block: set BIO_NO_PAGE_REF in bio_iov_bvec_set
[linux-2.6-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
de6a78b6 20#include <linux/sched/sysctl.h>
a892c8d5 21#include <linux/blk-crypto.h>
49d1ec85 22#include <linux/xarray.h>
1da177e4 23
55782138 24#include <trace/events/block.h>
9e234eea 25#include "blk.h"
67b42d0b 26#include "blk-rq-qos.h"
0bfc2455 27
de76fd89 28static struct biovec_slab {
6ac0b715
CH
29 int nr_vecs;
30 char *name;
31 struct kmem_cache *slab;
de76fd89
CH
32} bvec_slabs[] __read_mostly = {
33 { .nr_vecs = 16, .name = "biovec-16" },
34 { .nr_vecs = 64, .name = "biovec-64" },
35 { .nr_vecs = 128, .name = "biovec-128" },
36 { .nr_vecs = BIO_MAX_PAGES, .name = "biovec-max" },
6ac0b715
CH
37};
38
1da177e4
LT
39/*
40 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
41 * IO code that does not need private memory pools.
42 */
f4f8154a 43struct bio_set fs_bio_set;
3f86a82a 44EXPORT_SYMBOL(fs_bio_set);
1da177e4 45
bb799ca0
JA
46/*
47 * Our slab pool management
48 */
49struct bio_slab {
50 struct kmem_cache *slab;
51 unsigned int slab_ref;
52 unsigned int slab_size;
53 char name[8];
54};
55static DEFINE_MUTEX(bio_slab_lock);
49d1ec85 56static DEFINE_XARRAY(bio_slabs);
bb799ca0 57
49d1ec85 58static struct bio_slab *create_bio_slab(unsigned int size)
bb799ca0 59{
49d1ec85 60 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
bb799ca0 61
49d1ec85
ML
62 if (!bslab)
63 return NULL;
bb799ca0 64
49d1ec85
ML
65 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
66 bslab->slab = kmem_cache_create(bslab->name, size,
67 ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
68 if (!bslab->slab)
69 goto fail_alloc_slab;
bb799ca0 70
49d1ec85
ML
71 bslab->slab_ref = 1;
72 bslab->slab_size = size;
bb799ca0 73
49d1ec85
ML
74 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
75 return bslab;
bb799ca0 76
49d1ec85 77 kmem_cache_destroy(bslab->slab);
bb799ca0 78
49d1ec85
ML
79fail_alloc_slab:
80 kfree(bslab);
81 return NULL;
82}
bb799ca0 83
49d1ec85
ML
84static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
85{
9f180e31 86 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
49d1ec85
ML
87}
88
89static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
90{
91 unsigned int size = bs_bio_slab_size(bs);
92 struct bio_slab *bslab;
93
94 mutex_lock(&bio_slab_lock);
95 bslab = xa_load(&bio_slabs, size);
96 if (bslab)
97 bslab->slab_ref++;
98 else
99 bslab = create_bio_slab(size);
bb799ca0 100 mutex_unlock(&bio_slab_lock);
49d1ec85
ML
101
102 if (bslab)
103 return bslab->slab;
104 return NULL;
bb799ca0
JA
105}
106
107static void bio_put_slab(struct bio_set *bs)
108{
109 struct bio_slab *bslab = NULL;
49d1ec85 110 unsigned int slab_size = bs_bio_slab_size(bs);
bb799ca0
JA
111
112 mutex_lock(&bio_slab_lock);
113
49d1ec85 114 bslab = xa_load(&bio_slabs, slab_size);
bb799ca0
JA
115 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
116 goto out;
117
49d1ec85
ML
118 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
119
bb799ca0
JA
120 WARN_ON(!bslab->slab_ref);
121
122 if (--bslab->slab_ref)
123 goto out;
124
49d1ec85
ML
125 xa_erase(&bio_slabs, slab_size);
126
bb799ca0 127 kmem_cache_destroy(bslab->slab);
49d1ec85 128 kfree(bslab);
bb799ca0
JA
129
130out:
131 mutex_unlock(&bio_slab_lock);
132}
133
7ba1ba12
MP
134unsigned int bvec_nr_vecs(unsigned short idx)
135{
d6c02a9b 136 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
137}
138
9f060e22 139void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 140{
ed996a52
CH
141 if (!idx)
142 return;
143 idx--;
144
145 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 146
ed996a52 147 if (idx == BVEC_POOL_MAX) {
9f060e22 148 mempool_free(bv, pool);
ed996a52 149 } else {
bb799ca0
JA
150 struct biovec_slab *bvs = bvec_slabs + idx;
151
152 kmem_cache_free(bvs->slab, bv);
153 }
154}
155
f2c3eb9b
CH
156/*
157 * Make the first allocation restricted and don't dump info on allocation
158 * failures, since we'll fall back to the mempool in case of failure.
159 */
160static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
161{
162 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
163 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
164}
165
9f060e22
KO
166struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
167 mempool_t *pool)
1da177e4 168{
7ff9345f
JA
169 /*
170 * see comment near bvec_array define!
171 */
172 switch (nr) {
de76fd89 173 /* smaller bios use inline vecs */
7ff9345f
JA
174 case 5 ... 16:
175 *idx = 2;
176 break;
177 case 17 ... 64:
178 *idx = 3;
179 break;
180 case 65 ... 128:
181 *idx = 4;
182 break;
183 case 129 ... BIO_MAX_PAGES:
184 *idx = 5;
185 break;
186 default:
187 return NULL;
188 }
189
190 /*
f007a3d6
CH
191 * Try a slab allocation first for all smaller allocations. If that
192 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
193 * The mempool is sized to handle up to BIO_MAX_PAGES entries.
7ff9345f 194 */
f007a3d6 195 if (*idx < BVEC_POOL_MAX) {
7ff9345f 196 struct biovec_slab *bvs = bvec_slabs + *idx;
f007a3d6 197 struct bio_vec *bvl;
1da177e4 198
f2c3eb9b 199 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
f007a3d6
CH
200 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM)) {
201 (*idx)++;
202 return bvl;
7ff9345f 203 }
f007a3d6 204 *idx = BVEC_POOL_MAX;
7ff9345f
JA
205 }
206
ed996a52 207 (*idx)++;
f007a3d6 208 return mempool_alloc(pool, gfp_mask);
1da177e4
LT
209}
210
9ae3b3f5 211void bio_uninit(struct bio *bio)
1da177e4 212{
db9819c7
CH
213#ifdef CONFIG_BLK_CGROUP
214 if (bio->bi_blkg) {
215 blkg_put(bio->bi_blkg);
216 bio->bi_blkg = NULL;
217 }
218#endif
ece841ab
JT
219 if (bio_integrity(bio))
220 bio_integrity_free(bio);
a892c8d5
ST
221
222 bio_crypt_free_ctx(bio);
4254bba1 223}
9ae3b3f5 224EXPORT_SYMBOL(bio_uninit);
7ba1ba12 225
4254bba1
KO
226static void bio_free(struct bio *bio)
227{
228 struct bio_set *bs = bio->bi_pool;
229 void *p;
230
9ae3b3f5 231 bio_uninit(bio);
4254bba1
KO
232
233 if (bs) {
8aa6ba2f 234 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
235
236 /*
237 * If we have front padding, adjust the bio pointer before freeing
238 */
239 p = bio;
bb799ca0
JA
240 p -= bs->front_pad;
241
8aa6ba2f 242 mempool_free(p, &bs->bio_pool);
4254bba1
KO
243 } else {
244 /* Bio was allocated by bio_kmalloc() */
245 kfree(bio);
246 }
3676347a
PO
247}
248
9ae3b3f5
JA
249/*
250 * Users of this function have their own bio allocation. Subsequently,
251 * they must remember to pair any call to bio_init() with bio_uninit()
252 * when IO has completed, or when the bio is released.
253 */
3a83f467
ML
254void bio_init(struct bio *bio, struct bio_vec *table,
255 unsigned short max_vecs)
1da177e4 256{
2b94de55 257 memset(bio, 0, sizeof(*bio));
c4cf5261 258 atomic_set(&bio->__bi_remaining, 1);
dac56212 259 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
260
261 bio->bi_io_vec = table;
262 bio->bi_max_vecs = max_vecs;
1da177e4 263}
a112a71d 264EXPORT_SYMBOL(bio_init);
1da177e4 265
f44b48c7
KO
266/**
267 * bio_reset - reinitialize a bio
268 * @bio: bio to reset
269 *
270 * Description:
271 * After calling bio_reset(), @bio will be in the same state as a freshly
272 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
273 * preserved are the ones that are initialized by bio_alloc_bioset(). See
274 * comment in struct bio.
275 */
276void bio_reset(struct bio *bio)
277{
278 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
279
9ae3b3f5 280 bio_uninit(bio);
f44b48c7
KO
281
282 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 283 bio->bi_flags = flags;
c4cf5261 284 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
285}
286EXPORT_SYMBOL(bio_reset);
287
38f8baae 288static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 289{
4246a0b6
CH
290 struct bio *parent = bio->bi_private;
291
4e4cbee9
CH
292 if (!parent->bi_status)
293 parent->bi_status = bio->bi_status;
196d38bc 294 bio_put(bio);
38f8baae
CH
295 return parent;
296}
297
298static void bio_chain_endio(struct bio *bio)
299{
300 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
301}
302
303/**
304 * bio_chain - chain bio completions
1051a902 305 * @bio: the target bio
5b874af6 306 * @parent: the parent bio of @bio
196d38bc
KO
307 *
308 * The caller won't have a bi_end_io called when @bio completes - instead,
309 * @parent's bi_end_io won't be called until both @parent and @bio have
310 * completed; the chained bio will also be freed when it completes.
311 *
312 * The caller must not set bi_private or bi_end_io in @bio.
313 */
314void bio_chain(struct bio *bio, struct bio *parent)
315{
316 BUG_ON(bio->bi_private || bio->bi_end_io);
317
318 bio->bi_private = parent;
319 bio->bi_end_io = bio_chain_endio;
c4cf5261 320 bio_inc_remaining(parent);
196d38bc
KO
321}
322EXPORT_SYMBOL(bio_chain);
323
df2cb6da
KO
324static void bio_alloc_rescue(struct work_struct *work)
325{
326 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
327 struct bio *bio;
328
329 while (1) {
330 spin_lock(&bs->rescue_lock);
331 bio = bio_list_pop(&bs->rescue_list);
332 spin_unlock(&bs->rescue_lock);
333
334 if (!bio)
335 break;
336
ed00aabd 337 submit_bio_noacct(bio);
df2cb6da
KO
338 }
339}
340
341static void punt_bios_to_rescuer(struct bio_set *bs)
342{
343 struct bio_list punt, nopunt;
344 struct bio *bio;
345
47e0fb46
N
346 if (WARN_ON_ONCE(!bs->rescue_workqueue))
347 return;
df2cb6da
KO
348 /*
349 * In order to guarantee forward progress we must punt only bios that
350 * were allocated from this bio_set; otherwise, if there was a bio on
351 * there for a stacking driver higher up in the stack, processing it
352 * could require allocating bios from this bio_set, and doing that from
353 * our own rescuer would be bad.
354 *
355 * Since bio lists are singly linked, pop them all instead of trying to
356 * remove from the middle of the list:
357 */
358
359 bio_list_init(&punt);
360 bio_list_init(&nopunt);
361
f5fe1b51 362 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 363 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 364 current->bio_list[0] = nopunt;
df2cb6da 365
f5fe1b51
N
366 bio_list_init(&nopunt);
367 while ((bio = bio_list_pop(&current->bio_list[1])))
368 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
369 current->bio_list[1] = nopunt;
df2cb6da
KO
370
371 spin_lock(&bs->rescue_lock);
372 bio_list_merge(&bs->rescue_list, &punt);
373 spin_unlock(&bs->rescue_lock);
374
375 queue_work(bs->rescue_workqueue, &bs->rescue_work);
376}
377
1da177e4
LT
378/**
379 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 380 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 381 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 382 * @bs: the bio_set to allocate from.
1da177e4 383 *
3175199a 384 * Allocate a bio from the mempools in @bs.
3f86a82a 385 *
3175199a
CH
386 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
387 * allocate a bio. This is due to the mempool guarantees. To make this work,
388 * callers must never allocate more than 1 bio at a time from the general pool.
389 * Callers that need to allocate more than 1 bio must always submit the
390 * previously allocated bio for IO before attempting to allocate a new one.
391 * Failure to do so can cause deadlocks under memory pressure.
3f86a82a 392 *
3175199a
CH
393 * Note that when running under submit_bio_noacct() (i.e. any block driver),
394 * bios are not submitted until after you return - see the code in
395 * submit_bio_noacct() that converts recursion into iteration, to prevent
396 * stack overflows.
df2cb6da 397 *
3175199a
CH
398 * This would normally mean allocating multiple bios under submit_bio_noacct()
399 * would be susceptible to deadlocks, but we have
400 * deadlock avoidance code that resubmits any blocked bios from a rescuer
401 * thread.
df2cb6da 402 *
3175199a
CH
403 * However, we do not guarantee forward progress for allocations from other
404 * mempools. Doing multiple allocations from the same mempool under
405 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
406 * for per bio allocations.
df2cb6da 407 *
3175199a 408 * Returns: Pointer to new bio on success, NULL on failure.
3f86a82a 409 */
0f2e6ab8 410struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
7a88fa19 411 struct bio_set *bs)
1da177e4 412{
df2cb6da 413 gfp_t saved_gfp = gfp_mask;
451a9ebf
TH
414 struct bio *bio;
415 void *p;
416
3175199a
CH
417 /* should not use nobvec bioset for nr_iovecs > 0 */
418 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
419 return NULL;
df2cb6da 420
3175199a
CH
421 /*
422 * submit_bio_noacct() converts recursion to iteration; this means if
423 * we're running beneath it, any bios we allocate and submit will not be
424 * submitted (and thus freed) until after we return.
425 *
426 * This exposes us to a potential deadlock if we allocate multiple bios
427 * from the same bio_set() while running underneath submit_bio_noacct().
428 * If we were to allocate multiple bios (say a stacking block driver
429 * that was splitting bios), we would deadlock if we exhausted the
430 * mempool's reserve.
431 *
432 * We solve this, and guarantee forward progress, with a rescuer
433 * workqueue per bio_set. If we go to allocate and there are bios on
434 * current->bio_list, we first try the allocation without
435 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
436 * blocking to the rescuer workqueue before we retry with the original
437 * gfp_flags.
438 */
439 if (current->bio_list &&
440 (!bio_list_empty(&current->bio_list[0]) ||
441 !bio_list_empty(&current->bio_list[1])) &&
442 bs->rescue_workqueue)
443 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
444
445 p = mempool_alloc(&bs->bio_pool, gfp_mask);
446 if (!p && gfp_mask != saved_gfp) {
447 punt_bios_to_rescuer(bs);
448 gfp_mask = saved_gfp;
8aa6ba2f 449 p = mempool_alloc(&bs->bio_pool, gfp_mask);
3f86a82a 450 }
451a9ebf
TH
451 if (unlikely(!p))
452 return NULL;
1da177e4 453
3175199a
CH
454 bio = p + bs->front_pad;
455 if (nr_iovecs > BIO_INLINE_VECS) {
ed996a52 456 unsigned long idx = 0;
3175199a 457 struct bio_vec *bvl = NULL;
ed996a52 458
8aa6ba2f 459 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
460 if (!bvl && gfp_mask != saved_gfp) {
461 punt_bios_to_rescuer(bs);
462 gfp_mask = saved_gfp;
3175199a
CH
463 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx,
464 &bs->bvec_pool);
df2cb6da
KO
465 }
466
34053979
IM
467 if (unlikely(!bvl))
468 goto err_free;
a38352e0 469
3175199a 470 bio_init(bio, bvl, bvec_nr_vecs(idx));
8358c28a 471 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a 472 } else if (nr_iovecs) {
3175199a
CH
473 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
474 } else {
475 bio_init(bio, NULL, 0);
1da177e4 476 }
3f86a82a
KO
477
478 bio->bi_pool = bs;
1da177e4 479 return bio;
34053979
IM
480
481err_free:
8aa6ba2f 482 mempool_free(p, &bs->bio_pool);
34053979 483 return NULL;
1da177e4 484}
a112a71d 485EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 486
3175199a
CH
487/**
488 * bio_kmalloc - kmalloc a bio for I/O
489 * @gfp_mask: the GFP_* mask given to the slab allocator
490 * @nr_iovecs: number of iovecs to pre-allocate
491 *
492 * Use kmalloc to allocate and initialize a bio.
493 *
494 * Returns: Pointer to new bio on success, NULL on failure.
495 */
0f2e6ab8 496struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
3175199a
CH
497{
498 struct bio *bio;
499
500 if (nr_iovecs > UIO_MAXIOV)
501 return NULL;
502
503 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
504 if (unlikely(!bio))
505 return NULL;
506 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
507 bio->bi_pool = NULL;
508 return bio;
509}
510EXPORT_SYMBOL(bio_kmalloc);
511
38a72dac 512void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
513{
514 unsigned long flags;
7988613b
KO
515 struct bio_vec bv;
516 struct bvec_iter iter;
1da177e4 517
38a72dac 518 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
519 char *data = bvec_kmap_irq(&bv, &flags);
520 memset(data, 0, bv.bv_len);
521 flush_dcache_page(bv.bv_page);
1da177e4
LT
522 bvec_kunmap_irq(data, &flags);
523 }
524}
38a72dac 525EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4 526
83c9c547
ML
527/**
528 * bio_truncate - truncate the bio to small size of @new_size
529 * @bio: the bio to be truncated
530 * @new_size: new size for truncating the bio
531 *
532 * Description:
533 * Truncate the bio to new size of @new_size. If bio_op(bio) is
534 * REQ_OP_READ, zero the truncated part. This function should only
535 * be used for handling corner cases, such as bio eod.
536 */
85a8ce62
ML
537void bio_truncate(struct bio *bio, unsigned new_size)
538{
539 struct bio_vec bv;
540 struct bvec_iter iter;
541 unsigned int done = 0;
542 bool truncated = false;
543
544 if (new_size >= bio->bi_iter.bi_size)
545 return;
546
83c9c547 547 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
548 goto exit;
549
550 bio_for_each_segment(bv, bio, iter) {
551 if (done + bv.bv_len > new_size) {
552 unsigned offset;
553
554 if (!truncated)
555 offset = new_size - done;
556 else
557 offset = 0;
558 zero_user(bv.bv_page, offset, bv.bv_len - offset);
559 truncated = true;
560 }
561 done += bv.bv_len;
562 }
563
564 exit:
565 /*
566 * Don't touch bvec table here and make it really immutable, since
567 * fs bio user has to retrieve all pages via bio_for_each_segment_all
568 * in its .end_bio() callback.
569 *
570 * It is enough to truncate bio by updating .bi_size since we can make
571 * correct bvec with the updated .bi_size for drivers.
572 */
573 bio->bi_iter.bi_size = new_size;
574}
575
29125ed6
CH
576/**
577 * guard_bio_eod - truncate a BIO to fit the block device
578 * @bio: bio to truncate
579 *
580 * This allows us to do IO even on the odd last sectors of a device, even if the
581 * block size is some multiple of the physical sector size.
582 *
583 * We'll just truncate the bio to the size of the device, and clear the end of
584 * the buffer head manually. Truly out-of-range accesses will turn into actual
585 * I/O errors, this only handles the "we need to be able to do I/O at the final
586 * sector" case.
587 */
588void guard_bio_eod(struct bio *bio)
589{
309dca30 590 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
591
592 if (!maxsector)
593 return;
594
595 /*
596 * If the *whole* IO is past the end of the device,
597 * let it through, and the IO layer will turn it into
598 * an EIO.
599 */
600 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
601 return;
602
603 maxsector -= bio->bi_iter.bi_sector;
604 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
605 return;
606
607 bio_truncate(bio, maxsector << 9);
608}
609
1da177e4
LT
610/**
611 * bio_put - release a reference to a bio
612 * @bio: bio to release reference to
613 *
614 * Description:
615 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 616 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
617 **/
618void bio_put(struct bio *bio)
619{
dac56212 620 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 621 bio_free(bio);
dac56212
JA
622 else {
623 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
624
625 /*
626 * last put frees it
627 */
628 if (atomic_dec_and_test(&bio->__bi_cnt))
629 bio_free(bio);
630 }
1da177e4 631}
a112a71d 632EXPORT_SYMBOL(bio_put);
1da177e4 633
59d276fe
KO
634/**
635 * __bio_clone_fast - clone a bio that shares the original bio's biovec
636 * @bio: destination bio
637 * @bio_src: bio to clone
638 *
639 * Clone a &bio. Caller will own the returned bio, but not
640 * the actual data it points to. Reference count of returned
641 * bio will be one.
642 *
643 * Caller must ensure that @bio_src is not freed before @bio.
644 */
645void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
646{
ed996a52 647 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
648
649 /*
309dca30 650 * most users will be overriding ->bi_bdev with a new target,
59d276fe
KO
651 * so we don't set nor calculate new physical/hw segment counts here
652 */
309dca30 653 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 654 bio_set_flag(bio, BIO_CLONED);
111be883
SL
655 if (bio_flagged(bio_src, BIO_THROTTLED))
656 bio_set_flag(bio, BIO_THROTTLED);
46bbf653
CH
657 if (bio_flagged(bio_src, BIO_REMAPPED))
658 bio_set_flag(bio, BIO_REMAPPED);
1eff9d32 659 bio->bi_opf = bio_src->bi_opf;
ca474b73 660 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 661 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
662 bio->bi_iter = bio_src->bi_iter;
663 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 664
db6638d7 665 bio_clone_blkg_association(bio, bio_src);
e439bedf 666 blkcg_bio_issue_init(bio);
59d276fe
KO
667}
668EXPORT_SYMBOL(__bio_clone_fast);
669
670/**
671 * bio_clone_fast - clone a bio that shares the original bio's biovec
672 * @bio: bio to clone
673 * @gfp_mask: allocation priority
674 * @bs: bio_set to allocate from
675 *
676 * Like __bio_clone_fast, only also allocates the returned bio
677 */
678struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
679{
680 struct bio *b;
681
682 b = bio_alloc_bioset(gfp_mask, 0, bs);
683 if (!b)
684 return NULL;
685
686 __bio_clone_fast(b, bio);
687
07560151
EB
688 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
689 goto err_put;
a892c8d5 690
07560151
EB
691 if (bio_integrity(bio) &&
692 bio_integrity_clone(b, bio, gfp_mask) < 0)
693 goto err_put;
59d276fe
KO
694
695 return b;
07560151
EB
696
697err_put:
698 bio_put(b);
699 return NULL;
59d276fe
KO
700}
701EXPORT_SYMBOL(bio_clone_fast);
702
5cbd28e3
CH
703const char *bio_devname(struct bio *bio, char *buf)
704{
309dca30 705 return bdevname(bio->bi_bdev, buf);
5cbd28e3
CH
706}
707EXPORT_SYMBOL(bio_devname);
708
5919482e
ML
709static inline bool page_is_mergeable(const struct bio_vec *bv,
710 struct page *page, unsigned int len, unsigned int off,
ff896738 711 bool *same_page)
5919482e 712{
d8166519
MWO
713 size_t bv_end = bv->bv_offset + bv->bv_len;
714 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
715 phys_addr_t page_addr = page_to_phys(page);
716
717 if (vec_end_addr + 1 != page_addr + off)
718 return false;
719 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
720 return false;
52d52d1c 721
ff896738 722 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
d8166519
MWO
723 if (*same_page)
724 return true;
725 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
5919482e
ML
726}
727
e4581105
CH
728/*
729 * Try to merge a page into a segment, while obeying the hardware segment
730 * size limit. This is not for normal read/write bios, but for passthrough
731 * or Zone Append operations that we can't split.
732 */
733static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
734 struct page *page, unsigned len,
735 unsigned offset, bool *same_page)
489fbbcb 736{
384209cd 737 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
738 unsigned long mask = queue_segment_boundary(q);
739 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
740 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
741
742 if ((addr1 | mask) != (addr2 | mask))
743 return false;
489fbbcb
ML
744 if (bv->bv_len + len > queue_max_segment_size(q))
745 return false;
384209cd 746 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
747}
748
1da177e4 749/**
e4581105
CH
750 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
751 * @q: the target queue
752 * @bio: destination bio
753 * @page: page to add
754 * @len: vec entry length
755 * @offset: vec entry offset
756 * @max_sectors: maximum number of sectors that can be added
757 * @same_page: return if the segment has been merged inside the same page
c66a14d0 758 *
e4581105
CH
759 * Add a page to a bio while respecting the hardware max_sectors, max_segment
760 * and gap limitations.
1da177e4 761 */
e4581105 762int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 763 struct page *page, unsigned int len, unsigned int offset,
e4581105 764 unsigned int max_sectors, bool *same_page)
1da177e4 765{
1da177e4
LT
766 struct bio_vec *bvec;
767
e4581105 768 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
769 return 0;
770
e4581105 771 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
772 return 0;
773
80cfd548 774 if (bio->bi_vcnt > 0) {
e4581105 775 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 776 return len;
320ea869
CH
777
778 /*
779 * If the queue doesn't support SG gaps and adding this segment
780 * would create a gap, disallow it.
781 */
384209cd 782 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
783 if (bvec_gap_to_prev(q, bvec, offset))
784 return 0;
80cfd548
JA
785 }
786
79d08f89 787 if (bio_full(bio, len))
1da177e4
LT
788 return 0;
789
14ccb66b 790 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
791 return 0;
792
fcbf6a08
ML
793 bvec = &bio->bi_io_vec[bio->bi_vcnt];
794 bvec->bv_page = page;
795 bvec->bv_len = len;
796 bvec->bv_offset = offset;
797 bio->bi_vcnt++;
dcdca753 798 bio->bi_iter.bi_size += len;
1da177e4
LT
799 return len;
800}
19047087 801
e4581105
CH
802/**
803 * bio_add_pc_page - attempt to add page to passthrough bio
804 * @q: the target queue
805 * @bio: destination bio
806 * @page: page to add
807 * @len: vec entry length
808 * @offset: vec entry offset
809 *
810 * Attempt to add a page to the bio_vec maplist. This can fail for a
811 * number of reasons, such as the bio being full or target block device
812 * limitations. The target block device must allow bio's up to PAGE_SIZE,
813 * so it is always possible to add a single page to an empty bio.
814 *
815 * This should only be used by passthrough bios.
816 */
19047087
ML
817int bio_add_pc_page(struct request_queue *q, struct bio *bio,
818 struct page *page, unsigned int len, unsigned int offset)
819{
d1916c86 820 bool same_page = false;
e4581105
CH
821 return bio_add_hw_page(q, bio, page, len, offset,
822 queue_max_hw_sectors(q), &same_page);
19047087 823}
a112a71d 824EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 825
1da177e4 826/**
0aa69fd3
CH
827 * __bio_try_merge_page - try appending data to an existing bvec.
828 * @bio: destination bio
551879a4 829 * @page: start page to add
0aa69fd3 830 * @len: length of the data to add
551879a4 831 * @off: offset of the data relative to @page
ff896738 832 * @same_page: return if the segment has been merged inside the same page
1da177e4 833 *
0aa69fd3 834 * Try to add the data at @page + @off to the last bvec of @bio. This is a
3cf14889 835 * useful optimisation for file systems with a block size smaller than the
0aa69fd3
CH
836 * page size.
837 *
551879a4
ML
838 * Warn if (@len, @off) crosses pages in case that @same_page is true.
839 *
0aa69fd3 840 * Return %true on success or %false on failure.
1da177e4 841 */
0aa69fd3 842bool __bio_try_merge_page(struct bio *bio, struct page *page,
ff896738 843 unsigned int len, unsigned int off, bool *same_page)
1da177e4 844{
c66a14d0 845 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 846 return false;
762380ad 847
cc90bc68 848 if (bio->bi_vcnt > 0) {
0aa69fd3 849 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
850
851 if (page_is_mergeable(bv, page, len, off, same_page)) {
2cd896a5
RH
852 if (bio->bi_iter.bi_size > UINT_MAX - len) {
853 *same_page = false;
cc90bc68 854 return false;
2cd896a5 855 }
5919482e
ML
856 bv->bv_len += len;
857 bio->bi_iter.bi_size += len;
858 return true;
859 }
c66a14d0 860 }
0aa69fd3
CH
861 return false;
862}
863EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 864
0aa69fd3 865/**
551879a4 866 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 867 * @bio: destination bio
551879a4
ML
868 * @page: start page to add
869 * @len: length of the data to add, may cross pages
870 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
871 *
872 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
873 * that @bio has space for another bvec.
874 */
875void __bio_add_page(struct bio *bio, struct page *page,
876 unsigned int len, unsigned int off)
877{
878 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 879
0aa69fd3 880 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 881 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
882
883 bv->bv_page = page;
884 bv->bv_offset = off;
885 bv->bv_len = len;
c66a14d0 886
c66a14d0 887 bio->bi_iter.bi_size += len;
0aa69fd3 888 bio->bi_vcnt++;
b8e24a93
JW
889
890 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
891 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
892}
893EXPORT_SYMBOL_GPL(__bio_add_page);
894
895/**
551879a4 896 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 897 * @bio: destination bio
551879a4
ML
898 * @page: start page to add
899 * @len: vec entry length, may cross pages
900 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 901 *
551879a4 902 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
903 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
904 */
905int bio_add_page(struct bio *bio, struct page *page,
906 unsigned int len, unsigned int offset)
907{
ff896738
CH
908 bool same_page = false;
909
910 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 911 if (bio_full(bio, len))
0aa69fd3
CH
912 return 0;
913 __bio_add_page(bio, page, len, offset);
914 }
c66a14d0 915 return len;
1da177e4 916}
a112a71d 917EXPORT_SYMBOL(bio_add_page);
1da177e4 918
d241a95f 919void bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
920{
921 struct bvec_iter_all iter_all;
922 struct bio_vec *bvec;
7321ecbf 923
b2d0d991
CH
924 if (bio_flagged(bio, BIO_NO_PAGE_REF))
925 return;
926
d241a95f
CH
927 bio_for_each_segment_all(bvec, bio, iter_all) {
928 if (mark_dirty && !PageCompound(bvec->bv_page))
929 set_page_dirty_lock(bvec->bv_page);
7321ecbf 930 put_page(bvec->bv_page);
d241a95f 931 }
7321ecbf 932}
29b2a3aa 933EXPORT_SYMBOL_GPL(bio_release_pages);
7321ecbf 934
c42bca92 935static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
6d0c48ae 936{
c42bca92
PB
937 WARN_ON_ONCE(BVEC_POOL_IDX(bio) != 0);
938
939 bio->bi_vcnt = iter->nr_segs;
940 bio->bi_max_vecs = iter->nr_segs;
941 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
942 bio->bi_iter.bi_bvec_done = iter->iov_offset;
943 bio->bi_iter.bi_size = iter->count;
ed97ce5e 944 bio_set_flag(bio, BIO_NO_PAGE_REF);
c42bca92
PB
945
946 iov_iter_advance(iter, iter->count);
a10584c3 947 return 0;
6d0c48ae
JA
948}
949
576ed913
CH
950#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
951
2cefe4db 952/**
17d51b10 953 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
954 * @bio: bio to add pages to
955 * @iter: iov iterator describing the region to be mapped
956 *
17d51b10 957 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 958 * pages will have to be released using put_page() when done.
17d51b10 959 * For multi-segment *iter, this function only adds pages from the
3cf14889 960 * next non-empty segment of the iov iterator.
2cefe4db 961 */
17d51b10 962static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 963{
576ed913
CH
964 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
965 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
966 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
967 struct page **pages = (struct page **)bv;
45691804 968 bool same_page = false;
576ed913
CH
969 ssize_t size, left;
970 unsigned len, i;
b403ea24 971 size_t offset;
576ed913
CH
972
973 /*
974 * Move page array up in the allocated memory for the bio vecs as far as
975 * possible so that we can start filling biovecs from the beginning
976 * without overwriting the temporary page array.
977 */
978 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
979 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
980
981 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
982 if (unlikely(size <= 0))
983 return size ? size : -EFAULT;
2cefe4db 984
576ed913
CH
985 for (left = size, i = 0; left > 0; left -= len, i++) {
986 struct page *page = pages[i];
2cefe4db 987
576ed913 988 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
989
990 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
991 if (same_page)
992 put_page(page);
993 } else {
79d08f89 994 if (WARN_ON_ONCE(bio_full(bio, len)))
45691804
CH
995 return -EINVAL;
996 __bio_add_page(bio, page, len, offset);
997 }
576ed913 998 offset = 0;
2cefe4db
KO
999 }
1000
2cefe4db
KO
1001 iov_iter_advance(iter, size);
1002 return 0;
1003}
17d51b10 1004
0512a75b
KB
1005static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1006{
1007 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1008 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
309dca30 1009 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
0512a75b
KB
1010 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1011 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1012 struct page **pages = (struct page **)bv;
1013 ssize_t size, left;
1014 unsigned len, i;
1015 size_t offset;
4977d121 1016 int ret = 0;
0512a75b
KB
1017
1018 if (WARN_ON_ONCE(!max_append_sectors))
1019 return 0;
1020
1021 /*
1022 * Move page array up in the allocated memory for the bio vecs as far as
1023 * possible so that we can start filling biovecs from the beginning
1024 * without overwriting the temporary page array.
1025 */
1026 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1027 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1028
1029 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1030 if (unlikely(size <= 0))
1031 return size ? size : -EFAULT;
1032
1033 for (left = size, i = 0; left > 0; left -= len, i++) {
1034 struct page *page = pages[i];
1035 bool same_page = false;
1036
1037 len = min_t(size_t, PAGE_SIZE - offset, left);
1038 if (bio_add_hw_page(q, bio, page, len, offset,
4977d121
NA
1039 max_append_sectors, &same_page) != len) {
1040 ret = -EINVAL;
1041 break;
1042 }
0512a75b
KB
1043 if (same_page)
1044 put_page(page);
1045 offset = 0;
1046 }
1047
4977d121
NA
1048 iov_iter_advance(iter, size - left);
1049 return ret;
0512a75b
KB
1050}
1051
17d51b10 1052/**
6d0c48ae 1053 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1054 * @bio: bio to add pages to
6d0c48ae
JA
1055 * @iter: iov iterator describing the region to be added
1056 *
1057 * This takes either an iterator pointing to user memory, or one pointing to
1058 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1059 * map them into the kernel. On IO completion, the caller should put those
c42bca92
PB
1060 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1061 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1062 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1063 * completed by a call to ->ki_complete() or returns with an error other than
1064 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1065 * on IO completion. If it isn't, then pages should be released.
17d51b10 1066 *
17d51b10 1067 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1068 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1069 * MM encounters an error pinning the requested pages, it stops. Error
1070 * is returned only if 0 pages could be pinned.
0cf41e5e
PB
1071 *
1072 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1073 * responsible for setting BIO_WORKINGSET if necessary.
17d51b10
MW
1074 */
1075int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1076{
c42bca92 1077 int ret = 0;
17d51b10 1078
c42bca92
PB
1079 if (iov_iter_is_bvec(iter)) {
1080 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1081 return -EINVAL;
ed97ce5e 1082 return bio_iov_bvec_set(bio, iter);
c42bca92 1083 }
0cf41e5e 1084
86004515
CH
1085 do {
1086 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1087 ret = __bio_iov_append_get_pages(bio, iter);
1088 else
1089 ret = __bio_iov_iter_get_pages(bio, iter);
1090 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1091
0cf41e5e
PB
1092 /* don't account direct I/O as memory stall */
1093 bio_clear_flag(bio, BIO_WORKINGSET);
14eacf12 1094 return bio->bi_vcnt ? 0 : ret;
17d51b10 1095}
29b2a3aa 1096EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1097
4246a0b6 1098static void submit_bio_wait_endio(struct bio *bio)
9e882242 1099{
65e53aab 1100 complete(bio->bi_private);
9e882242
KO
1101}
1102
1103/**
1104 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1105 * @bio: The &struct bio which describes the I/O
1106 *
1107 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1108 * bio_endio() on failure.
3d289d68
JK
1109 *
1110 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1111 * result in bio reference to be consumed. The caller must drop the reference
1112 * on his own.
9e882242 1113 */
4e49ea4a 1114int submit_bio_wait(struct bio *bio)
9e882242 1115{
309dca30
CH
1116 DECLARE_COMPLETION_ONSTACK_MAP(done,
1117 bio->bi_bdev->bd_disk->lockdep_map);
de6a78b6 1118 unsigned long hang_check;
9e882242 1119
65e53aab 1120 bio->bi_private = &done;
9e882242 1121 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1122 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1123 submit_bio(bio);
de6a78b6
ML
1124
1125 /* Prevent hang_check timer from firing at us during very long I/O */
1126 hang_check = sysctl_hung_task_timeout_secs;
1127 if (hang_check)
1128 while (!wait_for_completion_io_timeout(&done,
1129 hang_check * (HZ/2)))
1130 ;
1131 else
1132 wait_for_completion_io(&done);
9e882242 1133
65e53aab 1134 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1135}
1136EXPORT_SYMBOL(submit_bio_wait);
1137
054bdf64
KO
1138/**
1139 * bio_advance - increment/complete a bio by some number of bytes
1140 * @bio: bio to advance
1141 * @bytes: number of bytes to complete
1142 *
1143 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1144 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1145 * be updated on the last bvec as well.
1146 *
1147 * @bio will then represent the remaining, uncompleted portion of the io.
1148 */
1149void bio_advance(struct bio *bio, unsigned bytes)
1150{
1151 if (bio_integrity(bio))
1152 bio_integrity_advance(bio, bytes);
1153
a892c8d5 1154 bio_crypt_advance(bio, bytes);
4550dd6c 1155 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1156}
1157EXPORT_SYMBOL(bio_advance);
1158
45db54d5
KO
1159void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1160 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1161{
1cb9dda4 1162 struct bio_vec src_bv, dst_bv;
16ac3d63 1163 void *src_p, *dst_p;
1cb9dda4 1164 unsigned bytes;
16ac3d63 1165
45db54d5
KO
1166 while (src_iter->bi_size && dst_iter->bi_size) {
1167 src_bv = bio_iter_iovec(src, *src_iter);
1168 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1169
1170 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1171
1cb9dda4
KO
1172 src_p = kmap_atomic(src_bv.bv_page);
1173 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1174
1cb9dda4
KO
1175 memcpy(dst_p + dst_bv.bv_offset,
1176 src_p + src_bv.bv_offset,
16ac3d63
KO
1177 bytes);
1178
1179 kunmap_atomic(dst_p);
1180 kunmap_atomic(src_p);
1181
6e6e811d
KO
1182 flush_dcache_page(dst_bv.bv_page);
1183
22b56c29
PB
1184 bio_advance_iter_single(src, src_iter, bytes);
1185 bio_advance_iter_single(dst, dst_iter, bytes);
16ac3d63
KO
1186 }
1187}
38a72dac
KO
1188EXPORT_SYMBOL(bio_copy_data_iter);
1189
1190/**
45db54d5
KO
1191 * bio_copy_data - copy contents of data buffers from one bio to another
1192 * @src: source bio
1193 * @dst: destination bio
38a72dac
KO
1194 *
1195 * Stops when it reaches the end of either @src or @dst - that is, copies
1196 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1197 */
1198void bio_copy_data(struct bio *dst, struct bio *src)
1199{
45db54d5
KO
1200 struct bvec_iter src_iter = src->bi_iter;
1201 struct bvec_iter dst_iter = dst->bi_iter;
1202
1203 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1204}
16ac3d63
KO
1205EXPORT_SYMBOL(bio_copy_data);
1206
45db54d5
KO
1207/**
1208 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1209 * another
1210 * @src: source bio list
1211 * @dst: destination bio list
1212 *
1213 * Stops when it reaches the end of either the @src list or @dst list - that is,
1214 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1215 * bios).
1216 */
1217void bio_list_copy_data(struct bio *dst, struct bio *src)
1218{
1219 struct bvec_iter src_iter = src->bi_iter;
1220 struct bvec_iter dst_iter = dst->bi_iter;
1221
1222 while (1) {
1223 if (!src_iter.bi_size) {
1224 src = src->bi_next;
1225 if (!src)
1226 break;
1227
1228 src_iter = src->bi_iter;
1229 }
1230
1231 if (!dst_iter.bi_size) {
1232 dst = dst->bi_next;
1233 if (!dst)
1234 break;
1235
1236 dst_iter = dst->bi_iter;
1237 }
1238
1239 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1240 }
1241}
1242EXPORT_SYMBOL(bio_list_copy_data);
1243
491221f8 1244void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1245{
1246 struct bio_vec *bvec;
6dc4f100 1247 struct bvec_iter_all iter_all;
1dfa0f68 1248
2b070cfe 1249 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1250 __free_page(bvec->bv_page);
1251}
491221f8 1252EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1253
1da177e4
LT
1254/*
1255 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1256 * for performing direct-IO in BIOs.
1257 *
1258 * The problem is that we cannot run set_page_dirty() from interrupt context
1259 * because the required locks are not interrupt-safe. So what we can do is to
1260 * mark the pages dirty _before_ performing IO. And in interrupt context,
1261 * check that the pages are still dirty. If so, fine. If not, redirty them
1262 * in process context.
1263 *
1264 * We special-case compound pages here: normally this means reads into hugetlb
1265 * pages. The logic in here doesn't really work right for compound pages
1266 * because the VM does not uniformly chase down the head page in all cases.
1267 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1268 * handle them at all. So we skip compound pages here at an early stage.
1269 *
1270 * Note that this code is very hard to test under normal circumstances because
1271 * direct-io pins the pages with get_user_pages(). This makes
1272 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1273 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1274 * pagecache.
1275 *
1276 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1277 * deferred bio dirtying paths.
1278 */
1279
1280/*
1281 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1282 */
1283void bio_set_pages_dirty(struct bio *bio)
1284{
cb34e057 1285 struct bio_vec *bvec;
6dc4f100 1286 struct bvec_iter_all iter_all;
1da177e4 1287
2b070cfe 1288 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1289 if (!PageCompound(bvec->bv_page))
1290 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1291 }
1292}
1293
1da177e4
LT
1294/*
1295 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1296 * If they are, then fine. If, however, some pages are clean then they must
1297 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1298 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1299 *
1300 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1301 * here on. It will run one put_page() against each page and will run one
1302 * bio_put() against the BIO.
1da177e4
LT
1303 */
1304
65f27f38 1305static void bio_dirty_fn(struct work_struct *work);
1da177e4 1306
65f27f38 1307static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1308static DEFINE_SPINLOCK(bio_dirty_lock);
1309static struct bio *bio_dirty_list;
1310
1311/*
1312 * This runs in process context
1313 */
65f27f38 1314static void bio_dirty_fn(struct work_struct *work)
1da177e4 1315{
24d5493f 1316 struct bio *bio, *next;
1da177e4 1317
24d5493f
CH
1318 spin_lock_irq(&bio_dirty_lock);
1319 next = bio_dirty_list;
1da177e4 1320 bio_dirty_list = NULL;
24d5493f 1321 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1322
24d5493f
CH
1323 while ((bio = next) != NULL) {
1324 next = bio->bi_private;
1da177e4 1325
d241a95f 1326 bio_release_pages(bio, true);
1da177e4 1327 bio_put(bio);
1da177e4
LT
1328 }
1329}
1330
1331void bio_check_pages_dirty(struct bio *bio)
1332{
cb34e057 1333 struct bio_vec *bvec;
24d5493f 1334 unsigned long flags;
6dc4f100 1335 struct bvec_iter_all iter_all;
1da177e4 1336
2b070cfe 1337 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1338 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1339 goto defer;
1da177e4
LT
1340 }
1341
d241a95f 1342 bio_release_pages(bio, false);
24d5493f
CH
1343 bio_put(bio);
1344 return;
1345defer:
1346 spin_lock_irqsave(&bio_dirty_lock, flags);
1347 bio->bi_private = bio_dirty_list;
1348 bio_dirty_list = bio;
1349 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1350 schedule_work(&bio_dirty_work);
1da177e4
LT
1351}
1352
c4cf5261
JA
1353static inline bool bio_remaining_done(struct bio *bio)
1354{
1355 /*
1356 * If we're not chaining, then ->__bi_remaining is always 1 and
1357 * we always end io on the first invocation.
1358 */
1359 if (!bio_flagged(bio, BIO_CHAIN))
1360 return true;
1361
1362 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1363
326e1dbb 1364 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1365 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1366 return true;
326e1dbb 1367 }
c4cf5261
JA
1368
1369 return false;
1370}
1371
1da177e4
LT
1372/**
1373 * bio_endio - end I/O on a bio
1374 * @bio: bio
1da177e4
LT
1375 *
1376 * Description:
4246a0b6
CH
1377 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1378 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1379 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1380 *
1381 * bio_endio() can be called several times on a bio that has been chained
1382 * using bio_chain(). The ->bi_end_io() function will only be called the
1383 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1384 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1385 **/
4246a0b6 1386void bio_endio(struct bio *bio)
1da177e4 1387{
ba8c6967 1388again:
2b885517 1389 if (!bio_remaining_done(bio))
ba8c6967 1390 return;
7c20f116
CH
1391 if (!bio_integrity_endio(bio))
1392 return;
1da177e4 1393
309dca30
CH
1394 if (bio->bi_bdev)
1395 rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
67b42d0b 1396
ba8c6967
CH
1397 /*
1398 * Need to have a real endio function for chained bios, otherwise
1399 * various corner cases will break (like stacking block devices that
1400 * save/restore bi_end_io) - however, we want to avoid unbounded
1401 * recursion and blowing the stack. Tail call optimization would
1402 * handle this, but compiling with frame pointers also disables
1403 * gcc's sibling call optimization.
1404 */
1405 if (bio->bi_end_io == bio_chain_endio) {
1406 bio = __bio_chain_endio(bio);
1407 goto again;
196d38bc 1408 }
ba8c6967 1409
309dca30
CH
1410 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1411 trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
fbbaf700
N
1412 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1413 }
1414
9e234eea 1415 blk_throtl_bio_endio(bio);
b222dd2f
SL
1416 /* release cgroup info */
1417 bio_uninit(bio);
ba8c6967
CH
1418 if (bio->bi_end_io)
1419 bio->bi_end_io(bio);
1da177e4 1420}
a112a71d 1421EXPORT_SYMBOL(bio_endio);
1da177e4 1422
20d0189b
KO
1423/**
1424 * bio_split - split a bio
1425 * @bio: bio to split
1426 * @sectors: number of sectors to split from the front of @bio
1427 * @gfp: gfp mask
1428 * @bs: bio set to allocate from
1429 *
1430 * Allocates and returns a new bio which represents @sectors from the start of
1431 * @bio, and updates @bio to represent the remaining sectors.
1432 *
f3f5da62 1433 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1434 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1435 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1436 */
1437struct bio *bio_split(struct bio *bio, int sectors,
1438 gfp_t gfp, struct bio_set *bs)
1439{
f341a4d3 1440 struct bio *split;
20d0189b
KO
1441
1442 BUG_ON(sectors <= 0);
1443 BUG_ON(sectors >= bio_sectors(bio));
1444
0512a75b
KB
1445 /* Zone append commands cannot be split */
1446 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1447 return NULL;
1448
f9d03f96 1449 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1450 if (!split)
1451 return NULL;
1452
1453 split->bi_iter.bi_size = sectors << 9;
1454
1455 if (bio_integrity(split))
fbd08e76 1456 bio_integrity_trim(split);
20d0189b
KO
1457
1458 bio_advance(bio, split->bi_iter.bi_size);
1459
fbbaf700 1460 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1461 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1462
20d0189b
KO
1463 return split;
1464}
1465EXPORT_SYMBOL(bio_split);
1466
6678d83f
KO
1467/**
1468 * bio_trim - trim a bio
1469 * @bio: bio to trim
1470 * @offset: number of sectors to trim from the front of @bio
1471 * @size: size we want to trim @bio to, in sectors
1472 */
1473void bio_trim(struct bio *bio, int offset, int size)
1474{
1475 /* 'bio' is a cloned bio which we need to trim to match
1476 * the given offset and size.
6678d83f 1477 */
6678d83f
KO
1478
1479 size <<= 9;
4f024f37 1480 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1481 return;
1482
6678d83f 1483 bio_advance(bio, offset << 9);
4f024f37 1484 bio->bi_iter.bi_size = size;
376a78ab
DM
1485
1486 if (bio_integrity(bio))
fbd08e76 1487 bio_integrity_trim(bio);
376a78ab 1488
6678d83f
KO
1489}
1490EXPORT_SYMBOL_GPL(bio_trim);
1491
1da177e4
LT
1492/*
1493 * create memory pools for biovec's in a bio_set.
1494 * use the global biovec slabs created for general use.
1495 */
8aa6ba2f 1496int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1497{
ed996a52 1498 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1499
8aa6ba2f 1500 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1501}
1502
917a38c7
KO
1503/*
1504 * bioset_exit - exit a bioset initialized with bioset_init()
1505 *
1506 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1507 * kzalloc()).
1508 */
1509void bioset_exit(struct bio_set *bs)
1da177e4 1510{
df2cb6da
KO
1511 if (bs->rescue_workqueue)
1512 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1513 bs->rescue_workqueue = NULL;
df2cb6da 1514
8aa6ba2f
KO
1515 mempool_exit(&bs->bio_pool);
1516 mempool_exit(&bs->bvec_pool);
9f060e22 1517
7878cba9 1518 bioset_integrity_free(bs);
917a38c7
KO
1519 if (bs->bio_slab)
1520 bio_put_slab(bs);
1521 bs->bio_slab = NULL;
1522}
1523EXPORT_SYMBOL(bioset_exit);
1da177e4 1524
917a38c7
KO
1525/**
1526 * bioset_init - Initialize a bio_set
dad08527 1527 * @bs: pool to initialize
917a38c7
KO
1528 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1529 * @front_pad: Number of bytes to allocate in front of the returned bio
1530 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1531 * and %BIOSET_NEED_RESCUER
1532 *
dad08527
KO
1533 * Description:
1534 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1535 * to ask for a number of bytes to be allocated in front of the bio.
1536 * Front pad allocation is useful for embedding the bio inside
1537 * another structure, to avoid allocating extra data to go with the bio.
1538 * Note that the bio must be embedded at the END of that structure always,
1539 * or things will break badly.
1540 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1541 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1542 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1543 * dispatch queued requests when the mempool runs out of space.
1544 *
917a38c7
KO
1545 */
1546int bioset_init(struct bio_set *bs,
1547 unsigned int pool_size,
1548 unsigned int front_pad,
1549 int flags)
1550{
917a38c7 1551 bs->front_pad = front_pad;
9f180e31
ML
1552 if (flags & BIOSET_NEED_BVECS)
1553 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1554 else
1555 bs->back_pad = 0;
917a38c7
KO
1556
1557 spin_lock_init(&bs->rescue_lock);
1558 bio_list_init(&bs->rescue_list);
1559 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1560
49d1ec85 1561 bs->bio_slab = bio_find_or_create_slab(bs);
917a38c7
KO
1562 if (!bs->bio_slab)
1563 return -ENOMEM;
1564
1565 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1566 goto bad;
1567
1568 if ((flags & BIOSET_NEED_BVECS) &&
1569 biovec_init_pool(&bs->bvec_pool, pool_size))
1570 goto bad;
1571
1572 if (!(flags & BIOSET_NEED_RESCUER))
1573 return 0;
1574
1575 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1576 if (!bs->rescue_workqueue)
1577 goto bad;
1578
1579 return 0;
1580bad:
1581 bioset_exit(bs);
1582 return -ENOMEM;
1583}
1584EXPORT_SYMBOL(bioset_init);
1585
28e89fd9
JA
1586/*
1587 * Initialize and setup a new bio_set, based on the settings from
1588 * another bio_set.
1589 */
1590int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1591{
1592 int flags;
1593
1594 flags = 0;
1595 if (src->bvec_pool.min_nr)
1596 flags |= BIOSET_NEED_BVECS;
1597 if (src->rescue_workqueue)
1598 flags |= BIOSET_NEED_RESCUER;
1599
1600 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1601}
1602EXPORT_SYMBOL(bioset_init_from_src);
1603
de76fd89 1604static int __init init_bio(void)
1da177e4
LT
1605{
1606 int i;
1607
2b24e6f6
JT
1608 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
1609
7878cba9 1610 bio_integrity_init();
de76fd89
CH
1611
1612 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1613 struct biovec_slab *bvs = bvec_slabs + i;
1614
1615 bvs->slab = kmem_cache_create(bvs->name,
1616 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1617 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1618 }
1da177e4 1619
f4f8154a 1620 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1621 panic("bio: can't allocate bios\n");
1622
f4f8154a 1623 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1624 panic("bio: can't create integrity pool\n");
1625
1da177e4
LT
1626 return 0;
1627}
1da177e4 1628subsys_initcall(init_bio);