bcache: use bio_set_dev to assign ->bi_bdev
[linux-2.6-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
de6a78b6 20#include <linux/sched/sysctl.h>
a892c8d5 21#include <linux/blk-crypto.h>
49d1ec85 22#include <linux/xarray.h>
1da177e4 23
55782138 24#include <trace/events/block.h>
9e234eea 25#include "blk.h"
67b42d0b 26#include "blk-rq-qos.h"
0bfc2455 27
392ddc32
JA
28/*
29 * Test patch to inline a certain number of bi_io_vec's inside the bio
30 * itself, to shrink a bio data allocation from two mempool calls to one
31 */
32#define BIO_INLINE_VECS 4
33
1da177e4
LT
34/*
35 * if you change this list, also change bvec_alloc or things will
36 * break badly! cannot be bigger than what you can fit into an
37 * unsigned short
38 */
bd5c4fac 39#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 40static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 41 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
42};
43#undef BV
44
1da177e4
LT
45/*
46 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
47 * IO code that does not need private memory pools.
48 */
f4f8154a 49struct bio_set fs_bio_set;
3f86a82a 50EXPORT_SYMBOL(fs_bio_set);
1da177e4 51
bb799ca0
JA
52/*
53 * Our slab pool management
54 */
55struct bio_slab {
56 struct kmem_cache *slab;
57 unsigned int slab_ref;
58 unsigned int slab_size;
59 char name[8];
60};
61static DEFINE_MUTEX(bio_slab_lock);
49d1ec85 62static DEFINE_XARRAY(bio_slabs);
bb799ca0 63
49d1ec85 64static struct bio_slab *create_bio_slab(unsigned int size)
bb799ca0 65{
49d1ec85 66 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
bb799ca0 67
49d1ec85
ML
68 if (!bslab)
69 return NULL;
bb799ca0 70
49d1ec85
ML
71 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
72 bslab->slab = kmem_cache_create(bslab->name, size,
73 ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
74 if (!bslab->slab)
75 goto fail_alloc_slab;
bb799ca0 76
49d1ec85
ML
77 bslab->slab_ref = 1;
78 bslab->slab_size = size;
bb799ca0 79
49d1ec85
ML
80 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
81 return bslab;
bb799ca0 82
49d1ec85 83 kmem_cache_destroy(bslab->slab);
bb799ca0 84
49d1ec85
ML
85fail_alloc_slab:
86 kfree(bslab);
87 return NULL;
88}
bb799ca0 89
49d1ec85
ML
90static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
91{
9f180e31 92 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
49d1ec85
ML
93}
94
95static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
96{
97 unsigned int size = bs_bio_slab_size(bs);
98 struct bio_slab *bslab;
99
100 mutex_lock(&bio_slab_lock);
101 bslab = xa_load(&bio_slabs, size);
102 if (bslab)
103 bslab->slab_ref++;
104 else
105 bslab = create_bio_slab(size);
bb799ca0 106 mutex_unlock(&bio_slab_lock);
49d1ec85
ML
107
108 if (bslab)
109 return bslab->slab;
110 return NULL;
bb799ca0
JA
111}
112
113static void bio_put_slab(struct bio_set *bs)
114{
115 struct bio_slab *bslab = NULL;
49d1ec85 116 unsigned int slab_size = bs_bio_slab_size(bs);
bb799ca0
JA
117
118 mutex_lock(&bio_slab_lock);
119
49d1ec85 120 bslab = xa_load(&bio_slabs, slab_size);
bb799ca0
JA
121 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
122 goto out;
123
49d1ec85
ML
124 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
125
bb799ca0
JA
126 WARN_ON(!bslab->slab_ref);
127
128 if (--bslab->slab_ref)
129 goto out;
130
49d1ec85
ML
131 xa_erase(&bio_slabs, slab_size);
132
bb799ca0 133 kmem_cache_destroy(bslab->slab);
49d1ec85 134 kfree(bslab);
bb799ca0
JA
135
136out:
137 mutex_unlock(&bio_slab_lock);
138}
139
7ba1ba12
MP
140unsigned int bvec_nr_vecs(unsigned short idx)
141{
d6c02a9b 142 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
143}
144
9f060e22 145void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 146{
ed996a52
CH
147 if (!idx)
148 return;
149 idx--;
150
151 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 152
ed996a52 153 if (idx == BVEC_POOL_MAX) {
9f060e22 154 mempool_free(bv, pool);
ed996a52 155 } else {
bb799ca0
JA
156 struct biovec_slab *bvs = bvec_slabs + idx;
157
158 kmem_cache_free(bvs->slab, bv);
159 }
160}
161
9f060e22
KO
162struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
163 mempool_t *pool)
1da177e4
LT
164{
165 struct bio_vec *bvl;
1da177e4 166
7ff9345f
JA
167 /*
168 * see comment near bvec_array define!
169 */
170 switch (nr) {
171 case 1:
172 *idx = 0;
173 break;
174 case 2 ... 4:
175 *idx = 1;
176 break;
177 case 5 ... 16:
178 *idx = 2;
179 break;
180 case 17 ... 64:
181 *idx = 3;
182 break;
183 case 65 ... 128:
184 *idx = 4;
185 break;
186 case 129 ... BIO_MAX_PAGES:
187 *idx = 5;
188 break;
189 default:
190 return NULL;
191 }
192
193 /*
194 * idx now points to the pool we want to allocate from. only the
195 * 1-vec entry pool is mempool backed.
196 */
ed996a52 197 if (*idx == BVEC_POOL_MAX) {
7ff9345f 198fallback:
9f060e22 199 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
200 } else {
201 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 202 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 203
0a0d96b0 204 /*
7ff9345f
JA
205 * Make this allocation restricted and don't dump info on
206 * allocation failures, since we'll fallback to the mempool
207 * in case of failure.
0a0d96b0 208 */
7ff9345f 209 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 210
0a0d96b0 211 /*
d0164adc 212 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 213 * is set, retry with the 1-entry mempool
0a0d96b0 214 */
7ff9345f 215 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 216 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 217 *idx = BVEC_POOL_MAX;
7ff9345f
JA
218 goto fallback;
219 }
220 }
221
ed996a52 222 (*idx)++;
1da177e4
LT
223 return bvl;
224}
225
9ae3b3f5 226void bio_uninit(struct bio *bio)
1da177e4 227{
db9819c7
CH
228#ifdef CONFIG_BLK_CGROUP
229 if (bio->bi_blkg) {
230 blkg_put(bio->bi_blkg);
231 bio->bi_blkg = NULL;
232 }
233#endif
ece841ab
JT
234 if (bio_integrity(bio))
235 bio_integrity_free(bio);
a892c8d5
ST
236
237 bio_crypt_free_ctx(bio);
4254bba1 238}
9ae3b3f5 239EXPORT_SYMBOL(bio_uninit);
7ba1ba12 240
4254bba1
KO
241static void bio_free(struct bio *bio)
242{
243 struct bio_set *bs = bio->bi_pool;
244 void *p;
245
9ae3b3f5 246 bio_uninit(bio);
4254bba1
KO
247
248 if (bs) {
8aa6ba2f 249 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
250
251 /*
252 * If we have front padding, adjust the bio pointer before freeing
253 */
254 p = bio;
bb799ca0
JA
255 p -= bs->front_pad;
256
8aa6ba2f 257 mempool_free(p, &bs->bio_pool);
4254bba1
KO
258 } else {
259 /* Bio was allocated by bio_kmalloc() */
260 kfree(bio);
261 }
3676347a
PO
262}
263
9ae3b3f5
JA
264/*
265 * Users of this function have their own bio allocation. Subsequently,
266 * they must remember to pair any call to bio_init() with bio_uninit()
267 * when IO has completed, or when the bio is released.
268 */
3a83f467
ML
269void bio_init(struct bio *bio, struct bio_vec *table,
270 unsigned short max_vecs)
1da177e4 271{
2b94de55 272 memset(bio, 0, sizeof(*bio));
c4cf5261 273 atomic_set(&bio->__bi_remaining, 1);
dac56212 274 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
275
276 bio->bi_io_vec = table;
277 bio->bi_max_vecs = max_vecs;
1da177e4 278}
a112a71d 279EXPORT_SYMBOL(bio_init);
1da177e4 280
f44b48c7
KO
281/**
282 * bio_reset - reinitialize a bio
283 * @bio: bio to reset
284 *
285 * Description:
286 * After calling bio_reset(), @bio will be in the same state as a freshly
287 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
288 * preserved are the ones that are initialized by bio_alloc_bioset(). See
289 * comment in struct bio.
290 */
291void bio_reset(struct bio *bio)
292{
293 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
294
9ae3b3f5 295 bio_uninit(bio);
f44b48c7
KO
296
297 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 298 bio->bi_flags = flags;
c4cf5261 299 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
300}
301EXPORT_SYMBOL(bio_reset);
302
38f8baae 303static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 304{
4246a0b6
CH
305 struct bio *parent = bio->bi_private;
306
4e4cbee9
CH
307 if (!parent->bi_status)
308 parent->bi_status = bio->bi_status;
196d38bc 309 bio_put(bio);
38f8baae
CH
310 return parent;
311}
312
313static void bio_chain_endio(struct bio *bio)
314{
315 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
316}
317
318/**
319 * bio_chain - chain bio completions
1051a902 320 * @bio: the target bio
5b874af6 321 * @parent: the parent bio of @bio
196d38bc
KO
322 *
323 * The caller won't have a bi_end_io called when @bio completes - instead,
324 * @parent's bi_end_io won't be called until both @parent and @bio have
325 * completed; the chained bio will also be freed when it completes.
326 *
327 * The caller must not set bi_private or bi_end_io in @bio.
328 */
329void bio_chain(struct bio *bio, struct bio *parent)
330{
331 BUG_ON(bio->bi_private || bio->bi_end_io);
332
333 bio->bi_private = parent;
334 bio->bi_end_io = bio_chain_endio;
c4cf5261 335 bio_inc_remaining(parent);
196d38bc
KO
336}
337EXPORT_SYMBOL(bio_chain);
338
df2cb6da
KO
339static void bio_alloc_rescue(struct work_struct *work)
340{
341 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
342 struct bio *bio;
343
344 while (1) {
345 spin_lock(&bs->rescue_lock);
346 bio = bio_list_pop(&bs->rescue_list);
347 spin_unlock(&bs->rescue_lock);
348
349 if (!bio)
350 break;
351
ed00aabd 352 submit_bio_noacct(bio);
df2cb6da
KO
353 }
354}
355
356static void punt_bios_to_rescuer(struct bio_set *bs)
357{
358 struct bio_list punt, nopunt;
359 struct bio *bio;
360
47e0fb46
N
361 if (WARN_ON_ONCE(!bs->rescue_workqueue))
362 return;
df2cb6da
KO
363 /*
364 * In order to guarantee forward progress we must punt only bios that
365 * were allocated from this bio_set; otherwise, if there was a bio on
366 * there for a stacking driver higher up in the stack, processing it
367 * could require allocating bios from this bio_set, and doing that from
368 * our own rescuer would be bad.
369 *
370 * Since bio lists are singly linked, pop them all instead of trying to
371 * remove from the middle of the list:
372 */
373
374 bio_list_init(&punt);
375 bio_list_init(&nopunt);
376
f5fe1b51 377 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 378 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 379 current->bio_list[0] = nopunt;
df2cb6da 380
f5fe1b51
N
381 bio_list_init(&nopunt);
382 while ((bio = bio_list_pop(&current->bio_list[1])))
383 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
384 current->bio_list[1] = nopunt;
df2cb6da
KO
385
386 spin_lock(&bs->rescue_lock);
387 bio_list_merge(&bs->rescue_list, &punt);
388 spin_unlock(&bs->rescue_lock);
389
390 queue_work(bs->rescue_workqueue, &bs->rescue_work);
391}
392
1da177e4
LT
393/**
394 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 395 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 396 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 397 * @bs: the bio_set to allocate from.
1da177e4
LT
398 *
399 * Description:
3f86a82a
KO
400 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
401 * backed by the @bs's mempool.
402 *
d0164adc
MG
403 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
404 * always be able to allocate a bio. This is due to the mempool guarantees.
405 * To make this work, callers must never allocate more than 1 bio at a time
406 * from this pool. Callers that need to allocate more than 1 bio must always
407 * submit the previously allocated bio for IO before attempting to allocate
408 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 409 *
ed00aabd 410 * Note that when running under submit_bio_noacct() (i.e. any block
df2cb6da 411 * driver), bios are not submitted until after you return - see the code in
ed00aabd 412 * submit_bio_noacct() that converts recursion into iteration, to prevent
df2cb6da
KO
413 * stack overflows.
414 *
415 * This would normally mean allocating multiple bios under
ed00aabd 416 * submit_bio_noacct() would be susceptible to deadlocks, but we have
df2cb6da
KO
417 * deadlock avoidance code that resubmits any blocked bios from a rescuer
418 * thread.
419 *
420 * However, we do not guarantee forward progress for allocations from other
421 * mempools. Doing multiple allocations from the same mempool under
ed00aabd 422 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
df2cb6da
KO
423 * for per bio allocations.
424 *
3f86a82a
KO
425 * RETURNS:
426 * Pointer to new bio on success, NULL on failure.
427 */
7a88fa19
DC
428struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
429 struct bio_set *bs)
1da177e4 430{
df2cb6da 431 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
432 unsigned front_pad;
433 unsigned inline_vecs;
34053979 434 struct bio_vec *bvl = NULL;
451a9ebf
TH
435 struct bio *bio;
436 void *p;
437
3f86a82a
KO
438 if (!bs) {
439 if (nr_iovecs > UIO_MAXIOV)
440 return NULL;
441
1f4fe21c 442 p = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
3f86a82a
KO
443 front_pad = 0;
444 inline_vecs = nr_iovecs;
445 } else {
d8f429e1 446 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
447 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
448 nr_iovecs > 0))
d8f429e1 449 return NULL;
df2cb6da 450 /*
ed00aabd 451 * submit_bio_noacct() converts recursion to iteration; this
df2cb6da
KO
452 * means if we're running beneath it, any bios we allocate and
453 * submit will not be submitted (and thus freed) until after we
454 * return.
455 *
456 * This exposes us to a potential deadlock if we allocate
457 * multiple bios from the same bio_set() while running
ed00aabd 458 * underneath submit_bio_noacct(). If we were to allocate
df2cb6da
KO
459 * multiple bios (say a stacking block driver that was splitting
460 * bios), we would deadlock if we exhausted the mempool's
461 * reserve.
462 *
463 * We solve this, and guarantee forward progress, with a rescuer
464 * workqueue per bio_set. If we go to allocate and there are
465 * bios on current->bio_list, we first try the allocation
d0164adc
MG
466 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
467 * bios we would be blocking to the rescuer workqueue before
468 * we retry with the original gfp_flags.
df2cb6da
KO
469 */
470
f5fe1b51
N
471 if (current->bio_list &&
472 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
473 !bio_list_empty(&current->bio_list[1])) &&
474 bs->rescue_workqueue)
d0164adc 475 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 476
8aa6ba2f 477 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
478 if (!p && gfp_mask != saved_gfp) {
479 punt_bios_to_rescuer(bs);
480 gfp_mask = saved_gfp;
8aa6ba2f 481 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
482 }
483
3f86a82a
KO
484 front_pad = bs->front_pad;
485 inline_vecs = BIO_INLINE_VECS;
486 }
487
451a9ebf
TH
488 if (unlikely(!p))
489 return NULL;
1da177e4 490
3f86a82a 491 bio = p + front_pad;
3a83f467 492 bio_init(bio, NULL, 0);
34053979 493
3f86a82a 494 if (nr_iovecs > inline_vecs) {
ed996a52
CH
495 unsigned long idx = 0;
496
8aa6ba2f 497 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
498 if (!bvl && gfp_mask != saved_gfp) {
499 punt_bios_to_rescuer(bs);
500 gfp_mask = saved_gfp;
8aa6ba2f 501 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
502 }
503
34053979
IM
504 if (unlikely(!bvl))
505 goto err_free;
a38352e0 506
ed996a52 507 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
baa2c7c9 508 bio->bi_max_vecs = bvec_nr_vecs(idx);
3f86a82a
KO
509 } else if (nr_iovecs) {
510 bvl = bio->bi_inline_vecs;
baa2c7c9 511 bio->bi_max_vecs = inline_vecs;
1da177e4 512 }
3f86a82a
KO
513
514 bio->bi_pool = bs;
34053979 515 bio->bi_io_vec = bvl;
1da177e4 516 return bio;
34053979
IM
517
518err_free:
8aa6ba2f 519 mempool_free(p, &bs->bio_pool);
34053979 520 return NULL;
1da177e4 521}
a112a71d 522EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 523
38a72dac 524void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
525{
526 unsigned long flags;
7988613b
KO
527 struct bio_vec bv;
528 struct bvec_iter iter;
1da177e4 529
38a72dac 530 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
531 char *data = bvec_kmap_irq(&bv, &flags);
532 memset(data, 0, bv.bv_len);
533 flush_dcache_page(bv.bv_page);
1da177e4
LT
534 bvec_kunmap_irq(data, &flags);
535 }
536}
38a72dac 537EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4 538
83c9c547
ML
539/**
540 * bio_truncate - truncate the bio to small size of @new_size
541 * @bio: the bio to be truncated
542 * @new_size: new size for truncating the bio
543 *
544 * Description:
545 * Truncate the bio to new size of @new_size. If bio_op(bio) is
546 * REQ_OP_READ, zero the truncated part. This function should only
547 * be used for handling corner cases, such as bio eod.
548 */
85a8ce62
ML
549void bio_truncate(struct bio *bio, unsigned new_size)
550{
551 struct bio_vec bv;
552 struct bvec_iter iter;
553 unsigned int done = 0;
554 bool truncated = false;
555
556 if (new_size >= bio->bi_iter.bi_size)
557 return;
558
83c9c547 559 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
560 goto exit;
561
562 bio_for_each_segment(bv, bio, iter) {
563 if (done + bv.bv_len > new_size) {
564 unsigned offset;
565
566 if (!truncated)
567 offset = new_size - done;
568 else
569 offset = 0;
570 zero_user(bv.bv_page, offset, bv.bv_len - offset);
571 truncated = true;
572 }
573 done += bv.bv_len;
574 }
575
576 exit:
577 /*
578 * Don't touch bvec table here and make it really immutable, since
579 * fs bio user has to retrieve all pages via bio_for_each_segment_all
580 * in its .end_bio() callback.
581 *
582 * It is enough to truncate bio by updating .bi_size since we can make
583 * correct bvec with the updated .bi_size for drivers.
584 */
585 bio->bi_iter.bi_size = new_size;
586}
587
29125ed6
CH
588/**
589 * guard_bio_eod - truncate a BIO to fit the block device
590 * @bio: bio to truncate
591 *
592 * This allows us to do IO even on the odd last sectors of a device, even if the
593 * block size is some multiple of the physical sector size.
594 *
595 * We'll just truncate the bio to the size of the device, and clear the end of
596 * the buffer head manually. Truly out-of-range accesses will turn into actual
597 * I/O errors, this only handles the "we need to be able to do I/O at the final
598 * sector" case.
599 */
600void guard_bio_eod(struct bio *bio)
601{
309dca30 602 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
603
604 if (!maxsector)
605 return;
606
607 /*
608 * If the *whole* IO is past the end of the device,
609 * let it through, and the IO layer will turn it into
610 * an EIO.
611 */
612 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
613 return;
614
615 maxsector -= bio->bi_iter.bi_sector;
616 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
617 return;
618
619 bio_truncate(bio, maxsector << 9);
620}
621
1da177e4
LT
622/**
623 * bio_put - release a reference to a bio
624 * @bio: bio to release reference to
625 *
626 * Description:
627 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 628 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
629 **/
630void bio_put(struct bio *bio)
631{
dac56212 632 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 633 bio_free(bio);
dac56212
JA
634 else {
635 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
636
637 /*
638 * last put frees it
639 */
640 if (atomic_dec_and_test(&bio->__bi_cnt))
641 bio_free(bio);
642 }
1da177e4 643}
a112a71d 644EXPORT_SYMBOL(bio_put);
1da177e4 645
59d276fe
KO
646/**
647 * __bio_clone_fast - clone a bio that shares the original bio's biovec
648 * @bio: destination bio
649 * @bio_src: bio to clone
650 *
651 * Clone a &bio. Caller will own the returned bio, but not
652 * the actual data it points to. Reference count of returned
653 * bio will be one.
654 *
655 * Caller must ensure that @bio_src is not freed before @bio.
656 */
657void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
658{
ed996a52 659 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
660
661 /*
309dca30 662 * most users will be overriding ->bi_bdev with a new target,
59d276fe
KO
663 * so we don't set nor calculate new physical/hw segment counts here
664 */
309dca30 665 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 666 bio_set_flag(bio, BIO_CLONED);
111be883
SL
667 if (bio_flagged(bio_src, BIO_THROTTLED))
668 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 669 bio->bi_opf = bio_src->bi_opf;
ca474b73 670 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 671 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
672 bio->bi_iter = bio_src->bi_iter;
673 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 674
db6638d7 675 bio_clone_blkg_association(bio, bio_src);
e439bedf 676 blkcg_bio_issue_init(bio);
59d276fe
KO
677}
678EXPORT_SYMBOL(__bio_clone_fast);
679
680/**
681 * bio_clone_fast - clone a bio that shares the original bio's biovec
682 * @bio: bio to clone
683 * @gfp_mask: allocation priority
684 * @bs: bio_set to allocate from
685 *
686 * Like __bio_clone_fast, only also allocates the returned bio
687 */
688struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
689{
690 struct bio *b;
691
692 b = bio_alloc_bioset(gfp_mask, 0, bs);
693 if (!b)
694 return NULL;
695
696 __bio_clone_fast(b, bio);
697
07560151
EB
698 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
699 goto err_put;
a892c8d5 700
07560151
EB
701 if (bio_integrity(bio) &&
702 bio_integrity_clone(b, bio, gfp_mask) < 0)
703 goto err_put;
59d276fe
KO
704
705 return b;
07560151
EB
706
707err_put:
708 bio_put(b);
709 return NULL;
59d276fe
KO
710}
711EXPORT_SYMBOL(bio_clone_fast);
712
5cbd28e3
CH
713const char *bio_devname(struct bio *bio, char *buf)
714{
309dca30 715 return bdevname(bio->bi_bdev, buf);
5cbd28e3
CH
716}
717EXPORT_SYMBOL(bio_devname);
718
5919482e
ML
719static inline bool page_is_mergeable(const struct bio_vec *bv,
720 struct page *page, unsigned int len, unsigned int off,
ff896738 721 bool *same_page)
5919482e 722{
d8166519
MWO
723 size_t bv_end = bv->bv_offset + bv->bv_len;
724 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
725 phys_addr_t page_addr = page_to_phys(page);
726
727 if (vec_end_addr + 1 != page_addr + off)
728 return false;
729 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
730 return false;
52d52d1c 731
ff896738 732 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
d8166519
MWO
733 if (*same_page)
734 return true;
735 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
5919482e
ML
736}
737
e4581105
CH
738/*
739 * Try to merge a page into a segment, while obeying the hardware segment
740 * size limit. This is not for normal read/write bios, but for passthrough
741 * or Zone Append operations that we can't split.
742 */
743static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
744 struct page *page, unsigned len,
745 unsigned offset, bool *same_page)
489fbbcb 746{
384209cd 747 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
748 unsigned long mask = queue_segment_boundary(q);
749 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
750 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
751
752 if ((addr1 | mask) != (addr2 | mask))
753 return false;
489fbbcb
ML
754 if (bv->bv_len + len > queue_max_segment_size(q))
755 return false;
384209cd 756 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
757}
758
1da177e4 759/**
e4581105
CH
760 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
761 * @q: the target queue
762 * @bio: destination bio
763 * @page: page to add
764 * @len: vec entry length
765 * @offset: vec entry offset
766 * @max_sectors: maximum number of sectors that can be added
767 * @same_page: return if the segment has been merged inside the same page
c66a14d0 768 *
e4581105
CH
769 * Add a page to a bio while respecting the hardware max_sectors, max_segment
770 * and gap limitations.
1da177e4 771 */
e4581105 772int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 773 struct page *page, unsigned int len, unsigned int offset,
e4581105 774 unsigned int max_sectors, bool *same_page)
1da177e4 775{
1da177e4
LT
776 struct bio_vec *bvec;
777
e4581105 778 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
779 return 0;
780
e4581105 781 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
782 return 0;
783
80cfd548 784 if (bio->bi_vcnt > 0) {
e4581105 785 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 786 return len;
320ea869
CH
787
788 /*
789 * If the queue doesn't support SG gaps and adding this segment
790 * would create a gap, disallow it.
791 */
384209cd 792 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
793 if (bvec_gap_to_prev(q, bvec, offset))
794 return 0;
80cfd548
JA
795 }
796
79d08f89 797 if (bio_full(bio, len))
1da177e4
LT
798 return 0;
799
14ccb66b 800 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
801 return 0;
802
fcbf6a08
ML
803 bvec = &bio->bi_io_vec[bio->bi_vcnt];
804 bvec->bv_page = page;
805 bvec->bv_len = len;
806 bvec->bv_offset = offset;
807 bio->bi_vcnt++;
dcdca753 808 bio->bi_iter.bi_size += len;
1da177e4
LT
809 return len;
810}
19047087 811
e4581105
CH
812/**
813 * bio_add_pc_page - attempt to add page to passthrough bio
814 * @q: the target queue
815 * @bio: destination bio
816 * @page: page to add
817 * @len: vec entry length
818 * @offset: vec entry offset
819 *
820 * Attempt to add a page to the bio_vec maplist. This can fail for a
821 * number of reasons, such as the bio being full or target block device
822 * limitations. The target block device must allow bio's up to PAGE_SIZE,
823 * so it is always possible to add a single page to an empty bio.
824 *
825 * This should only be used by passthrough bios.
826 */
19047087
ML
827int bio_add_pc_page(struct request_queue *q, struct bio *bio,
828 struct page *page, unsigned int len, unsigned int offset)
829{
d1916c86 830 bool same_page = false;
e4581105
CH
831 return bio_add_hw_page(q, bio, page, len, offset,
832 queue_max_hw_sectors(q), &same_page);
19047087 833}
a112a71d 834EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 835
1da177e4 836/**
0aa69fd3
CH
837 * __bio_try_merge_page - try appending data to an existing bvec.
838 * @bio: destination bio
551879a4 839 * @page: start page to add
0aa69fd3 840 * @len: length of the data to add
551879a4 841 * @off: offset of the data relative to @page
ff896738 842 * @same_page: return if the segment has been merged inside the same page
1da177e4 843 *
0aa69fd3 844 * Try to add the data at @page + @off to the last bvec of @bio. This is a
3cf14889 845 * useful optimisation for file systems with a block size smaller than the
0aa69fd3
CH
846 * page size.
847 *
551879a4
ML
848 * Warn if (@len, @off) crosses pages in case that @same_page is true.
849 *
0aa69fd3 850 * Return %true on success or %false on failure.
1da177e4 851 */
0aa69fd3 852bool __bio_try_merge_page(struct bio *bio, struct page *page,
ff896738 853 unsigned int len, unsigned int off, bool *same_page)
1da177e4 854{
c66a14d0 855 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 856 return false;
762380ad 857
cc90bc68 858 if (bio->bi_vcnt > 0) {
0aa69fd3 859 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
860
861 if (page_is_mergeable(bv, page, len, off, same_page)) {
2cd896a5
RH
862 if (bio->bi_iter.bi_size > UINT_MAX - len) {
863 *same_page = false;
cc90bc68 864 return false;
2cd896a5 865 }
5919482e
ML
866 bv->bv_len += len;
867 bio->bi_iter.bi_size += len;
868 return true;
869 }
c66a14d0 870 }
0aa69fd3
CH
871 return false;
872}
873EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 874
0aa69fd3 875/**
551879a4 876 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 877 * @bio: destination bio
551879a4
ML
878 * @page: start page to add
879 * @len: length of the data to add, may cross pages
880 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
881 *
882 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
883 * that @bio has space for another bvec.
884 */
885void __bio_add_page(struct bio *bio, struct page *page,
886 unsigned int len, unsigned int off)
887{
888 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 889
0aa69fd3 890 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 891 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
892
893 bv->bv_page = page;
894 bv->bv_offset = off;
895 bv->bv_len = len;
c66a14d0 896
c66a14d0 897 bio->bi_iter.bi_size += len;
0aa69fd3 898 bio->bi_vcnt++;
b8e24a93
JW
899
900 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
901 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
902}
903EXPORT_SYMBOL_GPL(__bio_add_page);
904
905/**
551879a4 906 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 907 * @bio: destination bio
551879a4
ML
908 * @page: start page to add
909 * @len: vec entry length, may cross pages
910 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 911 *
551879a4 912 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
913 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
914 */
915int bio_add_page(struct bio *bio, struct page *page,
916 unsigned int len, unsigned int offset)
917{
ff896738
CH
918 bool same_page = false;
919
920 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 921 if (bio_full(bio, len))
0aa69fd3
CH
922 return 0;
923 __bio_add_page(bio, page, len, offset);
924 }
c66a14d0 925 return len;
1da177e4 926}
a112a71d 927EXPORT_SYMBOL(bio_add_page);
1da177e4 928
d241a95f 929void bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
930{
931 struct bvec_iter_all iter_all;
932 struct bio_vec *bvec;
7321ecbf 933
b2d0d991
CH
934 if (bio_flagged(bio, BIO_NO_PAGE_REF))
935 return;
936
d241a95f
CH
937 bio_for_each_segment_all(bvec, bio, iter_all) {
938 if (mark_dirty && !PageCompound(bvec->bv_page))
939 set_page_dirty_lock(bvec->bv_page);
7321ecbf 940 put_page(bvec->bv_page);
d241a95f 941 }
7321ecbf 942}
29b2a3aa 943EXPORT_SYMBOL_GPL(bio_release_pages);
7321ecbf 944
c42bca92 945static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
6d0c48ae 946{
c42bca92
PB
947 WARN_ON_ONCE(BVEC_POOL_IDX(bio) != 0);
948
949 bio->bi_vcnt = iter->nr_segs;
950 bio->bi_max_vecs = iter->nr_segs;
951 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
952 bio->bi_iter.bi_bvec_done = iter->iov_offset;
953 bio->bi_iter.bi_size = iter->count;
954
955 iov_iter_advance(iter, iter->count);
a10584c3 956 return 0;
6d0c48ae
JA
957}
958
576ed913
CH
959#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
960
2cefe4db 961/**
17d51b10 962 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
963 * @bio: bio to add pages to
964 * @iter: iov iterator describing the region to be mapped
965 *
17d51b10 966 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 967 * pages will have to be released using put_page() when done.
17d51b10 968 * For multi-segment *iter, this function only adds pages from the
3cf14889 969 * next non-empty segment of the iov iterator.
2cefe4db 970 */
17d51b10 971static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 972{
576ed913
CH
973 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
974 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
975 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
976 struct page **pages = (struct page **)bv;
45691804 977 bool same_page = false;
576ed913
CH
978 ssize_t size, left;
979 unsigned len, i;
b403ea24 980 size_t offset;
576ed913
CH
981
982 /*
983 * Move page array up in the allocated memory for the bio vecs as far as
984 * possible so that we can start filling biovecs from the beginning
985 * without overwriting the temporary page array.
986 */
987 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
988 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
989
990 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
991 if (unlikely(size <= 0))
992 return size ? size : -EFAULT;
2cefe4db 993
576ed913
CH
994 for (left = size, i = 0; left > 0; left -= len, i++) {
995 struct page *page = pages[i];
2cefe4db 996
576ed913 997 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
998
999 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1000 if (same_page)
1001 put_page(page);
1002 } else {
79d08f89 1003 if (WARN_ON_ONCE(bio_full(bio, len)))
45691804
CH
1004 return -EINVAL;
1005 __bio_add_page(bio, page, len, offset);
1006 }
576ed913 1007 offset = 0;
2cefe4db
KO
1008 }
1009
2cefe4db
KO
1010 iov_iter_advance(iter, size);
1011 return 0;
1012}
17d51b10 1013
0512a75b
KB
1014static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1015{
1016 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1017 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
309dca30 1018 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
0512a75b
KB
1019 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1020 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1021 struct page **pages = (struct page **)bv;
1022 ssize_t size, left;
1023 unsigned len, i;
1024 size_t offset;
4977d121 1025 int ret = 0;
0512a75b
KB
1026
1027 if (WARN_ON_ONCE(!max_append_sectors))
1028 return 0;
1029
1030 /*
1031 * Move page array up in the allocated memory for the bio vecs as far as
1032 * possible so that we can start filling biovecs from the beginning
1033 * without overwriting the temporary page array.
1034 */
1035 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1036 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1037
1038 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1039 if (unlikely(size <= 0))
1040 return size ? size : -EFAULT;
1041
1042 for (left = size, i = 0; left > 0; left -= len, i++) {
1043 struct page *page = pages[i];
1044 bool same_page = false;
1045
1046 len = min_t(size_t, PAGE_SIZE - offset, left);
1047 if (bio_add_hw_page(q, bio, page, len, offset,
4977d121
NA
1048 max_append_sectors, &same_page) != len) {
1049 ret = -EINVAL;
1050 break;
1051 }
0512a75b
KB
1052 if (same_page)
1053 put_page(page);
1054 offset = 0;
1055 }
1056
4977d121
NA
1057 iov_iter_advance(iter, size - left);
1058 return ret;
0512a75b
KB
1059}
1060
17d51b10 1061/**
6d0c48ae 1062 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1063 * @bio: bio to add pages to
6d0c48ae
JA
1064 * @iter: iov iterator describing the region to be added
1065 *
1066 * This takes either an iterator pointing to user memory, or one pointing to
1067 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1068 * map them into the kernel. On IO completion, the caller should put those
c42bca92
PB
1069 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1070 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1071 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1072 * completed by a call to ->ki_complete() or returns with an error other than
1073 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1074 * on IO completion. If it isn't, then pages should be released.
17d51b10 1075 *
17d51b10 1076 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1077 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1078 * MM encounters an error pinning the requested pages, it stops. Error
1079 * is returned only if 0 pages could be pinned.
0cf41e5e
PB
1080 *
1081 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1082 * responsible for setting BIO_WORKINGSET if necessary.
17d51b10
MW
1083 */
1084int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1085{
c42bca92 1086 int ret = 0;
17d51b10 1087
c42bca92
PB
1088 if (iov_iter_is_bvec(iter)) {
1089 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1090 return -EINVAL;
1091 bio_iov_bvec_set(bio, iter);
1092 bio_set_flag(bio, BIO_NO_PAGE_REF);
1093 return 0;
1094 } else {
1095 do {
1096 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1097 ret = __bio_iov_append_get_pages(bio, iter);
0512a75b
KB
1098 else
1099 ret = __bio_iov_iter_get_pages(bio, iter);
c42bca92
PB
1100 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1101 }
0cf41e5e
PB
1102
1103 /* don't account direct I/O as memory stall */
1104 bio_clear_flag(bio, BIO_WORKINGSET);
14eacf12 1105 return bio->bi_vcnt ? 0 : ret;
17d51b10 1106}
29b2a3aa 1107EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1108
4246a0b6 1109static void submit_bio_wait_endio(struct bio *bio)
9e882242 1110{
65e53aab 1111 complete(bio->bi_private);
9e882242
KO
1112}
1113
1114/**
1115 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1116 * @bio: The &struct bio which describes the I/O
1117 *
1118 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1119 * bio_endio() on failure.
3d289d68
JK
1120 *
1121 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1122 * result in bio reference to be consumed. The caller must drop the reference
1123 * on his own.
9e882242 1124 */
4e49ea4a 1125int submit_bio_wait(struct bio *bio)
9e882242 1126{
309dca30
CH
1127 DECLARE_COMPLETION_ONSTACK_MAP(done,
1128 bio->bi_bdev->bd_disk->lockdep_map);
de6a78b6 1129 unsigned long hang_check;
9e882242 1130
65e53aab 1131 bio->bi_private = &done;
9e882242 1132 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1133 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1134 submit_bio(bio);
de6a78b6
ML
1135
1136 /* Prevent hang_check timer from firing at us during very long I/O */
1137 hang_check = sysctl_hung_task_timeout_secs;
1138 if (hang_check)
1139 while (!wait_for_completion_io_timeout(&done,
1140 hang_check * (HZ/2)))
1141 ;
1142 else
1143 wait_for_completion_io(&done);
9e882242 1144
65e53aab 1145 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1146}
1147EXPORT_SYMBOL(submit_bio_wait);
1148
054bdf64
KO
1149/**
1150 * bio_advance - increment/complete a bio by some number of bytes
1151 * @bio: bio to advance
1152 * @bytes: number of bytes to complete
1153 *
1154 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1155 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1156 * be updated on the last bvec as well.
1157 *
1158 * @bio will then represent the remaining, uncompleted portion of the io.
1159 */
1160void bio_advance(struct bio *bio, unsigned bytes)
1161{
1162 if (bio_integrity(bio))
1163 bio_integrity_advance(bio, bytes);
1164
a892c8d5 1165 bio_crypt_advance(bio, bytes);
4550dd6c 1166 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1167}
1168EXPORT_SYMBOL(bio_advance);
1169
45db54d5
KO
1170void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1171 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1172{
1cb9dda4 1173 struct bio_vec src_bv, dst_bv;
16ac3d63 1174 void *src_p, *dst_p;
1cb9dda4 1175 unsigned bytes;
16ac3d63 1176
45db54d5
KO
1177 while (src_iter->bi_size && dst_iter->bi_size) {
1178 src_bv = bio_iter_iovec(src, *src_iter);
1179 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1180
1181 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1182
1cb9dda4
KO
1183 src_p = kmap_atomic(src_bv.bv_page);
1184 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1185
1cb9dda4
KO
1186 memcpy(dst_p + dst_bv.bv_offset,
1187 src_p + src_bv.bv_offset,
16ac3d63
KO
1188 bytes);
1189
1190 kunmap_atomic(dst_p);
1191 kunmap_atomic(src_p);
1192
6e6e811d
KO
1193 flush_dcache_page(dst_bv.bv_page);
1194
22b56c29
PB
1195 bio_advance_iter_single(src, src_iter, bytes);
1196 bio_advance_iter_single(dst, dst_iter, bytes);
16ac3d63
KO
1197 }
1198}
38a72dac
KO
1199EXPORT_SYMBOL(bio_copy_data_iter);
1200
1201/**
45db54d5
KO
1202 * bio_copy_data - copy contents of data buffers from one bio to another
1203 * @src: source bio
1204 * @dst: destination bio
38a72dac
KO
1205 *
1206 * Stops when it reaches the end of either @src or @dst - that is, copies
1207 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1208 */
1209void bio_copy_data(struct bio *dst, struct bio *src)
1210{
45db54d5
KO
1211 struct bvec_iter src_iter = src->bi_iter;
1212 struct bvec_iter dst_iter = dst->bi_iter;
1213
1214 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1215}
16ac3d63
KO
1216EXPORT_SYMBOL(bio_copy_data);
1217
45db54d5
KO
1218/**
1219 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1220 * another
1221 * @src: source bio list
1222 * @dst: destination bio list
1223 *
1224 * Stops when it reaches the end of either the @src list or @dst list - that is,
1225 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1226 * bios).
1227 */
1228void bio_list_copy_data(struct bio *dst, struct bio *src)
1229{
1230 struct bvec_iter src_iter = src->bi_iter;
1231 struct bvec_iter dst_iter = dst->bi_iter;
1232
1233 while (1) {
1234 if (!src_iter.bi_size) {
1235 src = src->bi_next;
1236 if (!src)
1237 break;
1238
1239 src_iter = src->bi_iter;
1240 }
1241
1242 if (!dst_iter.bi_size) {
1243 dst = dst->bi_next;
1244 if (!dst)
1245 break;
1246
1247 dst_iter = dst->bi_iter;
1248 }
1249
1250 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1251 }
1252}
1253EXPORT_SYMBOL(bio_list_copy_data);
1254
491221f8 1255void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1256{
1257 struct bio_vec *bvec;
6dc4f100 1258 struct bvec_iter_all iter_all;
1dfa0f68 1259
2b070cfe 1260 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1261 __free_page(bvec->bv_page);
1262}
491221f8 1263EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1264
1da177e4
LT
1265/*
1266 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1267 * for performing direct-IO in BIOs.
1268 *
1269 * The problem is that we cannot run set_page_dirty() from interrupt context
1270 * because the required locks are not interrupt-safe. So what we can do is to
1271 * mark the pages dirty _before_ performing IO. And in interrupt context,
1272 * check that the pages are still dirty. If so, fine. If not, redirty them
1273 * in process context.
1274 *
1275 * We special-case compound pages here: normally this means reads into hugetlb
1276 * pages. The logic in here doesn't really work right for compound pages
1277 * because the VM does not uniformly chase down the head page in all cases.
1278 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1279 * handle them at all. So we skip compound pages here at an early stage.
1280 *
1281 * Note that this code is very hard to test under normal circumstances because
1282 * direct-io pins the pages with get_user_pages(). This makes
1283 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1284 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1285 * pagecache.
1286 *
1287 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1288 * deferred bio dirtying paths.
1289 */
1290
1291/*
1292 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1293 */
1294void bio_set_pages_dirty(struct bio *bio)
1295{
cb34e057 1296 struct bio_vec *bvec;
6dc4f100 1297 struct bvec_iter_all iter_all;
1da177e4 1298
2b070cfe 1299 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1300 if (!PageCompound(bvec->bv_page))
1301 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1302 }
1303}
1304
1da177e4
LT
1305/*
1306 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1307 * If they are, then fine. If, however, some pages are clean then they must
1308 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1309 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1310 *
1311 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1312 * here on. It will run one put_page() against each page and will run one
1313 * bio_put() against the BIO.
1da177e4
LT
1314 */
1315
65f27f38 1316static void bio_dirty_fn(struct work_struct *work);
1da177e4 1317
65f27f38 1318static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1319static DEFINE_SPINLOCK(bio_dirty_lock);
1320static struct bio *bio_dirty_list;
1321
1322/*
1323 * This runs in process context
1324 */
65f27f38 1325static void bio_dirty_fn(struct work_struct *work)
1da177e4 1326{
24d5493f 1327 struct bio *bio, *next;
1da177e4 1328
24d5493f
CH
1329 spin_lock_irq(&bio_dirty_lock);
1330 next = bio_dirty_list;
1da177e4 1331 bio_dirty_list = NULL;
24d5493f 1332 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1333
24d5493f
CH
1334 while ((bio = next) != NULL) {
1335 next = bio->bi_private;
1da177e4 1336
d241a95f 1337 bio_release_pages(bio, true);
1da177e4 1338 bio_put(bio);
1da177e4
LT
1339 }
1340}
1341
1342void bio_check_pages_dirty(struct bio *bio)
1343{
cb34e057 1344 struct bio_vec *bvec;
24d5493f 1345 unsigned long flags;
6dc4f100 1346 struct bvec_iter_all iter_all;
1da177e4 1347
2b070cfe 1348 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1349 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1350 goto defer;
1da177e4
LT
1351 }
1352
d241a95f 1353 bio_release_pages(bio, false);
24d5493f
CH
1354 bio_put(bio);
1355 return;
1356defer:
1357 spin_lock_irqsave(&bio_dirty_lock, flags);
1358 bio->bi_private = bio_dirty_list;
1359 bio_dirty_list = bio;
1360 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1361 schedule_work(&bio_dirty_work);
1da177e4
LT
1362}
1363
c4cf5261
JA
1364static inline bool bio_remaining_done(struct bio *bio)
1365{
1366 /*
1367 * If we're not chaining, then ->__bi_remaining is always 1 and
1368 * we always end io on the first invocation.
1369 */
1370 if (!bio_flagged(bio, BIO_CHAIN))
1371 return true;
1372
1373 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1374
326e1dbb 1375 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1376 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1377 return true;
326e1dbb 1378 }
c4cf5261
JA
1379
1380 return false;
1381}
1382
1da177e4
LT
1383/**
1384 * bio_endio - end I/O on a bio
1385 * @bio: bio
1da177e4
LT
1386 *
1387 * Description:
4246a0b6
CH
1388 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1389 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1390 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1391 *
1392 * bio_endio() can be called several times on a bio that has been chained
1393 * using bio_chain(). The ->bi_end_io() function will only be called the
1394 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1395 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1396 **/
4246a0b6 1397void bio_endio(struct bio *bio)
1da177e4 1398{
ba8c6967 1399again:
2b885517 1400 if (!bio_remaining_done(bio))
ba8c6967 1401 return;
7c20f116
CH
1402 if (!bio_integrity_endio(bio))
1403 return;
1da177e4 1404
309dca30
CH
1405 if (bio->bi_bdev)
1406 rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
67b42d0b 1407
ba8c6967
CH
1408 /*
1409 * Need to have a real endio function for chained bios, otherwise
1410 * various corner cases will break (like stacking block devices that
1411 * save/restore bi_end_io) - however, we want to avoid unbounded
1412 * recursion and blowing the stack. Tail call optimization would
1413 * handle this, but compiling with frame pointers also disables
1414 * gcc's sibling call optimization.
1415 */
1416 if (bio->bi_end_io == bio_chain_endio) {
1417 bio = __bio_chain_endio(bio);
1418 goto again;
196d38bc 1419 }
ba8c6967 1420
309dca30
CH
1421 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1422 trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
fbbaf700
N
1423 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1424 }
1425
9e234eea 1426 blk_throtl_bio_endio(bio);
b222dd2f
SL
1427 /* release cgroup info */
1428 bio_uninit(bio);
ba8c6967
CH
1429 if (bio->bi_end_io)
1430 bio->bi_end_io(bio);
1da177e4 1431}
a112a71d 1432EXPORT_SYMBOL(bio_endio);
1da177e4 1433
20d0189b
KO
1434/**
1435 * bio_split - split a bio
1436 * @bio: bio to split
1437 * @sectors: number of sectors to split from the front of @bio
1438 * @gfp: gfp mask
1439 * @bs: bio set to allocate from
1440 *
1441 * Allocates and returns a new bio which represents @sectors from the start of
1442 * @bio, and updates @bio to represent the remaining sectors.
1443 *
f3f5da62 1444 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1445 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1446 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1447 */
1448struct bio *bio_split(struct bio *bio, int sectors,
1449 gfp_t gfp, struct bio_set *bs)
1450{
f341a4d3 1451 struct bio *split;
20d0189b
KO
1452
1453 BUG_ON(sectors <= 0);
1454 BUG_ON(sectors >= bio_sectors(bio));
1455
0512a75b
KB
1456 /* Zone append commands cannot be split */
1457 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1458 return NULL;
1459
f9d03f96 1460 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1461 if (!split)
1462 return NULL;
1463
1464 split->bi_iter.bi_size = sectors << 9;
1465
1466 if (bio_integrity(split))
fbd08e76 1467 bio_integrity_trim(split);
20d0189b
KO
1468
1469 bio_advance(bio, split->bi_iter.bi_size);
1470
fbbaf700 1471 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1472 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1473
20d0189b
KO
1474 return split;
1475}
1476EXPORT_SYMBOL(bio_split);
1477
6678d83f
KO
1478/**
1479 * bio_trim - trim a bio
1480 * @bio: bio to trim
1481 * @offset: number of sectors to trim from the front of @bio
1482 * @size: size we want to trim @bio to, in sectors
1483 */
1484void bio_trim(struct bio *bio, int offset, int size)
1485{
1486 /* 'bio' is a cloned bio which we need to trim to match
1487 * the given offset and size.
6678d83f 1488 */
6678d83f
KO
1489
1490 size <<= 9;
4f024f37 1491 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1492 return;
1493
6678d83f 1494 bio_advance(bio, offset << 9);
4f024f37 1495 bio->bi_iter.bi_size = size;
376a78ab
DM
1496
1497 if (bio_integrity(bio))
fbd08e76 1498 bio_integrity_trim(bio);
376a78ab 1499
6678d83f
KO
1500}
1501EXPORT_SYMBOL_GPL(bio_trim);
1502
1da177e4
LT
1503/*
1504 * create memory pools for biovec's in a bio_set.
1505 * use the global biovec slabs created for general use.
1506 */
8aa6ba2f 1507int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1508{
ed996a52 1509 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1510
8aa6ba2f 1511 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1512}
1513
917a38c7
KO
1514/*
1515 * bioset_exit - exit a bioset initialized with bioset_init()
1516 *
1517 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1518 * kzalloc()).
1519 */
1520void bioset_exit(struct bio_set *bs)
1da177e4 1521{
df2cb6da
KO
1522 if (bs->rescue_workqueue)
1523 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1524 bs->rescue_workqueue = NULL;
df2cb6da 1525
8aa6ba2f
KO
1526 mempool_exit(&bs->bio_pool);
1527 mempool_exit(&bs->bvec_pool);
9f060e22 1528
7878cba9 1529 bioset_integrity_free(bs);
917a38c7
KO
1530 if (bs->bio_slab)
1531 bio_put_slab(bs);
1532 bs->bio_slab = NULL;
1533}
1534EXPORT_SYMBOL(bioset_exit);
1da177e4 1535
917a38c7
KO
1536/**
1537 * bioset_init - Initialize a bio_set
dad08527 1538 * @bs: pool to initialize
917a38c7
KO
1539 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1540 * @front_pad: Number of bytes to allocate in front of the returned bio
1541 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1542 * and %BIOSET_NEED_RESCUER
1543 *
dad08527
KO
1544 * Description:
1545 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1546 * to ask for a number of bytes to be allocated in front of the bio.
1547 * Front pad allocation is useful for embedding the bio inside
1548 * another structure, to avoid allocating extra data to go with the bio.
1549 * Note that the bio must be embedded at the END of that structure always,
1550 * or things will break badly.
1551 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1552 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1553 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1554 * dispatch queued requests when the mempool runs out of space.
1555 *
917a38c7
KO
1556 */
1557int bioset_init(struct bio_set *bs,
1558 unsigned int pool_size,
1559 unsigned int front_pad,
1560 int flags)
1561{
917a38c7 1562 bs->front_pad = front_pad;
9f180e31
ML
1563 if (flags & BIOSET_NEED_BVECS)
1564 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1565 else
1566 bs->back_pad = 0;
917a38c7
KO
1567
1568 spin_lock_init(&bs->rescue_lock);
1569 bio_list_init(&bs->rescue_list);
1570 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1571
49d1ec85 1572 bs->bio_slab = bio_find_or_create_slab(bs);
917a38c7
KO
1573 if (!bs->bio_slab)
1574 return -ENOMEM;
1575
1576 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1577 goto bad;
1578
1579 if ((flags & BIOSET_NEED_BVECS) &&
1580 biovec_init_pool(&bs->bvec_pool, pool_size))
1581 goto bad;
1582
1583 if (!(flags & BIOSET_NEED_RESCUER))
1584 return 0;
1585
1586 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1587 if (!bs->rescue_workqueue)
1588 goto bad;
1589
1590 return 0;
1591bad:
1592 bioset_exit(bs);
1593 return -ENOMEM;
1594}
1595EXPORT_SYMBOL(bioset_init);
1596
28e89fd9
JA
1597/*
1598 * Initialize and setup a new bio_set, based on the settings from
1599 * another bio_set.
1600 */
1601int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1602{
1603 int flags;
1604
1605 flags = 0;
1606 if (src->bvec_pool.min_nr)
1607 flags |= BIOSET_NEED_BVECS;
1608 if (src->rescue_workqueue)
1609 flags |= BIOSET_NEED_RESCUER;
1610
1611 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1612}
1613EXPORT_SYMBOL(bioset_init_from_src);
1614
1da177e4
LT
1615static void __init biovec_init_slabs(void)
1616{
1617 int i;
1618
ed996a52 1619 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
1620 int size;
1621 struct biovec_slab *bvs = bvec_slabs + i;
1622
a7fcd37c
JA
1623 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1624 bvs->slab = NULL;
1625 continue;
1626 }
a7fcd37c 1627
1da177e4
LT
1628 size = bvs->nr_vecs * sizeof(struct bio_vec);
1629 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1630 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1631 }
1632}
1633
1634static int __init init_bio(void)
1635{
2b24e6f6
JT
1636 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
1637
7878cba9 1638 bio_integrity_init();
1da177e4
LT
1639 biovec_init_slabs();
1640
f4f8154a 1641 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1642 panic("bio: can't allocate bios\n");
1643
f4f8154a 1644 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1645 panic("bio: can't create integrity pool\n");
1646
1da177e4
LT
1647 return 0;
1648}
1da177e4 1649subsys_initcall(init_bio);