDEV_DEFAULT_RQ;
3d745ea5 447
1da177e4 448 return q;
a73f730d 449
a83b576c 450fail_stats:
edb0872f 451 blk_free_queue_stats(q->stats);
a73f730d 452fail_id:
798f2a6f 453 ida_free(&blk_queue_ida, q->id);
a73f730d 454fail_q:
80bd4a7a 455 kmem_cache_free(blk_requestq_cachep, q);
a73f730d 456 return NULL;
1da177e4 457}
1da177e4 458
b5bd357c
LC
459/**
460 * blk_get_queue - increment the request_queue refcount
461 * @q: the request_queue structure to increment the refcount for
462 *
463 * Increment the refcount of the request_queue kobject.
763b5892
LC
464 *
465 * Context: Any context.
b5bd357c 466 */
09ac46c4 467bool blk_get_queue(struct request_queue *q)
1da177e4 468{
828b5f01
CH
469 if (unlikely(blk_queue_dying(q)))
470 return false;
2bd85221 471 refcount_inc(&q->refs);
828b5f01 472 return true;
1da177e4 473}
d86e0e83 474EXPORT_SYMBOL(blk_get_queue);
1da177e4 475
c17bb495
AM
476#ifdef CONFIG_FAIL_MAKE_REQUEST
477
478static DECLARE_FAULT_ATTR(fail_make_request);
479
480static int __init setup_fail_make_request(char *str)
481{
482 return setup_fault_attr(&fail_make_request, str);
483}
484__setup("fail_make_request=", setup_fail_make_request);
485
06c8c691 486bool should_fail_request(struct block_device *part, unsigned int bytes)
c17bb495 487{
8446fe92 488 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
489}
490
491static int __init fail_make_request_debugfs(void)
492{
dd48c085
AM
493 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
494 NULL, &fail_make_request);
495
21f9fcd8 496 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
497}
498
499late_initcall(fail_make_request_debugfs);
c17bb495
AM
500#endif /* CONFIG_FAIL_MAKE_REQUEST */
501
bdb7d420 502static inline void bio_check_ro(struct bio *bio)
721c7fc7 503{
2f9f6221 504 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
8b2ded1c 505 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
bdb7d420 506 return;
57e95e46
CH
507 pr_warn("Trying to write to read-only block-device %pg\n",
508 bio->bi_bdev);
a32e236e 509 /* Older lvm-tools actually trigger this */
721c7fc7 510 }
721c7fc7
ID
511}
512
30abb3a6
HM
513static noinline int should_fail_bio(struct bio *bio)
514{
309dca30 515 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
30abb3a6
HM
516 return -EIO;
517 return 0;
518}
519ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
520
52c5e62d
CH
521/*
522 * Check whether this bio extends beyond the end of the device or partition.
523 * This may well happen - the kernel calls bread() without checking the size of
524 * the device, e.g., when mounting a file system.
525 */
2f9f6221 526static inline int bio_check_eod(struct bio *bio)
52c5e62d 527{
2f9f6221 528 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
52c5e62d
CH
529 unsigned int nr_sectors = bio_sectors(bio);
530
531 if (nr_sectors && maxsector &&
532 (nr_sectors > maxsector ||
533 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
ad740780 534 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
069adbac
CH
535 "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
536 current->comm, bio->bi_bdev, bio->bi_opf,
537 bio->bi_iter.bi_sector, nr_sectors, maxsector);
52c5e62d
CH
538 return -EIO;
539 }
540 return 0;
541}
542
74d46992
CH
543/*
544 * Remap block n of partition p to block n+start(p) of the disk.
545 */
2f9f6221 546static int blk_partition_remap(struct bio *bio)
74d46992 547{
309dca30 548 struct block_device *p = bio->bi_bdev;
74d46992 549
52c5e62d 550 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2f9f6221 551 return -EIO;
5eac3eb3 552 if (bio_sectors(bio)) {
8446fe92 553 bio->bi_iter.bi_sector += p->bd_start_sect;
1c02fca6 554 trace_block_bio_remap(bio, p->bd_dev,
29ff57c6 555 bio->bi_iter.bi_sector -
8446fe92 556 p->bd_start_sect);
52c5e62d 557 }
30c5d345 558 bio_set_flag(bio, BIO_REMAPPED);
2f9f6221 559 return 0;
74d46992
CH
560}
561
0512a75b
KB
562/*
563 * Check write append to a zoned block device.
564 */
565static inline blk_status_t blk_check_zone_append(struct request_queue *q,
566 struct bio *bio)
567{
0512a75b
KB
568 int nr_sectors = bio_sectors(bio);
569
570 /* Only applicable to zoned block devices */
edd1dbc8 571 if (!bdev_is_zoned(bio->bi_bdev))
0512a75b
KB
572 return BLK_STS_NOTSUPP;
573
574 /* The bio sector must point to the start of a sequential zone */
052e545c
CH
575 if (bio->bi_iter.bi_sector & (bdev_zone_sectors(bio->bi_bdev) - 1) ||
576 !bio_zone_is_seq(bio))
0512a75b
KB
577 return BLK_STS_IOERR;
578
579 /*
580 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
581 * split and could result in non-contiguous sectors being written in
582 * different zones.
583 */
584 if (nr_sectors > q->limits.chunk_sectors)
585 return BLK_STS_IOERR;
586
587 /* Make sure the BIO is small enough and will not get split */
588 if (nr_sectors > q->limits.max_zone_append_sectors)
589 return BLK_STS_IOERR;
590
591 bio->bi_opf |= REQ_NOMERGE;
592
593 return BLK_STS_OK;
594}
595
900e0807
JA
596static void __submit_bio(struct bio *bio)
597{
598 struct gendisk *disk = bio->bi_bdev->bd_disk;
cc9c884d 599
7f36b7d0
ML
600 if (unlikely(!blk_crypto_bio_prep(&bio)))
601 return;
602
603 if (!disk->fops->submit_bio) {
3e08773c 604 blk_mq_submit_bio(bio);
7f36b7d0
ML
605 } else if (likely(bio_queue_enter(bio) == 0)) {
606 disk->fops->submit_bio(bio);
607 blk_queue_exit(disk->queue);
608 }
ac7c5675
CH
609}
610
566acf2d
CH
611/*
612 * The loop in this function may be a bit non-obvious, and so deserves some
613 * explanation:
614 *
615 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
616 * that), so we have a list with a single bio.
617 * - We pretend that we have just taken it off a longer list, so we assign
618 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
619 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
620 * bios through a recursive call to submit_bio_noacct. If it did, we find a
621 * non-NULL value in bio_list and re-enter the loop from the top.
622 * - In this case we really did just take the bio of the top of the list (no
623 * pretending) and so remove it from bio_list, and call into ->submit_bio()
624 * again.
625 *
626 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
627 * bio_list_on_stack[1] contains bios that were submitted before the current
69fe0f29 628 * ->submit_bio, but that haven't been processed yet.
566acf2d 629 */
3e08773c 630static void __submit_bio_noacct(struct bio *bio)
566acf2d
CH
631{
632 struct bio_list bio_list_on_stack[2];
566acf2d
CH
633
634 BUG_ON(bio->bi_next);
635
636 bio_list_init(&bio_list_on_stack[0]);
637 current->bio_list = bio_list_on_stack;
638
639 do {
eab4e027 640 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
566acf2d
CH
641 struct bio_list lower, same;
642
566acf2d
CH
643 /*
644 * Create a fresh bio_list for all subordinate requests.
645 */
646 bio_list_on_stack[1] = bio_list_on_stack[0];
647 bio_list_init(&bio_list_on_stack[0]);
648
3e08773c 649 __submit_bio(bio);
566acf2d
CH
650
651 /*
652 * Sort new bios into those for a lower level and those for the
653 * same level.
654 */
655 bio_list_init(&lower);
656 bio_list_init(&same);
657 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
eab4e027 658 if (q == bdev_get_queue(bio->bi_bdev))
566acf2d
CH
659 bio_list_add(&same, bio);
660 else
661 bio_list_add(&lower, bio);
662
663 /*
664 * Now assemble so we handle the lowest level first.
665 */
666 bio_list_merge(&bio_list_on_stack[0], &lower);
667 bio_list_merge(&bio_list_on_stack[0], &same);
668 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
669 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
670
671 current->bio_list = NULL;
566acf2d
CH
672}
673
3e08773c 674static void __submit_bio_noacct_mq(struct bio *bio)
ff93ea0c 675{
7c792f33 676 struct bio_list bio_list[2] = { };
ff93ea0c 677
7c792f33 678 current->bio_list = bio_list;
ff93ea0c
CH
679
680 do {
3e08773c 681 __submit_bio(bio);
7c792f33 682 } while ((bio = bio_list_pop(&bio_list[0])));
ff93ea0c
CH
683
684 current->bio_list = NULL;
ff93ea0c
CH
685}
686
3f98c753 687void submit_bio_noacct_nocheck(struct bio *bio)
d89d8796 688{
27a84d54 689 /*
566acf2d
CH
690 * We only want one ->submit_bio to be active at a time, else stack
691 * usage with stacked devices could be a problem. Use current->bio_list
692 * to collect a list of requests submited by a ->submit_bio method while
693 * it is active, and then process them after it returned.
27a84d54 694 */
3e08773c 695 if (current->bio_list)
f5fe1b51 696 bio_list_add(&current->bio_list[0], bio);
3e08773c
CH
697 else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
698 __submit_bio_noacct_mq(bio);
699 else
700 __submit_bio_noacct(bio);
d89d8796 701}
3f98c753
ML
702
703/**
704 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
705 * @bio: The bio describing the location in memory and on the device.
706 *
707 * This is a version of submit_bio() that shall only be used for I/O that is
708 * resubmitted to lower level drivers by stacking block drivers. All file
709 * systems and other upper level users of the block layer should use
710 * submit_bio() instead.
711 */
712void submit_bio_noacct(struct bio *bio)
1da177e4 713{
309dca30 714 struct block_device *bdev = bio->bi_bdev;
eab4e027 715 struct request_queue *q = bdev_get_queue(bdev);
4e4cbee9 716 blk_status_t status = BLK_STS_IOERR;
5a473e83 717 struct blk_plug *plug;
1da177e4
LT
718
719 might_sleep();
1da177e4 720
6deacb3b 721 plug = blk_mq_plug(bio);
5a473e83
JA
722 if (plug && plug->nowait)
723 bio->bi_opf |= REQ_NOWAIT;
724
03a07c92 725 /*
b0beb280 726 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
021a2446 727 * if queue does not support NOWAIT.
03a07c92 728 */
568ec936 729 if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
b0beb280 730 goto not_supported;
03a07c92 731
30abb3a6 732 if (should_fail_bio(bio))
5a7bbad2 733 goto end_io;
bdb7d420 734 bio_check_ro(bio);
3a905c37
CH
735 if (!bio_flagged(bio, BIO_REMAPPED)) {
736 if (unlikely(bio_check_eod(bio)))
737 goto end_io;
738 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
739 goto end_io;
740 }
2056a782 741
5a7bbad2 742 /*
ed00aabd
CH
743 * Filter flush bio's early so that bio based drivers without flush
744 * support don't have to worry about them.
5a7bbad2 745 */
f3a8ab7d 746 if (op_is_flush(bio->bi_opf) &&
c888a8f9 747 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 748 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
e439ab71 749 if (!bio_sectors(bio)) {
4e4cbee9 750 status = BLK_STS_OK;
51fd77bd
JA
751 goto end_io;
752 }
5a7bbad2 753 }
5ddfe969 754
d04c406f 755 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
6ce913fe 756 bio_clear_polled(bio);
d04c406f 757
288dab8a
CH
758 switch (bio_op(bio)) {
759 case REQ_OP_DISCARD:
70200574 760 if (!bdev_max_discard_sectors(bdev))
288dab8a
CH
761 goto not_supported;
762 break;
763 case REQ_OP_SECURE_ERASE:
44abff2c 764 if (!bdev_max_secure_erase_sectors(bdev))
288dab8a
CH
765 goto not_supported;
766 break;
0512a75b
KB
767 case REQ_OP_ZONE_APPEND:
768 status = blk_check_zone_append(q, bio);
769 if (status != BLK_STS_OK)
770 goto end_io;
771 break;
2d253440 772 case REQ_OP_ZONE_RESET:
6c1b1da5
AJ
773 case REQ_OP_ZONE_OPEN:
774 case REQ_OP_ZONE_CLOSE:
775 case REQ_OP_ZONE_FINISH:
edd1dbc8 776 if (!bdev_is_zoned(bio->bi_bdev))
2d253440 777 goto not_supported;
288dab8a 778 break;
6e33dbf2 779 case REQ_OP_ZONE_RESET_ALL:
edd1dbc8 780 if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q))
6e33dbf2
CK
781 goto not_supported;
782 break;
a6f0788e 783 case REQ_OP_WRITE_ZEROES:
74d46992 784 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
785 goto not_supported;
786 break;
288dab8a
CH
787 default:
788 break;
5a7bbad2 789 }
01edede4 790
b781d8db 791 if (blk_throtl_bio(bio))
3f98c753 792 return;
db18a53e
CH
793
794 blk_cgroup_bio_start(bio);
795 blkcg_bio_issue_init(bio);
27a84d54 796
fbbaf700 797 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
e8a676d6 798 trace_block_bio_queue(bio);
fbbaf700
N
799 /* Now that enqueuing has been traced, we need to trace
800 * completion as well.
801 */
802 bio_set_flag(bio, BIO_TRACE_COMPLETION);
803 }
3f98c753 804 submit_bio_noacct_nocheck(bio);
d24c670e 805 return;
a7384677 806
288dab8a 807not_supported:
4e4cbee9 808 status = BLK_STS_NOTSUPP;
a7384677 809end_io:
4e4cbee9 810 bio->bi_status = status;
4246a0b6 811 bio_endio(bio);
d89d8796 812}
ed00aabd 813EXPORT_SYMBOL(submit_bio_noacct);
1da177e4
LT
814
815/**
710027a4 816 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
817 * @bio: The &struct bio which describes the I/O
818 *
3fdd4086
CH
819 * submit_bio() is used to submit I/O requests to block devices. It is passed a
820 * fully set up &struct bio that describes the I/O that needs to be done. The
309dca30 821 * bio will be send to the device described by the bi_bdev field.
1da177e4 822 *
3fdd4086
CH
823 * The success/failure status of the request, along with notification of
824 * completion, is delivered asynchronously through the ->bi_end_io() callback
e8848087 825 * in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has
3fdd4086 826 * been called.
1da177e4 827 */
3e08773c 828void submit_bio(struct bio *bio)
1da177e4 829{
d3f77dfd 830 if (blkcg_punt_bio_submit(bio))
3e08773c 831 return;
d3f77dfd 832
a3e7689b
CH
833 if (bio_op(bio) == REQ_OP_READ) {
834 task_io_account_read(bio->bi_iter.bi_size);
835 count_vm_events(PGPGIN, bio_sectors(bio));
836 } else if (bio_op(bio) == REQ_OP_WRITE) {
837 count_vm_events(PGPGOUT, bio_sectors(bio));
1da177e4
LT
838 }
839
3e08773c 840 submit_bio_noacct(bio);
1da177e4 841}
1da177e4
LT
842EXPORT_SYMBOL(submit_bio);
843
3e08773c
CH
844/**
845 * bio_poll - poll for BIO completions
846 * @bio: bio to poll for
e30028ac 847 * @iob: batches of IO
3e08773c
CH
848 * @flags: BLK_POLL_* flags that control the behavior
849 *
850 * Poll for completions on queue associated with the bio. Returns number of
851 * completed entries found.
852 *
853 * Note: the caller must either be the context that submitted @bio, or
854 * be in a RCU critical section to prevent freeing of @bio.
855 */
5a72e899 856int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
3e08773c 857{
859897c3 858 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3e08773c 859 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
69fe0f29 860 int ret = 0;
3e08773c
CH
861
862 if (cookie == BLK_QC_T_NONE ||
863 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
864 return 0;
865
110fdb44
PR
866 /*
867 * As the requests that require a zone lock are not plugged in the
868 * first place, directly accessing the plug instead of using
869 * blk_mq_plug() should not have any consequences during flushing for
870 * zoned devices.
871 */
aa8dccca 872 blk_flush_plug(current->plug, false);
3e08773c 873
ebd076bf 874 if (bio_queue_enter(bio))
3e08773c 875 return 0;
69fe0f29 876 if (queue_is_mq(q)) {
5a72e899 877 ret = blk_mq_poll(q, cookie, iob, flags);
69fe0f29
ML
878 } else {
879 struct gendisk *disk = q->disk;
880
881 if (disk && disk->fops->poll_bio)
882 ret = disk->fops->poll_bio(bio, iob, flags);
883 }
3e08773c
CH
884 blk_queue_exit(q);
885 return ret;
886}
887EXPORT_SYMBOL_GPL(bio_poll);
888
889/*
890 * Helper to implement file_operations.iopoll. Requires the bio to be stored
891 * in iocb->private, and cleared before freeing the bio.
892 */
5a72e899
JA
893int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
894 unsigned int flags)
3e08773c
CH
895{
896 struct bio *bio;
897 int ret = 0;
898
899 /*
900 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
901 * point to a freshly allocated bio at this point. If that happens
902 * we have a few cases to consider:
903 *
904 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
905 * simply nothing in this case
906 * 2) the bio points to a not poll enabled device. bio_poll will catch
907 * this and return 0
908 * 3) the bio points to a poll capable device, including but not
909 * limited to the one that the original bio pointed to. In this
910 * case we will call into the actual poll method and poll for I/O,
911 * even if we don't need to, but it won't cause harm either.
912 *
913 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
914 * is still allocated. Because partitions hold a reference to the whole
915 * device bdev and thus disk, the disk is also still valid. Grabbing
916 * a reference to the queue in bio_poll() ensures the hctxs and requests
917 * are still valid as well.
918 */
919 rcu_read_lock();
920 bio = READ_ONCE(kiocb->private);
921 if (bio && bio->bi_bdev)
5a72e899 922 ret = bio_poll(bio, iob, flags);
3e08773c
CH
923 rcu_read_unlock();
924
925 return ret;
926}
927EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
928
450b7879 929void update_io_ticks(struct block_device *part, unsigned long now, bool end)
9123bf6f
CH
930{
931 unsigned long stamp;
932again:
8446fe92 933 stamp = READ_ONCE(part->bd_stamp);
d80c228d 934 if (unlikely(time_after(now, stamp))) {
939f9dd0 935 if (likely(try_cmpxchg(&part->bd_stamp, &stamp, now)))
9123bf6f
CH
936 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
937 }
8446fe92
CH
938 if (part->bd_partno) {
939 part = bdev_whole(part);
9123bf6f
CH
940 goto again;
941 }
942}
943
5f0614a5 944unsigned long bdev_start_io_acct(struct block_device *bdev,
77e7ffd7 945 unsigned int sectors, enum req_op op,
5f0614a5 946 unsigned long start_time)
956d510e 947{
956d510e 948 const int sgrp = op_stat_group(op);
956d510e
CH
949
950 part_stat_lock();
5f0614a5
ML
951 update_io_ticks(bdev, start_time, false);
952 part_stat_inc(bdev, ios[sgrp]);
953 part_stat_add(bdev, sectors[sgrp], sectors);
954 part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
956d510e 955 part_stat_unlock();
320ae51f 956
e45c47d1
MS
957 return start_time;
958}
5f0614a5 959EXPORT_SYMBOL(bdev_start_io_acct);
e45c47d1 960
99dfc43e
CH
961/**
962 * bio_start_io_acct - start I/O accounting for bio based drivers
963 * @bio: bio to start account for
964 *
965 * Returns the start time that should be passed back to bio_end_io_acct().
966 */
967unsigned long bio_start_io_acct(struct bio *bio)
7b26410b 968{
5f0614a5
ML
969 return bdev_start_io_acct(bio->bi_bdev, bio_sectors(bio),
970 bio_op(bio), jiffies);
7b26410b 971}
99dfc43e 972EXPORT_SYMBOL_GPL(bio_start_io_acct);
7b26410b 973
77e7ffd7 974void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
5f0614a5 975 unsigned long start_time)
956d510e 976{
956d510e
CH
977 const int sgrp = op_stat_group(op);
978 unsigned long now = READ_ONCE(jiffies);
979 unsigned long duration = now - start_time;
5b18b5a7 980
956d510e 981 part_stat_lock();
5f0614a5
ML
982 update_io_ticks(bdev, now, true);
983 part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
984 part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
320ae51f
JA
985 part_stat_unlock();
986}
5f0614a5 987EXPORT_SYMBOL(bdev_end_io_acct);
7b26410b 988
99dfc43e 989void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
5f0614a5 990 struct block_device *orig_bdev)
7b26410b 991{
5f0614a5 992 bdev_end_io_acct(orig_bdev, bio_op(bio), start_time);
7b26410b 993}
99dfc43e 994EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
7b26410b 995
ef9e3fac
KU
996/**
997 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
998 * @q : the queue of the device being checked
999 *
1000 * Description:
1001 * Check if underlying low-level drivers of a device are busy.
1002 * If the drivers want to export their busy state, they must set own
1003 * exporting function using blk_queue_lld_busy() first.
1004 *
1005 * Basically, this function is used only by request stacking drivers
1006 * to stop dispatching requests to underlying devices when underlying
1007 * devices are busy. This behavior helps more I/O merging on the queue
1008 * of the request stacking driver and prevents I/O throughput regression
1009 * on burst I/O load.
1010 *
1011 * Return:
1012 * 0 - Not busy (The request stacking driver should dispatch request)
1013 * 1 - Busy (The request stacking driver should stop dispatching request)
1014 */
1015int blk_lld_busy(struct request_queue *q)
1016{
344e9ffc 1017 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1018 return q->mq_ops->busy(q);
ef9e3fac
KU
1019
1020 return 0;
1021}
1022EXPORT_SYMBOL_GPL(blk_lld_busy);
1023
59c3d45e 1024int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1025{
1026 return queue_work(kblockd_workqueue, work);
1027}
1da177e4
LT
1028EXPORT_SYMBOL(kblockd_schedule_work);
1029
818cd1cb
JA
1030int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1031 unsigned long delay)
1032{
1033 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1034}
1035EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1036
47c122e3
JA
1037void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1038{
1039 struct task_struct *tsk = current;
1040
1041 /*
1042 * If this is a nested plug, don't actually assign it.
1043 */
1044 if (tsk->plug)
1045 return;
1046
bc490f81 1047 plug->mq_list = NULL;
47c122e3
JA
1048 plug->cached_rq = NULL;
1049 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1050 plug->rq_count = 0;
1051 plug->multiple_queues = false;
dc5fc361 1052 plug->has_elevator = false;
47c122e3
JA
1053 plug->nowait = false;
1054 INIT_LIST_HEAD(&plug->cb_list);
1055
1056 /*
1057 * Store ordering should not be needed here, since a potential
1058 * preempt will imply a full memory barrier
1059 */
1060 tsk->plug = plug;
1061}
1062
75df7136
SJ
1063/**
1064 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1065 * @plug: The &struct blk_plug that needs to be initialized
1066 *
1067 * Description:
40405851
JM
1068 * blk_start_plug() indicates to the block layer an intent by the caller
1069 * to submit multiple I/O requests in a batch. The block layer may use
1070 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1071 * is called. However, the block layer may choose to submit requests
1072 * before a call to blk_finish_plug() if the number of queued I/Os
1073 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1074 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1075 * the task schedules (see below).
1076 *
75df7136
SJ
1077 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1078 * pending I/O should the task end up blocking between blk_start_plug() and
1079 * blk_finish_plug(). This is important from a performance perspective, but
1080 * also ensures that we don't deadlock. For instance, if the task is blocking
1081 * for a memory allocation, memory reclaim could end up wanting to free a
1082 * page belonging to that request that is currently residing in our private
1083 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1084 * this kind of deadlock.
1085 */
73c10101
JA
1086void blk_start_plug(struct blk_plug *plug)
1087{
47c122e3 1088 blk_start_plug_nr_ios(plug, 1);
73c10101
JA
1089}
1090EXPORT_SYMBOL(blk_start_plug);
1091
74018dc3 1092static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1093{
1094 LIST_HEAD(callbacks);
1095
2a7d5559
SL
1096 while (!list_empty(&plug->cb_list)) {
1097 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1098
2a7d5559
SL
1099 while (!list_empty(&callbacks)) {
1100 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1101 struct blk_plug_cb,
1102 list);
2a7d5559 1103 list_del(&cb->list);
74018dc3 1104 cb->callback(cb, from_schedule);
2a7d5559 1105 }
048c9374
N
1106 }
1107}
1108
9cbb1750
N
1109struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1110 int size)
1111{
1112 struct blk_plug *plug = current->plug;
1113 struct blk_plug_cb *cb;
1114
1115 if (!plug)
1116 return NULL;
1117
1118 list_for_each_entry(cb, &plug->cb_list, list)
1119 if (cb->callback == unplug && cb->data == data)
1120 return cb;
1121
1122 /* Not currently on the callback list */
1123 BUG_ON(size < sizeof(*cb));
1124 cb = kzalloc(size, GFP_ATOMIC);
1125 if (cb) {
1126 cb->data = data;
1127 cb->callback = unplug;
1128 list_add(&cb->list, &plug->cb_list);
1129 }
1130 return cb;
1131}
1132EXPORT_SYMBOL(blk_check_plugged);
1133
aa8dccca 1134void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
73c10101 1135{
b600455d
PB
1136 if (!list_empty(&plug->cb_list))
1137 flush_plug_callbacks(plug, from_schedule);
bc490f81 1138 if (!rq_list_empty(plug->mq_list))
320ae51f 1139 blk_mq_flush_plug_list(plug, from_schedule);
c5fc7b93
JA
1140 /*
1141 * Unconditionally flush out cached requests, even if the unplug
1142 * event came from schedule. Since we know hold references to the
1143 * queue for cached requests, we don't want a blocked task holding
1144 * up a queue freeze/quiesce event.
1145 */
1146 if (unlikely(!rq_list_empty(plug->cached_rq)))
47c122e3 1147 blk_mq_free_plug_rqs(plug);
73c10101 1148}
73c10101 1149
40405851
JM
1150/**
1151 * blk_finish_plug - mark the end of a batch of submitted I/O
1152 * @plug: The &struct blk_plug passed to blk_start_plug()
1153 *
1154 * Description:
1155 * Indicate that a batch of I/O submissions is complete. This function
1156 * must be paired with an initial call to blk_start_plug(). The intent
1157 * is to allow the block layer to optimize I/O submission. See the
1158 * documentation for blk_start_plug() for more information.
1159 */
73c10101
JA
1160void blk_finish_plug(struct blk_plug *plug)
1161{
008f75a2 1162 if (plug == current->plug) {
aa8dccca 1163 __blk_flush_plug(plug, false);
008f75a2
CH
1164 current->plug = NULL;
1165 }
73c10101 1166}
88b996cd 1167EXPORT_SYMBOL(blk_finish_plug);
73c10101 1168
71ac860a
ML
1169void blk_io_schedule(void)
1170{
1171 /* Prevent hang_check timer from firing at us during very long I/O */
1172 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1173
1174 if (timeout)
1175 io_schedule_timeout(timeout);
1176 else
1177 io_schedule();
1178}
1179EXPORT_SYMBOL_GPL(blk_io_schedule);
1180
1da177e4
LT
1181int __init blk_dev_init(void)
1182{
16458cf3 1183 BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
ef295ecf 1184 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1185 sizeof_field(struct request, cmd_flags));
ef295ecf 1186 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1187 sizeof_field(struct bio, bi_opf));
9eb55b03 1188
89b90be2
TH
1189 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1190 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1191 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1192 if (!kblockd_workqueue)
1193 panic("Failed to create kblockd\n");
1194
c2789bd4 1195 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 1196 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1197
18fbda91 1198 blk_debugfs_root = debugfs_create_dir("block", NULL);
18fbda91 1199
d38ecf93 1200 return 0;
1da177e4 1201}