Merge tag 'pci-v6.16-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci
[linux-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
da042a36 7#include <linux/bio-integrity.h>
1da177e4 8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
b4c5875d 18#include <linux/highmem.h>
a892c8d5 19#include <linux/blk-crypto.h>
49d1ec85 20#include <linux/xarray.h>
1da177e4 21
55782138 22#include <trace/events/block.h>
9e234eea 23#include "blk.h"
67b42d0b 24#include "blk-rq-qos.h"
672fdcf0 25#include "blk-cgroup.h"
0bfc2455 26
b99182c5 27#define ALLOC_CACHE_THRESHOLD 16
42b2b2fb 28#define ALLOC_CACHE_MAX 256
b99182c5 29
be4d234d 30struct bio_alloc_cache {
fcade2ce 31 struct bio *free_list;
b99182c5 32 struct bio *free_list_irq;
be4d234d 33 unsigned int nr;
b99182c5 34 unsigned int nr_irq;
be4d234d
JA
35};
36
de76fd89 37static struct biovec_slab {
6ac0b715
CH
38 int nr_vecs;
39 char *name;
40 struct kmem_cache *slab;
de76fd89
CH
41} bvec_slabs[] __read_mostly = {
42 { .nr_vecs = 16, .name = "biovec-16" },
43 { .nr_vecs = 64, .name = "biovec-64" },
44 { .nr_vecs = 128, .name = "biovec-128" },
a8affc03 45 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
1da177e4 46};
6ac0b715 47
7a800a20
CH
48static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
49{
50 switch (nr_vecs) {
51 /* smaller bios use inline vecs */
52 case 5 ... 16:
53 return &bvec_slabs[0];
54 case 17 ... 64:
55 return &bvec_slabs[1];
56 case 65 ... 128:
57 return &bvec_slabs[2];
a8affc03 58 case 129 ... BIO_MAX_VECS:
7a800a20
CH
59 return &bvec_slabs[3];
60 default:
61 BUG();
62 return NULL;
63 }
64}
1da177e4 65
1da177e4
LT
66/*
67 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
68 * IO code that does not need private memory pools.
69 */
f4f8154a 70struct bio_set fs_bio_set;
3f86a82a 71EXPORT_SYMBOL(fs_bio_set);
1da177e4 72
bb799ca0
JA
73/*
74 * Our slab pool management
75 */
76struct bio_slab {
77 struct kmem_cache *slab;
78 unsigned int slab_ref;
79 unsigned int slab_size;
b654f7a5 80 char name[12];
bb799ca0
JA
81};
82static DEFINE_MUTEX(bio_slab_lock);
49d1ec85 83static DEFINE_XARRAY(bio_slabs);
bb799ca0 84
49d1ec85 85static struct bio_slab *create_bio_slab(unsigned int size)
bb799ca0 86{
49d1ec85 87 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
bb799ca0 88
49d1ec85
ML
89 if (!bslab)
90 return NULL;
bb799ca0 91
49d1ec85
ML
92 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
93 bslab->slab = kmem_cache_create(bslab->name, size,
1a7e76e4
CH
94 ARCH_KMALLOC_MINALIGN,
95 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
49d1ec85
ML
96 if (!bslab->slab)
97 goto fail_alloc_slab;
bb799ca0 98
49d1ec85
ML
99 bslab->slab_ref = 1;
100 bslab->slab_size = size;
bb799ca0 101
49d1ec85
ML
102 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
103 return bslab;
bb799ca0 104
49d1ec85 105 kmem_cache_destroy(bslab->slab);
bb799ca0 106
49d1ec85
ML
107fail_alloc_slab:
108 kfree(bslab);
109 return NULL;
110}
bb799ca0 111
49d1ec85
ML
112static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
113{
9f180e31 114 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
49d1ec85 115}
bb799ca0 116
49d1ec85
ML
117static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
118{
119 unsigned int size = bs_bio_slab_size(bs);
120 struct bio_slab *bslab;
bb799ca0 121
49d1ec85
ML
122 mutex_lock(&bio_slab_lock);
123 bslab = xa_load(&bio_slabs, size);
124 if (bslab)
125 bslab->slab_ref++;
126 else
127 bslab = create_bio_slab(size);
bb799ca0 128 mutex_unlock(&bio_slab_lock);
49d1ec85
ML
129
130 if (bslab)
131 return bslab->slab;
132 return NULL;
bb799ca0
JA
133}
134
135static void bio_put_slab(struct bio_set *bs)
136{
137 struct bio_slab *bslab = NULL;
49d1ec85 138 unsigned int slab_size = bs_bio_slab_size(bs);
bb799ca0
JA
139
140 mutex_lock(&bio_slab_lock);
141
49d1ec85 142 bslab = xa_load(&bio_slabs, slab_size);
bb799ca0
JA
143 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144 goto out;
145
49d1ec85
ML
146 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
147
bb799ca0
JA
148 WARN_ON(!bslab->slab_ref);
149
150 if (--bslab->slab_ref)
151 goto out;
152
49d1ec85
ML
153 xa_erase(&bio_slabs, slab_size);
154
bb799ca0 155 kmem_cache_destroy(bslab->slab);
49d1ec85 156 kfree(bslab);
bb799ca0
JA
157
158out:
159 mutex_unlock(&bio_slab_lock);
160}
161
7a800a20 162void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
7ba1ba12 163{
9e8c0d0d 164 BUG_ON(nr_vecs > BIO_MAX_VECS);
ed996a52 165
a8affc03 166 if (nr_vecs == BIO_MAX_VECS)
9f060e22 167 mempool_free(bv, pool);
7a800a20
CH
168 else if (nr_vecs > BIO_INLINE_VECS)
169 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
bb799ca0 170}
bb799ca0 171
f2c3eb9b
CH
172/*
173 * Make the first allocation restricted and don't dump info on allocation
174 * failures, since we'll fall back to the mempool in case of failure.
175 */
176static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
177{
178 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
179 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
bb799ca0
JA
180}
181
7a800a20
CH
182struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
183 gfp_t gfp_mask)
1da177e4 184{
7a800a20 185 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
1da177e4 186
7a800a20 187 if (WARN_ON_ONCE(!bvs))
7ff9345f 188 return NULL;
7ff9345f
JA
189
190 /*
7a800a20
CH
191 * Upgrade the nr_vecs request to take full advantage of the allocation.
192 * We also rely on this in the bvec_free path.
7ff9345f 193 */
7a800a20 194 *nr_vecs = bvs->nr_vecs;
7ff9345f 195
7ff9345f 196 /*
f007a3d6
CH
197 * Try a slab allocation first for all smaller allocations. If that
198 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
a8affc03 199 * The mempool is sized to handle up to BIO_MAX_VECS entries.
7ff9345f 200 */
a8affc03 201 if (*nr_vecs < BIO_MAX_VECS) {
f007a3d6 202 struct bio_vec *bvl;
1da177e4 203
f2c3eb9b 204 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
7a800a20 205 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
f007a3d6 206 return bvl;
a8affc03 207 *nr_vecs = BIO_MAX_VECS;
7ff9345f
JA
208 }
209
f007a3d6 210 return mempool_alloc(pool, gfp_mask);
1da177e4
LT
211}
212
9ae3b3f5 213void bio_uninit(struct bio *bio)
1da177e4 214{
db9819c7
CH
215#ifdef CONFIG_BLK_CGROUP
216 if (bio->bi_blkg) {
217 blkg_put(bio->bi_blkg);
218 bio->bi_blkg = NULL;
219 }
220#endif
ece841ab
JT
221 if (bio_integrity(bio))
222 bio_integrity_free(bio);
a892c8d5
ST
223
224 bio_crypt_free_ctx(bio);
4254bba1 225}
9ae3b3f5 226EXPORT_SYMBOL(bio_uninit);
7ba1ba12 227
4254bba1
KO
228static void bio_free(struct bio *bio)
229{
230 struct bio_set *bs = bio->bi_pool;
066ff571 231 void *p = bio;
4254bba1 232
066ff571 233 WARN_ON_ONCE(!bs);
4254bba1 234
066ff571
CH
235 bio_uninit(bio);
236 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
237 mempool_free(p - bs->front_pad, &bs->bio_pool);
3676347a
PO
238}
239
9ae3b3f5
JA
240/*
241 * Users of this function have their own bio allocation. Subsequently,
242 * they must remember to pair any call to bio_init() with bio_uninit()
243 * when IO has completed, or when the bio is released.
244 */
49add496 245void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
16458cf3 246 unsigned short max_vecs, blk_opf_t opf)
1da177e4 247{
da521626 248 bio->bi_next = NULL;
49add496
CH
249 bio->bi_bdev = bdev;
250 bio->bi_opf = opf;
da521626
JA
251 bio->bi_flags = 0;
252 bio->bi_ioprio = 0;
44981351 253 bio->bi_write_hint = 0;
5006f85e 254 bio->bi_write_stream = 0;
da521626
JA
255 bio->bi_status = 0;
256 bio->bi_iter.bi_sector = 0;
257 bio->bi_iter.bi_size = 0;
258 bio->bi_iter.bi_idx = 0;
259 bio->bi_iter.bi_bvec_done = 0;
260 bio->bi_end_io = NULL;
261 bio->bi_private = NULL;
262#ifdef CONFIG_BLK_CGROUP
263 bio->bi_blkg = NULL;
264 bio->bi_issue.value = 0;
49add496
CH
265 if (bdev)
266 bio_associate_blkg(bio);
da521626
JA
267#ifdef CONFIG_BLK_CGROUP_IOCOST
268 bio->bi_iocost_cost = 0;
269#endif
270#endif
271#ifdef CONFIG_BLK_INLINE_ENCRYPTION
272 bio->bi_crypt_context = NULL;
273#endif
274#ifdef CONFIG_BLK_DEV_INTEGRITY
275 bio->bi_integrity = NULL;
276#endif
277 bio->bi_vcnt = 0;
278
c4cf5261 279 atomic_set(&bio->__bi_remaining, 1);
dac56212 280 atomic_set(&bio->__bi_cnt, 1);
3e08773c 281 bio->bi_cookie = BLK_QC_T_NONE;
3a83f467 282
3a83f467 283 bio->bi_max_vecs = max_vecs;
da521626
JA
284 bio->bi_io_vec = table;
285 bio->bi_pool = NULL;
1da177e4 286}
a112a71d 287EXPORT_SYMBOL(bio_init);
1da177e4 288
f44b48c7
KO
289/**
290 * bio_reset - reinitialize a bio
291 * @bio: bio to reset
a7c50c94
CH
292 * @bdev: block device to use the bio for
293 * @opf: operation and flags for bio
f44b48c7
KO
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
16458cf3 301void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
f44b48c7 302{
9ae3b3f5 303 bio_uninit(bio);
f44b48c7 304 memset(bio, 0, BIO_RESET_BYTES);
c4cf5261 305 atomic_set(&bio->__bi_remaining, 1);
a7c50c94 306 bio->bi_bdev = bdev;
78e34374
CH
307 if (bio->bi_bdev)
308 bio_associate_blkg(bio);
a7c50c94 309 bio->bi_opf = opf;
f44b48c7
KO
310}
311EXPORT_SYMBOL(bio_reset);
312
38f8baae 313static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 314{
4246a0b6
CH
315 struct bio *parent = bio->bi_private;
316
3edf5346 317 if (bio->bi_status && !parent->bi_status)
4e4cbee9 318 parent->bi_status = bio->bi_status;
196d38bc 319 bio_put(bio);
38f8baae
CH
320 return parent;
321}
322
323static void bio_chain_endio(struct bio *bio)
324{
325 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
326}
327
328/**
329 * bio_chain - chain bio completions
1051a902 330 * @bio: the target bio
5b874af6 331 * @parent: the parent bio of @bio
196d38bc
KO
332 *
333 * The caller won't have a bi_end_io called when @bio completes - instead,
334 * @parent's bi_end_io won't be called until both @parent and @bio have
335 * completed; the chained bio will also be freed when it completes.
336 *
337 * The caller must not set bi_private or bi_end_io in @bio.
338 */
339void bio_chain(struct bio *bio, struct bio *parent)
340{
341 BUG_ON(bio->bi_private || bio->bi_end_io);
342
343 bio->bi_private = parent;
344 bio->bi_end_io = bio_chain_endio;
c4cf5261 345 bio_inc_remaining(parent);
196d38bc
KO
346}
347EXPORT_SYMBOL(bio_chain);
348
81c2168c
CH
349/**
350 * bio_chain_and_submit - submit a bio after chaining it to another one
351 * @prev: bio to chain and submit
352 * @new: bio to chain to
353 *
354 * If @prev is non-NULL, chain it to @new and submit it.
355 *
356 * Return: @new.
357 */
358struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new)
3b005bf6 359{
81c2168c
CH
360 if (prev) {
361 bio_chain(prev, new);
362 submit_bio(prev);
3b005bf6 363 }
3b005bf6
CH
364 return new;
365}
81c2168c
CH
366
367struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
368 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
369{
370 return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp));
371}
3b005bf6
CH
372EXPORT_SYMBOL_GPL(blk_next_bio);
373
df2cb6da
KO
374static void bio_alloc_rescue(struct work_struct *work)
375{
376 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
377 struct bio *bio;
378
379 while (1) {
380 spin_lock(&bs->rescue_lock);
381 bio = bio_list_pop(&bs->rescue_list);
382 spin_unlock(&bs->rescue_lock);
383
384 if (!bio)
385 break;
386
ed00aabd 387 submit_bio_noacct(bio);
df2cb6da
KO
388 }
389}
390
391static void punt_bios_to_rescuer(struct bio_set *bs)
392{
393 struct bio_list punt, nopunt;
394 struct bio *bio;
395
47e0fb46
N
396 if (WARN_ON_ONCE(!bs->rescue_workqueue))
397 return;
df2cb6da
KO
398 /*
399 * In order to guarantee forward progress we must punt only bios that
400 * were allocated from this bio_set; otherwise, if there was a bio on
401 * there for a stacking driver higher up in the stack, processing it
402 * could require allocating bios from this bio_set, and doing that from
403 * our own rescuer would be bad.
404 *
405 * Since bio lists are singly linked, pop them all instead of trying to
406 * remove from the middle of the list:
407 */
408
409 bio_list_init(&punt);
410 bio_list_init(&nopunt);
411
f5fe1b51 412 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 413 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 414 current->bio_list[0] = nopunt;
df2cb6da 415
f5fe1b51
N
416 bio_list_init(&nopunt);
417 while ((bio = bio_list_pop(&current->bio_list[1])))
418 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
419 current->bio_list[1] = nopunt;
df2cb6da
KO
420
421 spin_lock(&bs->rescue_lock);
422 bio_list_merge(&bs->rescue_list, &punt);
423 spin_unlock(&bs->rescue_lock);
424
425 queue_work(bs->rescue_workqueue, &bs->rescue_work);
426}
427
b99182c5
PB
428static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
429{
430 unsigned long flags;
431
432 /* cache->free_list must be empty */
433 if (WARN_ON_ONCE(cache->free_list))
434 return;
435
436 local_irq_save(flags);
437 cache->free_list = cache->free_list_irq;
438 cache->free_list_irq = NULL;
439 cache->nr += cache->nr_irq;
440 cache->nr_irq = 0;
441 local_irq_restore(flags);
442}
443
0df71650 444static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
16458cf3 445 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
0df71650
MS
446 struct bio_set *bs)
447{
448 struct bio_alloc_cache *cache;
449 struct bio *bio;
450
451 cache = per_cpu_ptr(bs->cache, get_cpu());
452 if (!cache->free_list) {
b99182c5
PB
453 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
454 bio_alloc_irq_cache_splice(cache);
455 if (!cache->free_list) {
456 put_cpu();
457 return NULL;
458 }
0df71650
MS
459 }
460 bio = cache->free_list;
461 cache->free_list = bio->bi_next;
462 cache->nr--;
463 put_cpu();
464
465 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
466 bio->bi_pool = bs;
467 return bio;
468}
469
1da177e4
LT
470/**
471 * bio_alloc_bioset - allocate a bio for I/O
609be106
CH
472 * @bdev: block device to allocate the bio for (can be %NULL)
473 * @nr_vecs: number of bvecs to pre-allocate
474 * @opf: operation and flags for bio
519c8e9f 475 * @gfp_mask: the GFP_* mask given to the slab allocator
db18efac 476 * @bs: the bio_set to allocate from.
1da177e4 477 *
3175199a 478 * Allocate a bio from the mempools in @bs.
3f86a82a 479 *
3175199a
CH
480 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
481 * allocate a bio. This is due to the mempool guarantees. To make this work,
482 * callers must never allocate more than 1 bio at a time from the general pool.
483 * Callers that need to allocate more than 1 bio must always submit the
484 * previously allocated bio for IO before attempting to allocate a new one.
485 * Failure to do so can cause deadlocks under memory pressure.
3f86a82a 486 *
3175199a
CH
487 * Note that when running under submit_bio_noacct() (i.e. any block driver),
488 * bios are not submitted until after you return - see the code in
489 * submit_bio_noacct() that converts recursion into iteration, to prevent
490 * stack overflows.
df2cb6da 491 *
3175199a
CH
492 * This would normally mean allocating multiple bios under submit_bio_noacct()
493 * would be susceptible to deadlocks, but we have
494 * deadlock avoidance code that resubmits any blocked bios from a rescuer
495 * thread.
df2cb6da 496 *
3175199a
CH
497 * However, we do not guarantee forward progress for allocations from other
498 * mempools. Doing multiple allocations from the same mempool under
499 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
500 * for per bio allocations.
df2cb6da 501 *
3175199a 502 * Returns: Pointer to new bio on success, NULL on failure.
3f86a82a 503 */
609be106 504struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
16458cf3 505 blk_opf_t opf, gfp_t gfp_mask,
7a88fa19 506 struct bio_set *bs)
1da177e4 507{
df2cb6da 508 gfp_t saved_gfp = gfp_mask;
451a9ebf
TH
509 struct bio *bio;
510 void *p;
511
609be106
CH
512 /* should not use nobvec bioset for nr_vecs > 0 */
513 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
3175199a 514 return NULL;
df2cb6da 515
0df71650
MS
516 if (opf & REQ_ALLOC_CACHE) {
517 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
518 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
519 gfp_mask, bs);
520 if (bio)
521 return bio;
522 /*
523 * No cached bio available, bio returned below marked with
524 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
525 */
526 } else {
527 opf &= ~REQ_ALLOC_CACHE;
528 }
529 }
530
3175199a
CH
531 /*
532 * submit_bio_noacct() converts recursion to iteration; this means if
533 * we're running beneath it, any bios we allocate and submit will not be
534 * submitted (and thus freed) until after we return.
535 *
536 * This exposes us to a potential deadlock if we allocate multiple bios
537 * from the same bio_set() while running underneath submit_bio_noacct().
538 * If we were to allocate multiple bios (say a stacking block driver
539 * that was splitting bios), we would deadlock if we exhausted the
540 * mempool's reserve.
541 *
542 * We solve this, and guarantee forward progress, with a rescuer
543 * workqueue per bio_set. If we go to allocate and there are bios on
544 * current->bio_list, we first try the allocation without
545 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
546 * blocking to the rescuer workqueue before we retry with the original
547 * gfp_flags.
548 */
549 if (current->bio_list &&
550 (!bio_list_empty(&current->bio_list[0]) ||
551 !bio_list_empty(&current->bio_list[1])) &&
552 bs->rescue_workqueue)
553 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
554
555 p = mempool_alloc(&bs->bio_pool, gfp_mask);
556 if (!p && gfp_mask != saved_gfp) {
557 punt_bios_to_rescuer(bs);
558 gfp_mask = saved_gfp;
8aa6ba2f 559 p = mempool_alloc(&bs->bio_pool, gfp_mask);
3f86a82a 560 }
451a9ebf
TH
561 if (unlikely(!p))
562 return NULL;
759aa12f
PB
563 if (!mempool_is_saturated(&bs->bio_pool))
564 opf &= ~REQ_ALLOC_CACHE;
1da177e4 565
3175199a 566 bio = p + bs->front_pad;
609be106 567 if (nr_vecs > BIO_INLINE_VECS) {
3175199a 568 struct bio_vec *bvl = NULL;
34053979 569
609be106 570 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
df2cb6da
KO
571 if (!bvl && gfp_mask != saved_gfp) {
572 punt_bios_to_rescuer(bs);
573 gfp_mask = saved_gfp;
609be106 574 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
df2cb6da 575 }
34053979
IM
576 if (unlikely(!bvl))
577 goto err_free;
a38352e0 578
49add496 579 bio_init(bio, bdev, bvl, nr_vecs, opf);
609be106 580 } else if (nr_vecs) {
49add496 581 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
3175199a 582 } else {
49add496 583 bio_init(bio, bdev, NULL, 0, opf);
1da177e4 584 }
3f86a82a
KO
585
586 bio->bi_pool = bs;
1da177e4 587 return bio;
34053979
IM
588
589err_free:
8aa6ba2f 590 mempool_free(p, &bs->bio_pool);
34053979 591 return NULL;
1da177e4 592}
a112a71d 593EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 594
3175199a 595/**
066ff571
CH
596 * bio_kmalloc - kmalloc a bio
597 * @nr_vecs: number of bio_vecs to allocate
3175199a 598 * @gfp_mask: the GFP_* mask given to the slab allocator
3175199a 599 *
066ff571
CH
600 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized
601 * using bio_init() before use. To free a bio returned from this function use
602 * kfree() after calling bio_uninit(). A bio returned from this function can
603 * be reused by calling bio_uninit() before calling bio_init() again.
604 *
605 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
340e1347 606 * function are not backed by a mempool can fail. Do not use this function
066ff571 607 * for allocations in the file system I/O path.
3175199a
CH
608 *
609 * Returns: Pointer to new bio on success, NULL on failure.
610 */
066ff571 611struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
3175199a
CH
612{
613 struct bio *bio;
614
e8007fad 615 if (nr_vecs > BIO_MAX_INLINE_VECS)
3175199a 616 return NULL;
066ff571 617 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
3175199a
CH
618}
619EXPORT_SYMBOL(bio_kmalloc);
620
649f070e 621void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4 622{
7988613b
KO
623 struct bio_vec bv;
624 struct bvec_iter iter;
1da177e4 625
649f070e 626 __bio_for_each_segment(bv, bio, iter, start)
ab6c340e 627 memzero_bvec(&bv);
1da177e4 628}
649f070e 629EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4 630
83c9c547
ML
631/**
632 * bio_truncate - truncate the bio to small size of @new_size
633 * @bio: the bio to be truncated
634 * @new_size: new size for truncating the bio
635 *
636 * Description:
637 * Truncate the bio to new size of @new_size. If bio_op(bio) is
638 * REQ_OP_READ, zero the truncated part. This function should only
639 * be used for handling corner cases, such as bio eod.
640 */
4f7ab09a 641static void bio_truncate(struct bio *bio, unsigned new_size)
85a8ce62
ML
642{
643 struct bio_vec bv;
644 struct bvec_iter iter;
645 unsigned int done = 0;
646 bool truncated = false;
647
648 if (new_size >= bio->bi_iter.bi_size)
649 return;
650
83c9c547 651 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
652 goto exit;
653
654 bio_for_each_segment(bv, bio, iter) {
655 if (done + bv.bv_len > new_size) {
656 unsigned offset;
657
658 if (!truncated)
659 offset = new_size - done;
660 else
661 offset = 0;
3ee859e3
OH
662 zero_user(bv.bv_page, bv.bv_offset + offset,
663 bv.bv_len - offset);
85a8ce62
ML
664 truncated = true;
665 }
666 done += bv.bv_len;
667 }
668
669 exit:
670 /*
671 * Don't touch bvec table here and make it really immutable, since
672 * fs bio user has to retrieve all pages via bio_for_each_segment_all
673 * in its .end_bio() callback.
674 *
675 * It is enough to truncate bio by updating .bi_size since we can make
676 * correct bvec with the updated .bi_size for drivers.
677 */
678 bio->bi_iter.bi_size = new_size;
679}
680
29125ed6
CH
681/**
682 * guard_bio_eod - truncate a BIO to fit the block device
683 * @bio: bio to truncate
684 *
685 * This allows us to do IO even on the odd last sectors of a device, even if the
686 * block size is some multiple of the physical sector size.
687 *
688 * We'll just truncate the bio to the size of the device, and clear the end of
689 * the buffer head manually. Truly out-of-range accesses will turn into actual
690 * I/O errors, this only handles the "we need to be able to do I/O at the final
691 * sector" case.
692 */
693void guard_bio_eod(struct bio *bio)
694{
309dca30 695 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
696
697 if (!maxsector)
698 return;
699
700 /*
701 * If the *whole* IO is past the end of the device,
702 * let it through, and the IO layer will turn it into
703 * an EIO.
704 */
705 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
706 return;
707
708 maxsector -= bio->bi_iter.bi_sector;
709 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
710 return;
711
712 bio_truncate(bio, maxsector << 9);
713}
714
b99182c5
PB
715static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
716 unsigned int nr)
be4d234d
JA
717{
718 unsigned int i = 0;
719 struct bio *bio;
720
fcade2ce
JA
721 while ((bio = cache->free_list) != NULL) {
722 cache->free_list = bio->bi_next;
be4d234d
JA
723 cache->nr--;
724 bio_free(bio);
725 if (++i == nr)
726 break;
727 }
b99182c5
PB
728 return i;
729}
730
731static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
732 unsigned int nr)
733{
734 nr -= __bio_alloc_cache_prune(cache, nr);
735 if (!READ_ONCE(cache->free_list)) {
736 bio_alloc_irq_cache_splice(cache);
737 __bio_alloc_cache_prune(cache, nr);
738 }
be4d234d
JA
739}
740
741static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
742{
743 struct bio_set *bs;
744
745 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
746 if (bs->cache) {
747 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
748
749 bio_alloc_cache_prune(cache, -1U);
750 }
751 return 0;
752}
753
754static void bio_alloc_cache_destroy(struct bio_set *bs)
755{
756 int cpu;
757
758 if (!bs->cache)
759 return;
760
761 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
762 for_each_possible_cpu(cpu) {
763 struct bio_alloc_cache *cache;
764
765 cache = per_cpu_ptr(bs->cache, cpu);
766 bio_alloc_cache_prune(cache, -1U);
767 }
768 free_percpu(bs->cache);
605f7415 769 bs->cache = NULL;
be4d234d
JA
770}
771
f25cf75a
PB
772static inline void bio_put_percpu_cache(struct bio *bio)
773{
774 struct bio_alloc_cache *cache;
775
776 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
e516c3fc
PB
777 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
778 goto out_free;
b99182c5 779
c9f5f3aa 780 if (in_task()) {
e516c3fc 781 bio_uninit(bio);
f25cf75a 782 bio->bi_next = cache->free_list;
c9f5f3aa 783 /* Not necessary but helps not to iopoll already freed bios */
11eb695f 784 bio->bi_bdev = NULL;
f25cf75a
PB
785 cache->free_list = bio;
786 cache->nr++;
e516c3fc
PB
787 } else if (in_hardirq()) {
788 lockdep_assert_irqs_disabled();
f25cf75a 789
e516c3fc 790 bio_uninit(bio);
b99182c5
PB
791 bio->bi_next = cache->free_list_irq;
792 cache->free_list_irq = bio;
793 cache->nr_irq++;
e516c3fc
PB
794 } else {
795 goto out_free;
b99182c5 796 }
f25cf75a 797 put_cpu();
e516c3fc
PB
798 return;
799out_free:
800 put_cpu();
801 bio_free(bio);
f25cf75a
PB
802}
803
1da177e4
LT
804/**
805 * bio_put - release a reference to a bio
806 * @bio: bio to release reference to
807 *
808 * Description:
809 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 810 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
811 **/
812void bio_put(struct bio *bio)
813{
be4d234d 814 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
9e8c0d0d 815 BUG_ON(!atomic_read(&bio->__bi_cnt));
be4d234d
JA
816 if (!atomic_dec_and_test(&bio->__bi_cnt))
817 return;
818 }
f25cf75a
PB
819 if (bio->bi_opf & REQ_ALLOC_CACHE)
820 bio_put_percpu_cache(bio);
821 else
be4d234d 822 bio_free(bio);
1da177e4 823}
a112a71d 824EXPORT_SYMBOL(bio_put);
1da177e4 825
a0e8de79 826static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
59d276fe 827{
b7c44ed9 828 bio_set_flag(bio, BIO_CLONED);
ca474b73 829 bio->bi_ioprio = bio_src->bi_ioprio;
44981351 830 bio->bi_write_hint = bio_src->bi_write_hint;
5006f85e 831 bio->bi_write_stream = bio_src->bi_write_stream;
59d276fe 832 bio->bi_iter = bio_src->bi_iter;
20bd723e 833
7ecc56c6
CH
834 if (bio->bi_bdev) {
835 if (bio->bi_bdev == bio_src->bi_bdev &&
836 bio_flagged(bio_src, BIO_REMAPPED))
837 bio_set_flag(bio, BIO_REMAPPED);
838 bio_clone_blkg_association(bio, bio_src);
839 }
56b4b5ab
CH
840
841 if (bio_crypt_clone(bio, bio_src, gfp) < 0)
842 return -ENOMEM;
843 if (bio_integrity(bio_src) &&
844 bio_integrity_clone(bio, bio_src, gfp) < 0)
845 return -ENOMEM;
846 return 0;
59d276fe 847}
59d276fe
KO
848
849/**
abfc426d
CH
850 * bio_alloc_clone - clone a bio that shares the original bio's biovec
851 * @bdev: block_device to clone onto
a0e8de79
CH
852 * @bio_src: bio to clone from
853 * @gfp: allocation priority
854 * @bs: bio_set to allocate from
59d276fe 855 *
a0e8de79
CH
856 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
857 * bio, but not the actual data it points to.
858 *
859 * The caller must ensure that the return bio is not freed before @bio_src.
59d276fe 860 */
abfc426d
CH
861struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
862 gfp_t gfp, struct bio_set *bs)
59d276fe 863{
a0e8de79 864 struct bio *bio;
59d276fe 865
abfc426d 866 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
a0e8de79 867 if (!bio)
59d276fe
KO
868 return NULL;
869
a0e8de79
CH
870 if (__bio_clone(bio, bio_src, gfp) < 0) {
871 bio_put(bio);
56b4b5ab
CH
872 return NULL;
873 }
a0e8de79 874 bio->bi_io_vec = bio_src->bi_io_vec;
59d276fe 875
a0e8de79 876 return bio;
59d276fe 877}
abfc426d 878EXPORT_SYMBOL(bio_alloc_clone);
59d276fe 879
a0e8de79 880/**
abfc426d
CH
881 * bio_init_clone - clone a bio that shares the original bio's biovec
882 * @bdev: block_device to clone onto
a0e8de79
CH
883 * @bio: bio to clone into
884 * @bio_src: bio to clone from
885 * @gfp: allocation priority
886 *
887 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
888 * The caller owns the returned bio, but not the actual data it points to.
889 *
890 * The caller must ensure that @bio_src is not freed before @bio.
891 */
abfc426d
CH
892int bio_init_clone(struct block_device *bdev, struct bio *bio,
893 struct bio *bio_src, gfp_t gfp)
a0e8de79
CH
894{
895 int ret;
896
abfc426d 897 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
a0e8de79
CH
898 ret = __bio_clone(bio, bio_src, gfp);
899 if (ret)
900 bio_uninit(bio);
901 return ret;
902}
abfc426d 903EXPORT_SYMBOL(bio_init_clone);
a0e8de79 904
9a6083be
CH
905/**
906 * bio_full - check if the bio is full
907 * @bio: bio to check
908 * @len: length of one segment to be added
909 *
910 * Return true if @bio is full and one segment with @len bytes can't be
911 * added to the bio, otherwise return false
912 */
913static inline bool bio_full(struct bio *bio, unsigned len)
914{
915 if (bio->bi_vcnt >= bio->bi_max_vecs)
916 return true;
917 if (bio->bi_iter.bi_size > UINT_MAX - len)
918 return true;
919 return false;
920}
921
858c708d 922static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
77fd359b 923 unsigned int len, unsigned int off)
5919482e 924{
d8166519
MWO
925 size_t bv_end = bv->bv_offset + bv->bv_len;
926 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
927 phys_addr_t page_addr = page_to_phys(page);
928
929 if (vec_end_addr + 1 != page_addr + off)
930 return false;
931 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
932 return false;
49580e69
LG
933 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
934 return false;
52d52d1c 935
77fd359b 936 if ((vec_end_addr & PAGE_MASK) != ((page_addr + off) & PAGE_MASK)) {
858c708d
CH
937 if (IS_ENABLED(CONFIG_KMSAN))
938 return false;
939 if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
940 return false;
941 }
0eca8b6f 942
0eca8b6f 943 bv->bv_len += len;
0eca8b6f 944 return true;
9774b391
CH
945}
946
e4581105
CH
947/*
948 * Try to merge a page into a segment, while obeying the hardware segment
6aeb4f83
CH
949 * size limit.
950 *
951 * This is kept around for the integrity metadata, which is still tries
952 * to build the initial bio to the hardware limit and doesn't have proper
953 * helpers to split. Hopefully this will go away soon.
e4581105 954 */
7c8998f7 955bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
77fd359b 956 struct page *page, unsigned len, unsigned offset)
489fbbcb
ML
957{
958 unsigned long mask = queue_segment_boundary(q);
25f76c3d 959 phys_addr_t addr1 = bvec_phys(bv);
489fbbcb
ML
960 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
961
962 if ((addr1 | mask) != (addr2 | mask))
963 return false;
3f034c37 964 if (len > queue_max_segment_size(q) - bv->bv_len)
489fbbcb 965 return false;
77fd359b 966 return bvec_try_merge_page(bv, page, len, offset);
489fbbcb
ML
967}
968
0aa69fd3 969/**
551879a4 970 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 971 * @bio: destination bio
551879a4
ML
972 * @page: start page to add
973 * @len: length of the data to add, may cross pages
974 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
975 *
976 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
977 * that @bio has space for another bvec.
978 */
979void __bio_add_page(struct bio *bio, struct page *page,
980 unsigned int len, unsigned int off)
981{
0aa69fd3 982 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 983 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3 984
d58cdfae 985 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
c66a14d0 986 bio->bi_iter.bi_size += len;
0aa69fd3
CH
987 bio->bi_vcnt++;
988}
989EXPORT_SYMBOL_GPL(__bio_add_page);
990
850e210d
CH
991/**
992 * bio_add_virt_nofail - add data in the direct kernel mapping to a bio
993 * @bio: destination bio
994 * @vaddr: data to add
995 * @len: length of the data to add, may cross pages
996 *
997 * Add the data at @vaddr to @bio. The caller must have ensure a segment
998 * is available for the added data. No merging into an existing segment
999 * will be performed.
1000 */
1001void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len)
1002{
1003 __bio_add_page(bio, virt_to_page(vaddr), len, offset_in_page(vaddr));
1004}
1005EXPORT_SYMBOL_GPL(bio_add_virt_nofail);
1006
0aa69fd3 1007/**
551879a4 1008 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 1009 * @bio: destination bio
551879a4
ML
1010 * @page: start page to add
1011 * @len: vec entry length, may cross pages
1012 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 1013 *
551879a4 1014 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
1015 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1016 */
1017int bio_add_page(struct bio *bio, struct page *page,
1018 unsigned int len, unsigned int offset)
1019{
939e1a37
CH
1020 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1021 return 0;
61369905
CH
1022 if (bio->bi_iter.bi_size > UINT_MAX - len)
1023 return 0;
939e1a37 1024
0eca8b6f 1025 if (bio->bi_vcnt > 0 &&
858c708d 1026 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
77fd359b 1027 page, len, offset)) {
858c708d 1028 bio->bi_iter.bi_size += len;
0eca8b6f 1029 return len;
858c708d 1030 }
0eca8b6f 1031
80232b52 1032 if (bio->bi_vcnt >= bio->bi_max_vecs)
0eca8b6f
CH
1033 return 0;
1034 __bio_add_page(bio, page, len, offset);
c66a14d0 1035 return len;
1da177e4 1036}
a112a71d 1037EXPORT_SYMBOL(bio_add_page);
1da177e4 1038
7a150f1e
JT
1039void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1040 size_t off)
1041{
26064d3e
ML
1042 unsigned long nr = off / PAGE_SIZE;
1043
7a150f1e 1044 WARN_ON_ONCE(len > UINT_MAX);
26064d3e 1045 __bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE);
7a150f1e 1046}
8fde439b 1047EXPORT_SYMBOL_GPL(bio_add_folio_nofail);
7a150f1e 1048
85f5a74c
MWO
1049/**
1050 * bio_add_folio - Attempt to add part of a folio to a bio.
1051 * @bio: BIO to add to.
1052 * @folio: Folio to add.
1053 * @len: How many bytes from the folio to add.
1054 * @off: First byte in this folio to add.
1055 *
1056 * Filesystems that use folios can call this function instead of calling
1057 * bio_add_page() for each page in the folio. If @off is bigger than
1058 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1059 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1060 *
1061 * Return: Whether the addition was successful.
1062 */
1063bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1064 size_t off)
1065{
26064d3e
ML
1066 unsigned long nr = off / PAGE_SIZE;
1067
1068 if (len > UINT_MAX)
455a844d 1069 return false;
26064d3e 1070 return bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE) > 0;
85f5a74c 1071}
cd57b771 1072EXPORT_SYMBOL(bio_add_folio);
85f5a74c 1073
8dd16f5e
CH
1074/**
1075 * bio_add_vmalloc_chunk - add a vmalloc chunk to a bio
1076 * @bio: destination bio
1077 * @vaddr: vmalloc address to add
1078 * @len: total length in bytes of the data to add
1079 *
1080 * Add data starting at @vaddr to @bio and return how many bytes were added.
1081 * This may be less than the amount originally asked. Returns 0 if no data
1082 * could be added to @bio.
1083 *
1084 * This helper calls flush_kernel_vmap_range() for the range added. For reads
1085 * the caller still needs to manually call invalidate_kernel_vmap_range() in
1086 * the completion handler.
1087 */
1088unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len)
1089{
1090 unsigned int offset = offset_in_page(vaddr);
1091
1092 len = min(len, PAGE_SIZE - offset);
1093 if (bio_add_page(bio, vmalloc_to_page(vaddr), len, offset) < len)
1094 return 0;
1095 if (op_is_write(bio_op(bio)))
1096 flush_kernel_vmap_range(vaddr, len);
1097 return len;
1098}
1099EXPORT_SYMBOL_GPL(bio_add_vmalloc_chunk);
1100
1101/**
1102 * bio_add_vmalloc - add a vmalloc region to a bio
1103 * @bio: destination bio
1104 * @vaddr: vmalloc address to add
1105 * @len: total length in bytes of the data to add
1106 *
1107 * Add data starting at @vaddr to @bio. Return %true on success or %false if
1108 * @bio does not have enough space for the payload.
1109 *
1110 * This helper calls flush_kernel_vmap_range() for the range added. For reads
1111 * the caller still needs to manually call invalidate_kernel_vmap_range() in
1112 * the completion handler.
1113 */
1114bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len)
1115{
1116 do {
1117 unsigned int added = bio_add_vmalloc_chunk(bio, vaddr, len);
1118
1119 if (!added)
1120 return false;
1121 vaddr += added;
1122 len -= added;
1123 } while (len);
1124
1125 return true;
1126}
1127EXPORT_SYMBOL_GPL(bio_add_vmalloc);
1128
c809084a 1129void __bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf 1130{
1b151e24
MWO
1131 struct folio_iter fi;
1132
1133 bio_for_each_folio_all(fi, bio) {
38b43539 1134 size_t nr_pages;
7321ecbf 1135
1b151e24
MWO
1136 if (mark_dirty) {
1137 folio_lock(fi.folio);
1138 folio_mark_dirty(fi.folio);
1139 folio_unlock(fi.folio);
1140 }
38b43539
TB
1141 nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
1142 fi.offset / PAGE_SIZE + 1;
eb1d46fc 1143 unpin_user_folio(fi.folio, nr_pages);
d241a95f 1144 }
7321ecbf 1145}
c809084a 1146EXPORT_SYMBOL_GPL(__bio_release_pages);
7321ecbf 1147
2f4873f9 1148void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter)
6d0c48ae 1149{
7a800a20 1150 WARN_ON_ONCE(bio->bi_max_vecs);
c42bca92
PB
1151
1152 bio->bi_vcnt = iter->nr_segs;
c42bca92
PB
1153 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1154 bio->bi_iter.bi_bvec_done = iter->iov_offset;
cafd00d0 1155 bio->bi_iter.bi_size = iov_iter_count(iter);
977be012 1156 bio_set_flag(bio, BIO_CLONED);
7de55b7d 1157}
c42bca92 1158
ed9832bc
KK
1159static unsigned int get_contig_folio_len(unsigned int *num_pages,
1160 struct page **pages, unsigned int i,
1161 struct folio *folio, size_t left,
1162 size_t offset)
1163{
1164 size_t bytes = left;
1165 size_t contig_sz = min_t(size_t, PAGE_SIZE - offset, bytes);
1166 unsigned int j;
1167
1168 /*
1169 * We might COW a single page in the middle of
1170 * a large folio, so we have to check that all
1171 * pages belong to the same folio.
1172 */
1173 bytes -= contig_sz;
1174 for (j = i + 1; j < i + *num_pages; j++) {
1175 size_t next = min_t(size_t, PAGE_SIZE, bytes);
1176
1177 if (page_folio(pages[j]) != folio ||
1178 pages[j] != pages[j - 1] + 1) {
1179 break;
1180 }
1181 contig_sz += next;
1182 bytes -= next;
1183 }
1184 *num_pages = j - i;
1185
1186 return contig_sz;
1187}
1188
576ed913
CH
1189#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1190
2cefe4db 1191/**
17d51b10 1192 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
1193 * @bio: bio to add pages to
1194 * @iter: iov iterator describing the region to be mapped
1195 *
a7e689dd
DH
1196 * Extracts pages from *iter and appends them to @bio's bvec array. The pages
1197 * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1198 * For a multi-segment *iter, this function only adds pages from the next
1199 * non-empty segment of the iov iterator.
2cefe4db 1200 */
17d51b10 1201static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 1202{
f62e52d1 1203 iov_iter_extraction_t extraction_flags = 0;
576ed913
CH
1204 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1205 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
1206 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1207 struct page **pages = (struct page **)bv;
ed9832bc
KK
1208 ssize_t size;
1209 unsigned int num_pages, i = 0;
1210 size_t offset, folio_offset, left, len;
325347d9 1211 int ret = 0;
576ed913
CH
1212
1213 /*
1214 * Move page array up in the allocated memory for the bio vecs as far as
1215 * possible so that we can start filling biovecs from the beginning
1216 * without overwriting the temporary page array.
c58c0074 1217 */
576ed913
CH
1218 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1219 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db 1220
5e3e3f2e 1221 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
f62e52d1 1222 extraction_flags |= ITER_ALLOW_P2PDMA;
5e3e3f2e 1223
b1a000d3
KB
1224 /*
1225 * Each segment in the iov is required to be a block size multiple.
1226 * However, we may not be able to get the entire segment if it spans
1227 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1228 * result to ensure the bio's total size is correct. The remainder of
1229 * the iov data will be picked up in the next bio iteration.
1230 */
a7e689dd
DH
1231 size = iov_iter_extract_pages(iter, &pages,
1232 UINT_MAX - bio->bi_iter.bi_size,
1233 nr_pages, extraction_flags, &offset);
480cb846
AV
1234 if (unlikely(size <= 0))
1235 return size ? size : -EFAULT;
1236
1237 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1238
168145f6
KO
1239 if (bio->bi_bdev) {
1240 size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1241 iov_iter_revert(iter, trim);
1242 size -= trim;
1243 }
480cb846 1244
480cb846
AV
1245 if (unlikely(!size)) {
1246 ret = -EFAULT;
e97424fd
KB
1247 goto out;
1248 }
2cefe4db 1249
ed9832bc 1250 for (left = size, i = 0; left > 0; left -= len, i += num_pages) {
576ed913 1251 struct page *page = pages[i];
ed9832bc 1252 struct folio *folio = page_folio(page);
77fd359b 1253 unsigned int old_vcnt = bio->bi_vcnt;
ed9832bc
KK
1254
1255 folio_offset = ((size_t)folio_page_idx(folio, page) <<
1256 PAGE_SHIFT) + offset;
1257
1258 len = min(folio_size(folio) - folio_offset, left);
1259
1260 num_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1261
1262 if (num_pages > 1)
1263 len = get_contig_folio_len(&num_pages, pages, i,
1264 folio, left, offset);
2cefe4db 1265
77fd359b
CH
1266 if (!bio_add_folio(bio, folio, len, folio_offset)) {
1267 WARN_ON_ONCE(1);
1268 ret = -EINVAL;
1269 goto out;
1270 }
1271
1272 if (bio_flagged(bio, BIO_PAGE_PINNED)) {
1273 /*
1274 * We're adding another fragment of a page that already
1275 * was part of the last segment. Undo our pin as the
1276 * page was pinned when an earlier fragment of it was
1277 * added to the bio and __bio_release_pages expects a
1278 * single pin per page.
1279 */
1280 if (offset && bio->bi_vcnt == old_vcnt)
1281 unpin_user_folio(folio, 1);
1282 }
576ed913 1283 offset = 0;
2cefe4db
KO
1284 }
1285
480cb846 1286 iov_iter_revert(iter, left);
e97424fd
KB
1287out:
1288 while (i < nr_pages)
a7e689dd 1289 bio_release_page(bio, pages[i++]);
e97424fd 1290
325347d9 1291 return ret;
2cefe4db 1292}
17d51b10
MW
1293
1294/**
6d0c48ae 1295 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1296 * @bio: bio to add pages to
6d0c48ae
JA
1297 * @iter: iov iterator describing the region to be added
1298 *
1299 * This takes either an iterator pointing to user memory, or one pointing to
1300 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1301 * map them into the kernel. On IO completion, the caller should put those
c42bca92
PB
1302 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1303 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1304 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1305 * completed by a call to ->ki_complete() or returns with an error other than
1306 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1307 * on IO completion. If it isn't, then pages should be released.
17d51b10 1308 *
17d51b10 1309 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1310 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1311 * MM encounters an error pinning the requested pages, it stops. Error
1312 * is returned only if 0 pages could be pinned.
17d51b10
MW
1313 */
1314int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1315{
c42bca92 1316 int ret = 0;
14eacf12 1317
939e1a37
CH
1318 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1319 return -EIO;
1320
c42bca92 1321 if (iov_iter_is_bvec(iter)) {
fa5fa8ec
PB
1322 bio_iov_bvec_set(bio, iter);
1323 iov_iter_advance(iter, bio->bi_iter.bi_size);
1324 return 0;
c42bca92 1325 }
17d51b10 1326
a7e689dd
DH
1327 if (iov_iter_extract_will_pin(iter))
1328 bio_set_flag(bio, BIO_PAGE_PINNED);
17d51b10 1329 do {
c58c0074 1330 ret = __bio_iov_iter_get_pages(bio, iter);
79d08f89 1331 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 1332
14eacf12 1333 return bio->bi_vcnt ? 0 : ret;
17d51b10 1334}
29b2a3aa 1335EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1336
4246a0b6 1337static void submit_bio_wait_endio(struct bio *bio)
9e882242 1338{
65e53aab 1339 complete(bio->bi_private);
9e882242
KO
1340}
1341
1342/**
1343 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1344 * @bio: The &struct bio which describes the I/O
1345 *
1346 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1347 * bio_endio() on failure.
3d289d68
JK
1348 *
1349 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1350 * result in bio reference to be consumed. The caller must drop the reference
1351 * on his own.
9e882242 1352 */
4e49ea4a 1353int submit_bio_wait(struct bio *bio)
9e882242 1354{
309dca30
CH
1355 DECLARE_COMPLETION_ONSTACK_MAP(done,
1356 bio->bi_bdev->bd_disk->lockdep_map);
9e882242 1357
65e53aab 1358 bio->bi_private = &done;
9e882242 1359 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1360 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1361 submit_bio(bio);
0eb4db47 1362 blk_wait_io(&done);
9e882242 1363
65e53aab 1364 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1365}
1366EXPORT_SYMBOL(submit_bio_wait);
1367
10b1e59c
CH
1368/**
1369 * bdev_rw_virt - synchronously read into / write from kernel mapping
1370 * @bdev: block device to access
1371 * @sector: sector to access
1372 * @data: data to read/write
1373 * @len: length in byte to read/write
1374 * @op: operation (e.g. REQ_OP_READ/REQ_OP_WRITE)
1375 *
1376 * Performs synchronous I/O to @bdev for @data/@len. @data must be in
1377 * the kernel direct mapping and not a vmalloc address.
1378 */
1379int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data,
1380 size_t len, enum req_op op)
1381{
1382 struct bio_vec bv;
1383 struct bio bio;
1384 int error;
1385
1386 if (WARN_ON_ONCE(is_vmalloc_addr(data)))
1387 return -EIO;
1388
1389 bio_init(&bio, bdev, &bv, 1, op);
1390 bio.bi_iter.bi_sector = sector;
1391 bio_add_virt_nofail(&bio, data, len);
1392 error = submit_bio_wait(&bio);
1393 bio_uninit(&bio);
1394 return error;
1395}
1396EXPORT_SYMBOL_GPL(bdev_rw_virt);
1397
0f8e9ecc
KB
1398static void bio_wait_end_io(struct bio *bio)
1399{
1400 complete(bio->bi_private);
1401 bio_put(bio);
1402}
1403
1404/*
1405 * bio_await_chain - ends @bio and waits for every chained bio to complete
1406 */
1407void bio_await_chain(struct bio *bio)
1408{
1409 DECLARE_COMPLETION_ONSTACK_MAP(done,
1410 bio->bi_bdev->bd_disk->lockdep_map);
1411
1412 bio->bi_private = &done;
1413 bio->bi_end_io = bio_wait_end_io;
1414 bio_endio(bio);
1415 blk_wait_io(&done);
1416}
1417
d4aa57a1 1418void __bio_advance(struct bio *bio, unsigned bytes)
054bdf64
KO
1419{
1420 if (bio_integrity(bio))
1421 bio_integrity_advance(bio, bytes);
1422
a892c8d5 1423 bio_crypt_advance(bio, bytes);
4550dd6c 1424 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64 1425}
d4aa57a1 1426EXPORT_SYMBOL(__bio_advance);
054bdf64 1427
ee4b4e22
JA
1428void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1429 struct bio *src, struct bvec_iter *src_iter)
1430{
1431 while (src_iter->bi_size && dst_iter->bi_size) {
1432 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1433 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1434 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1435 void *src_buf = bvec_kmap_local(&src_bv);
1436 void *dst_buf = bvec_kmap_local(&dst_bv);
1437
1438 memcpy(dst_buf, src_buf, bytes);
1439
1440 kunmap_local(dst_buf);
1441 kunmap_local(src_buf);
1442
1443 bio_advance_iter_single(src, src_iter, bytes);
1444 bio_advance_iter_single(dst, dst_iter, bytes);
1445 }
1446}
1447EXPORT_SYMBOL(bio_copy_data_iter);
1448
38a72dac 1449/**
45db54d5
KO
1450 * bio_copy_data - copy contents of data buffers from one bio to another
1451 * @src: source bio
1452 * @dst: destination bio
38a72dac
KO
1453 *
1454 * Stops when it reaches the end of either @src or @dst - that is, copies
1455 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1456 */
1457void bio_copy_data(struct bio *dst, struct bio *src)
1458{
45db54d5
KO
1459 struct bvec_iter src_iter = src->bi_iter;
1460 struct bvec_iter dst_iter = dst->bi_iter;
1461
ee4b4e22 1462 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1463}
16ac3d63
KO
1464EXPORT_SYMBOL(bio_copy_data);
1465
491221f8 1466void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1467{
1468 struct bio_vec *bvec;
6dc4f100 1469 struct bvec_iter_all iter_all;
1dfa0f68 1470
2b070cfe 1471 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1472 __free_page(bvec->bv_page);
1473}
491221f8 1474EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1475
1da177e4
LT
1476/*
1477 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1478 * for performing direct-IO in BIOs.
1479 *
1b151e24 1480 * The problem is that we cannot run folio_mark_dirty() from interrupt context
1da177e4
LT
1481 * because the required locks are not interrupt-safe. So what we can do is to
1482 * mark the pages dirty _before_ performing IO. And in interrupt context,
1483 * check that the pages are still dirty. If so, fine. If not, redirty them
1484 * in process context.
1485 *
1da177e4
LT
1486 * Note that this code is very hard to test under normal circumstances because
1487 * direct-io pins the pages with get_user_pages(). This makes
1488 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1489 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1490 * pagecache.
1491 *
1492 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1493 * deferred bio dirtying paths.
1494 */
1495
1496/*
1497 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1498 */
1499void bio_set_pages_dirty(struct bio *bio)
1500{
1b151e24 1501 struct folio_iter fi;
1da177e4 1502
1b151e24
MWO
1503 bio_for_each_folio_all(fi, bio) {
1504 folio_lock(fi.folio);
1505 folio_mark_dirty(fi.folio);
1506 folio_unlock(fi.folio);
1da177e4
LT
1507 }
1508}
7ba37927 1509EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1da177e4 1510
1da177e4
LT
1511/*
1512 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1513 * If they are, then fine. If, however, some pages are clean then they must
1514 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1515 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1516 *
1517 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
fd363244
DH
1518 * here on. It will unpin each page and will run one bio_put() against the
1519 * BIO.
1da177e4
LT
1520 */
1521
65f27f38 1522static void bio_dirty_fn(struct work_struct *work);
1da177e4 1523
65f27f38 1524static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1525static DEFINE_SPINLOCK(bio_dirty_lock);
1526static struct bio *bio_dirty_list;
1527
1528/*
1529 * This runs in process context
1530 */
65f27f38 1531static void bio_dirty_fn(struct work_struct *work)
1da177e4 1532{
24d5493f 1533 struct bio *bio, *next;
1da177e4 1534
24d5493f
CH
1535 spin_lock_irq(&bio_dirty_lock);
1536 next = bio_dirty_list;
1da177e4 1537 bio_dirty_list = NULL;
24d5493f 1538 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1539
24d5493f
CH
1540 while ((bio = next) != NULL) {
1541 next = bio->bi_private;
1da177e4 1542
d241a95f 1543 bio_release_pages(bio, true);
1da177e4 1544 bio_put(bio);
1da177e4
LT
1545 }
1546}
1547
1548void bio_check_pages_dirty(struct bio *bio)
1549{
1b151e24 1550 struct folio_iter fi;
24d5493f 1551 unsigned long flags;
1da177e4 1552
1b151e24
MWO
1553 bio_for_each_folio_all(fi, bio) {
1554 if (!folio_test_dirty(fi.folio))
24d5493f 1555 goto defer;
1da177e4
LT
1556 }
1557
d241a95f 1558 bio_release_pages(bio, false);
24d5493f
CH
1559 bio_put(bio);
1560 return;
1561defer:
1562 spin_lock_irqsave(&bio_dirty_lock, flags);
1563 bio->bi_private = bio_dirty_list;
1564 bio_dirty_list = bio;
1565 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1566 schedule_work(&bio_dirty_work);
1da177e4 1567}
7ba37927 1568EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1da177e4 1569
c4cf5261
JA
1570static inline bool bio_remaining_done(struct bio *bio)
1571{
1572 /*
1573 * If we're not chaining, then ->__bi_remaining is always 1 and
1574 * we always end io on the first invocation.
1575 */
1576 if (!bio_flagged(bio, BIO_CHAIN))
1577 return true;
1578
1579 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1580
326e1dbb 1581 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1582 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1583 return true;
326e1dbb 1584 }
c4cf5261
JA
1585
1586 return false;
1587}
1588
1da177e4
LT
1589/**
1590 * bio_endio - end I/O on a bio
1591 * @bio: bio
1da177e4
LT
1592 *
1593 * Description:
4246a0b6
CH
1594 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1595 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1596 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1597 *
1598 * bio_endio() can be called several times on a bio that has been chained
1599 * using bio_chain(). The ->bi_end_io() function will only be called the
60b6a7e6 1600 * last time.
1da177e4 1601 **/
4246a0b6 1602void bio_endio(struct bio *bio)
1da177e4 1603{
ba8c6967 1604again:
2b885517 1605 if (!bio_remaining_done(bio))
ba8c6967 1606 return;
7c20f116
CH
1607 if (!bio_integrity_endio(bio))
1608 return;
1da177e4 1609
dd291d77
DLM
1610 blk_zone_bio_endio(bio);
1611
aa1b46dc 1612 rq_qos_done_bio(bio);
67b42d0b 1613
60b6a7e6 1614 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
3caee463 1615 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
60b6a7e6
EH
1616 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1617 }
1618
ba8c6967
CH
1619 /*
1620 * Need to have a real endio function for chained bios, otherwise
1621 * various corner cases will break (like stacking block devices that
1622 * save/restore bi_end_io) - however, we want to avoid unbounded
1623 * recursion and blowing the stack. Tail call optimization would
1624 * handle this, but compiling with frame pointers also disables
1625 * gcc's sibling call optimization.
1626 */
1627 if (bio->bi_end_io == bio_chain_endio) {
1628 bio = __bio_chain_endio(bio);
1629 goto again;
196d38bc 1630 }
ba8c6967 1631
bf4c89fc
CH
1632#ifdef CONFIG_BLK_CGROUP
1633 /*
1634 * Release cgroup info. We shouldn't have to do this here, but quite
1635 * a few callers of bio_init fail to call bio_uninit, so we cover up
1636 * for that here at least for now.
1637 */
1638 if (bio->bi_blkg) {
1639 blkg_put(bio->bi_blkg);
1640 bio->bi_blkg = NULL;
1641 }
1642#endif
1643
ba8c6967
CH
1644 if (bio->bi_end_io)
1645 bio->bi_end_io(bio);
1da177e4 1646}
a112a71d 1647EXPORT_SYMBOL(bio_endio);
1da177e4 1648
20d0189b
KO
1649/**
1650 * bio_split - split a bio
1651 * @bio: bio to split
1652 * @sectors: number of sectors to split from the front of @bio
1653 * @gfp: gfp mask
1654 * @bs: bio set to allocate from
1655 *
1656 * Allocates and returns a new bio which represents @sectors from the start of
1657 * @bio, and updates @bio to represent the remaining sectors.
1658 *
f3f5da62 1659 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1660 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1661 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1662 */
1663struct bio *bio_split(struct bio *bio, int sectors,
1664 gfp_t gfp, struct bio_set *bs)
1665{
f341a4d3 1666 struct bio *split;
20d0189b 1667
e546fe1d
JG
1668 if (WARN_ON_ONCE(sectors <= 0))
1669 return ERR_PTR(-EINVAL);
1670 if (WARN_ON_ONCE(sectors >= bio_sectors(bio)))
1671 return ERR_PTR(-EINVAL);
20d0189b 1672
0512a75b
KB
1673 /* Zone append commands cannot be split */
1674 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
e546fe1d 1675 return ERR_PTR(-EINVAL);
0512a75b 1676
27b26f09
JG
1677 /* atomic writes cannot be split */
1678 if (bio->bi_opf & REQ_ATOMIC)
1679 return ERR_PTR(-EINVAL);
1680
abfc426d 1681 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
20d0189b 1682 if (!split)
e546fe1d 1683 return ERR_PTR(-ENOMEM);
20d0189b
KO
1684
1685 split->bi_iter.bi_size = sectors << 9;
1686
1687 if (bio_integrity(split))
fbd08e76 1688 bio_integrity_trim(split);
20d0189b
KO
1689
1690 bio_advance(bio, split->bi_iter.bi_size);
1691
fbbaf700 1692 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1693 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1694
20d0189b
KO
1695 return split;
1696}
1697EXPORT_SYMBOL(bio_split);
1698
6678d83f
KO
1699/**
1700 * bio_trim - trim a bio
1701 * @bio: bio to trim
1702 * @offset: number of sectors to trim from the front of @bio
1703 * @size: size we want to trim @bio to, in sectors
e83502ca
CK
1704 *
1705 * This function is typically used for bios that are cloned and submitted
1706 * to the underlying device in parts.
6678d83f 1707 */
e83502ca 1708void bio_trim(struct bio *bio, sector_t offset, sector_t size)
6678d83f 1709{
554b2286
JG
1710 /* We should never trim an atomic write */
1711 if (WARN_ON_ONCE(bio->bi_opf & REQ_ATOMIC && size))
1712 return;
1713
e83502ca 1714 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
8535c018 1715 offset + size > bio_sectors(bio)))
e83502ca 1716 return;
6678d83f
KO
1717
1718 size <<= 9;
4f024f37 1719 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1720 return;
1721
6678d83f 1722 bio_advance(bio, offset << 9);
4f024f37 1723 bio->bi_iter.bi_size = size;
376a78ab
DM
1724
1725 if (bio_integrity(bio))
fbd08e76 1726 bio_integrity_trim(bio);
6678d83f
KO
1727}
1728EXPORT_SYMBOL_GPL(bio_trim);
1729
1da177e4
LT
1730/*
1731 * create memory pools for biovec's in a bio_set.
1732 * use the global biovec slabs created for general use.
1733 */
8aa6ba2f 1734int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1735{
7a800a20 1736 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1da177e4 1737
8aa6ba2f 1738 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1739}
1740
917a38c7
KO
1741/*
1742 * bioset_exit - exit a bioset initialized with bioset_init()
1743 *
1744 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1745 * kzalloc()).
1746 */
1747void bioset_exit(struct bio_set *bs)
1da177e4 1748{
be4d234d 1749 bio_alloc_cache_destroy(bs);
df2cb6da
KO
1750 if (bs->rescue_workqueue)
1751 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1752 bs->rescue_workqueue = NULL;
df2cb6da 1753
8aa6ba2f
KO
1754 mempool_exit(&bs->bio_pool);
1755 mempool_exit(&bs->bvec_pool);
9f060e22 1756
917a38c7
KO
1757 if (bs->bio_slab)
1758 bio_put_slab(bs);
1759 bs->bio_slab = NULL;
1760}
1761EXPORT_SYMBOL(bioset_exit);
1da177e4 1762
917a38c7
KO
1763/**
1764 * bioset_init - Initialize a bio_set
dad08527 1765 * @bs: pool to initialize
917a38c7
KO
1766 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1767 * @front_pad: Number of bytes to allocate in front of the returned bio
1768 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1769 * and %BIOSET_NEED_RESCUER
1770 *
dad08527
KO
1771 * Description:
1772 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1773 * to ask for a number of bytes to be allocated in front of the bio.
1774 * Front pad allocation is useful for embedding the bio inside
1775 * another structure, to avoid allocating extra data to go with the bio.
1776 * Note that the bio must be embedded at the END of that structure always,
1777 * or things will break badly.
1778 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
abfc426d
CH
1779 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1780 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1781 * to dispatch queued requests when the mempool runs out of space.
dad08527 1782 *
917a38c7
KO
1783 */
1784int bioset_init(struct bio_set *bs,
1785 unsigned int pool_size,
1786 unsigned int front_pad,
1787 int flags)
1788{
917a38c7 1789 bs->front_pad = front_pad;
9f180e31
ML
1790 if (flags & BIOSET_NEED_BVECS)
1791 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1792 else
1793 bs->back_pad = 0;
917a38c7
KO
1794
1795 spin_lock_init(&bs->rescue_lock);
1796 bio_list_init(&bs->rescue_list);
1797 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1798
49d1ec85 1799 bs->bio_slab = bio_find_or_create_slab(bs);
917a38c7
KO
1800 if (!bs->bio_slab)
1801 return -ENOMEM;
1802
1803 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1804 goto bad;
1805
1806 if ((flags & BIOSET_NEED_BVECS) &&
1807 biovec_init_pool(&bs->bvec_pool, pool_size))
1808 goto bad;
1809
be4d234d
JA
1810 if (flags & BIOSET_NEED_RESCUER) {
1811 bs->rescue_workqueue = alloc_workqueue("bioset",
1812 WQ_MEM_RECLAIM, 0);
1813 if (!bs->rescue_workqueue)
1814 goto bad;
1815 }
1816 if (flags & BIOSET_PERCPU_CACHE) {
1817 bs->cache = alloc_percpu(struct bio_alloc_cache);
1818 if (!bs->cache)
1819 goto bad;
1820 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1821 }
917a38c7
KO
1822
1823 return 0;
1824bad:
1825 bioset_exit(bs);
1826 return -ENOMEM;
1827}
1828EXPORT_SYMBOL(bioset_init);
1829
de76fd89 1830static int __init init_bio(void)
1da177e4
LT
1831{
1832 int i;
1833
a3df2e45
JA
1834 BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1835
de76fd89
CH
1836 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1837 struct biovec_slab *bvs = bvec_slabs + i;
a7fcd37c 1838
de76fd89
CH
1839 bvs->slab = kmem_cache_create(bvs->name,
1840 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1841 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 1842 }
1da177e4 1843
be4d234d
JA
1844 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1845 bio_cpu_dead);
1846
12c5b70c
JA
1847 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1848 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1da177e4
LT
1849 panic("bio: can't allocate bios\n");
1850
1da177e4
LT
1851 return 0;
1852}
1da177e4 1853subsys_initcall(init_bio);