block: streamline bvec_alloc
[linux-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
de6a78b6 20#include <linux/sched/sysctl.h>
a892c8d5 21#include <linux/blk-crypto.h>
49d1ec85 22#include <linux/xarray.h>
1da177e4 23
55782138 24#include <trace/events/block.h>
9e234eea 25#include "blk.h"
67b42d0b 26#include "blk-rq-qos.h"
0bfc2455 27
6ac0b715
CH
28struct biovec_slab {
29 int nr_vecs;
30 char *name;
31 struct kmem_cache *slab;
32};
33
1da177e4
LT
34/*
35 * if you change this list, also change bvec_alloc or things will
36 * break badly! cannot be bigger than what you can fit into an
37 * unsigned short
38 */
bd5c4fac 39#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 40static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 41 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
42};
43#undef BV
44
1da177e4
LT
45/*
46 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
47 * IO code that does not need private memory pools.
48 */
f4f8154a 49struct bio_set fs_bio_set;
3f86a82a 50EXPORT_SYMBOL(fs_bio_set);
1da177e4 51
bb799ca0
JA
52/*
53 * Our slab pool management
54 */
55struct bio_slab {
56 struct kmem_cache *slab;
57 unsigned int slab_ref;
58 unsigned int slab_size;
59 char name[8];
60};
61static DEFINE_MUTEX(bio_slab_lock);
49d1ec85 62static DEFINE_XARRAY(bio_slabs);
bb799ca0 63
49d1ec85 64static struct bio_slab *create_bio_slab(unsigned int size)
bb799ca0 65{
49d1ec85 66 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
bb799ca0 67
49d1ec85
ML
68 if (!bslab)
69 return NULL;
bb799ca0 70
49d1ec85
ML
71 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
72 bslab->slab = kmem_cache_create(bslab->name, size,
73 ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
74 if (!bslab->slab)
75 goto fail_alloc_slab;
bb799ca0 76
49d1ec85
ML
77 bslab->slab_ref = 1;
78 bslab->slab_size = size;
bb799ca0 79
49d1ec85
ML
80 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
81 return bslab;
bb799ca0 82
49d1ec85 83 kmem_cache_destroy(bslab->slab);
bb799ca0 84
49d1ec85
ML
85fail_alloc_slab:
86 kfree(bslab);
87 return NULL;
88}
bb799ca0 89
49d1ec85
ML
90static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
91{
9f180e31 92 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
49d1ec85
ML
93}
94
95static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
96{
97 unsigned int size = bs_bio_slab_size(bs);
98 struct bio_slab *bslab;
99
100 mutex_lock(&bio_slab_lock);
101 bslab = xa_load(&bio_slabs, size);
102 if (bslab)
103 bslab->slab_ref++;
104 else
105 bslab = create_bio_slab(size);
bb799ca0 106 mutex_unlock(&bio_slab_lock);
49d1ec85
ML
107
108 if (bslab)
109 return bslab->slab;
110 return NULL;
bb799ca0
JA
111}
112
113static void bio_put_slab(struct bio_set *bs)
114{
115 struct bio_slab *bslab = NULL;
49d1ec85 116 unsigned int slab_size = bs_bio_slab_size(bs);
bb799ca0
JA
117
118 mutex_lock(&bio_slab_lock);
119
49d1ec85 120 bslab = xa_load(&bio_slabs, slab_size);
bb799ca0
JA
121 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
122 goto out;
123
49d1ec85
ML
124 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
125
bb799ca0
JA
126 WARN_ON(!bslab->slab_ref);
127
128 if (--bslab->slab_ref)
129 goto out;
130
49d1ec85
ML
131 xa_erase(&bio_slabs, slab_size);
132
bb799ca0 133 kmem_cache_destroy(bslab->slab);
49d1ec85 134 kfree(bslab);
bb799ca0
JA
135
136out:
137 mutex_unlock(&bio_slab_lock);
138}
139
7ba1ba12
MP
140unsigned int bvec_nr_vecs(unsigned short idx)
141{
d6c02a9b 142 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
143}
144
9f060e22 145void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 146{
ed996a52
CH
147 if (!idx)
148 return;
149 idx--;
150
151 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 152
ed996a52 153 if (idx == BVEC_POOL_MAX) {
9f060e22 154 mempool_free(bv, pool);
ed996a52 155 } else {
bb799ca0
JA
156 struct biovec_slab *bvs = bvec_slabs + idx;
157
158 kmem_cache_free(bvs->slab, bv);
159 }
160}
161
f2c3eb9b
CH
162/*
163 * Make the first allocation restricted and don't dump info on allocation
164 * failures, since we'll fall back to the mempool in case of failure.
165 */
166static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
167{
168 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
169 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
170}
171
9f060e22
KO
172struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
173 mempool_t *pool)
1da177e4 174{
7ff9345f
JA
175 /*
176 * see comment near bvec_array define!
177 */
178 switch (nr) {
179 case 1:
180 *idx = 0;
181 break;
182 case 2 ... 4:
183 *idx = 1;
184 break;
185 case 5 ... 16:
186 *idx = 2;
187 break;
188 case 17 ... 64:
189 *idx = 3;
190 break;
191 case 65 ... 128:
192 *idx = 4;
193 break;
194 case 129 ... BIO_MAX_PAGES:
195 *idx = 5;
196 break;
197 default:
198 return NULL;
199 }
200
201 /*
f007a3d6
CH
202 * Try a slab allocation first for all smaller allocations. If that
203 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
204 * The mempool is sized to handle up to BIO_MAX_PAGES entries.
7ff9345f 205 */
f007a3d6 206 if (*idx < BVEC_POOL_MAX) {
7ff9345f 207 struct biovec_slab *bvs = bvec_slabs + *idx;
f007a3d6 208 struct bio_vec *bvl;
1da177e4 209
f2c3eb9b 210 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
f007a3d6
CH
211 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM)) {
212 (*idx)++;
213 return bvl;
7ff9345f 214 }
f007a3d6 215 *idx = BVEC_POOL_MAX;
7ff9345f
JA
216 }
217
ed996a52 218 (*idx)++;
f007a3d6 219 return mempool_alloc(pool, gfp_mask);
1da177e4
LT
220}
221
9ae3b3f5 222void bio_uninit(struct bio *bio)
1da177e4 223{
db9819c7
CH
224#ifdef CONFIG_BLK_CGROUP
225 if (bio->bi_blkg) {
226 blkg_put(bio->bi_blkg);
227 bio->bi_blkg = NULL;
228 }
229#endif
ece841ab
JT
230 if (bio_integrity(bio))
231 bio_integrity_free(bio);
a892c8d5
ST
232
233 bio_crypt_free_ctx(bio);
4254bba1 234}
9ae3b3f5 235EXPORT_SYMBOL(bio_uninit);
7ba1ba12 236
4254bba1
KO
237static void bio_free(struct bio *bio)
238{
239 struct bio_set *bs = bio->bi_pool;
240 void *p;
241
9ae3b3f5 242 bio_uninit(bio);
4254bba1
KO
243
244 if (bs) {
8aa6ba2f 245 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
246
247 /*
248 * If we have front padding, adjust the bio pointer before freeing
249 */
250 p = bio;
bb799ca0
JA
251 p -= bs->front_pad;
252
8aa6ba2f 253 mempool_free(p, &bs->bio_pool);
4254bba1
KO
254 } else {
255 /* Bio was allocated by bio_kmalloc() */
256 kfree(bio);
257 }
3676347a
PO
258}
259
9ae3b3f5
JA
260/*
261 * Users of this function have their own bio allocation. Subsequently,
262 * they must remember to pair any call to bio_init() with bio_uninit()
263 * when IO has completed, or when the bio is released.
264 */
3a83f467
ML
265void bio_init(struct bio *bio, struct bio_vec *table,
266 unsigned short max_vecs)
1da177e4 267{
2b94de55 268 memset(bio, 0, sizeof(*bio));
c4cf5261 269 atomic_set(&bio->__bi_remaining, 1);
dac56212 270 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
271
272 bio->bi_io_vec = table;
273 bio->bi_max_vecs = max_vecs;
1da177e4 274}
a112a71d 275EXPORT_SYMBOL(bio_init);
1da177e4 276
f44b48c7
KO
277/**
278 * bio_reset - reinitialize a bio
279 * @bio: bio to reset
280 *
281 * Description:
282 * After calling bio_reset(), @bio will be in the same state as a freshly
283 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
284 * preserved are the ones that are initialized by bio_alloc_bioset(). See
285 * comment in struct bio.
286 */
287void bio_reset(struct bio *bio)
288{
289 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
290
9ae3b3f5 291 bio_uninit(bio);
f44b48c7
KO
292
293 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 294 bio->bi_flags = flags;
c4cf5261 295 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
296}
297EXPORT_SYMBOL(bio_reset);
298
38f8baae 299static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 300{
4246a0b6
CH
301 struct bio *parent = bio->bi_private;
302
4e4cbee9
CH
303 if (!parent->bi_status)
304 parent->bi_status = bio->bi_status;
196d38bc 305 bio_put(bio);
38f8baae
CH
306 return parent;
307}
308
309static void bio_chain_endio(struct bio *bio)
310{
311 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
312}
313
314/**
315 * bio_chain - chain bio completions
1051a902 316 * @bio: the target bio
5b874af6 317 * @parent: the parent bio of @bio
196d38bc
KO
318 *
319 * The caller won't have a bi_end_io called when @bio completes - instead,
320 * @parent's bi_end_io won't be called until both @parent and @bio have
321 * completed; the chained bio will also be freed when it completes.
322 *
323 * The caller must not set bi_private or bi_end_io in @bio.
324 */
325void bio_chain(struct bio *bio, struct bio *parent)
326{
327 BUG_ON(bio->bi_private || bio->bi_end_io);
328
329 bio->bi_private = parent;
330 bio->bi_end_io = bio_chain_endio;
c4cf5261 331 bio_inc_remaining(parent);
196d38bc
KO
332}
333EXPORT_SYMBOL(bio_chain);
334
df2cb6da
KO
335static void bio_alloc_rescue(struct work_struct *work)
336{
337 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
338 struct bio *bio;
339
340 while (1) {
341 spin_lock(&bs->rescue_lock);
342 bio = bio_list_pop(&bs->rescue_list);
343 spin_unlock(&bs->rescue_lock);
344
345 if (!bio)
346 break;
347
ed00aabd 348 submit_bio_noacct(bio);
df2cb6da
KO
349 }
350}
351
352static void punt_bios_to_rescuer(struct bio_set *bs)
353{
354 struct bio_list punt, nopunt;
355 struct bio *bio;
356
47e0fb46
N
357 if (WARN_ON_ONCE(!bs->rescue_workqueue))
358 return;
df2cb6da
KO
359 /*
360 * In order to guarantee forward progress we must punt only bios that
361 * were allocated from this bio_set; otherwise, if there was a bio on
362 * there for a stacking driver higher up in the stack, processing it
363 * could require allocating bios from this bio_set, and doing that from
364 * our own rescuer would be bad.
365 *
366 * Since bio lists are singly linked, pop them all instead of trying to
367 * remove from the middle of the list:
368 */
369
370 bio_list_init(&punt);
371 bio_list_init(&nopunt);
372
f5fe1b51 373 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 374 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 375 current->bio_list[0] = nopunt;
df2cb6da 376
f5fe1b51
N
377 bio_list_init(&nopunt);
378 while ((bio = bio_list_pop(&current->bio_list[1])))
379 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
380 current->bio_list[1] = nopunt;
df2cb6da
KO
381
382 spin_lock(&bs->rescue_lock);
383 bio_list_merge(&bs->rescue_list, &punt);
384 spin_unlock(&bs->rescue_lock);
385
386 queue_work(bs->rescue_workqueue, &bs->rescue_work);
387}
388
1da177e4
LT
389/**
390 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 391 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 392 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 393 * @bs: the bio_set to allocate from.
1da177e4 394 *
3175199a 395 * Allocate a bio from the mempools in @bs.
3f86a82a 396 *
3175199a
CH
397 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
398 * allocate a bio. This is due to the mempool guarantees. To make this work,
399 * callers must never allocate more than 1 bio at a time from the general pool.
400 * Callers that need to allocate more than 1 bio must always submit the
401 * previously allocated bio for IO before attempting to allocate a new one.
402 * Failure to do so can cause deadlocks under memory pressure.
3f86a82a 403 *
3175199a
CH
404 * Note that when running under submit_bio_noacct() (i.e. any block driver),
405 * bios are not submitted until after you return - see the code in
406 * submit_bio_noacct() that converts recursion into iteration, to prevent
407 * stack overflows.
df2cb6da 408 *
3175199a
CH
409 * This would normally mean allocating multiple bios under submit_bio_noacct()
410 * would be susceptible to deadlocks, but we have
411 * deadlock avoidance code that resubmits any blocked bios from a rescuer
412 * thread.
df2cb6da 413 *
3175199a
CH
414 * However, we do not guarantee forward progress for allocations from other
415 * mempools. Doing multiple allocations from the same mempool under
416 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
417 * for per bio allocations.
df2cb6da 418 *
3175199a 419 * Returns: Pointer to new bio on success, NULL on failure.
3f86a82a 420 */
7a88fa19
DC
421struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
422 struct bio_set *bs)
1da177e4 423{
df2cb6da 424 gfp_t saved_gfp = gfp_mask;
451a9ebf
TH
425 struct bio *bio;
426 void *p;
427
3175199a
CH
428 /* should not use nobvec bioset for nr_iovecs > 0 */
429 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
430 return NULL;
df2cb6da 431
3175199a
CH
432 /*
433 * submit_bio_noacct() converts recursion to iteration; this means if
434 * we're running beneath it, any bios we allocate and submit will not be
435 * submitted (and thus freed) until after we return.
436 *
437 * This exposes us to a potential deadlock if we allocate multiple bios
438 * from the same bio_set() while running underneath submit_bio_noacct().
439 * If we were to allocate multiple bios (say a stacking block driver
440 * that was splitting bios), we would deadlock if we exhausted the
441 * mempool's reserve.
442 *
443 * We solve this, and guarantee forward progress, with a rescuer
444 * workqueue per bio_set. If we go to allocate and there are bios on
445 * current->bio_list, we first try the allocation without
446 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
447 * blocking to the rescuer workqueue before we retry with the original
448 * gfp_flags.
449 */
450 if (current->bio_list &&
451 (!bio_list_empty(&current->bio_list[0]) ||
452 !bio_list_empty(&current->bio_list[1])) &&
453 bs->rescue_workqueue)
454 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
455
456 p = mempool_alloc(&bs->bio_pool, gfp_mask);
457 if (!p && gfp_mask != saved_gfp) {
458 punt_bios_to_rescuer(bs);
459 gfp_mask = saved_gfp;
8aa6ba2f 460 p = mempool_alloc(&bs->bio_pool, gfp_mask);
3f86a82a 461 }
451a9ebf
TH
462 if (unlikely(!p))
463 return NULL;
1da177e4 464
3175199a
CH
465 bio = p + bs->front_pad;
466 if (nr_iovecs > BIO_INLINE_VECS) {
ed996a52 467 unsigned long idx = 0;
3175199a 468 struct bio_vec *bvl = NULL;
ed996a52 469
8aa6ba2f 470 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
471 if (!bvl && gfp_mask != saved_gfp) {
472 punt_bios_to_rescuer(bs);
473 gfp_mask = saved_gfp;
3175199a
CH
474 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx,
475 &bs->bvec_pool);
df2cb6da
KO
476 }
477
34053979
IM
478 if (unlikely(!bvl))
479 goto err_free;
a38352e0 480
3175199a 481 bio_init(bio, bvl, bvec_nr_vecs(idx));
8358c28a 482 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a 483 } else if (nr_iovecs) {
3175199a
CH
484 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
485 } else {
486 bio_init(bio, NULL, 0);
1da177e4 487 }
3f86a82a
KO
488
489 bio->bi_pool = bs;
1da177e4 490 return bio;
34053979
IM
491
492err_free:
8aa6ba2f 493 mempool_free(p, &bs->bio_pool);
34053979 494 return NULL;
1da177e4 495}
a112a71d 496EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 497
3175199a
CH
498/**
499 * bio_kmalloc - kmalloc a bio for I/O
500 * @gfp_mask: the GFP_* mask given to the slab allocator
501 * @nr_iovecs: number of iovecs to pre-allocate
502 *
503 * Use kmalloc to allocate and initialize a bio.
504 *
505 * Returns: Pointer to new bio on success, NULL on failure.
506 */
507struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs)
508{
509 struct bio *bio;
510
511 if (nr_iovecs > UIO_MAXIOV)
512 return NULL;
513
514 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
515 if (unlikely(!bio))
516 return NULL;
517 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
518 bio->bi_pool = NULL;
519 return bio;
520}
521EXPORT_SYMBOL(bio_kmalloc);
522
38a72dac 523void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
524{
525 unsigned long flags;
7988613b
KO
526 struct bio_vec bv;
527 struct bvec_iter iter;
1da177e4 528
38a72dac 529 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
530 char *data = bvec_kmap_irq(&bv, &flags);
531 memset(data, 0, bv.bv_len);
532 flush_dcache_page(bv.bv_page);
1da177e4
LT
533 bvec_kunmap_irq(data, &flags);
534 }
535}
38a72dac 536EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4 537
83c9c547
ML
538/**
539 * bio_truncate - truncate the bio to small size of @new_size
540 * @bio: the bio to be truncated
541 * @new_size: new size for truncating the bio
542 *
543 * Description:
544 * Truncate the bio to new size of @new_size. If bio_op(bio) is
545 * REQ_OP_READ, zero the truncated part. This function should only
546 * be used for handling corner cases, such as bio eod.
547 */
85a8ce62
ML
548void bio_truncate(struct bio *bio, unsigned new_size)
549{
550 struct bio_vec bv;
551 struct bvec_iter iter;
552 unsigned int done = 0;
553 bool truncated = false;
554
555 if (new_size >= bio->bi_iter.bi_size)
556 return;
557
83c9c547 558 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
559 goto exit;
560
561 bio_for_each_segment(bv, bio, iter) {
562 if (done + bv.bv_len > new_size) {
563 unsigned offset;
564
565 if (!truncated)
566 offset = new_size - done;
567 else
568 offset = 0;
569 zero_user(bv.bv_page, offset, bv.bv_len - offset);
570 truncated = true;
571 }
572 done += bv.bv_len;
573 }
574
575 exit:
576 /*
577 * Don't touch bvec table here and make it really immutable, since
578 * fs bio user has to retrieve all pages via bio_for_each_segment_all
579 * in its .end_bio() callback.
580 *
581 * It is enough to truncate bio by updating .bi_size since we can make
582 * correct bvec with the updated .bi_size for drivers.
583 */
584 bio->bi_iter.bi_size = new_size;
585}
586
29125ed6
CH
587/**
588 * guard_bio_eod - truncate a BIO to fit the block device
589 * @bio: bio to truncate
590 *
591 * This allows us to do IO even on the odd last sectors of a device, even if the
592 * block size is some multiple of the physical sector size.
593 *
594 * We'll just truncate the bio to the size of the device, and clear the end of
595 * the buffer head manually. Truly out-of-range accesses will turn into actual
596 * I/O errors, this only handles the "we need to be able to do I/O at the final
597 * sector" case.
598 */
599void guard_bio_eod(struct bio *bio)
600{
309dca30 601 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
602
603 if (!maxsector)
604 return;
605
606 /*
607 * If the *whole* IO is past the end of the device,
608 * let it through, and the IO layer will turn it into
609 * an EIO.
610 */
611 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
612 return;
613
614 maxsector -= bio->bi_iter.bi_sector;
615 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
616 return;
617
618 bio_truncate(bio, maxsector << 9);
619}
620
1da177e4
LT
621/**
622 * bio_put - release a reference to a bio
623 * @bio: bio to release reference to
624 *
625 * Description:
626 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 627 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
628 **/
629void bio_put(struct bio *bio)
630{
dac56212 631 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 632 bio_free(bio);
dac56212
JA
633 else {
634 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
635
636 /*
637 * last put frees it
638 */
639 if (atomic_dec_and_test(&bio->__bi_cnt))
640 bio_free(bio);
641 }
1da177e4 642}
a112a71d 643EXPORT_SYMBOL(bio_put);
1da177e4 644
59d276fe
KO
645/**
646 * __bio_clone_fast - clone a bio that shares the original bio's biovec
647 * @bio: destination bio
648 * @bio_src: bio to clone
649 *
650 * Clone a &bio. Caller will own the returned bio, but not
651 * the actual data it points to. Reference count of returned
652 * bio will be one.
653 *
654 * Caller must ensure that @bio_src is not freed before @bio.
655 */
656void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
657{
ed996a52 658 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
659
660 /*
309dca30 661 * most users will be overriding ->bi_bdev with a new target,
59d276fe
KO
662 * so we don't set nor calculate new physical/hw segment counts here
663 */
309dca30 664 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 665 bio_set_flag(bio, BIO_CLONED);
111be883
SL
666 if (bio_flagged(bio_src, BIO_THROTTLED))
667 bio_set_flag(bio, BIO_THROTTLED);
46bbf653
CH
668 if (bio_flagged(bio_src, BIO_REMAPPED))
669 bio_set_flag(bio, BIO_REMAPPED);
1eff9d32 670 bio->bi_opf = bio_src->bi_opf;
ca474b73 671 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 672 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
673 bio->bi_iter = bio_src->bi_iter;
674 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 675
db6638d7 676 bio_clone_blkg_association(bio, bio_src);
e439bedf 677 blkcg_bio_issue_init(bio);
59d276fe
KO
678}
679EXPORT_SYMBOL(__bio_clone_fast);
680
681/**
682 * bio_clone_fast - clone a bio that shares the original bio's biovec
683 * @bio: bio to clone
684 * @gfp_mask: allocation priority
685 * @bs: bio_set to allocate from
686 *
687 * Like __bio_clone_fast, only also allocates the returned bio
688 */
689struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
690{
691 struct bio *b;
692
693 b = bio_alloc_bioset(gfp_mask, 0, bs);
694 if (!b)
695 return NULL;
696
697 __bio_clone_fast(b, bio);
698
07560151
EB
699 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
700 goto err_put;
a892c8d5 701
07560151
EB
702 if (bio_integrity(bio) &&
703 bio_integrity_clone(b, bio, gfp_mask) < 0)
704 goto err_put;
59d276fe
KO
705
706 return b;
07560151
EB
707
708err_put:
709 bio_put(b);
710 return NULL;
59d276fe
KO
711}
712EXPORT_SYMBOL(bio_clone_fast);
713
5cbd28e3
CH
714const char *bio_devname(struct bio *bio, char *buf)
715{
309dca30 716 return bdevname(bio->bi_bdev, buf);
5cbd28e3
CH
717}
718EXPORT_SYMBOL(bio_devname);
719
5919482e
ML
720static inline bool page_is_mergeable(const struct bio_vec *bv,
721 struct page *page, unsigned int len, unsigned int off,
ff896738 722 bool *same_page)
5919482e 723{
d8166519
MWO
724 size_t bv_end = bv->bv_offset + bv->bv_len;
725 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
726 phys_addr_t page_addr = page_to_phys(page);
727
728 if (vec_end_addr + 1 != page_addr + off)
729 return false;
730 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
731 return false;
52d52d1c 732
ff896738 733 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
d8166519
MWO
734 if (*same_page)
735 return true;
736 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
5919482e
ML
737}
738
e4581105
CH
739/*
740 * Try to merge a page into a segment, while obeying the hardware segment
741 * size limit. This is not for normal read/write bios, but for passthrough
742 * or Zone Append operations that we can't split.
743 */
744static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
745 struct page *page, unsigned len,
746 unsigned offset, bool *same_page)
489fbbcb 747{
384209cd 748 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
749 unsigned long mask = queue_segment_boundary(q);
750 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
751 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
752
753 if ((addr1 | mask) != (addr2 | mask))
754 return false;
489fbbcb
ML
755 if (bv->bv_len + len > queue_max_segment_size(q))
756 return false;
384209cd 757 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
758}
759
1da177e4 760/**
e4581105
CH
761 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
762 * @q: the target queue
763 * @bio: destination bio
764 * @page: page to add
765 * @len: vec entry length
766 * @offset: vec entry offset
767 * @max_sectors: maximum number of sectors that can be added
768 * @same_page: return if the segment has been merged inside the same page
c66a14d0 769 *
e4581105
CH
770 * Add a page to a bio while respecting the hardware max_sectors, max_segment
771 * and gap limitations.
1da177e4 772 */
e4581105 773int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 774 struct page *page, unsigned int len, unsigned int offset,
e4581105 775 unsigned int max_sectors, bool *same_page)
1da177e4 776{
1da177e4
LT
777 struct bio_vec *bvec;
778
e4581105 779 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
780 return 0;
781
e4581105 782 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
783 return 0;
784
80cfd548 785 if (bio->bi_vcnt > 0) {
e4581105 786 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 787 return len;
320ea869
CH
788
789 /*
790 * If the queue doesn't support SG gaps and adding this segment
791 * would create a gap, disallow it.
792 */
384209cd 793 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
794 if (bvec_gap_to_prev(q, bvec, offset))
795 return 0;
80cfd548
JA
796 }
797
79d08f89 798 if (bio_full(bio, len))
1da177e4
LT
799 return 0;
800
14ccb66b 801 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
802 return 0;
803
fcbf6a08
ML
804 bvec = &bio->bi_io_vec[bio->bi_vcnt];
805 bvec->bv_page = page;
806 bvec->bv_len = len;
807 bvec->bv_offset = offset;
808 bio->bi_vcnt++;
dcdca753 809 bio->bi_iter.bi_size += len;
1da177e4
LT
810 return len;
811}
19047087 812
e4581105
CH
813/**
814 * bio_add_pc_page - attempt to add page to passthrough bio
815 * @q: the target queue
816 * @bio: destination bio
817 * @page: page to add
818 * @len: vec entry length
819 * @offset: vec entry offset
820 *
821 * Attempt to add a page to the bio_vec maplist. This can fail for a
822 * number of reasons, such as the bio being full or target block device
823 * limitations. The target block device must allow bio's up to PAGE_SIZE,
824 * so it is always possible to add a single page to an empty bio.
825 *
826 * This should only be used by passthrough bios.
827 */
19047087
ML
828int bio_add_pc_page(struct request_queue *q, struct bio *bio,
829 struct page *page, unsigned int len, unsigned int offset)
830{
d1916c86 831 bool same_page = false;
e4581105
CH
832 return bio_add_hw_page(q, bio, page, len, offset,
833 queue_max_hw_sectors(q), &same_page);
19047087 834}
a112a71d 835EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 836
1da177e4 837/**
0aa69fd3
CH
838 * __bio_try_merge_page - try appending data to an existing bvec.
839 * @bio: destination bio
551879a4 840 * @page: start page to add
0aa69fd3 841 * @len: length of the data to add
551879a4 842 * @off: offset of the data relative to @page
ff896738 843 * @same_page: return if the segment has been merged inside the same page
1da177e4 844 *
0aa69fd3 845 * Try to add the data at @page + @off to the last bvec of @bio. This is a
3cf14889 846 * useful optimisation for file systems with a block size smaller than the
0aa69fd3
CH
847 * page size.
848 *
551879a4
ML
849 * Warn if (@len, @off) crosses pages in case that @same_page is true.
850 *
0aa69fd3 851 * Return %true on success or %false on failure.
1da177e4 852 */
0aa69fd3 853bool __bio_try_merge_page(struct bio *bio, struct page *page,
ff896738 854 unsigned int len, unsigned int off, bool *same_page)
1da177e4 855{
c66a14d0 856 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 857 return false;
762380ad 858
cc90bc68 859 if (bio->bi_vcnt > 0) {
0aa69fd3 860 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
861
862 if (page_is_mergeable(bv, page, len, off, same_page)) {
2cd896a5
RH
863 if (bio->bi_iter.bi_size > UINT_MAX - len) {
864 *same_page = false;
cc90bc68 865 return false;
2cd896a5 866 }
5919482e
ML
867 bv->bv_len += len;
868 bio->bi_iter.bi_size += len;
869 return true;
870 }
c66a14d0 871 }
0aa69fd3
CH
872 return false;
873}
874EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 875
0aa69fd3 876/**
551879a4 877 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 878 * @bio: destination bio
551879a4
ML
879 * @page: start page to add
880 * @len: length of the data to add, may cross pages
881 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
882 *
883 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
884 * that @bio has space for another bvec.
885 */
886void __bio_add_page(struct bio *bio, struct page *page,
887 unsigned int len, unsigned int off)
888{
889 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 890
0aa69fd3 891 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 892 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
893
894 bv->bv_page = page;
895 bv->bv_offset = off;
896 bv->bv_len = len;
c66a14d0 897
c66a14d0 898 bio->bi_iter.bi_size += len;
0aa69fd3 899 bio->bi_vcnt++;
b8e24a93
JW
900
901 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
902 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
903}
904EXPORT_SYMBOL_GPL(__bio_add_page);
905
906/**
551879a4 907 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 908 * @bio: destination bio
551879a4
ML
909 * @page: start page to add
910 * @len: vec entry length, may cross pages
911 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 912 *
551879a4 913 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
914 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
915 */
916int bio_add_page(struct bio *bio, struct page *page,
917 unsigned int len, unsigned int offset)
918{
ff896738
CH
919 bool same_page = false;
920
921 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 922 if (bio_full(bio, len))
0aa69fd3
CH
923 return 0;
924 __bio_add_page(bio, page, len, offset);
925 }
c66a14d0 926 return len;
1da177e4 927}
a112a71d 928EXPORT_SYMBOL(bio_add_page);
1da177e4 929
d241a95f 930void bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
931{
932 struct bvec_iter_all iter_all;
933 struct bio_vec *bvec;
7321ecbf 934
b2d0d991
CH
935 if (bio_flagged(bio, BIO_NO_PAGE_REF))
936 return;
937
d241a95f
CH
938 bio_for_each_segment_all(bvec, bio, iter_all) {
939 if (mark_dirty && !PageCompound(bvec->bv_page))
940 set_page_dirty_lock(bvec->bv_page);
7321ecbf 941 put_page(bvec->bv_page);
d241a95f 942 }
7321ecbf 943}
29b2a3aa 944EXPORT_SYMBOL_GPL(bio_release_pages);
7321ecbf 945
c42bca92 946static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
6d0c48ae 947{
c42bca92
PB
948 WARN_ON_ONCE(BVEC_POOL_IDX(bio) != 0);
949
950 bio->bi_vcnt = iter->nr_segs;
951 bio->bi_max_vecs = iter->nr_segs;
952 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
953 bio->bi_iter.bi_bvec_done = iter->iov_offset;
954 bio->bi_iter.bi_size = iter->count;
955
956 iov_iter_advance(iter, iter->count);
a10584c3 957 return 0;
6d0c48ae
JA
958}
959
576ed913
CH
960#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
961
2cefe4db 962/**
17d51b10 963 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
964 * @bio: bio to add pages to
965 * @iter: iov iterator describing the region to be mapped
966 *
17d51b10 967 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 968 * pages will have to be released using put_page() when done.
17d51b10 969 * For multi-segment *iter, this function only adds pages from the
3cf14889 970 * next non-empty segment of the iov iterator.
2cefe4db 971 */
17d51b10 972static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 973{
576ed913
CH
974 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
975 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
976 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
977 struct page **pages = (struct page **)bv;
45691804 978 bool same_page = false;
576ed913
CH
979 ssize_t size, left;
980 unsigned len, i;
b403ea24 981 size_t offset;
576ed913
CH
982
983 /*
984 * Move page array up in the allocated memory for the bio vecs as far as
985 * possible so that we can start filling biovecs from the beginning
986 * without overwriting the temporary page array.
987 */
988 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
989 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
990
991 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
992 if (unlikely(size <= 0))
993 return size ? size : -EFAULT;
2cefe4db 994
576ed913
CH
995 for (left = size, i = 0; left > 0; left -= len, i++) {
996 struct page *page = pages[i];
2cefe4db 997
576ed913 998 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
999
1000 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1001 if (same_page)
1002 put_page(page);
1003 } else {
79d08f89 1004 if (WARN_ON_ONCE(bio_full(bio, len)))
45691804
CH
1005 return -EINVAL;
1006 __bio_add_page(bio, page, len, offset);
1007 }
576ed913 1008 offset = 0;
2cefe4db
KO
1009 }
1010
2cefe4db
KO
1011 iov_iter_advance(iter, size);
1012 return 0;
1013}
17d51b10 1014
0512a75b
KB
1015static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1016{
1017 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1018 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
309dca30 1019 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
0512a75b
KB
1020 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1021 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1022 struct page **pages = (struct page **)bv;
1023 ssize_t size, left;
1024 unsigned len, i;
1025 size_t offset;
4977d121 1026 int ret = 0;
0512a75b
KB
1027
1028 if (WARN_ON_ONCE(!max_append_sectors))
1029 return 0;
1030
1031 /*
1032 * Move page array up in the allocated memory for the bio vecs as far as
1033 * possible so that we can start filling biovecs from the beginning
1034 * without overwriting the temporary page array.
1035 */
1036 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1037 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1038
1039 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1040 if (unlikely(size <= 0))
1041 return size ? size : -EFAULT;
1042
1043 for (left = size, i = 0; left > 0; left -= len, i++) {
1044 struct page *page = pages[i];
1045 bool same_page = false;
1046
1047 len = min_t(size_t, PAGE_SIZE - offset, left);
1048 if (bio_add_hw_page(q, bio, page, len, offset,
4977d121
NA
1049 max_append_sectors, &same_page) != len) {
1050 ret = -EINVAL;
1051 break;
1052 }
0512a75b
KB
1053 if (same_page)
1054 put_page(page);
1055 offset = 0;
1056 }
1057
4977d121
NA
1058 iov_iter_advance(iter, size - left);
1059 return ret;
0512a75b
KB
1060}
1061
17d51b10 1062/**
6d0c48ae 1063 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1064 * @bio: bio to add pages to
6d0c48ae
JA
1065 * @iter: iov iterator describing the region to be added
1066 *
1067 * This takes either an iterator pointing to user memory, or one pointing to
1068 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1069 * map them into the kernel. On IO completion, the caller should put those
c42bca92
PB
1070 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1071 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1072 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1073 * completed by a call to ->ki_complete() or returns with an error other than
1074 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1075 * on IO completion. If it isn't, then pages should be released.
17d51b10 1076 *
17d51b10 1077 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1078 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1079 * MM encounters an error pinning the requested pages, it stops. Error
1080 * is returned only if 0 pages could be pinned.
0cf41e5e
PB
1081 *
1082 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1083 * responsible for setting BIO_WORKINGSET if necessary.
17d51b10
MW
1084 */
1085int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1086{
c42bca92 1087 int ret = 0;
17d51b10 1088
c42bca92
PB
1089 if (iov_iter_is_bvec(iter)) {
1090 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1091 return -EINVAL;
1092 bio_iov_bvec_set(bio, iter);
1093 bio_set_flag(bio, BIO_NO_PAGE_REF);
1094 return 0;
1095 } else {
1096 do {
1097 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1098 ret = __bio_iov_append_get_pages(bio, iter);
0512a75b
KB
1099 else
1100 ret = __bio_iov_iter_get_pages(bio, iter);
c42bca92
PB
1101 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1102 }
0cf41e5e
PB
1103
1104 /* don't account direct I/O as memory stall */
1105 bio_clear_flag(bio, BIO_WORKINGSET);
14eacf12 1106 return bio->bi_vcnt ? 0 : ret;
17d51b10 1107}
29b2a3aa 1108EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1109
4246a0b6 1110static void submit_bio_wait_endio(struct bio *bio)
9e882242 1111{
65e53aab 1112 complete(bio->bi_private);
9e882242
KO
1113}
1114
1115/**
1116 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1117 * @bio: The &struct bio which describes the I/O
1118 *
1119 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1120 * bio_endio() on failure.
3d289d68
JK
1121 *
1122 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1123 * result in bio reference to be consumed. The caller must drop the reference
1124 * on his own.
9e882242 1125 */
4e49ea4a 1126int submit_bio_wait(struct bio *bio)
9e882242 1127{
309dca30
CH
1128 DECLARE_COMPLETION_ONSTACK_MAP(done,
1129 bio->bi_bdev->bd_disk->lockdep_map);
de6a78b6 1130 unsigned long hang_check;
9e882242 1131
65e53aab 1132 bio->bi_private = &done;
9e882242 1133 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1134 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1135 submit_bio(bio);
de6a78b6
ML
1136
1137 /* Prevent hang_check timer from firing at us during very long I/O */
1138 hang_check = sysctl_hung_task_timeout_secs;
1139 if (hang_check)
1140 while (!wait_for_completion_io_timeout(&done,
1141 hang_check * (HZ/2)))
1142 ;
1143 else
1144 wait_for_completion_io(&done);
9e882242 1145
65e53aab 1146 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1147}
1148EXPORT_SYMBOL(submit_bio_wait);
1149
054bdf64
KO
1150/**
1151 * bio_advance - increment/complete a bio by some number of bytes
1152 * @bio: bio to advance
1153 * @bytes: number of bytes to complete
1154 *
1155 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1156 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1157 * be updated on the last bvec as well.
1158 *
1159 * @bio will then represent the remaining, uncompleted portion of the io.
1160 */
1161void bio_advance(struct bio *bio, unsigned bytes)
1162{
1163 if (bio_integrity(bio))
1164 bio_integrity_advance(bio, bytes);
1165
a892c8d5 1166 bio_crypt_advance(bio, bytes);
4550dd6c 1167 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1168}
1169EXPORT_SYMBOL(bio_advance);
1170
45db54d5
KO
1171void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1172 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1173{
1cb9dda4 1174 struct bio_vec src_bv, dst_bv;
16ac3d63 1175 void *src_p, *dst_p;
1cb9dda4 1176 unsigned bytes;
16ac3d63 1177
45db54d5
KO
1178 while (src_iter->bi_size && dst_iter->bi_size) {
1179 src_bv = bio_iter_iovec(src, *src_iter);
1180 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1181
1182 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1183
1cb9dda4
KO
1184 src_p = kmap_atomic(src_bv.bv_page);
1185 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1186
1cb9dda4
KO
1187 memcpy(dst_p + dst_bv.bv_offset,
1188 src_p + src_bv.bv_offset,
16ac3d63
KO
1189 bytes);
1190
1191 kunmap_atomic(dst_p);
1192 kunmap_atomic(src_p);
1193
6e6e811d
KO
1194 flush_dcache_page(dst_bv.bv_page);
1195
22b56c29
PB
1196 bio_advance_iter_single(src, src_iter, bytes);
1197 bio_advance_iter_single(dst, dst_iter, bytes);
16ac3d63
KO
1198 }
1199}
38a72dac
KO
1200EXPORT_SYMBOL(bio_copy_data_iter);
1201
1202/**
45db54d5
KO
1203 * bio_copy_data - copy contents of data buffers from one bio to another
1204 * @src: source bio
1205 * @dst: destination bio
38a72dac
KO
1206 *
1207 * Stops when it reaches the end of either @src or @dst - that is, copies
1208 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1209 */
1210void bio_copy_data(struct bio *dst, struct bio *src)
1211{
45db54d5
KO
1212 struct bvec_iter src_iter = src->bi_iter;
1213 struct bvec_iter dst_iter = dst->bi_iter;
1214
1215 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1216}
16ac3d63
KO
1217EXPORT_SYMBOL(bio_copy_data);
1218
45db54d5
KO
1219/**
1220 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1221 * another
1222 * @src: source bio list
1223 * @dst: destination bio list
1224 *
1225 * Stops when it reaches the end of either the @src list or @dst list - that is,
1226 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1227 * bios).
1228 */
1229void bio_list_copy_data(struct bio *dst, struct bio *src)
1230{
1231 struct bvec_iter src_iter = src->bi_iter;
1232 struct bvec_iter dst_iter = dst->bi_iter;
1233
1234 while (1) {
1235 if (!src_iter.bi_size) {
1236 src = src->bi_next;
1237 if (!src)
1238 break;
1239
1240 src_iter = src->bi_iter;
1241 }
1242
1243 if (!dst_iter.bi_size) {
1244 dst = dst->bi_next;
1245 if (!dst)
1246 break;
1247
1248 dst_iter = dst->bi_iter;
1249 }
1250
1251 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1252 }
1253}
1254EXPORT_SYMBOL(bio_list_copy_data);
1255
491221f8 1256void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1257{
1258 struct bio_vec *bvec;
6dc4f100 1259 struct bvec_iter_all iter_all;
1dfa0f68 1260
2b070cfe 1261 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1262 __free_page(bvec->bv_page);
1263}
491221f8 1264EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1265
1da177e4
LT
1266/*
1267 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1268 * for performing direct-IO in BIOs.
1269 *
1270 * The problem is that we cannot run set_page_dirty() from interrupt context
1271 * because the required locks are not interrupt-safe. So what we can do is to
1272 * mark the pages dirty _before_ performing IO. And in interrupt context,
1273 * check that the pages are still dirty. If so, fine. If not, redirty them
1274 * in process context.
1275 *
1276 * We special-case compound pages here: normally this means reads into hugetlb
1277 * pages. The logic in here doesn't really work right for compound pages
1278 * because the VM does not uniformly chase down the head page in all cases.
1279 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1280 * handle them at all. So we skip compound pages here at an early stage.
1281 *
1282 * Note that this code is very hard to test under normal circumstances because
1283 * direct-io pins the pages with get_user_pages(). This makes
1284 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1285 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1286 * pagecache.
1287 *
1288 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1289 * deferred bio dirtying paths.
1290 */
1291
1292/*
1293 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1294 */
1295void bio_set_pages_dirty(struct bio *bio)
1296{
cb34e057 1297 struct bio_vec *bvec;
6dc4f100 1298 struct bvec_iter_all iter_all;
1da177e4 1299
2b070cfe 1300 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1301 if (!PageCompound(bvec->bv_page))
1302 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1303 }
1304}
1305
1da177e4
LT
1306/*
1307 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1308 * If they are, then fine. If, however, some pages are clean then they must
1309 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1310 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1311 *
1312 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1313 * here on. It will run one put_page() against each page and will run one
1314 * bio_put() against the BIO.
1da177e4
LT
1315 */
1316
65f27f38 1317static void bio_dirty_fn(struct work_struct *work);
1da177e4 1318
65f27f38 1319static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1320static DEFINE_SPINLOCK(bio_dirty_lock);
1321static struct bio *bio_dirty_list;
1322
1323/*
1324 * This runs in process context
1325 */
65f27f38 1326static void bio_dirty_fn(struct work_struct *work)
1da177e4 1327{
24d5493f 1328 struct bio *bio, *next;
1da177e4 1329
24d5493f
CH
1330 spin_lock_irq(&bio_dirty_lock);
1331 next = bio_dirty_list;
1da177e4 1332 bio_dirty_list = NULL;
24d5493f 1333 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1334
24d5493f
CH
1335 while ((bio = next) != NULL) {
1336 next = bio->bi_private;
1da177e4 1337
d241a95f 1338 bio_release_pages(bio, true);
1da177e4 1339 bio_put(bio);
1da177e4
LT
1340 }
1341}
1342
1343void bio_check_pages_dirty(struct bio *bio)
1344{
cb34e057 1345 struct bio_vec *bvec;
24d5493f 1346 unsigned long flags;
6dc4f100 1347 struct bvec_iter_all iter_all;
1da177e4 1348
2b070cfe 1349 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1350 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1351 goto defer;
1da177e4
LT
1352 }
1353
d241a95f 1354 bio_release_pages(bio, false);
24d5493f
CH
1355 bio_put(bio);
1356 return;
1357defer:
1358 spin_lock_irqsave(&bio_dirty_lock, flags);
1359 bio->bi_private = bio_dirty_list;
1360 bio_dirty_list = bio;
1361 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1362 schedule_work(&bio_dirty_work);
1da177e4
LT
1363}
1364
c4cf5261
JA
1365static inline bool bio_remaining_done(struct bio *bio)
1366{
1367 /*
1368 * If we're not chaining, then ->__bi_remaining is always 1 and
1369 * we always end io on the first invocation.
1370 */
1371 if (!bio_flagged(bio, BIO_CHAIN))
1372 return true;
1373
1374 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1375
326e1dbb 1376 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1377 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1378 return true;
326e1dbb 1379 }
c4cf5261
JA
1380
1381 return false;
1382}
1383
1da177e4
LT
1384/**
1385 * bio_endio - end I/O on a bio
1386 * @bio: bio
1da177e4
LT
1387 *
1388 * Description:
4246a0b6
CH
1389 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1390 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1391 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1392 *
1393 * bio_endio() can be called several times on a bio that has been chained
1394 * using bio_chain(). The ->bi_end_io() function will only be called the
1395 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1396 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1397 **/
4246a0b6 1398void bio_endio(struct bio *bio)
1da177e4 1399{
ba8c6967 1400again:
2b885517 1401 if (!bio_remaining_done(bio))
ba8c6967 1402 return;
7c20f116
CH
1403 if (!bio_integrity_endio(bio))
1404 return;
1da177e4 1405
309dca30
CH
1406 if (bio->bi_bdev)
1407 rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
67b42d0b 1408
ba8c6967
CH
1409 /*
1410 * Need to have a real endio function for chained bios, otherwise
1411 * various corner cases will break (like stacking block devices that
1412 * save/restore bi_end_io) - however, we want to avoid unbounded
1413 * recursion and blowing the stack. Tail call optimization would
1414 * handle this, but compiling with frame pointers also disables
1415 * gcc's sibling call optimization.
1416 */
1417 if (bio->bi_end_io == bio_chain_endio) {
1418 bio = __bio_chain_endio(bio);
1419 goto again;
196d38bc 1420 }
ba8c6967 1421
309dca30
CH
1422 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1423 trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
fbbaf700
N
1424 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1425 }
1426
9e234eea 1427 blk_throtl_bio_endio(bio);
b222dd2f
SL
1428 /* release cgroup info */
1429 bio_uninit(bio);
ba8c6967
CH
1430 if (bio->bi_end_io)
1431 bio->bi_end_io(bio);
1da177e4 1432}
a112a71d 1433EXPORT_SYMBOL(bio_endio);
1da177e4 1434
20d0189b
KO
1435/**
1436 * bio_split - split a bio
1437 * @bio: bio to split
1438 * @sectors: number of sectors to split from the front of @bio
1439 * @gfp: gfp mask
1440 * @bs: bio set to allocate from
1441 *
1442 * Allocates and returns a new bio which represents @sectors from the start of
1443 * @bio, and updates @bio to represent the remaining sectors.
1444 *
f3f5da62 1445 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1446 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1447 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1448 */
1449struct bio *bio_split(struct bio *bio, int sectors,
1450 gfp_t gfp, struct bio_set *bs)
1451{
f341a4d3 1452 struct bio *split;
20d0189b
KO
1453
1454 BUG_ON(sectors <= 0);
1455 BUG_ON(sectors >= bio_sectors(bio));
1456
0512a75b
KB
1457 /* Zone append commands cannot be split */
1458 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1459 return NULL;
1460
f9d03f96 1461 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1462 if (!split)
1463 return NULL;
1464
1465 split->bi_iter.bi_size = sectors << 9;
1466
1467 if (bio_integrity(split))
fbd08e76 1468 bio_integrity_trim(split);
20d0189b
KO
1469
1470 bio_advance(bio, split->bi_iter.bi_size);
1471
fbbaf700 1472 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1473 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1474
20d0189b
KO
1475 return split;
1476}
1477EXPORT_SYMBOL(bio_split);
1478
6678d83f
KO
1479/**
1480 * bio_trim - trim a bio
1481 * @bio: bio to trim
1482 * @offset: number of sectors to trim from the front of @bio
1483 * @size: size we want to trim @bio to, in sectors
1484 */
1485void bio_trim(struct bio *bio, int offset, int size)
1486{
1487 /* 'bio' is a cloned bio which we need to trim to match
1488 * the given offset and size.
6678d83f 1489 */
6678d83f
KO
1490
1491 size <<= 9;
4f024f37 1492 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1493 return;
1494
6678d83f 1495 bio_advance(bio, offset << 9);
4f024f37 1496 bio->bi_iter.bi_size = size;
376a78ab
DM
1497
1498 if (bio_integrity(bio))
fbd08e76 1499 bio_integrity_trim(bio);
376a78ab 1500
6678d83f
KO
1501}
1502EXPORT_SYMBOL_GPL(bio_trim);
1503
1da177e4
LT
1504/*
1505 * create memory pools for biovec's in a bio_set.
1506 * use the global biovec slabs created for general use.
1507 */
8aa6ba2f 1508int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1509{
ed996a52 1510 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1511
8aa6ba2f 1512 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1513}
1514
917a38c7
KO
1515/*
1516 * bioset_exit - exit a bioset initialized with bioset_init()
1517 *
1518 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1519 * kzalloc()).
1520 */
1521void bioset_exit(struct bio_set *bs)
1da177e4 1522{
df2cb6da
KO
1523 if (bs->rescue_workqueue)
1524 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1525 bs->rescue_workqueue = NULL;
df2cb6da 1526
8aa6ba2f
KO
1527 mempool_exit(&bs->bio_pool);
1528 mempool_exit(&bs->bvec_pool);
9f060e22 1529
7878cba9 1530 bioset_integrity_free(bs);
917a38c7
KO
1531 if (bs->bio_slab)
1532 bio_put_slab(bs);
1533 bs->bio_slab = NULL;
1534}
1535EXPORT_SYMBOL(bioset_exit);
1da177e4 1536
917a38c7
KO
1537/**
1538 * bioset_init - Initialize a bio_set
dad08527 1539 * @bs: pool to initialize
917a38c7
KO
1540 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1541 * @front_pad: Number of bytes to allocate in front of the returned bio
1542 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1543 * and %BIOSET_NEED_RESCUER
1544 *
dad08527
KO
1545 * Description:
1546 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1547 * to ask for a number of bytes to be allocated in front of the bio.
1548 * Front pad allocation is useful for embedding the bio inside
1549 * another structure, to avoid allocating extra data to go with the bio.
1550 * Note that the bio must be embedded at the END of that structure always,
1551 * or things will break badly.
1552 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1553 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1554 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1555 * dispatch queued requests when the mempool runs out of space.
1556 *
917a38c7
KO
1557 */
1558int bioset_init(struct bio_set *bs,
1559 unsigned int pool_size,
1560 unsigned int front_pad,
1561 int flags)
1562{
917a38c7 1563 bs->front_pad = front_pad;
9f180e31
ML
1564 if (flags & BIOSET_NEED_BVECS)
1565 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1566 else
1567 bs->back_pad = 0;
917a38c7
KO
1568
1569 spin_lock_init(&bs->rescue_lock);
1570 bio_list_init(&bs->rescue_list);
1571 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1572
49d1ec85 1573 bs->bio_slab = bio_find_or_create_slab(bs);
917a38c7
KO
1574 if (!bs->bio_slab)
1575 return -ENOMEM;
1576
1577 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1578 goto bad;
1579
1580 if ((flags & BIOSET_NEED_BVECS) &&
1581 biovec_init_pool(&bs->bvec_pool, pool_size))
1582 goto bad;
1583
1584 if (!(flags & BIOSET_NEED_RESCUER))
1585 return 0;
1586
1587 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1588 if (!bs->rescue_workqueue)
1589 goto bad;
1590
1591 return 0;
1592bad:
1593 bioset_exit(bs);
1594 return -ENOMEM;
1595}
1596EXPORT_SYMBOL(bioset_init);
1597
28e89fd9
JA
1598/*
1599 * Initialize and setup a new bio_set, based on the settings from
1600 * another bio_set.
1601 */
1602int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1603{
1604 int flags;
1605
1606 flags = 0;
1607 if (src->bvec_pool.min_nr)
1608 flags |= BIOSET_NEED_BVECS;
1609 if (src->rescue_workqueue)
1610 flags |= BIOSET_NEED_RESCUER;
1611
1612 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1613}
1614EXPORT_SYMBOL(bioset_init_from_src);
1615
1da177e4
LT
1616static void __init biovec_init_slabs(void)
1617{
1618 int i;
1619
ed996a52 1620 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
1621 int size;
1622 struct biovec_slab *bvs = bvec_slabs + i;
1623
a7fcd37c
JA
1624 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1625 bvs->slab = NULL;
1626 continue;
1627 }
a7fcd37c 1628
1da177e4
LT
1629 size = bvs->nr_vecs * sizeof(struct bio_vec);
1630 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1631 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1632 }
1633}
1634
1635static int __init init_bio(void)
1636{
2b24e6f6
JT
1637 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
1638
7878cba9 1639 bio_integrity_init();
1da177e4
LT
1640 biovec_init_slabs();
1641
f4f8154a 1642 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1643 panic("bio: can't allocate bios\n");
1644
f4f8154a 1645 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1646 panic("bio: can't create integrity pool\n");
1647
1da177e4
LT
1648 return 0;
1649}
1da177e4 1650subsys_initcall(init_bio);