nbd: fix max number of supported devs
[linux-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
1da177e4 20
55782138 21#include <trace/events/block.h>
9e234eea 22#include "blk.h"
67b42d0b 23#include "blk-rq-qos.h"
0bfc2455 24
392ddc32
JA
25/*
26 * Test patch to inline a certain number of bi_io_vec's inside the bio
27 * itself, to shrink a bio data allocation from two mempool calls to one
28 */
29#define BIO_INLINE_VECS 4
30
1da177e4
LT
31/*
32 * if you change this list, also change bvec_alloc or things will
33 * break badly! cannot be bigger than what you can fit into an
34 * unsigned short
35 */
bd5c4fac 36#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 37static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 38 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
39};
40#undef BV
41
1da177e4
LT
42/*
43 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
44 * IO code that does not need private memory pools.
45 */
f4f8154a 46struct bio_set fs_bio_set;
3f86a82a 47EXPORT_SYMBOL(fs_bio_set);
1da177e4 48
bb799ca0
JA
49/*
50 * Our slab pool management
51 */
52struct bio_slab {
53 struct kmem_cache *slab;
54 unsigned int slab_ref;
55 unsigned int slab_size;
56 char name[8];
57};
58static DEFINE_MUTEX(bio_slab_lock);
59static struct bio_slab *bio_slabs;
60static unsigned int bio_slab_nr, bio_slab_max;
61
62static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
63{
64 unsigned int sz = sizeof(struct bio) + extra_size;
65 struct kmem_cache *slab = NULL;
389d7b26 66 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 67 unsigned int new_bio_slab_max;
bb799ca0
JA
68 unsigned int i, entry = -1;
69
70 mutex_lock(&bio_slab_lock);
71
72 i = 0;
73 while (i < bio_slab_nr) {
f06f135d 74 bslab = &bio_slabs[i];
bb799ca0
JA
75
76 if (!bslab->slab && entry == -1)
77 entry = i;
78 else if (bslab->slab_size == sz) {
79 slab = bslab->slab;
80 bslab->slab_ref++;
81 break;
82 }
83 i++;
84 }
85
86 if (slab)
87 goto out_unlock;
88
89 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 90 new_bio_slab_max = bio_slab_max << 1;
389d7b26 91 new_bio_slabs = krealloc(bio_slabs,
386bc35a 92 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
93 GFP_KERNEL);
94 if (!new_bio_slabs)
bb799ca0 95 goto out_unlock;
386bc35a 96 bio_slab_max = new_bio_slab_max;
389d7b26 97 bio_slabs = new_bio_slabs;
bb799ca0
JA
98 }
99 if (entry == -1)
100 entry = bio_slab_nr++;
101
102 bslab = &bio_slabs[entry];
103
104 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
105 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
106 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
107 if (!slab)
108 goto out_unlock;
109
bb799ca0
JA
110 bslab->slab = slab;
111 bslab->slab_ref = 1;
112 bslab->slab_size = sz;
113out_unlock:
114 mutex_unlock(&bio_slab_lock);
115 return slab;
116}
117
118static void bio_put_slab(struct bio_set *bs)
119{
120 struct bio_slab *bslab = NULL;
121 unsigned int i;
122
123 mutex_lock(&bio_slab_lock);
124
125 for (i = 0; i < bio_slab_nr; i++) {
126 if (bs->bio_slab == bio_slabs[i].slab) {
127 bslab = &bio_slabs[i];
128 break;
129 }
130 }
131
132 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
133 goto out;
134
135 WARN_ON(!bslab->slab_ref);
136
137 if (--bslab->slab_ref)
138 goto out;
139
140 kmem_cache_destroy(bslab->slab);
141 bslab->slab = NULL;
142
143out:
144 mutex_unlock(&bio_slab_lock);
145}
146
7ba1ba12
MP
147unsigned int bvec_nr_vecs(unsigned short idx)
148{
d6c02a9b 149 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
150}
151
9f060e22 152void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 153{
ed996a52
CH
154 if (!idx)
155 return;
156 idx--;
157
158 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 159
ed996a52 160 if (idx == BVEC_POOL_MAX) {
9f060e22 161 mempool_free(bv, pool);
ed996a52 162 } else {
bb799ca0
JA
163 struct biovec_slab *bvs = bvec_slabs + idx;
164
165 kmem_cache_free(bvs->slab, bv);
166 }
167}
168
9f060e22
KO
169struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
170 mempool_t *pool)
1da177e4
LT
171{
172 struct bio_vec *bvl;
1da177e4 173
7ff9345f
JA
174 /*
175 * see comment near bvec_array define!
176 */
177 switch (nr) {
178 case 1:
179 *idx = 0;
180 break;
181 case 2 ... 4:
182 *idx = 1;
183 break;
184 case 5 ... 16:
185 *idx = 2;
186 break;
187 case 17 ... 64:
188 *idx = 3;
189 break;
190 case 65 ... 128:
191 *idx = 4;
192 break;
193 case 129 ... BIO_MAX_PAGES:
194 *idx = 5;
195 break;
196 default:
197 return NULL;
198 }
199
200 /*
201 * idx now points to the pool we want to allocate from. only the
202 * 1-vec entry pool is mempool backed.
203 */
ed996a52 204 if (*idx == BVEC_POOL_MAX) {
7ff9345f 205fallback:
9f060e22 206 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
207 } else {
208 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 209 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 210
0a0d96b0 211 /*
7ff9345f
JA
212 * Make this allocation restricted and don't dump info on
213 * allocation failures, since we'll fallback to the mempool
214 * in case of failure.
0a0d96b0 215 */
7ff9345f 216 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 217
0a0d96b0 218 /*
d0164adc 219 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 220 * is set, retry with the 1-entry mempool
0a0d96b0 221 */
7ff9345f 222 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 223 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 224 *idx = BVEC_POOL_MAX;
7ff9345f
JA
225 goto fallback;
226 }
227 }
228
ed996a52 229 (*idx)++;
1da177e4
LT
230 return bvl;
231}
232
9ae3b3f5 233void bio_uninit(struct bio *bio)
1da177e4 234{
6f70fb66 235 bio_disassociate_blkg(bio);
4254bba1 236}
9ae3b3f5 237EXPORT_SYMBOL(bio_uninit);
7ba1ba12 238
4254bba1
KO
239static void bio_free(struct bio *bio)
240{
241 struct bio_set *bs = bio->bi_pool;
242 void *p;
243
9ae3b3f5 244 bio_uninit(bio);
4254bba1
KO
245
246 if (bs) {
8aa6ba2f 247 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
248
249 /*
250 * If we have front padding, adjust the bio pointer before freeing
251 */
252 p = bio;
bb799ca0
JA
253 p -= bs->front_pad;
254
8aa6ba2f 255 mempool_free(p, &bs->bio_pool);
4254bba1
KO
256 } else {
257 /* Bio was allocated by bio_kmalloc() */
258 kfree(bio);
259 }
3676347a
PO
260}
261
9ae3b3f5
JA
262/*
263 * Users of this function have their own bio allocation. Subsequently,
264 * they must remember to pair any call to bio_init() with bio_uninit()
265 * when IO has completed, or when the bio is released.
266 */
3a83f467
ML
267void bio_init(struct bio *bio, struct bio_vec *table,
268 unsigned short max_vecs)
1da177e4 269{
2b94de55 270 memset(bio, 0, sizeof(*bio));
c4cf5261 271 atomic_set(&bio->__bi_remaining, 1);
dac56212 272 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
273
274 bio->bi_io_vec = table;
275 bio->bi_max_vecs = max_vecs;
1da177e4 276}
a112a71d 277EXPORT_SYMBOL(bio_init);
1da177e4 278
f44b48c7
KO
279/**
280 * bio_reset - reinitialize a bio
281 * @bio: bio to reset
282 *
283 * Description:
284 * After calling bio_reset(), @bio will be in the same state as a freshly
285 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
286 * preserved are the ones that are initialized by bio_alloc_bioset(). See
287 * comment in struct bio.
288 */
289void bio_reset(struct bio *bio)
290{
291 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
292
9ae3b3f5 293 bio_uninit(bio);
f44b48c7
KO
294
295 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 296 bio->bi_flags = flags;
c4cf5261 297 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
298}
299EXPORT_SYMBOL(bio_reset);
300
38f8baae 301static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 302{
4246a0b6
CH
303 struct bio *parent = bio->bi_private;
304
4e4cbee9
CH
305 if (!parent->bi_status)
306 parent->bi_status = bio->bi_status;
196d38bc 307 bio_put(bio);
38f8baae
CH
308 return parent;
309}
310
311static void bio_chain_endio(struct bio *bio)
312{
313 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
314}
315
316/**
317 * bio_chain - chain bio completions
1051a902
RD
318 * @bio: the target bio
319 * @parent: the @bio's parent bio
196d38bc
KO
320 *
321 * The caller won't have a bi_end_io called when @bio completes - instead,
322 * @parent's bi_end_io won't be called until both @parent and @bio have
323 * completed; the chained bio will also be freed when it completes.
324 *
325 * The caller must not set bi_private or bi_end_io in @bio.
326 */
327void bio_chain(struct bio *bio, struct bio *parent)
328{
329 BUG_ON(bio->bi_private || bio->bi_end_io);
330
331 bio->bi_private = parent;
332 bio->bi_end_io = bio_chain_endio;
c4cf5261 333 bio_inc_remaining(parent);
196d38bc
KO
334}
335EXPORT_SYMBOL(bio_chain);
336
df2cb6da
KO
337static void bio_alloc_rescue(struct work_struct *work)
338{
339 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
340 struct bio *bio;
341
342 while (1) {
343 spin_lock(&bs->rescue_lock);
344 bio = bio_list_pop(&bs->rescue_list);
345 spin_unlock(&bs->rescue_lock);
346
347 if (!bio)
348 break;
349
350 generic_make_request(bio);
351 }
352}
353
354static void punt_bios_to_rescuer(struct bio_set *bs)
355{
356 struct bio_list punt, nopunt;
357 struct bio *bio;
358
47e0fb46
N
359 if (WARN_ON_ONCE(!bs->rescue_workqueue))
360 return;
df2cb6da
KO
361 /*
362 * In order to guarantee forward progress we must punt only bios that
363 * were allocated from this bio_set; otherwise, if there was a bio on
364 * there for a stacking driver higher up in the stack, processing it
365 * could require allocating bios from this bio_set, and doing that from
366 * our own rescuer would be bad.
367 *
368 * Since bio lists are singly linked, pop them all instead of trying to
369 * remove from the middle of the list:
370 */
371
372 bio_list_init(&punt);
373 bio_list_init(&nopunt);
374
f5fe1b51 375 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 376 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 377 current->bio_list[0] = nopunt;
df2cb6da 378
f5fe1b51
N
379 bio_list_init(&nopunt);
380 while ((bio = bio_list_pop(&current->bio_list[1])))
381 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
382 current->bio_list[1] = nopunt;
df2cb6da
KO
383
384 spin_lock(&bs->rescue_lock);
385 bio_list_merge(&bs->rescue_list, &punt);
386 spin_unlock(&bs->rescue_lock);
387
388 queue_work(bs->rescue_workqueue, &bs->rescue_work);
389}
390
1da177e4
LT
391/**
392 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 393 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 394 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 395 * @bs: the bio_set to allocate from.
1da177e4
LT
396 *
397 * Description:
3f86a82a
KO
398 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
399 * backed by the @bs's mempool.
400 *
d0164adc
MG
401 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
402 * always be able to allocate a bio. This is due to the mempool guarantees.
403 * To make this work, callers must never allocate more than 1 bio at a time
404 * from this pool. Callers that need to allocate more than 1 bio must always
405 * submit the previously allocated bio for IO before attempting to allocate
406 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 407 *
df2cb6da
KO
408 * Note that when running under generic_make_request() (i.e. any block
409 * driver), bios are not submitted until after you return - see the code in
410 * generic_make_request() that converts recursion into iteration, to prevent
411 * stack overflows.
412 *
413 * This would normally mean allocating multiple bios under
414 * generic_make_request() would be susceptible to deadlocks, but we have
415 * deadlock avoidance code that resubmits any blocked bios from a rescuer
416 * thread.
417 *
418 * However, we do not guarantee forward progress for allocations from other
419 * mempools. Doing multiple allocations from the same mempool under
420 * generic_make_request() should be avoided - instead, use bio_set's front_pad
421 * for per bio allocations.
422 *
3f86a82a
KO
423 * RETURNS:
424 * Pointer to new bio on success, NULL on failure.
425 */
7a88fa19
DC
426struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
427 struct bio_set *bs)
1da177e4 428{
df2cb6da 429 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
430 unsigned front_pad;
431 unsigned inline_vecs;
34053979 432 struct bio_vec *bvl = NULL;
451a9ebf
TH
433 struct bio *bio;
434 void *p;
435
3f86a82a
KO
436 if (!bs) {
437 if (nr_iovecs > UIO_MAXIOV)
438 return NULL;
439
440 p = kmalloc(sizeof(struct bio) +
441 nr_iovecs * sizeof(struct bio_vec),
442 gfp_mask);
443 front_pad = 0;
444 inline_vecs = nr_iovecs;
445 } else {
d8f429e1 446 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
447 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
448 nr_iovecs > 0))
d8f429e1 449 return NULL;
df2cb6da
KO
450 /*
451 * generic_make_request() converts recursion to iteration; this
452 * means if we're running beneath it, any bios we allocate and
453 * submit will not be submitted (and thus freed) until after we
454 * return.
455 *
456 * This exposes us to a potential deadlock if we allocate
457 * multiple bios from the same bio_set() while running
458 * underneath generic_make_request(). If we were to allocate
459 * multiple bios (say a stacking block driver that was splitting
460 * bios), we would deadlock if we exhausted the mempool's
461 * reserve.
462 *
463 * We solve this, and guarantee forward progress, with a rescuer
464 * workqueue per bio_set. If we go to allocate and there are
465 * bios on current->bio_list, we first try the allocation
d0164adc
MG
466 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
467 * bios we would be blocking to the rescuer workqueue before
468 * we retry with the original gfp_flags.
df2cb6da
KO
469 */
470
f5fe1b51
N
471 if (current->bio_list &&
472 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
473 !bio_list_empty(&current->bio_list[1])) &&
474 bs->rescue_workqueue)
d0164adc 475 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 476
8aa6ba2f 477 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
478 if (!p && gfp_mask != saved_gfp) {
479 punt_bios_to_rescuer(bs);
480 gfp_mask = saved_gfp;
8aa6ba2f 481 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
482 }
483
3f86a82a
KO
484 front_pad = bs->front_pad;
485 inline_vecs = BIO_INLINE_VECS;
486 }
487
451a9ebf
TH
488 if (unlikely(!p))
489 return NULL;
1da177e4 490
3f86a82a 491 bio = p + front_pad;
3a83f467 492 bio_init(bio, NULL, 0);
34053979 493
3f86a82a 494 if (nr_iovecs > inline_vecs) {
ed996a52
CH
495 unsigned long idx = 0;
496
8aa6ba2f 497 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
498 if (!bvl && gfp_mask != saved_gfp) {
499 punt_bios_to_rescuer(bs);
500 gfp_mask = saved_gfp;
8aa6ba2f 501 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
502 }
503
34053979
IM
504 if (unlikely(!bvl))
505 goto err_free;
a38352e0 506
ed996a52 507 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
508 } else if (nr_iovecs) {
509 bvl = bio->bi_inline_vecs;
1da177e4 510 }
3f86a82a
KO
511
512 bio->bi_pool = bs;
34053979 513 bio->bi_max_vecs = nr_iovecs;
34053979 514 bio->bi_io_vec = bvl;
1da177e4 515 return bio;
34053979
IM
516
517err_free:
8aa6ba2f 518 mempool_free(p, &bs->bio_pool);
34053979 519 return NULL;
1da177e4 520}
a112a71d 521EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 522
38a72dac 523void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
524{
525 unsigned long flags;
7988613b
KO
526 struct bio_vec bv;
527 struct bvec_iter iter;
1da177e4 528
38a72dac 529 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
530 char *data = bvec_kmap_irq(&bv, &flags);
531 memset(data, 0, bv.bv_len);
532 flush_dcache_page(bv.bv_page);
1da177e4
LT
533 bvec_kunmap_irq(data, &flags);
534 }
535}
38a72dac 536EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4
LT
537
538/**
539 * bio_put - release a reference to a bio
540 * @bio: bio to release reference to
541 *
542 * Description:
543 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 544 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
545 **/
546void bio_put(struct bio *bio)
547{
dac56212 548 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 549 bio_free(bio);
dac56212
JA
550 else {
551 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
552
553 /*
554 * last put frees it
555 */
556 if (atomic_dec_and_test(&bio->__bi_cnt))
557 bio_free(bio);
558 }
1da177e4 559}
a112a71d 560EXPORT_SYMBOL(bio_put);
1da177e4 561
59d276fe
KO
562/**
563 * __bio_clone_fast - clone a bio that shares the original bio's biovec
564 * @bio: destination bio
565 * @bio_src: bio to clone
566 *
567 * Clone a &bio. Caller will own the returned bio, but not
568 * the actual data it points to. Reference count of returned
569 * bio will be one.
570 *
571 * Caller must ensure that @bio_src is not freed before @bio.
572 */
573void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
574{
ed996a52 575 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
576
577 /*
74d46992 578 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
579 * so we don't set nor calculate new physical/hw segment counts here
580 */
74d46992 581 bio->bi_disk = bio_src->bi_disk;
62530ed8 582 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 583 bio_set_flag(bio, BIO_CLONED);
111be883
SL
584 if (bio_flagged(bio_src, BIO_THROTTLED))
585 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 586 bio->bi_opf = bio_src->bi_opf;
ca474b73 587 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 588 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
589 bio->bi_iter = bio_src->bi_iter;
590 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 591
db6638d7 592 bio_clone_blkg_association(bio, bio_src);
e439bedf 593 blkcg_bio_issue_init(bio);
59d276fe
KO
594}
595EXPORT_SYMBOL(__bio_clone_fast);
596
597/**
598 * bio_clone_fast - clone a bio that shares the original bio's biovec
599 * @bio: bio to clone
600 * @gfp_mask: allocation priority
601 * @bs: bio_set to allocate from
602 *
603 * Like __bio_clone_fast, only also allocates the returned bio
604 */
605struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
606{
607 struct bio *b;
608
609 b = bio_alloc_bioset(gfp_mask, 0, bs);
610 if (!b)
611 return NULL;
612
613 __bio_clone_fast(b, bio);
614
615 if (bio_integrity(bio)) {
616 int ret;
617
618 ret = bio_integrity_clone(b, bio, gfp_mask);
619
620 if (ret < 0) {
621 bio_put(b);
622 return NULL;
623 }
624 }
625
626 return b;
627}
628EXPORT_SYMBOL(bio_clone_fast);
629
5919482e
ML
630static inline bool page_is_mergeable(const struct bio_vec *bv,
631 struct page *page, unsigned int len, unsigned int off,
ff896738 632 bool *same_page)
5919482e
ML
633{
634 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
635 bv->bv_offset + bv->bv_len - 1;
636 phys_addr_t page_addr = page_to_phys(page);
637
638 if (vec_end_addr + 1 != page_addr + off)
639 return false;
640 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
641 return false;
52d52d1c 642
ff896738
CH
643 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
644 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
645 return false;
5919482e
ML
646 return true;
647}
648
489fbbcb
ML
649/*
650 * Check if the @page can be added to the current segment(@bv), and make
651 * sure to call it only if page_is_mergeable(@bv, @page) is true
652 */
653static bool can_add_page_to_seg(struct request_queue *q,
654 struct bio_vec *bv, struct page *page, unsigned len,
655 unsigned offset)
656{
657 unsigned long mask = queue_segment_boundary(q);
658 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
659 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
660
661 if ((addr1 | mask) != (addr2 | mask))
662 return false;
663
664 if (bv->bv_len + len > queue_max_segment_size(q))
665 return false;
666
667 return true;
668}
669
1da177e4 670/**
19047087 671 * __bio_add_pc_page - attempt to add page to passthrough bio
c66a14d0
KO
672 * @q: the target queue
673 * @bio: destination bio
674 * @page: page to add
675 * @len: vec entry length
676 * @offset: vec entry offset
19047087 677 * @put_same_page: put the page if it is same with last added page
1da177e4 678 *
c66a14d0
KO
679 * Attempt to add a page to the bio_vec maplist. This can fail for a
680 * number of reasons, such as the bio being full or target block device
681 * limitations. The target block device must allow bio's up to PAGE_SIZE,
682 * so it is always possible to add a single page to an empty bio.
683 *
5a8ce240 684 * This should only be used by passthrough bios.
1da177e4 685 */
4713839d 686static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
19047087
ML
687 struct page *page, unsigned int len, unsigned int offset,
688 bool put_same_page)
1da177e4 689{
1da177e4 690 struct bio_vec *bvec;
ff896738 691 bool same_page = false;
1da177e4
LT
692
693 /*
694 * cloned bio must not modify vec list
695 */
696 if (unlikely(bio_flagged(bio, BIO_CLONED)))
697 return 0;
698
c66a14d0 699 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
700 return 0;
701
80cfd548 702 if (bio->bi_vcnt > 0) {
5a8ce240 703 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
80cfd548 704
5a8ce240
ML
705 if (page == bvec->bv_page &&
706 offset == bvec->bv_offset + bvec->bv_len) {
19047087
ML
707 if (put_same_page)
708 put_page(page);
5a8ce240 709 bvec->bv_len += len;
80cfd548
JA
710 goto done;
711 }
66cb45aa
JA
712
713 /*
714 * If the queue doesn't support SG gaps and adding this
715 * offset would create a gap, disallow it.
716 */
5a8ce240 717 if (bvec_gap_to_prev(q, bvec, offset))
66cb45aa 718 return 0;
489fbbcb 719
ff896738 720 if (page_is_mergeable(bvec, page, len, offset, &same_page) &&
dcdca753
CH
721 can_add_page_to_seg(q, bvec, page, len, offset)) {
722 bvec->bv_len += len;
723 goto done;
724 }
80cfd548
JA
725 }
726
79d08f89 727 if (bio_full(bio, len))
1da177e4
LT
728 return 0;
729
14ccb66b 730 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
731 return 0;
732
fcbf6a08
ML
733 bvec = &bio->bi_io_vec[bio->bi_vcnt];
734 bvec->bv_page = page;
735 bvec->bv_len = len;
736 bvec->bv_offset = offset;
737 bio->bi_vcnt++;
80cfd548 738 done:
dcdca753 739 bio->bi_iter.bi_size += len;
1da177e4
LT
740 return len;
741}
19047087
ML
742
743int bio_add_pc_page(struct request_queue *q, struct bio *bio,
744 struct page *page, unsigned int len, unsigned int offset)
745{
746 return __bio_add_pc_page(q, bio, page, len, offset, false);
747}
a112a71d 748EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 749
1da177e4 750/**
0aa69fd3
CH
751 * __bio_try_merge_page - try appending data to an existing bvec.
752 * @bio: destination bio
551879a4 753 * @page: start page to add
0aa69fd3 754 * @len: length of the data to add
551879a4 755 * @off: offset of the data relative to @page
ff896738 756 * @same_page: return if the segment has been merged inside the same page
1da177e4 757 *
0aa69fd3
CH
758 * Try to add the data at @page + @off to the last bvec of @bio. This is a
759 * a useful optimisation for file systems with a block size smaller than the
760 * page size.
761 *
551879a4
ML
762 * Warn if (@len, @off) crosses pages in case that @same_page is true.
763 *
0aa69fd3 764 * Return %true on success or %false on failure.
1da177e4 765 */
0aa69fd3 766bool __bio_try_merge_page(struct bio *bio, struct page *page,
ff896738 767 unsigned int len, unsigned int off, bool *same_page)
1da177e4 768{
c66a14d0 769 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 770 return false;
762380ad 771
c66a14d0 772 if (bio->bi_vcnt > 0) {
0aa69fd3 773 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
774
775 if (page_is_mergeable(bv, page, len, off, same_page)) {
776 bv->bv_len += len;
777 bio->bi_iter.bi_size += len;
778 return true;
779 }
c66a14d0 780 }
0aa69fd3
CH
781 return false;
782}
783EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 784
0aa69fd3 785/**
551879a4 786 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 787 * @bio: destination bio
551879a4
ML
788 * @page: start page to add
789 * @len: length of the data to add, may cross pages
790 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
791 *
792 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
793 * that @bio has space for another bvec.
794 */
795void __bio_add_page(struct bio *bio, struct page *page,
796 unsigned int len, unsigned int off)
797{
798 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 799
0aa69fd3 800 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 801 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
802
803 bv->bv_page = page;
804 bv->bv_offset = off;
805 bv->bv_len = len;
c66a14d0 806
c66a14d0 807 bio->bi_iter.bi_size += len;
0aa69fd3 808 bio->bi_vcnt++;
b8e24a93
JW
809
810 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
811 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
812}
813EXPORT_SYMBOL_GPL(__bio_add_page);
814
815/**
551879a4 816 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 817 * @bio: destination bio
551879a4
ML
818 * @page: start page to add
819 * @len: vec entry length, may cross pages
820 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 821 *
551879a4 822 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
823 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
824 */
825int bio_add_page(struct bio *bio, struct page *page,
826 unsigned int len, unsigned int offset)
827{
ff896738
CH
828 bool same_page = false;
829
830 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 831 if (bio_full(bio, len))
0aa69fd3
CH
832 return 0;
833 __bio_add_page(bio, page, len, offset);
834 }
c66a14d0 835 return len;
1da177e4 836}
a112a71d 837EXPORT_SYMBOL(bio_add_page);
1da177e4 838
d241a95f 839void bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
840{
841 struct bvec_iter_all iter_all;
842 struct bio_vec *bvec;
7321ecbf 843
b2d0d991
CH
844 if (bio_flagged(bio, BIO_NO_PAGE_REF))
845 return;
846
d241a95f
CH
847 bio_for_each_segment_all(bvec, bio, iter_all) {
848 if (mark_dirty && !PageCompound(bvec->bv_page))
849 set_page_dirty_lock(bvec->bv_page);
7321ecbf 850 put_page(bvec->bv_page);
d241a95f 851 }
7321ecbf
CH
852}
853
6d0c48ae
JA
854static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
855{
856 const struct bio_vec *bv = iter->bvec;
857 unsigned int len;
858 size_t size;
859
860 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
861 return -EINVAL;
862
863 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
864 size = bio_add_page(bio, bv->bv_page, len,
865 bv->bv_offset + iter->iov_offset);
a10584c3
CH
866 if (unlikely(size != len))
867 return -EINVAL;
a10584c3
CH
868 iov_iter_advance(iter, size);
869 return 0;
6d0c48ae
JA
870}
871
576ed913
CH
872#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
873
2cefe4db 874/**
17d51b10 875 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
876 * @bio: bio to add pages to
877 * @iter: iov iterator describing the region to be mapped
878 *
17d51b10 879 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 880 * pages will have to be released using put_page() when done.
17d51b10
MW
881 * For multi-segment *iter, this function only adds pages from the
882 * the next non-empty segment of the iov iterator.
2cefe4db 883 */
17d51b10 884static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 885{
576ed913
CH
886 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
887 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
888 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
889 struct page **pages = (struct page **)bv;
45691804 890 bool same_page = false;
576ed913
CH
891 ssize_t size, left;
892 unsigned len, i;
b403ea24 893 size_t offset;
576ed913
CH
894
895 /*
896 * Move page array up in the allocated memory for the bio vecs as far as
897 * possible so that we can start filling biovecs from the beginning
898 * without overwriting the temporary page array.
899 */
900 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
901 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
902
903 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
904 if (unlikely(size <= 0))
905 return size ? size : -EFAULT;
2cefe4db 906
576ed913
CH
907 for (left = size, i = 0; left > 0; left -= len, i++) {
908 struct page *page = pages[i];
2cefe4db 909
576ed913 910 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
911
912 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
913 if (same_page)
914 put_page(page);
915 } else {
79d08f89 916 if (WARN_ON_ONCE(bio_full(bio, len)))
45691804
CH
917 return -EINVAL;
918 __bio_add_page(bio, page, len, offset);
919 }
576ed913 920 offset = 0;
2cefe4db
KO
921 }
922
2cefe4db
KO
923 iov_iter_advance(iter, size);
924 return 0;
925}
17d51b10
MW
926
927/**
6d0c48ae 928 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 929 * @bio: bio to add pages to
6d0c48ae
JA
930 * @iter: iov iterator describing the region to be added
931 *
932 * This takes either an iterator pointing to user memory, or one pointing to
933 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
934 * map them into the kernel. On IO completion, the caller should put those
399254aa
JA
935 * pages. If we're adding kernel pages, and the caller told us it's safe to
936 * do so, we just have to add the pages to the bio directly. We don't grab an
937 * extra reference to those pages (the user should already have that), and we
938 * don't put the page on IO completion. The caller needs to check if the bio is
939 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
940 * released.
17d51b10 941 *
17d51b10 942 * The function tries, but does not guarantee, to pin as many pages as
6d0c48ae
JA
943 * fit into the bio, or are requested in *iter, whatever is smaller. If
944 * MM encounters an error pinning the requested pages, it stops. Error
945 * is returned only if 0 pages could be pinned.
17d51b10
MW
946 */
947int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
948{
6d0c48ae 949 const bool is_bvec = iov_iter_is_bvec(iter);
14eacf12
CH
950 int ret;
951
952 if (WARN_ON_ONCE(bio->bi_vcnt))
953 return -EINVAL;
17d51b10
MW
954
955 do {
6d0c48ae
JA
956 if (is_bvec)
957 ret = __bio_iov_bvec_add_pages(bio, iter);
958 else
959 ret = __bio_iov_iter_get_pages(bio, iter);
79d08f89 960 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 961
b6207430 962 if (is_bvec)
7321ecbf 963 bio_set_flag(bio, BIO_NO_PAGE_REF);
14eacf12 964 return bio->bi_vcnt ? 0 : ret;
17d51b10 965}
2cefe4db 966
4246a0b6 967static void submit_bio_wait_endio(struct bio *bio)
9e882242 968{
65e53aab 969 complete(bio->bi_private);
9e882242
KO
970}
971
972/**
973 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
974 * @bio: The &struct bio which describes the I/O
975 *
976 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
977 * bio_endio() on failure.
3d289d68
JK
978 *
979 * WARNING: Unlike to how submit_bio() is usually used, this function does not
980 * result in bio reference to be consumed. The caller must drop the reference
981 * on his own.
9e882242 982 */
4e49ea4a 983int submit_bio_wait(struct bio *bio)
9e882242 984{
e319e1fb 985 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
9e882242 986
65e53aab 987 bio->bi_private = &done;
9e882242 988 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 989 bio->bi_opf |= REQ_SYNC;
4e49ea4a 990 submit_bio(bio);
65e53aab 991 wait_for_completion_io(&done);
9e882242 992
65e53aab 993 return blk_status_to_errno(bio->bi_status);
9e882242
KO
994}
995EXPORT_SYMBOL(submit_bio_wait);
996
054bdf64
KO
997/**
998 * bio_advance - increment/complete a bio by some number of bytes
999 * @bio: bio to advance
1000 * @bytes: number of bytes to complete
1001 *
1002 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1003 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1004 * be updated on the last bvec as well.
1005 *
1006 * @bio will then represent the remaining, uncompleted portion of the io.
1007 */
1008void bio_advance(struct bio *bio, unsigned bytes)
1009{
1010 if (bio_integrity(bio))
1011 bio_integrity_advance(bio, bytes);
1012
4550dd6c 1013 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1014}
1015EXPORT_SYMBOL(bio_advance);
1016
45db54d5
KO
1017void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1018 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1019{
1cb9dda4 1020 struct bio_vec src_bv, dst_bv;
16ac3d63 1021 void *src_p, *dst_p;
1cb9dda4 1022 unsigned bytes;
16ac3d63 1023
45db54d5
KO
1024 while (src_iter->bi_size && dst_iter->bi_size) {
1025 src_bv = bio_iter_iovec(src, *src_iter);
1026 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1027
1028 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1029
1cb9dda4
KO
1030 src_p = kmap_atomic(src_bv.bv_page);
1031 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1032
1cb9dda4
KO
1033 memcpy(dst_p + dst_bv.bv_offset,
1034 src_p + src_bv.bv_offset,
16ac3d63
KO
1035 bytes);
1036
1037 kunmap_atomic(dst_p);
1038 kunmap_atomic(src_p);
1039
6e6e811d
KO
1040 flush_dcache_page(dst_bv.bv_page);
1041
45db54d5
KO
1042 bio_advance_iter(src, src_iter, bytes);
1043 bio_advance_iter(dst, dst_iter, bytes);
16ac3d63
KO
1044 }
1045}
38a72dac
KO
1046EXPORT_SYMBOL(bio_copy_data_iter);
1047
1048/**
45db54d5
KO
1049 * bio_copy_data - copy contents of data buffers from one bio to another
1050 * @src: source bio
1051 * @dst: destination bio
38a72dac
KO
1052 *
1053 * Stops when it reaches the end of either @src or @dst - that is, copies
1054 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1055 */
1056void bio_copy_data(struct bio *dst, struct bio *src)
1057{
45db54d5
KO
1058 struct bvec_iter src_iter = src->bi_iter;
1059 struct bvec_iter dst_iter = dst->bi_iter;
1060
1061 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1062}
16ac3d63
KO
1063EXPORT_SYMBOL(bio_copy_data);
1064
45db54d5
KO
1065/**
1066 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1067 * another
1068 * @src: source bio list
1069 * @dst: destination bio list
1070 *
1071 * Stops when it reaches the end of either the @src list or @dst list - that is,
1072 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1073 * bios).
1074 */
1075void bio_list_copy_data(struct bio *dst, struct bio *src)
1076{
1077 struct bvec_iter src_iter = src->bi_iter;
1078 struct bvec_iter dst_iter = dst->bi_iter;
1079
1080 while (1) {
1081 if (!src_iter.bi_size) {
1082 src = src->bi_next;
1083 if (!src)
1084 break;
1085
1086 src_iter = src->bi_iter;
1087 }
1088
1089 if (!dst_iter.bi_size) {
1090 dst = dst->bi_next;
1091 if (!dst)
1092 break;
1093
1094 dst_iter = dst->bi_iter;
1095 }
1096
1097 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1098 }
1099}
1100EXPORT_SYMBOL(bio_list_copy_data);
1101
1da177e4 1102struct bio_map_data {
152e283f 1103 int is_our_pages;
26e49cfc
KO
1104 struct iov_iter iter;
1105 struct iovec iov[];
1da177e4
LT
1106};
1107
0e5b935d 1108static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
76029ff3 1109 gfp_t gfp_mask)
1da177e4 1110{
0e5b935d
AV
1111 struct bio_map_data *bmd;
1112 if (data->nr_segs > UIO_MAXIOV)
f3f63c1c 1113 return NULL;
1da177e4 1114
f1f8f292 1115 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
0e5b935d
AV
1116 if (!bmd)
1117 return NULL;
1118 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1119 bmd->iter = *data;
1120 bmd->iter.iov = bmd->iov;
1121 return bmd;
1da177e4
LT
1122}
1123
9124d3fe
DP
1124/**
1125 * bio_copy_from_iter - copy all pages from iov_iter to bio
1126 * @bio: The &struct bio which describes the I/O as destination
1127 * @iter: iov_iter as source
1128 *
1129 * Copy all pages from iov_iter to bio.
1130 * Returns 0 on success, or error on failure.
1131 */
98a09d61 1132static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
c5dec1c3 1133{
c5dec1c3 1134 struct bio_vec *bvec;
6dc4f100 1135 struct bvec_iter_all iter_all;
c5dec1c3 1136
2b070cfe 1137 bio_for_each_segment_all(bvec, bio, iter_all) {
9124d3fe 1138 ssize_t ret;
c5dec1c3 1139
9124d3fe
DP
1140 ret = copy_page_from_iter(bvec->bv_page,
1141 bvec->bv_offset,
1142 bvec->bv_len,
98a09d61 1143 iter);
9124d3fe 1144
98a09d61 1145 if (!iov_iter_count(iter))
9124d3fe
DP
1146 break;
1147
1148 if (ret < bvec->bv_len)
1149 return -EFAULT;
c5dec1c3
FT
1150 }
1151
9124d3fe
DP
1152 return 0;
1153}
1154
1155/**
1156 * bio_copy_to_iter - copy all pages from bio to iov_iter
1157 * @bio: The &struct bio which describes the I/O as source
1158 * @iter: iov_iter as destination
1159 *
1160 * Copy all pages from bio to iov_iter.
1161 * Returns 0 on success, or error on failure.
1162 */
1163static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1164{
9124d3fe 1165 struct bio_vec *bvec;
6dc4f100 1166 struct bvec_iter_all iter_all;
9124d3fe 1167
2b070cfe 1168 bio_for_each_segment_all(bvec, bio, iter_all) {
9124d3fe
DP
1169 ssize_t ret;
1170
1171 ret = copy_page_to_iter(bvec->bv_page,
1172 bvec->bv_offset,
1173 bvec->bv_len,
1174 &iter);
1175
1176 if (!iov_iter_count(&iter))
1177 break;
1178
1179 if (ret < bvec->bv_len)
1180 return -EFAULT;
1181 }
1182
1183 return 0;
c5dec1c3
FT
1184}
1185
491221f8 1186void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1187{
1188 struct bio_vec *bvec;
6dc4f100 1189 struct bvec_iter_all iter_all;
1dfa0f68 1190
2b070cfe 1191 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1192 __free_page(bvec->bv_page);
1193}
491221f8 1194EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1195
1da177e4
LT
1196/**
1197 * bio_uncopy_user - finish previously mapped bio
1198 * @bio: bio being terminated
1199 *
ddad8dd0 1200 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1201 * to user space in case of a read.
1202 */
1203int bio_uncopy_user(struct bio *bio)
1204{
1205 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1206 int ret = 0;
1da177e4 1207
35dc2483
RD
1208 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1209 /*
1210 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1211 * don't copy into a random user address space, just free
1212 * and return -EINTR so user space doesn't expect any data.
35dc2483 1213 */
2d99b55d
HR
1214 if (!current->mm)
1215 ret = -EINTR;
1216 else if (bio_data_dir(bio) == READ)
9124d3fe 1217 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1218 if (bmd->is_our_pages)
1219 bio_free_pages(bio);
35dc2483 1220 }
c8db4448 1221 kfree(bmd);
1da177e4
LT
1222 bio_put(bio);
1223 return ret;
1224}
1225
1226/**
c5dec1c3 1227 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1228 * @q: destination block queue
1229 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1230 * @iter: iovec iterator
1231 * @gfp_mask: memory allocation flags
1da177e4
LT
1232 *
1233 * Prepares and returns a bio for indirect user io, bouncing data
1234 * to/from kernel pages as necessary. Must be paired with
1235 * call bio_uncopy_user() on io completion.
1236 */
152e283f
FT
1237struct bio *bio_copy_user_iov(struct request_queue *q,
1238 struct rq_map_data *map_data,
e81cef5d 1239 struct iov_iter *iter,
26e49cfc 1240 gfp_t gfp_mask)
1da177e4 1241{
1da177e4 1242 struct bio_map_data *bmd;
1da177e4
LT
1243 struct page *page;
1244 struct bio *bio;
d16d44eb
AV
1245 int i = 0, ret;
1246 int nr_pages;
26e49cfc 1247 unsigned int len = iter->count;
bd5cecea 1248 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1249
0e5b935d 1250 bmd = bio_alloc_map_data(iter, gfp_mask);
1da177e4
LT
1251 if (!bmd)
1252 return ERR_PTR(-ENOMEM);
1253
26e49cfc
KO
1254 /*
1255 * We need to do a deep copy of the iov_iter including the iovecs.
1256 * The caller provided iov might point to an on-stack or otherwise
1257 * shortlived one.
1258 */
1259 bmd->is_our_pages = map_data ? 0 : 1;
26e49cfc 1260
d16d44eb
AV
1261 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1262 if (nr_pages > BIO_MAX_PAGES)
1263 nr_pages = BIO_MAX_PAGES;
26e49cfc 1264
1da177e4 1265 ret = -ENOMEM;
a9e9dc24 1266 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1267 if (!bio)
1268 goto out_bmd;
1269
1da177e4 1270 ret = 0;
56c451f4
FT
1271
1272 if (map_data) {
e623ddb4 1273 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1274 i = map_data->offset / PAGE_SIZE;
1275 }
1da177e4 1276 while (len) {
e623ddb4 1277 unsigned int bytes = PAGE_SIZE;
1da177e4 1278
56c451f4
FT
1279 bytes -= offset;
1280
1da177e4
LT
1281 if (bytes > len)
1282 bytes = len;
1283
152e283f 1284 if (map_data) {
e623ddb4 1285 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1286 ret = -ENOMEM;
1287 break;
1288 }
e623ddb4
FT
1289
1290 page = map_data->pages[i / nr_pages];
1291 page += (i % nr_pages);
1292
1293 i++;
1294 } else {
152e283f 1295 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1296 if (!page) {
1297 ret = -ENOMEM;
1298 break;
1299 }
1da177e4
LT
1300 }
1301
a3761c3c
JG
1302 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1303 if (!map_data)
1304 __free_page(page);
1da177e4 1305 break;
a3761c3c 1306 }
1da177e4
LT
1307
1308 len -= bytes;
56c451f4 1309 offset = 0;
1da177e4
LT
1310 }
1311
1312 if (ret)
1313 goto cleanup;
1314
2884d0be
AV
1315 if (map_data)
1316 map_data->offset += bio->bi_iter.bi_size;
1317
1da177e4
LT
1318 /*
1319 * success
1320 */
00e23707 1321 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1322 (map_data && map_data->from_user)) {
98a09d61 1323 ret = bio_copy_from_iter(bio, iter);
c5dec1c3
FT
1324 if (ret)
1325 goto cleanup;
98a09d61 1326 } else {
f55adad6
KB
1327 if (bmd->is_our_pages)
1328 zero_fill_bio(bio);
98a09d61 1329 iov_iter_advance(iter, bio->bi_iter.bi_size);
1da177e4
LT
1330 }
1331
26e49cfc 1332 bio->bi_private = bmd;
2884d0be
AV
1333 if (map_data && map_data->null_mapped)
1334 bio_set_flag(bio, BIO_NULL_MAPPED);
1da177e4
LT
1335 return bio;
1336cleanup:
152e283f 1337 if (!map_data)
1dfa0f68 1338 bio_free_pages(bio);
1da177e4
LT
1339 bio_put(bio);
1340out_bmd:
c8db4448 1341 kfree(bmd);
1da177e4
LT
1342 return ERR_PTR(ret);
1343}
1344
37f19e57
CH
1345/**
1346 * bio_map_user_iov - map user iovec into bio
1347 * @q: the struct request_queue for the bio
1348 * @iter: iovec iterator
1349 * @gfp_mask: memory allocation flags
1350 *
1351 * Map the user space address into a bio suitable for io to a block
1352 * device. Returns an error pointer in case of error.
1353 */
1354struct bio *bio_map_user_iov(struct request_queue *q,
e81cef5d 1355 struct iov_iter *iter,
37f19e57 1356 gfp_t gfp_mask)
1da177e4 1357{
26e49cfc 1358 int j;
1da177e4 1359 struct bio *bio;
076098e5 1360 int ret;
1da177e4 1361
b282cc76 1362 if (!iov_iter_count(iter))
1da177e4
LT
1363 return ERR_PTR(-EINVAL);
1364
b282cc76 1365 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1da177e4
LT
1366 if (!bio)
1367 return ERR_PTR(-ENOMEM);
1368
0a0f1513 1369 while (iov_iter_count(iter)) {
629e42bc 1370 struct page **pages;
076098e5
AV
1371 ssize_t bytes;
1372 size_t offs, added = 0;
1373 int npages;
1da177e4 1374
0a0f1513 1375 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
076098e5
AV
1376 if (unlikely(bytes <= 0)) {
1377 ret = bytes ? bytes : -EFAULT;
f1970baf 1378 goto out_unmap;
99172157 1379 }
f1970baf 1380
076098e5 1381 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
f1970baf 1382
98f0bc99
AV
1383 if (unlikely(offs & queue_dma_alignment(q))) {
1384 ret = -EINVAL;
1385 j = 0;
1386 } else {
1387 for (j = 0; j < npages; j++) {
1388 struct page *page = pages[j];
1389 unsigned int n = PAGE_SIZE - offs;
f1970baf 1390
98f0bc99
AV
1391 if (n > bytes)
1392 n = bytes;
95d78c28 1393
19047087
ML
1394 if (!__bio_add_pc_page(q, bio, page, n, offs,
1395 true))
98f0bc99 1396 break;
1da177e4 1397
98f0bc99
AV
1398 added += n;
1399 bytes -= n;
1400 offs = 0;
1401 }
0a0f1513 1402 iov_iter_advance(iter, added);
f1970baf 1403 }
1da177e4 1404 /*
f1970baf 1405 * release the pages we didn't map into the bio, if any
1da177e4 1406 */
629e42bc 1407 while (j < npages)
09cbfeaf 1408 put_page(pages[j++]);
629e42bc 1409 kvfree(pages);
e2e115d1
AV
1410 /* couldn't stuff something into bio? */
1411 if (bytes)
1412 break;
1da177e4
LT
1413 }
1414
b7c44ed9 1415 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1416
1417 /*
5fad1b64 1418 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1419 * it would normally disappear when its bi_end_io is run.
1420 * however, we need it for the unmap, so grab an extra
1421 * reference to it
1422 */
1423 bio_get(bio);
1da177e4 1424 return bio;
f1970baf
JB
1425
1426 out_unmap:
506e0798 1427 bio_release_pages(bio, false);
1da177e4
LT
1428 bio_put(bio);
1429 return ERR_PTR(ret);
1430}
1431
1da177e4
LT
1432/**
1433 * bio_unmap_user - unmap a bio
1434 * @bio: the bio being unmapped
1435 *
5fad1b64
BVA
1436 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1437 * process context.
1da177e4
LT
1438 *
1439 * bio_unmap_user() may sleep.
1440 */
1441void bio_unmap_user(struct bio *bio)
1442{
163cc2d3
CH
1443 bio_release_pages(bio, bio_data_dir(bio) == READ);
1444 bio_put(bio);
1da177e4
LT
1445 bio_put(bio);
1446}
1447
b4c5875d
DLM
1448static void bio_invalidate_vmalloc_pages(struct bio *bio)
1449{
1450#ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1451 if (bio->bi_private && !op_is_write(bio_op(bio))) {
1452 unsigned long i, len = 0;
1453
1454 for (i = 0; i < bio->bi_vcnt; i++)
1455 len += bio->bi_io_vec[i].bv_len;
1456 invalidate_kernel_vmap_range(bio->bi_private, len);
1457 }
1458#endif
1459}
1460
4246a0b6 1461static void bio_map_kern_endio(struct bio *bio)
b823825e 1462{
b4c5875d 1463 bio_invalidate_vmalloc_pages(bio);
b823825e 1464 bio_put(bio);
b823825e
JA
1465}
1466
75c72b83
CH
1467/**
1468 * bio_map_kern - map kernel address into bio
1469 * @q: the struct request_queue for the bio
1470 * @data: pointer to buffer to map
1471 * @len: length in bytes
1472 * @gfp_mask: allocation flags for bio allocation
1473 *
1474 * Map the kernel address into a bio suitable for io to a block
1475 * device. Returns an error pointer in case of error.
1476 */
1477struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1478 gfp_t gfp_mask)
df46b9a4
MC
1479{
1480 unsigned long kaddr = (unsigned long)data;
1481 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1482 unsigned long start = kaddr >> PAGE_SHIFT;
1483 const int nr_pages = end - start;
b4c5875d
DLM
1484 bool is_vmalloc = is_vmalloc_addr(data);
1485 struct page *page;
df46b9a4
MC
1486 int offset, i;
1487 struct bio *bio;
1488
a9e9dc24 1489 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1490 if (!bio)
1491 return ERR_PTR(-ENOMEM);
1492
b4c5875d
DLM
1493 if (is_vmalloc) {
1494 flush_kernel_vmap_range(data, len);
1495 bio->bi_private = data;
1496 }
1497
df46b9a4
MC
1498 offset = offset_in_page(kaddr);
1499 for (i = 0; i < nr_pages; i++) {
1500 unsigned int bytes = PAGE_SIZE - offset;
1501
1502 if (len <= 0)
1503 break;
1504
1505 if (bytes > len)
1506 bytes = len;
1507
b4c5875d
DLM
1508 if (!is_vmalloc)
1509 page = virt_to_page(data);
1510 else
1511 page = vmalloc_to_page(data);
1512 if (bio_add_pc_page(q, bio, page, bytes,
75c72b83
CH
1513 offset) < bytes) {
1514 /* we don't support partial mappings */
1515 bio_put(bio);
1516 return ERR_PTR(-EINVAL);
1517 }
df46b9a4
MC
1518
1519 data += bytes;
1520 len -= bytes;
1521 offset = 0;
1522 }
1523
b823825e 1524 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1525 return bio;
1526}
df46b9a4 1527
4246a0b6 1528static void bio_copy_kern_endio(struct bio *bio)
68154e90 1529{
1dfa0f68
CH
1530 bio_free_pages(bio);
1531 bio_put(bio);
1532}
1533
4246a0b6 1534static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1535{
42d2683a 1536 char *p = bio->bi_private;
1dfa0f68 1537 struct bio_vec *bvec;
6dc4f100 1538 struct bvec_iter_all iter_all;
68154e90 1539
2b070cfe 1540 bio_for_each_segment_all(bvec, bio, iter_all) {
1dfa0f68 1541 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1542 p += bvec->bv_len;
68154e90
FT
1543 }
1544
4246a0b6 1545 bio_copy_kern_endio(bio);
68154e90
FT
1546}
1547
1548/**
1549 * bio_copy_kern - copy kernel address into bio
1550 * @q: the struct request_queue for the bio
1551 * @data: pointer to buffer to copy
1552 * @len: length in bytes
1553 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1554 * @reading: data direction is READ
68154e90
FT
1555 *
1556 * copy the kernel address into a bio suitable for io to a block
1557 * device. Returns an error pointer in case of error.
1558 */
1559struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1560 gfp_t gfp_mask, int reading)
1561{
42d2683a
CH
1562 unsigned long kaddr = (unsigned long)data;
1563 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1564 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1565 struct bio *bio;
1566 void *p = data;
1dfa0f68 1567 int nr_pages = 0;
68154e90 1568
42d2683a
CH
1569 /*
1570 * Overflow, abort
1571 */
1572 if (end < start)
1573 return ERR_PTR(-EINVAL);
68154e90 1574
42d2683a
CH
1575 nr_pages = end - start;
1576 bio = bio_kmalloc(gfp_mask, nr_pages);
1577 if (!bio)
1578 return ERR_PTR(-ENOMEM);
68154e90 1579
42d2683a
CH
1580 while (len) {
1581 struct page *page;
1582 unsigned int bytes = PAGE_SIZE;
68154e90 1583
42d2683a
CH
1584 if (bytes > len)
1585 bytes = len;
1586
1587 page = alloc_page(q->bounce_gfp | gfp_mask);
1588 if (!page)
1589 goto cleanup;
1590
1591 if (!reading)
1592 memcpy(page_address(page), p, bytes);
1593
1594 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1595 break;
1596
1597 len -= bytes;
1598 p += bytes;
68154e90
FT
1599 }
1600
1dfa0f68
CH
1601 if (reading) {
1602 bio->bi_end_io = bio_copy_kern_endio_read;
1603 bio->bi_private = data;
1604 } else {
1605 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1606 }
76029ff3 1607
68154e90 1608 return bio;
42d2683a
CH
1609
1610cleanup:
1dfa0f68 1611 bio_free_pages(bio);
42d2683a
CH
1612 bio_put(bio);
1613 return ERR_PTR(-ENOMEM);
68154e90
FT
1614}
1615
1da177e4
LT
1616/*
1617 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1618 * for performing direct-IO in BIOs.
1619 *
1620 * The problem is that we cannot run set_page_dirty() from interrupt context
1621 * because the required locks are not interrupt-safe. So what we can do is to
1622 * mark the pages dirty _before_ performing IO. And in interrupt context,
1623 * check that the pages are still dirty. If so, fine. If not, redirty them
1624 * in process context.
1625 *
1626 * We special-case compound pages here: normally this means reads into hugetlb
1627 * pages. The logic in here doesn't really work right for compound pages
1628 * because the VM does not uniformly chase down the head page in all cases.
1629 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1630 * handle them at all. So we skip compound pages here at an early stage.
1631 *
1632 * Note that this code is very hard to test under normal circumstances because
1633 * direct-io pins the pages with get_user_pages(). This makes
1634 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1635 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1636 * pagecache.
1637 *
1638 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1639 * deferred bio dirtying paths.
1640 */
1641
1642/*
1643 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1644 */
1645void bio_set_pages_dirty(struct bio *bio)
1646{
cb34e057 1647 struct bio_vec *bvec;
6dc4f100 1648 struct bvec_iter_all iter_all;
1da177e4 1649
2b070cfe 1650 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1651 if (!PageCompound(bvec->bv_page))
1652 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1653 }
1654}
1655
1da177e4
LT
1656/*
1657 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1658 * If they are, then fine. If, however, some pages are clean then they must
1659 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1660 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1661 *
1662 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1663 * here on. It will run one put_page() against each page and will run one
1664 * bio_put() against the BIO.
1da177e4
LT
1665 */
1666
65f27f38 1667static void bio_dirty_fn(struct work_struct *work);
1da177e4 1668
65f27f38 1669static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1670static DEFINE_SPINLOCK(bio_dirty_lock);
1671static struct bio *bio_dirty_list;
1672
1673/*
1674 * This runs in process context
1675 */
65f27f38 1676static void bio_dirty_fn(struct work_struct *work)
1da177e4 1677{
24d5493f 1678 struct bio *bio, *next;
1da177e4 1679
24d5493f
CH
1680 spin_lock_irq(&bio_dirty_lock);
1681 next = bio_dirty_list;
1da177e4 1682 bio_dirty_list = NULL;
24d5493f 1683 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1684
24d5493f
CH
1685 while ((bio = next) != NULL) {
1686 next = bio->bi_private;
1da177e4 1687
d241a95f 1688 bio_release_pages(bio, true);
1da177e4 1689 bio_put(bio);
1da177e4
LT
1690 }
1691}
1692
1693void bio_check_pages_dirty(struct bio *bio)
1694{
cb34e057 1695 struct bio_vec *bvec;
24d5493f 1696 unsigned long flags;
6dc4f100 1697 struct bvec_iter_all iter_all;
1da177e4 1698
2b070cfe 1699 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1700 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1701 goto defer;
1da177e4
LT
1702 }
1703
d241a95f 1704 bio_release_pages(bio, false);
24d5493f
CH
1705 bio_put(bio);
1706 return;
1707defer:
1708 spin_lock_irqsave(&bio_dirty_lock, flags);
1709 bio->bi_private = bio_dirty_list;
1710 bio_dirty_list = bio;
1711 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1712 schedule_work(&bio_dirty_work);
1da177e4
LT
1713}
1714
5b18b5a7
MP
1715void update_io_ticks(struct hd_struct *part, unsigned long now)
1716{
1717 unsigned long stamp;
1718again:
1719 stamp = READ_ONCE(part->stamp);
1720 if (unlikely(stamp != now)) {
1721 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1722 __part_stat_add(part, io_ticks, 1);
1723 }
1724 }
1725 if (part->partno) {
1726 part = &part_to_disk(part)->part0;
1727 goto again;
1728 }
1729}
1da177e4 1730
ddcf35d3 1731void generic_start_io_acct(struct request_queue *q, int op,
d62e26b3 1732 unsigned long sectors, struct hd_struct *part)
394ffa50 1733{
ddcf35d3 1734 const int sgrp = op_stat_group(op);
394ffa50 1735
112f158f
MS
1736 part_stat_lock();
1737
5b18b5a7 1738 update_io_ticks(part, jiffies);
112f158f
MS
1739 part_stat_inc(part, ios[sgrp]);
1740 part_stat_add(part, sectors[sgrp], sectors);
ddcf35d3 1741 part_inc_in_flight(q, part, op_is_write(op));
394ffa50
GZ
1742
1743 part_stat_unlock();
1744}
1745EXPORT_SYMBOL(generic_start_io_acct);
1746
ddcf35d3 1747void generic_end_io_acct(struct request_queue *q, int req_op,
d62e26b3 1748 struct hd_struct *part, unsigned long start_time)
394ffa50 1749{
5b18b5a7
MP
1750 unsigned long now = jiffies;
1751 unsigned long duration = now - start_time;
ddcf35d3 1752 const int sgrp = op_stat_group(req_op);
394ffa50 1753
112f158f
MS
1754 part_stat_lock();
1755
5b18b5a7 1756 update_io_ticks(part, now);
112f158f 1757 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
5b18b5a7 1758 part_stat_add(part, time_in_queue, duration);
ddcf35d3 1759 part_dec_in_flight(q, part, op_is_write(req_op));
394ffa50
GZ
1760
1761 part_stat_unlock();
1762}
1763EXPORT_SYMBOL(generic_end_io_acct);
1764
c4cf5261
JA
1765static inline bool bio_remaining_done(struct bio *bio)
1766{
1767 /*
1768 * If we're not chaining, then ->__bi_remaining is always 1 and
1769 * we always end io on the first invocation.
1770 */
1771 if (!bio_flagged(bio, BIO_CHAIN))
1772 return true;
1773
1774 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1775
326e1dbb 1776 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1777 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1778 return true;
326e1dbb 1779 }
c4cf5261
JA
1780
1781 return false;
1782}
1783
1da177e4
LT
1784/**
1785 * bio_endio - end I/O on a bio
1786 * @bio: bio
1da177e4
LT
1787 *
1788 * Description:
4246a0b6
CH
1789 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1790 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1791 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1792 *
1793 * bio_endio() can be called several times on a bio that has been chained
1794 * using bio_chain(). The ->bi_end_io() function will only be called the
1795 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1796 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1797 **/
4246a0b6 1798void bio_endio(struct bio *bio)
1da177e4 1799{
ba8c6967 1800again:
2b885517 1801 if (!bio_remaining_done(bio))
ba8c6967 1802 return;
7c20f116
CH
1803 if (!bio_integrity_endio(bio))
1804 return;
1da177e4 1805
67b42d0b
JB
1806 if (bio->bi_disk)
1807 rq_qos_done_bio(bio->bi_disk->queue, bio);
1808
ba8c6967
CH
1809 /*
1810 * Need to have a real endio function for chained bios, otherwise
1811 * various corner cases will break (like stacking block devices that
1812 * save/restore bi_end_io) - however, we want to avoid unbounded
1813 * recursion and blowing the stack. Tail call optimization would
1814 * handle this, but compiling with frame pointers also disables
1815 * gcc's sibling call optimization.
1816 */
1817 if (bio->bi_end_io == bio_chain_endio) {
1818 bio = __bio_chain_endio(bio);
1819 goto again;
196d38bc 1820 }
ba8c6967 1821
74d46992
CH
1822 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1823 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1824 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1825 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1826 }
1827
9e234eea 1828 blk_throtl_bio_endio(bio);
b222dd2f
SL
1829 /* release cgroup info */
1830 bio_uninit(bio);
ba8c6967
CH
1831 if (bio->bi_end_io)
1832 bio->bi_end_io(bio);
1da177e4 1833}
a112a71d 1834EXPORT_SYMBOL(bio_endio);
1da177e4 1835
20d0189b
KO
1836/**
1837 * bio_split - split a bio
1838 * @bio: bio to split
1839 * @sectors: number of sectors to split from the front of @bio
1840 * @gfp: gfp mask
1841 * @bs: bio set to allocate from
1842 *
1843 * Allocates and returns a new bio which represents @sectors from the start of
1844 * @bio, and updates @bio to represent the remaining sectors.
1845 *
f3f5da62 1846 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1847 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1848 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1849 */
1850struct bio *bio_split(struct bio *bio, int sectors,
1851 gfp_t gfp, struct bio_set *bs)
1852{
f341a4d3 1853 struct bio *split;
20d0189b
KO
1854
1855 BUG_ON(sectors <= 0);
1856 BUG_ON(sectors >= bio_sectors(bio));
1857
f9d03f96 1858 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1859 if (!split)
1860 return NULL;
1861
1862 split->bi_iter.bi_size = sectors << 9;
1863
1864 if (bio_integrity(split))
fbd08e76 1865 bio_integrity_trim(split);
20d0189b
KO
1866
1867 bio_advance(bio, split->bi_iter.bi_size);
1868
fbbaf700 1869 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1870 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1871
20d0189b
KO
1872 return split;
1873}
1874EXPORT_SYMBOL(bio_split);
1875
6678d83f
KO
1876/**
1877 * bio_trim - trim a bio
1878 * @bio: bio to trim
1879 * @offset: number of sectors to trim from the front of @bio
1880 * @size: size we want to trim @bio to, in sectors
1881 */
1882void bio_trim(struct bio *bio, int offset, int size)
1883{
1884 /* 'bio' is a cloned bio which we need to trim to match
1885 * the given offset and size.
6678d83f 1886 */
6678d83f
KO
1887
1888 size <<= 9;
4f024f37 1889 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1890 return;
1891
6678d83f 1892 bio_advance(bio, offset << 9);
4f024f37 1893 bio->bi_iter.bi_size = size;
376a78ab
DM
1894
1895 if (bio_integrity(bio))
fbd08e76 1896 bio_integrity_trim(bio);
376a78ab 1897
6678d83f
KO
1898}
1899EXPORT_SYMBOL_GPL(bio_trim);
1900
1da177e4
LT
1901/*
1902 * create memory pools for biovec's in a bio_set.
1903 * use the global biovec slabs created for general use.
1904 */
8aa6ba2f 1905int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1906{
ed996a52 1907 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1908
8aa6ba2f 1909 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1910}
1911
917a38c7
KO
1912/*
1913 * bioset_exit - exit a bioset initialized with bioset_init()
1914 *
1915 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1916 * kzalloc()).
1917 */
1918void bioset_exit(struct bio_set *bs)
1da177e4 1919{
df2cb6da
KO
1920 if (bs->rescue_workqueue)
1921 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1922 bs->rescue_workqueue = NULL;
df2cb6da 1923
8aa6ba2f
KO
1924 mempool_exit(&bs->bio_pool);
1925 mempool_exit(&bs->bvec_pool);
9f060e22 1926
7878cba9 1927 bioset_integrity_free(bs);
917a38c7
KO
1928 if (bs->bio_slab)
1929 bio_put_slab(bs);
1930 bs->bio_slab = NULL;
1931}
1932EXPORT_SYMBOL(bioset_exit);
1da177e4 1933
917a38c7
KO
1934/**
1935 * bioset_init - Initialize a bio_set
dad08527 1936 * @bs: pool to initialize
917a38c7
KO
1937 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1938 * @front_pad: Number of bytes to allocate in front of the returned bio
1939 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1940 * and %BIOSET_NEED_RESCUER
1941 *
dad08527
KO
1942 * Description:
1943 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1944 * to ask for a number of bytes to be allocated in front of the bio.
1945 * Front pad allocation is useful for embedding the bio inside
1946 * another structure, to avoid allocating extra data to go with the bio.
1947 * Note that the bio must be embedded at the END of that structure always,
1948 * or things will break badly.
1949 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1950 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1951 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1952 * dispatch queued requests when the mempool runs out of space.
1953 *
917a38c7
KO
1954 */
1955int bioset_init(struct bio_set *bs,
1956 unsigned int pool_size,
1957 unsigned int front_pad,
1958 int flags)
1959{
1960 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1961
1962 bs->front_pad = front_pad;
1963
1964 spin_lock_init(&bs->rescue_lock);
1965 bio_list_init(&bs->rescue_list);
1966 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1967
1968 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1969 if (!bs->bio_slab)
1970 return -ENOMEM;
1971
1972 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1973 goto bad;
1974
1975 if ((flags & BIOSET_NEED_BVECS) &&
1976 biovec_init_pool(&bs->bvec_pool, pool_size))
1977 goto bad;
1978
1979 if (!(flags & BIOSET_NEED_RESCUER))
1980 return 0;
1981
1982 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1983 if (!bs->rescue_workqueue)
1984 goto bad;
1985
1986 return 0;
1987bad:
1988 bioset_exit(bs);
1989 return -ENOMEM;
1990}
1991EXPORT_SYMBOL(bioset_init);
1992
28e89fd9
JA
1993/*
1994 * Initialize and setup a new bio_set, based on the settings from
1995 * another bio_set.
1996 */
1997int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1998{
1999 int flags;
2000
2001 flags = 0;
2002 if (src->bvec_pool.min_nr)
2003 flags |= BIOSET_NEED_BVECS;
2004 if (src->rescue_workqueue)
2005 flags |= BIOSET_NEED_RESCUER;
2006
2007 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2008}
2009EXPORT_SYMBOL(bioset_init_from_src);
2010
852c788f 2011#ifdef CONFIG_BLK_CGROUP
1d933cf0 2012
74b7c02a 2013/**
2268c0fe 2014 * bio_disassociate_blkg - puts back the blkg reference if associated
74b7c02a 2015 * @bio: target bio
74b7c02a 2016 *
2268c0fe 2017 * Helper to disassociate the blkg from @bio if a blkg is associated.
74b7c02a 2018 */
2268c0fe 2019void bio_disassociate_blkg(struct bio *bio)
74b7c02a 2020{
2268c0fe
DZ
2021 if (bio->bi_blkg) {
2022 blkg_put(bio->bi_blkg);
2023 bio->bi_blkg = NULL;
2024 }
74b7c02a 2025}
892ad71f 2026EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
74b7c02a 2027
a7b39b4e 2028/**
2268c0fe 2029 * __bio_associate_blkg - associate a bio with the a blkg
a7b39b4e 2030 * @bio: target bio
b5f2954d 2031 * @blkg: the blkg to associate
b5f2954d 2032 *
beea9da0
DZ
2033 * This tries to associate @bio with the specified @blkg. Association failure
2034 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2035 * be anything between @blkg and the root_blkg. This situation only happens
2036 * when a cgroup is dying and then the remaining bios will spill to the closest
2037 * alive blkg.
a7b39b4e 2038 *
beea9da0
DZ
2039 * A reference will be taken on the @blkg and will be released when @bio is
2040 * freed.
a7b39b4e 2041 */
2268c0fe 2042static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
a7b39b4e 2043{
2268c0fe
DZ
2044 bio_disassociate_blkg(bio);
2045
7754f669 2046 bio->bi_blkg = blkg_tryget_closest(blkg);
a7b39b4e
DZF
2047}
2048
d459d853 2049/**
fd42df30 2050 * bio_associate_blkg_from_css - associate a bio with a specified css
d459d853 2051 * @bio: target bio
fd42df30 2052 * @css: target css
d459d853 2053 *
fd42df30 2054 * Associate @bio with the blkg found by combining the css's blkg and the
fc5a828b
DZ
2055 * request_queue of the @bio. This falls back to the queue's root_blkg if
2056 * the association fails with the css.
d459d853 2057 */
fd42df30
DZ
2058void bio_associate_blkg_from_css(struct bio *bio,
2059 struct cgroup_subsys_state *css)
d459d853 2060{
fc5a828b
DZ
2061 struct request_queue *q = bio->bi_disk->queue;
2062 struct blkcg_gq *blkg;
2063
2064 rcu_read_lock();
2065
2066 if (!css || !css->parent)
2067 blkg = q->root_blkg;
2068 else
2069 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2070
2071 __bio_associate_blkg(bio, blkg);
2072
2073 rcu_read_unlock();
d459d853 2074}
fd42df30 2075EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
d459d853 2076
6a7f6d86 2077#ifdef CONFIG_MEMCG
852c788f 2078/**
6a7f6d86 2079 * bio_associate_blkg_from_page - associate a bio with the page's blkg
852c788f 2080 * @bio: target bio
6a7f6d86
DZ
2081 * @page: the page to lookup the blkcg from
2082 *
2083 * Associate @bio with the blkg from @page's owning memcg and the respective
fc5a828b
DZ
2084 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2085 * root_blkg.
852c788f 2086 */
6a7f6d86 2087void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
852c788f 2088{
6a7f6d86
DZ
2089 struct cgroup_subsys_state *css;
2090
6a7f6d86
DZ
2091 if (!page->mem_cgroup)
2092 return;
2093
fc5a828b
DZ
2094 rcu_read_lock();
2095
2096 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2097 bio_associate_blkg_from_css(bio, css);
2098
2099 rcu_read_unlock();
6a7f6d86
DZ
2100}
2101#endif /* CONFIG_MEMCG */
2102
2268c0fe
DZ
2103/**
2104 * bio_associate_blkg - associate a bio with a blkg
2105 * @bio: target bio
2106 *
2107 * Associate @bio with the blkg found from the bio's css and request_queue.
2108 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2109 * already associated, the css is reused and association redone as the
2110 * request_queue may have changed.
2111 */
2112void bio_associate_blkg(struct bio *bio)
2113{
fc5a828b 2114 struct cgroup_subsys_state *css;
2268c0fe
DZ
2115
2116 rcu_read_lock();
2117
db6638d7 2118 if (bio->bi_blkg)
fc5a828b 2119 css = &bio_blkcg(bio)->css;
db6638d7 2120 else
fc5a828b 2121 css = blkcg_css();
2268c0fe 2122
fc5a828b 2123 bio_associate_blkg_from_css(bio, css);
2268c0fe
DZ
2124
2125 rcu_read_unlock();
852c788f 2126}
5cdf2e3f 2127EXPORT_SYMBOL_GPL(bio_associate_blkg);
852c788f 2128
20bd723e 2129/**
db6638d7 2130 * bio_clone_blkg_association - clone blkg association from src to dst bio
20bd723e
PV
2131 * @dst: destination bio
2132 * @src: source bio
2133 */
db6638d7 2134void bio_clone_blkg_association(struct bio *dst, struct bio *src)
20bd723e 2135{
6ab21879
DZ
2136 rcu_read_lock();
2137
fc5a828b 2138 if (src->bi_blkg)
2268c0fe 2139 __bio_associate_blkg(dst, src->bi_blkg);
6ab21879
DZ
2140
2141 rcu_read_unlock();
20bd723e 2142}
db6638d7 2143EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
852c788f
TH
2144#endif /* CONFIG_BLK_CGROUP */
2145
1da177e4
LT
2146static void __init biovec_init_slabs(void)
2147{
2148 int i;
2149
ed996a52 2150 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2151 int size;
2152 struct biovec_slab *bvs = bvec_slabs + i;
2153
a7fcd37c
JA
2154 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2155 bvs->slab = NULL;
2156 continue;
2157 }
a7fcd37c 2158
1da177e4
LT
2159 size = bvs->nr_vecs * sizeof(struct bio_vec);
2160 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2161 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2162 }
2163}
2164
2165static int __init init_bio(void)
2166{
bb799ca0
JA
2167 bio_slab_max = 2;
2168 bio_slab_nr = 0;
6396bb22
KC
2169 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2170 GFP_KERNEL);
2b24e6f6
JT
2171
2172 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2173
bb799ca0
JA
2174 if (!bio_slabs)
2175 panic("bio: can't allocate bios\n");
1da177e4 2176
7878cba9 2177 bio_integrity_init();
1da177e4
LT
2178 biovec_init_slabs();
2179
f4f8154a 2180 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
2181 panic("bio: can't allocate bios\n");
2182
f4f8154a 2183 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
2184 panic("bio: can't create integrity pool\n");
2185
1da177e4
LT
2186 return 0;
2187}
1da177e4 2188subsys_initcall(init_bio);