direct-io: use bio_release_pages in dio_bio_complete
[linux-2.6-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
1da177e4 19
55782138 20#include <trace/events/block.h>
9e234eea 21#include "blk.h"
67b42d0b 22#include "blk-rq-qos.h"
0bfc2455 23
392ddc32
JA
24/*
25 * Test patch to inline a certain number of bi_io_vec's inside the bio
26 * itself, to shrink a bio data allocation from two mempool calls to one
27 */
28#define BIO_INLINE_VECS 4
29
1da177e4
LT
30/*
31 * if you change this list, also change bvec_alloc or things will
32 * break badly! cannot be bigger than what you can fit into an
33 * unsigned short
34 */
bd5c4fac 35#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 36static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 37 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
38};
39#undef BV
40
1da177e4
LT
41/*
42 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
43 * IO code that does not need private memory pools.
44 */
f4f8154a 45struct bio_set fs_bio_set;
3f86a82a 46EXPORT_SYMBOL(fs_bio_set);
1da177e4 47
bb799ca0
JA
48/*
49 * Our slab pool management
50 */
51struct bio_slab {
52 struct kmem_cache *slab;
53 unsigned int slab_ref;
54 unsigned int slab_size;
55 char name[8];
56};
57static DEFINE_MUTEX(bio_slab_lock);
58static struct bio_slab *bio_slabs;
59static unsigned int bio_slab_nr, bio_slab_max;
60
61static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
62{
63 unsigned int sz = sizeof(struct bio) + extra_size;
64 struct kmem_cache *slab = NULL;
389d7b26 65 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 66 unsigned int new_bio_slab_max;
bb799ca0
JA
67 unsigned int i, entry = -1;
68
69 mutex_lock(&bio_slab_lock);
70
71 i = 0;
72 while (i < bio_slab_nr) {
f06f135d 73 bslab = &bio_slabs[i];
bb799ca0
JA
74
75 if (!bslab->slab && entry == -1)
76 entry = i;
77 else if (bslab->slab_size == sz) {
78 slab = bslab->slab;
79 bslab->slab_ref++;
80 break;
81 }
82 i++;
83 }
84
85 if (slab)
86 goto out_unlock;
87
88 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 89 new_bio_slab_max = bio_slab_max << 1;
389d7b26 90 new_bio_slabs = krealloc(bio_slabs,
386bc35a 91 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
92 GFP_KERNEL);
93 if (!new_bio_slabs)
bb799ca0 94 goto out_unlock;
386bc35a 95 bio_slab_max = new_bio_slab_max;
389d7b26 96 bio_slabs = new_bio_slabs;
bb799ca0
JA
97 }
98 if (entry == -1)
99 entry = bio_slab_nr++;
100
101 bslab = &bio_slabs[entry];
102
103 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
104 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
105 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
106 if (!slab)
107 goto out_unlock;
108
bb799ca0
JA
109 bslab->slab = slab;
110 bslab->slab_ref = 1;
111 bslab->slab_size = sz;
112out_unlock:
113 mutex_unlock(&bio_slab_lock);
114 return slab;
115}
116
117static void bio_put_slab(struct bio_set *bs)
118{
119 struct bio_slab *bslab = NULL;
120 unsigned int i;
121
122 mutex_lock(&bio_slab_lock);
123
124 for (i = 0; i < bio_slab_nr; i++) {
125 if (bs->bio_slab == bio_slabs[i].slab) {
126 bslab = &bio_slabs[i];
127 break;
128 }
129 }
130
131 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
132 goto out;
133
134 WARN_ON(!bslab->slab_ref);
135
136 if (--bslab->slab_ref)
137 goto out;
138
139 kmem_cache_destroy(bslab->slab);
140 bslab->slab = NULL;
141
142out:
143 mutex_unlock(&bio_slab_lock);
144}
145
7ba1ba12
MP
146unsigned int bvec_nr_vecs(unsigned short idx)
147{
d6c02a9b 148 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
149}
150
9f060e22 151void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 152{
ed996a52
CH
153 if (!idx)
154 return;
155 idx--;
156
157 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 158
ed996a52 159 if (idx == BVEC_POOL_MAX) {
9f060e22 160 mempool_free(bv, pool);
ed996a52 161 } else {
bb799ca0
JA
162 struct biovec_slab *bvs = bvec_slabs + idx;
163
164 kmem_cache_free(bvs->slab, bv);
165 }
166}
167
9f060e22
KO
168struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
169 mempool_t *pool)
1da177e4
LT
170{
171 struct bio_vec *bvl;
1da177e4 172
7ff9345f
JA
173 /*
174 * see comment near bvec_array define!
175 */
176 switch (nr) {
177 case 1:
178 *idx = 0;
179 break;
180 case 2 ... 4:
181 *idx = 1;
182 break;
183 case 5 ... 16:
184 *idx = 2;
185 break;
186 case 17 ... 64:
187 *idx = 3;
188 break;
189 case 65 ... 128:
190 *idx = 4;
191 break;
192 case 129 ... BIO_MAX_PAGES:
193 *idx = 5;
194 break;
195 default:
196 return NULL;
197 }
198
199 /*
200 * idx now points to the pool we want to allocate from. only the
201 * 1-vec entry pool is mempool backed.
202 */
ed996a52 203 if (*idx == BVEC_POOL_MAX) {
7ff9345f 204fallback:
9f060e22 205 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
206 } else {
207 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 208 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 209
0a0d96b0 210 /*
7ff9345f
JA
211 * Make this allocation restricted and don't dump info on
212 * allocation failures, since we'll fallback to the mempool
213 * in case of failure.
0a0d96b0 214 */
7ff9345f 215 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 216
0a0d96b0 217 /*
d0164adc 218 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 219 * is set, retry with the 1-entry mempool
0a0d96b0 220 */
7ff9345f 221 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 222 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 223 *idx = BVEC_POOL_MAX;
7ff9345f
JA
224 goto fallback;
225 }
226 }
227
ed996a52 228 (*idx)++;
1da177e4
LT
229 return bvl;
230}
231
9ae3b3f5 232void bio_uninit(struct bio *bio)
1da177e4 233{
6f70fb66 234 bio_disassociate_blkg(bio);
4254bba1 235}
9ae3b3f5 236EXPORT_SYMBOL(bio_uninit);
7ba1ba12 237
4254bba1
KO
238static void bio_free(struct bio *bio)
239{
240 struct bio_set *bs = bio->bi_pool;
241 void *p;
242
9ae3b3f5 243 bio_uninit(bio);
4254bba1
KO
244
245 if (bs) {
8aa6ba2f 246 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
247
248 /*
249 * If we have front padding, adjust the bio pointer before freeing
250 */
251 p = bio;
bb799ca0
JA
252 p -= bs->front_pad;
253
8aa6ba2f 254 mempool_free(p, &bs->bio_pool);
4254bba1
KO
255 } else {
256 /* Bio was allocated by bio_kmalloc() */
257 kfree(bio);
258 }
3676347a
PO
259}
260
9ae3b3f5
JA
261/*
262 * Users of this function have their own bio allocation. Subsequently,
263 * they must remember to pair any call to bio_init() with bio_uninit()
264 * when IO has completed, or when the bio is released.
265 */
3a83f467
ML
266void bio_init(struct bio *bio, struct bio_vec *table,
267 unsigned short max_vecs)
1da177e4 268{
2b94de55 269 memset(bio, 0, sizeof(*bio));
c4cf5261 270 atomic_set(&bio->__bi_remaining, 1);
dac56212 271 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
272
273 bio->bi_io_vec = table;
274 bio->bi_max_vecs = max_vecs;
1da177e4 275}
a112a71d 276EXPORT_SYMBOL(bio_init);
1da177e4 277
f44b48c7
KO
278/**
279 * bio_reset - reinitialize a bio
280 * @bio: bio to reset
281 *
282 * Description:
283 * After calling bio_reset(), @bio will be in the same state as a freshly
284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
285 * preserved are the ones that are initialized by bio_alloc_bioset(). See
286 * comment in struct bio.
287 */
288void bio_reset(struct bio *bio)
289{
290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
291
9ae3b3f5 292 bio_uninit(bio);
f44b48c7
KO
293
294 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 295 bio->bi_flags = flags;
c4cf5261 296 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
297}
298EXPORT_SYMBOL(bio_reset);
299
38f8baae 300static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 301{
4246a0b6
CH
302 struct bio *parent = bio->bi_private;
303
4e4cbee9
CH
304 if (!parent->bi_status)
305 parent->bi_status = bio->bi_status;
196d38bc 306 bio_put(bio);
38f8baae
CH
307 return parent;
308}
309
310static void bio_chain_endio(struct bio *bio)
311{
312 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
313}
314
315/**
316 * bio_chain - chain bio completions
1051a902
RD
317 * @bio: the target bio
318 * @parent: the @bio's parent bio
196d38bc
KO
319 *
320 * The caller won't have a bi_end_io called when @bio completes - instead,
321 * @parent's bi_end_io won't be called until both @parent and @bio have
322 * completed; the chained bio will also be freed when it completes.
323 *
324 * The caller must not set bi_private or bi_end_io in @bio.
325 */
326void bio_chain(struct bio *bio, struct bio *parent)
327{
328 BUG_ON(bio->bi_private || bio->bi_end_io);
329
330 bio->bi_private = parent;
331 bio->bi_end_io = bio_chain_endio;
c4cf5261 332 bio_inc_remaining(parent);
196d38bc
KO
333}
334EXPORT_SYMBOL(bio_chain);
335
df2cb6da
KO
336static void bio_alloc_rescue(struct work_struct *work)
337{
338 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
339 struct bio *bio;
340
341 while (1) {
342 spin_lock(&bs->rescue_lock);
343 bio = bio_list_pop(&bs->rescue_list);
344 spin_unlock(&bs->rescue_lock);
345
346 if (!bio)
347 break;
348
349 generic_make_request(bio);
350 }
351}
352
353static void punt_bios_to_rescuer(struct bio_set *bs)
354{
355 struct bio_list punt, nopunt;
356 struct bio *bio;
357
47e0fb46
N
358 if (WARN_ON_ONCE(!bs->rescue_workqueue))
359 return;
df2cb6da
KO
360 /*
361 * In order to guarantee forward progress we must punt only bios that
362 * were allocated from this bio_set; otherwise, if there was a bio on
363 * there for a stacking driver higher up in the stack, processing it
364 * could require allocating bios from this bio_set, and doing that from
365 * our own rescuer would be bad.
366 *
367 * Since bio lists are singly linked, pop them all instead of trying to
368 * remove from the middle of the list:
369 */
370
371 bio_list_init(&punt);
372 bio_list_init(&nopunt);
373
f5fe1b51 374 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 375 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 376 current->bio_list[0] = nopunt;
df2cb6da 377
f5fe1b51
N
378 bio_list_init(&nopunt);
379 while ((bio = bio_list_pop(&current->bio_list[1])))
380 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381 current->bio_list[1] = nopunt;
df2cb6da
KO
382
383 spin_lock(&bs->rescue_lock);
384 bio_list_merge(&bs->rescue_list, &punt);
385 spin_unlock(&bs->rescue_lock);
386
387 queue_work(bs->rescue_workqueue, &bs->rescue_work);
388}
389
1da177e4
LT
390/**
391 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 392 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 393 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 394 * @bs: the bio_set to allocate from.
1da177e4
LT
395 *
396 * Description:
3f86a82a
KO
397 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
398 * backed by the @bs's mempool.
399 *
d0164adc
MG
400 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
401 * always be able to allocate a bio. This is due to the mempool guarantees.
402 * To make this work, callers must never allocate more than 1 bio at a time
403 * from this pool. Callers that need to allocate more than 1 bio must always
404 * submit the previously allocated bio for IO before attempting to allocate
405 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 406 *
df2cb6da
KO
407 * Note that when running under generic_make_request() (i.e. any block
408 * driver), bios are not submitted until after you return - see the code in
409 * generic_make_request() that converts recursion into iteration, to prevent
410 * stack overflows.
411 *
412 * This would normally mean allocating multiple bios under
413 * generic_make_request() would be susceptible to deadlocks, but we have
414 * deadlock avoidance code that resubmits any blocked bios from a rescuer
415 * thread.
416 *
417 * However, we do not guarantee forward progress for allocations from other
418 * mempools. Doing multiple allocations from the same mempool under
419 * generic_make_request() should be avoided - instead, use bio_set's front_pad
420 * for per bio allocations.
421 *
3f86a82a
KO
422 * RETURNS:
423 * Pointer to new bio on success, NULL on failure.
424 */
7a88fa19
DC
425struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
426 struct bio_set *bs)
1da177e4 427{
df2cb6da 428 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
429 unsigned front_pad;
430 unsigned inline_vecs;
34053979 431 struct bio_vec *bvl = NULL;
451a9ebf
TH
432 struct bio *bio;
433 void *p;
434
3f86a82a
KO
435 if (!bs) {
436 if (nr_iovecs > UIO_MAXIOV)
437 return NULL;
438
439 p = kmalloc(sizeof(struct bio) +
440 nr_iovecs * sizeof(struct bio_vec),
441 gfp_mask);
442 front_pad = 0;
443 inline_vecs = nr_iovecs;
444 } else {
d8f429e1 445 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
446 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
447 nr_iovecs > 0))
d8f429e1 448 return NULL;
df2cb6da
KO
449 /*
450 * generic_make_request() converts recursion to iteration; this
451 * means if we're running beneath it, any bios we allocate and
452 * submit will not be submitted (and thus freed) until after we
453 * return.
454 *
455 * This exposes us to a potential deadlock if we allocate
456 * multiple bios from the same bio_set() while running
457 * underneath generic_make_request(). If we were to allocate
458 * multiple bios (say a stacking block driver that was splitting
459 * bios), we would deadlock if we exhausted the mempool's
460 * reserve.
461 *
462 * We solve this, and guarantee forward progress, with a rescuer
463 * workqueue per bio_set. If we go to allocate and there are
464 * bios on current->bio_list, we first try the allocation
d0164adc
MG
465 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
466 * bios we would be blocking to the rescuer workqueue before
467 * we retry with the original gfp_flags.
df2cb6da
KO
468 */
469
f5fe1b51
N
470 if (current->bio_list &&
471 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
472 !bio_list_empty(&current->bio_list[1])) &&
473 bs->rescue_workqueue)
d0164adc 474 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 475
8aa6ba2f 476 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
477 if (!p && gfp_mask != saved_gfp) {
478 punt_bios_to_rescuer(bs);
479 gfp_mask = saved_gfp;
8aa6ba2f 480 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
481 }
482
3f86a82a
KO
483 front_pad = bs->front_pad;
484 inline_vecs = BIO_INLINE_VECS;
485 }
486
451a9ebf
TH
487 if (unlikely(!p))
488 return NULL;
1da177e4 489
3f86a82a 490 bio = p + front_pad;
3a83f467 491 bio_init(bio, NULL, 0);
34053979 492
3f86a82a 493 if (nr_iovecs > inline_vecs) {
ed996a52
CH
494 unsigned long idx = 0;
495
8aa6ba2f 496 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
497 if (!bvl && gfp_mask != saved_gfp) {
498 punt_bios_to_rescuer(bs);
499 gfp_mask = saved_gfp;
8aa6ba2f 500 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
501 }
502
34053979
IM
503 if (unlikely(!bvl))
504 goto err_free;
a38352e0 505
ed996a52 506 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
507 } else if (nr_iovecs) {
508 bvl = bio->bi_inline_vecs;
1da177e4 509 }
3f86a82a
KO
510
511 bio->bi_pool = bs;
34053979 512 bio->bi_max_vecs = nr_iovecs;
34053979 513 bio->bi_io_vec = bvl;
1da177e4 514 return bio;
34053979
IM
515
516err_free:
8aa6ba2f 517 mempool_free(p, &bs->bio_pool);
34053979 518 return NULL;
1da177e4 519}
a112a71d 520EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 521
38a72dac 522void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
523{
524 unsigned long flags;
7988613b
KO
525 struct bio_vec bv;
526 struct bvec_iter iter;
1da177e4 527
38a72dac 528 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
529 char *data = bvec_kmap_irq(&bv, &flags);
530 memset(data, 0, bv.bv_len);
531 flush_dcache_page(bv.bv_page);
1da177e4
LT
532 bvec_kunmap_irq(data, &flags);
533 }
534}
38a72dac 535EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4
LT
536
537/**
538 * bio_put - release a reference to a bio
539 * @bio: bio to release reference to
540 *
541 * Description:
542 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 543 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
544 **/
545void bio_put(struct bio *bio)
546{
dac56212 547 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 548 bio_free(bio);
dac56212
JA
549 else {
550 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
551
552 /*
553 * last put frees it
554 */
555 if (atomic_dec_and_test(&bio->__bi_cnt))
556 bio_free(bio);
557 }
1da177e4 558}
a112a71d 559EXPORT_SYMBOL(bio_put);
1da177e4 560
59d276fe
KO
561/**
562 * __bio_clone_fast - clone a bio that shares the original bio's biovec
563 * @bio: destination bio
564 * @bio_src: bio to clone
565 *
566 * Clone a &bio. Caller will own the returned bio, but not
567 * the actual data it points to. Reference count of returned
568 * bio will be one.
569 *
570 * Caller must ensure that @bio_src is not freed before @bio.
571 */
572void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
573{
ed996a52 574 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
575
576 /*
74d46992 577 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
578 * so we don't set nor calculate new physical/hw segment counts here
579 */
74d46992 580 bio->bi_disk = bio_src->bi_disk;
62530ed8 581 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 582 bio_set_flag(bio, BIO_CLONED);
111be883
SL
583 if (bio_flagged(bio_src, BIO_THROTTLED))
584 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 585 bio->bi_opf = bio_src->bi_opf;
ca474b73 586 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 587 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
588 bio->bi_iter = bio_src->bi_iter;
589 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 590
db6638d7 591 bio_clone_blkg_association(bio, bio_src);
e439bedf 592 blkcg_bio_issue_init(bio);
59d276fe
KO
593}
594EXPORT_SYMBOL(__bio_clone_fast);
595
596/**
597 * bio_clone_fast - clone a bio that shares the original bio's biovec
598 * @bio: bio to clone
599 * @gfp_mask: allocation priority
600 * @bs: bio_set to allocate from
601 *
602 * Like __bio_clone_fast, only also allocates the returned bio
603 */
604struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
605{
606 struct bio *b;
607
608 b = bio_alloc_bioset(gfp_mask, 0, bs);
609 if (!b)
610 return NULL;
611
612 __bio_clone_fast(b, bio);
613
614 if (bio_integrity(bio)) {
615 int ret;
616
617 ret = bio_integrity_clone(b, bio, gfp_mask);
618
619 if (ret < 0) {
620 bio_put(b);
621 return NULL;
622 }
623 }
624
625 return b;
626}
627EXPORT_SYMBOL(bio_clone_fast);
628
5919482e
ML
629static inline bool page_is_mergeable(const struct bio_vec *bv,
630 struct page *page, unsigned int len, unsigned int off,
631 bool same_page)
632{
633 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
634 bv->bv_offset + bv->bv_len - 1;
635 phys_addr_t page_addr = page_to_phys(page);
636
637 if (vec_end_addr + 1 != page_addr + off)
638 return false;
639 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
640 return false;
52d52d1c
CH
641
642 if ((vec_end_addr & PAGE_MASK) != page_addr) {
643 if (same_page)
644 return false;
645 if (pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
646 return false;
647 }
5919482e 648
551879a4
ML
649 WARN_ON_ONCE(same_page && (len + off) > PAGE_SIZE);
650
5919482e
ML
651 return true;
652}
653
489fbbcb
ML
654/*
655 * Check if the @page can be added to the current segment(@bv), and make
656 * sure to call it only if page_is_mergeable(@bv, @page) is true
657 */
658static bool can_add_page_to_seg(struct request_queue *q,
659 struct bio_vec *bv, struct page *page, unsigned len,
660 unsigned offset)
661{
662 unsigned long mask = queue_segment_boundary(q);
663 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
664 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
665
666 if ((addr1 | mask) != (addr2 | mask))
667 return false;
668
669 if (bv->bv_len + len > queue_max_segment_size(q))
670 return false;
671
672 return true;
673}
674
1da177e4 675/**
19047087 676 * __bio_add_pc_page - attempt to add page to passthrough bio
c66a14d0
KO
677 * @q: the target queue
678 * @bio: destination bio
679 * @page: page to add
680 * @len: vec entry length
681 * @offset: vec entry offset
19047087 682 * @put_same_page: put the page if it is same with last added page
1da177e4 683 *
c66a14d0
KO
684 * Attempt to add a page to the bio_vec maplist. This can fail for a
685 * number of reasons, such as the bio being full or target block device
686 * limitations. The target block device must allow bio's up to PAGE_SIZE,
687 * so it is always possible to add a single page to an empty bio.
688 *
5a8ce240 689 * This should only be used by passthrough bios.
1da177e4 690 */
4713839d 691static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
19047087
ML
692 struct page *page, unsigned int len, unsigned int offset,
693 bool put_same_page)
1da177e4 694{
1da177e4
LT
695 struct bio_vec *bvec;
696
697 /*
698 * cloned bio must not modify vec list
699 */
700 if (unlikely(bio_flagged(bio, BIO_CLONED)))
701 return 0;
702
c66a14d0 703 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
704 return 0;
705
80cfd548 706 if (bio->bi_vcnt > 0) {
5a8ce240 707 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
80cfd548 708
5a8ce240
ML
709 if (page == bvec->bv_page &&
710 offset == bvec->bv_offset + bvec->bv_len) {
19047087
ML
711 if (put_same_page)
712 put_page(page);
5a8ce240 713 bvec->bv_len += len;
80cfd548
JA
714 goto done;
715 }
66cb45aa
JA
716
717 /*
718 * If the queue doesn't support SG gaps and adding this
719 * offset would create a gap, disallow it.
720 */
5a8ce240 721 if (bvec_gap_to_prev(q, bvec, offset))
66cb45aa 722 return 0;
489fbbcb
ML
723
724 if (page_is_mergeable(bvec, page, len, offset, false) &&
dcdca753
CH
725 can_add_page_to_seg(q, bvec, page, len, offset)) {
726 bvec->bv_len += len;
727 goto done;
728 }
80cfd548
JA
729 }
730
0aa69fd3 731 if (bio_full(bio))
1da177e4
LT
732 return 0;
733
14ccb66b 734 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
735 return 0;
736
fcbf6a08
ML
737 bvec = &bio->bi_io_vec[bio->bi_vcnt];
738 bvec->bv_page = page;
739 bvec->bv_len = len;
740 bvec->bv_offset = offset;
741 bio->bi_vcnt++;
80cfd548 742 done:
dcdca753 743 bio->bi_iter.bi_size += len;
1da177e4
LT
744 return len;
745}
19047087
ML
746
747int bio_add_pc_page(struct request_queue *q, struct bio *bio,
748 struct page *page, unsigned int len, unsigned int offset)
749{
750 return __bio_add_pc_page(q, bio, page, len, offset, false);
751}
a112a71d 752EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 753
1da177e4 754/**
0aa69fd3
CH
755 * __bio_try_merge_page - try appending data to an existing bvec.
756 * @bio: destination bio
551879a4 757 * @page: start page to add
0aa69fd3 758 * @len: length of the data to add
551879a4 759 * @off: offset of the data relative to @page
07173c3e
ML
760 * @same_page: if %true only merge if the new data is in the same physical
761 * page as the last segment of the bio.
1da177e4 762 *
0aa69fd3
CH
763 * Try to add the data at @page + @off to the last bvec of @bio. This is a
764 * a useful optimisation for file systems with a block size smaller than the
765 * page size.
766 *
551879a4
ML
767 * Warn if (@len, @off) crosses pages in case that @same_page is true.
768 *
0aa69fd3 769 * Return %true on success or %false on failure.
1da177e4 770 */
0aa69fd3 771bool __bio_try_merge_page(struct bio *bio, struct page *page,
07173c3e 772 unsigned int len, unsigned int off, bool same_page)
1da177e4 773{
c66a14d0 774 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 775 return false;
762380ad 776
c66a14d0 777 if (bio->bi_vcnt > 0) {
0aa69fd3 778 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
779
780 if (page_is_mergeable(bv, page, len, off, same_page)) {
781 bv->bv_len += len;
782 bio->bi_iter.bi_size += len;
783 return true;
784 }
c66a14d0 785 }
0aa69fd3
CH
786 return false;
787}
788EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 789
0aa69fd3 790/**
551879a4 791 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 792 * @bio: destination bio
551879a4
ML
793 * @page: start page to add
794 * @len: length of the data to add, may cross pages
795 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
796 *
797 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
798 * that @bio has space for another bvec.
799 */
800void __bio_add_page(struct bio *bio, struct page *page,
801 unsigned int len, unsigned int off)
802{
803 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 804
0aa69fd3
CH
805 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
806 WARN_ON_ONCE(bio_full(bio));
807
808 bv->bv_page = page;
809 bv->bv_offset = off;
810 bv->bv_len = len;
c66a14d0 811
c66a14d0 812 bio->bi_iter.bi_size += len;
0aa69fd3
CH
813 bio->bi_vcnt++;
814}
815EXPORT_SYMBOL_GPL(__bio_add_page);
816
817/**
551879a4 818 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 819 * @bio: destination bio
551879a4
ML
820 * @page: start page to add
821 * @len: vec entry length, may cross pages
822 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 823 *
551879a4 824 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
825 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
826 */
827int bio_add_page(struct bio *bio, struct page *page,
828 unsigned int len, unsigned int offset)
829{
07173c3e 830 if (!__bio_try_merge_page(bio, page, len, offset, false)) {
0aa69fd3
CH
831 if (bio_full(bio))
832 return 0;
833 __bio_add_page(bio, page, len, offset);
834 }
c66a14d0 835 return len;
1da177e4 836}
a112a71d 837EXPORT_SYMBOL(bio_add_page);
1da177e4 838
7321ecbf
CH
839static void bio_get_pages(struct bio *bio)
840{
841 struct bvec_iter_all iter_all;
842 struct bio_vec *bvec;
7321ecbf 843
2b070cfe 844 bio_for_each_segment_all(bvec, bio, iter_all)
7321ecbf
CH
845 get_page(bvec->bv_page);
846}
847
d241a95f 848void bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
849{
850 struct bvec_iter_all iter_all;
851 struct bio_vec *bvec;
7321ecbf 852
b2d0d991
CH
853 if (bio_flagged(bio, BIO_NO_PAGE_REF))
854 return;
855
d241a95f
CH
856 bio_for_each_segment_all(bvec, bio, iter_all) {
857 if (mark_dirty && !PageCompound(bvec->bv_page))
858 set_page_dirty_lock(bvec->bv_page);
7321ecbf 859 put_page(bvec->bv_page);
d241a95f 860 }
7321ecbf
CH
861}
862
6d0c48ae
JA
863static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
864{
865 const struct bio_vec *bv = iter->bvec;
866 unsigned int len;
867 size_t size;
868
869 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
870 return -EINVAL;
871
872 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
873 size = bio_add_page(bio, bv->bv_page, len,
874 bv->bv_offset + iter->iov_offset);
a10584c3
CH
875 if (unlikely(size != len))
876 return -EINVAL;
a10584c3
CH
877 iov_iter_advance(iter, size);
878 return 0;
6d0c48ae
JA
879}
880
576ed913
CH
881#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
882
2cefe4db 883/**
17d51b10 884 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
885 * @bio: bio to add pages to
886 * @iter: iov iterator describing the region to be mapped
887 *
17d51b10 888 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 889 * pages will have to be released using put_page() when done.
17d51b10
MW
890 * For multi-segment *iter, this function only adds pages from the
891 * the next non-empty segment of the iov iterator.
2cefe4db 892 */
17d51b10 893static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 894{
576ed913
CH
895 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
896 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
897 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
898 struct page **pages = (struct page **)bv;
576ed913
CH
899 ssize_t size, left;
900 unsigned len, i;
b403ea24 901 size_t offset;
576ed913
CH
902
903 /*
904 * Move page array up in the allocated memory for the bio vecs as far as
905 * possible so that we can start filling biovecs from the beginning
906 * without overwriting the temporary page array.
907 */
908 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
909 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
910
911 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
912 if (unlikely(size <= 0))
913 return size ? size : -EFAULT;
2cefe4db 914
576ed913
CH
915 for (left = size, i = 0; left > 0; left -= len, i++) {
916 struct page *page = pages[i];
2cefe4db 917
576ed913
CH
918 len = min_t(size_t, PAGE_SIZE - offset, left);
919 if (WARN_ON_ONCE(bio_add_page(bio, page, len, offset) != len))
920 return -EINVAL;
921 offset = 0;
2cefe4db
KO
922 }
923
2cefe4db
KO
924 iov_iter_advance(iter, size);
925 return 0;
926}
17d51b10
MW
927
928/**
6d0c48ae 929 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 930 * @bio: bio to add pages to
6d0c48ae
JA
931 * @iter: iov iterator describing the region to be added
932 *
933 * This takes either an iterator pointing to user memory, or one pointing to
934 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
935 * map them into the kernel. On IO completion, the caller should put those
399254aa
JA
936 * pages. If we're adding kernel pages, and the caller told us it's safe to
937 * do so, we just have to add the pages to the bio directly. We don't grab an
938 * extra reference to those pages (the user should already have that), and we
939 * don't put the page on IO completion. The caller needs to check if the bio is
940 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
941 * released.
17d51b10 942 *
17d51b10 943 * The function tries, but does not guarantee, to pin as many pages as
6d0c48ae
JA
944 * fit into the bio, or are requested in *iter, whatever is smaller. If
945 * MM encounters an error pinning the requested pages, it stops. Error
946 * is returned only if 0 pages could be pinned.
17d51b10
MW
947 */
948int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
949{
6d0c48ae 950 const bool is_bvec = iov_iter_is_bvec(iter);
14eacf12
CH
951 int ret;
952
953 if (WARN_ON_ONCE(bio->bi_vcnt))
954 return -EINVAL;
17d51b10
MW
955
956 do {
6d0c48ae
JA
957 if (is_bvec)
958 ret = __bio_iov_bvec_add_pages(bio, iter);
959 else
960 ret = __bio_iov_iter_get_pages(bio, iter);
14eacf12 961 } while (!ret && iov_iter_count(iter) && !bio_full(bio));
17d51b10 962
7321ecbf
CH
963 if (iov_iter_bvec_no_ref(iter))
964 bio_set_flag(bio, BIO_NO_PAGE_REF);
0257c0ed 965 else if (is_bvec)
7321ecbf
CH
966 bio_get_pages(bio);
967
14eacf12 968 return bio->bi_vcnt ? 0 : ret;
17d51b10 969}
2cefe4db 970
4246a0b6 971static void submit_bio_wait_endio(struct bio *bio)
9e882242 972{
65e53aab 973 complete(bio->bi_private);
9e882242
KO
974}
975
976/**
977 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
978 * @bio: The &struct bio which describes the I/O
979 *
980 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
981 * bio_endio() on failure.
3d289d68
JK
982 *
983 * WARNING: Unlike to how submit_bio() is usually used, this function does not
984 * result in bio reference to be consumed. The caller must drop the reference
985 * on his own.
9e882242 986 */
4e49ea4a 987int submit_bio_wait(struct bio *bio)
9e882242 988{
e319e1fb 989 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
9e882242 990
65e53aab 991 bio->bi_private = &done;
9e882242 992 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 993 bio->bi_opf |= REQ_SYNC;
4e49ea4a 994 submit_bio(bio);
65e53aab 995 wait_for_completion_io(&done);
9e882242 996
65e53aab 997 return blk_status_to_errno(bio->bi_status);
9e882242
KO
998}
999EXPORT_SYMBOL(submit_bio_wait);
1000
054bdf64
KO
1001/**
1002 * bio_advance - increment/complete a bio by some number of bytes
1003 * @bio: bio to advance
1004 * @bytes: number of bytes to complete
1005 *
1006 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1007 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1008 * be updated on the last bvec as well.
1009 *
1010 * @bio will then represent the remaining, uncompleted portion of the io.
1011 */
1012void bio_advance(struct bio *bio, unsigned bytes)
1013{
1014 if (bio_integrity(bio))
1015 bio_integrity_advance(bio, bytes);
1016
4550dd6c 1017 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1018}
1019EXPORT_SYMBOL(bio_advance);
1020
45db54d5
KO
1021void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1022 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1023{
1cb9dda4 1024 struct bio_vec src_bv, dst_bv;
16ac3d63 1025 void *src_p, *dst_p;
1cb9dda4 1026 unsigned bytes;
16ac3d63 1027
45db54d5
KO
1028 while (src_iter->bi_size && dst_iter->bi_size) {
1029 src_bv = bio_iter_iovec(src, *src_iter);
1030 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1031
1032 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1033
1cb9dda4
KO
1034 src_p = kmap_atomic(src_bv.bv_page);
1035 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1036
1cb9dda4
KO
1037 memcpy(dst_p + dst_bv.bv_offset,
1038 src_p + src_bv.bv_offset,
16ac3d63
KO
1039 bytes);
1040
1041 kunmap_atomic(dst_p);
1042 kunmap_atomic(src_p);
1043
6e6e811d
KO
1044 flush_dcache_page(dst_bv.bv_page);
1045
45db54d5
KO
1046 bio_advance_iter(src, src_iter, bytes);
1047 bio_advance_iter(dst, dst_iter, bytes);
16ac3d63
KO
1048 }
1049}
38a72dac
KO
1050EXPORT_SYMBOL(bio_copy_data_iter);
1051
1052/**
45db54d5
KO
1053 * bio_copy_data - copy contents of data buffers from one bio to another
1054 * @src: source bio
1055 * @dst: destination bio
38a72dac
KO
1056 *
1057 * Stops when it reaches the end of either @src or @dst - that is, copies
1058 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1059 */
1060void bio_copy_data(struct bio *dst, struct bio *src)
1061{
45db54d5
KO
1062 struct bvec_iter src_iter = src->bi_iter;
1063 struct bvec_iter dst_iter = dst->bi_iter;
1064
1065 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1066}
16ac3d63
KO
1067EXPORT_SYMBOL(bio_copy_data);
1068
45db54d5
KO
1069/**
1070 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1071 * another
1072 * @src: source bio list
1073 * @dst: destination bio list
1074 *
1075 * Stops when it reaches the end of either the @src list or @dst list - that is,
1076 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1077 * bios).
1078 */
1079void bio_list_copy_data(struct bio *dst, struct bio *src)
1080{
1081 struct bvec_iter src_iter = src->bi_iter;
1082 struct bvec_iter dst_iter = dst->bi_iter;
1083
1084 while (1) {
1085 if (!src_iter.bi_size) {
1086 src = src->bi_next;
1087 if (!src)
1088 break;
1089
1090 src_iter = src->bi_iter;
1091 }
1092
1093 if (!dst_iter.bi_size) {
1094 dst = dst->bi_next;
1095 if (!dst)
1096 break;
1097
1098 dst_iter = dst->bi_iter;
1099 }
1100
1101 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1102 }
1103}
1104EXPORT_SYMBOL(bio_list_copy_data);
1105
1da177e4 1106struct bio_map_data {
152e283f 1107 int is_our_pages;
26e49cfc
KO
1108 struct iov_iter iter;
1109 struct iovec iov[];
1da177e4
LT
1110};
1111
0e5b935d 1112static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
76029ff3 1113 gfp_t gfp_mask)
1da177e4 1114{
0e5b935d
AV
1115 struct bio_map_data *bmd;
1116 if (data->nr_segs > UIO_MAXIOV)
f3f63c1c 1117 return NULL;
1da177e4 1118
f1f8f292 1119 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
0e5b935d
AV
1120 if (!bmd)
1121 return NULL;
1122 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1123 bmd->iter = *data;
1124 bmd->iter.iov = bmd->iov;
1125 return bmd;
1da177e4
LT
1126}
1127
9124d3fe
DP
1128/**
1129 * bio_copy_from_iter - copy all pages from iov_iter to bio
1130 * @bio: The &struct bio which describes the I/O as destination
1131 * @iter: iov_iter as source
1132 *
1133 * Copy all pages from iov_iter to bio.
1134 * Returns 0 on success, or error on failure.
1135 */
98a09d61 1136static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
c5dec1c3 1137{
c5dec1c3 1138 struct bio_vec *bvec;
6dc4f100 1139 struct bvec_iter_all iter_all;
c5dec1c3 1140
2b070cfe 1141 bio_for_each_segment_all(bvec, bio, iter_all) {
9124d3fe 1142 ssize_t ret;
c5dec1c3 1143
9124d3fe
DP
1144 ret = copy_page_from_iter(bvec->bv_page,
1145 bvec->bv_offset,
1146 bvec->bv_len,
98a09d61 1147 iter);
9124d3fe 1148
98a09d61 1149 if (!iov_iter_count(iter))
9124d3fe
DP
1150 break;
1151
1152 if (ret < bvec->bv_len)
1153 return -EFAULT;
c5dec1c3
FT
1154 }
1155
9124d3fe
DP
1156 return 0;
1157}
1158
1159/**
1160 * bio_copy_to_iter - copy all pages from bio to iov_iter
1161 * @bio: The &struct bio which describes the I/O as source
1162 * @iter: iov_iter as destination
1163 *
1164 * Copy all pages from bio to iov_iter.
1165 * Returns 0 on success, or error on failure.
1166 */
1167static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1168{
9124d3fe 1169 struct bio_vec *bvec;
6dc4f100 1170 struct bvec_iter_all iter_all;
9124d3fe 1171
2b070cfe 1172 bio_for_each_segment_all(bvec, bio, iter_all) {
9124d3fe
DP
1173 ssize_t ret;
1174
1175 ret = copy_page_to_iter(bvec->bv_page,
1176 bvec->bv_offset,
1177 bvec->bv_len,
1178 &iter);
1179
1180 if (!iov_iter_count(&iter))
1181 break;
1182
1183 if (ret < bvec->bv_len)
1184 return -EFAULT;
1185 }
1186
1187 return 0;
c5dec1c3
FT
1188}
1189
491221f8 1190void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1191{
1192 struct bio_vec *bvec;
6dc4f100 1193 struct bvec_iter_all iter_all;
1dfa0f68 1194
2b070cfe 1195 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1196 __free_page(bvec->bv_page);
1197}
491221f8 1198EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1199
1da177e4
LT
1200/**
1201 * bio_uncopy_user - finish previously mapped bio
1202 * @bio: bio being terminated
1203 *
ddad8dd0 1204 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1205 * to user space in case of a read.
1206 */
1207int bio_uncopy_user(struct bio *bio)
1208{
1209 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1210 int ret = 0;
1da177e4 1211
35dc2483
RD
1212 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1213 /*
1214 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1215 * don't copy into a random user address space, just free
1216 * and return -EINTR so user space doesn't expect any data.
35dc2483 1217 */
2d99b55d
HR
1218 if (!current->mm)
1219 ret = -EINTR;
1220 else if (bio_data_dir(bio) == READ)
9124d3fe 1221 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1222 if (bmd->is_our_pages)
1223 bio_free_pages(bio);
35dc2483 1224 }
c8db4448 1225 kfree(bmd);
1da177e4
LT
1226 bio_put(bio);
1227 return ret;
1228}
1229
1230/**
c5dec1c3 1231 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1232 * @q: destination block queue
1233 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1234 * @iter: iovec iterator
1235 * @gfp_mask: memory allocation flags
1da177e4
LT
1236 *
1237 * Prepares and returns a bio for indirect user io, bouncing data
1238 * to/from kernel pages as necessary. Must be paired with
1239 * call bio_uncopy_user() on io completion.
1240 */
152e283f
FT
1241struct bio *bio_copy_user_iov(struct request_queue *q,
1242 struct rq_map_data *map_data,
e81cef5d 1243 struct iov_iter *iter,
26e49cfc 1244 gfp_t gfp_mask)
1da177e4 1245{
1da177e4 1246 struct bio_map_data *bmd;
1da177e4
LT
1247 struct page *page;
1248 struct bio *bio;
d16d44eb
AV
1249 int i = 0, ret;
1250 int nr_pages;
26e49cfc 1251 unsigned int len = iter->count;
bd5cecea 1252 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1253
0e5b935d 1254 bmd = bio_alloc_map_data(iter, gfp_mask);
1da177e4
LT
1255 if (!bmd)
1256 return ERR_PTR(-ENOMEM);
1257
26e49cfc
KO
1258 /*
1259 * We need to do a deep copy of the iov_iter including the iovecs.
1260 * The caller provided iov might point to an on-stack or otherwise
1261 * shortlived one.
1262 */
1263 bmd->is_our_pages = map_data ? 0 : 1;
26e49cfc 1264
d16d44eb
AV
1265 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1266 if (nr_pages > BIO_MAX_PAGES)
1267 nr_pages = BIO_MAX_PAGES;
26e49cfc 1268
1da177e4 1269 ret = -ENOMEM;
a9e9dc24 1270 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1271 if (!bio)
1272 goto out_bmd;
1273
1da177e4 1274 ret = 0;
56c451f4
FT
1275
1276 if (map_data) {
e623ddb4 1277 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1278 i = map_data->offset / PAGE_SIZE;
1279 }
1da177e4 1280 while (len) {
e623ddb4 1281 unsigned int bytes = PAGE_SIZE;
1da177e4 1282
56c451f4
FT
1283 bytes -= offset;
1284
1da177e4
LT
1285 if (bytes > len)
1286 bytes = len;
1287
152e283f 1288 if (map_data) {
e623ddb4 1289 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1290 ret = -ENOMEM;
1291 break;
1292 }
e623ddb4
FT
1293
1294 page = map_data->pages[i / nr_pages];
1295 page += (i % nr_pages);
1296
1297 i++;
1298 } else {
152e283f 1299 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1300 if (!page) {
1301 ret = -ENOMEM;
1302 break;
1303 }
1da177e4
LT
1304 }
1305
a3761c3c
JG
1306 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1307 if (!map_data)
1308 __free_page(page);
1da177e4 1309 break;
a3761c3c 1310 }
1da177e4
LT
1311
1312 len -= bytes;
56c451f4 1313 offset = 0;
1da177e4
LT
1314 }
1315
1316 if (ret)
1317 goto cleanup;
1318
2884d0be
AV
1319 if (map_data)
1320 map_data->offset += bio->bi_iter.bi_size;
1321
1da177e4
LT
1322 /*
1323 * success
1324 */
00e23707 1325 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1326 (map_data && map_data->from_user)) {
98a09d61 1327 ret = bio_copy_from_iter(bio, iter);
c5dec1c3
FT
1328 if (ret)
1329 goto cleanup;
98a09d61 1330 } else {
f55adad6
KB
1331 if (bmd->is_our_pages)
1332 zero_fill_bio(bio);
98a09d61 1333 iov_iter_advance(iter, bio->bi_iter.bi_size);
1da177e4
LT
1334 }
1335
26e49cfc 1336 bio->bi_private = bmd;
2884d0be
AV
1337 if (map_data && map_data->null_mapped)
1338 bio_set_flag(bio, BIO_NULL_MAPPED);
1da177e4
LT
1339 return bio;
1340cleanup:
152e283f 1341 if (!map_data)
1dfa0f68 1342 bio_free_pages(bio);
1da177e4
LT
1343 bio_put(bio);
1344out_bmd:
c8db4448 1345 kfree(bmd);
1da177e4
LT
1346 return ERR_PTR(ret);
1347}
1348
37f19e57
CH
1349/**
1350 * bio_map_user_iov - map user iovec into bio
1351 * @q: the struct request_queue for the bio
1352 * @iter: iovec iterator
1353 * @gfp_mask: memory allocation flags
1354 *
1355 * Map the user space address into a bio suitable for io to a block
1356 * device. Returns an error pointer in case of error.
1357 */
1358struct bio *bio_map_user_iov(struct request_queue *q,
e81cef5d 1359 struct iov_iter *iter,
37f19e57 1360 gfp_t gfp_mask)
1da177e4 1361{
26e49cfc 1362 int j;
1da177e4 1363 struct bio *bio;
076098e5 1364 int ret;
1da177e4 1365
b282cc76 1366 if (!iov_iter_count(iter))
1da177e4
LT
1367 return ERR_PTR(-EINVAL);
1368
b282cc76 1369 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1da177e4
LT
1370 if (!bio)
1371 return ERR_PTR(-ENOMEM);
1372
0a0f1513 1373 while (iov_iter_count(iter)) {
629e42bc 1374 struct page **pages;
076098e5
AV
1375 ssize_t bytes;
1376 size_t offs, added = 0;
1377 int npages;
1da177e4 1378
0a0f1513 1379 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
076098e5
AV
1380 if (unlikely(bytes <= 0)) {
1381 ret = bytes ? bytes : -EFAULT;
f1970baf 1382 goto out_unmap;
99172157 1383 }
f1970baf 1384
076098e5 1385 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
f1970baf 1386
98f0bc99
AV
1387 if (unlikely(offs & queue_dma_alignment(q))) {
1388 ret = -EINVAL;
1389 j = 0;
1390 } else {
1391 for (j = 0; j < npages; j++) {
1392 struct page *page = pages[j];
1393 unsigned int n = PAGE_SIZE - offs;
f1970baf 1394
98f0bc99
AV
1395 if (n > bytes)
1396 n = bytes;
95d78c28 1397
19047087
ML
1398 if (!__bio_add_pc_page(q, bio, page, n, offs,
1399 true))
98f0bc99 1400 break;
1da177e4 1401
98f0bc99
AV
1402 added += n;
1403 bytes -= n;
1404 offs = 0;
1405 }
0a0f1513 1406 iov_iter_advance(iter, added);
f1970baf 1407 }
1da177e4 1408 /*
f1970baf 1409 * release the pages we didn't map into the bio, if any
1da177e4 1410 */
629e42bc 1411 while (j < npages)
09cbfeaf 1412 put_page(pages[j++]);
629e42bc 1413 kvfree(pages);
e2e115d1
AV
1414 /* couldn't stuff something into bio? */
1415 if (bytes)
1416 break;
1da177e4
LT
1417 }
1418
b7c44ed9 1419 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1420
1421 /*
5fad1b64 1422 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1423 * it would normally disappear when its bi_end_io is run.
1424 * however, we need it for the unmap, so grab an extra
1425 * reference to it
1426 */
1427 bio_get(bio);
1da177e4 1428 return bio;
f1970baf
JB
1429
1430 out_unmap:
506e0798 1431 bio_release_pages(bio, false);
1da177e4
LT
1432 bio_put(bio);
1433 return ERR_PTR(ret);
1434}
1435
1da177e4
LT
1436/**
1437 * bio_unmap_user - unmap a bio
1438 * @bio: the bio being unmapped
1439 *
5fad1b64
BVA
1440 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1441 * process context.
1da177e4
LT
1442 *
1443 * bio_unmap_user() may sleep.
1444 */
1445void bio_unmap_user(struct bio *bio)
1446{
163cc2d3
CH
1447 bio_release_pages(bio, bio_data_dir(bio) == READ);
1448 bio_put(bio);
1da177e4
LT
1449 bio_put(bio);
1450}
1451
4246a0b6 1452static void bio_map_kern_endio(struct bio *bio)
b823825e 1453{
b823825e 1454 bio_put(bio);
b823825e
JA
1455}
1456
75c72b83
CH
1457/**
1458 * bio_map_kern - map kernel address into bio
1459 * @q: the struct request_queue for the bio
1460 * @data: pointer to buffer to map
1461 * @len: length in bytes
1462 * @gfp_mask: allocation flags for bio allocation
1463 *
1464 * Map the kernel address into a bio suitable for io to a block
1465 * device. Returns an error pointer in case of error.
1466 */
1467struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1468 gfp_t gfp_mask)
df46b9a4
MC
1469{
1470 unsigned long kaddr = (unsigned long)data;
1471 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1472 unsigned long start = kaddr >> PAGE_SHIFT;
1473 const int nr_pages = end - start;
1474 int offset, i;
1475 struct bio *bio;
1476
a9e9dc24 1477 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1478 if (!bio)
1479 return ERR_PTR(-ENOMEM);
1480
1481 offset = offset_in_page(kaddr);
1482 for (i = 0; i < nr_pages; i++) {
1483 unsigned int bytes = PAGE_SIZE - offset;
1484
1485 if (len <= 0)
1486 break;
1487
1488 if (bytes > len)
1489 bytes = len;
1490
defd94b7 1491 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1492 offset) < bytes) {
1493 /* we don't support partial mappings */
1494 bio_put(bio);
1495 return ERR_PTR(-EINVAL);
1496 }
df46b9a4
MC
1497
1498 data += bytes;
1499 len -= bytes;
1500 offset = 0;
1501 }
1502
b823825e 1503 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1504 return bio;
1505}
a112a71d 1506EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1507
4246a0b6 1508static void bio_copy_kern_endio(struct bio *bio)
68154e90 1509{
1dfa0f68
CH
1510 bio_free_pages(bio);
1511 bio_put(bio);
1512}
1513
4246a0b6 1514static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1515{
42d2683a 1516 char *p = bio->bi_private;
1dfa0f68 1517 struct bio_vec *bvec;
6dc4f100 1518 struct bvec_iter_all iter_all;
68154e90 1519
2b070cfe 1520 bio_for_each_segment_all(bvec, bio, iter_all) {
1dfa0f68 1521 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1522 p += bvec->bv_len;
68154e90
FT
1523 }
1524
4246a0b6 1525 bio_copy_kern_endio(bio);
68154e90
FT
1526}
1527
1528/**
1529 * bio_copy_kern - copy kernel address into bio
1530 * @q: the struct request_queue for the bio
1531 * @data: pointer to buffer to copy
1532 * @len: length in bytes
1533 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1534 * @reading: data direction is READ
68154e90
FT
1535 *
1536 * copy the kernel address into a bio suitable for io to a block
1537 * device. Returns an error pointer in case of error.
1538 */
1539struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1540 gfp_t gfp_mask, int reading)
1541{
42d2683a
CH
1542 unsigned long kaddr = (unsigned long)data;
1543 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1544 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1545 struct bio *bio;
1546 void *p = data;
1dfa0f68 1547 int nr_pages = 0;
68154e90 1548
42d2683a
CH
1549 /*
1550 * Overflow, abort
1551 */
1552 if (end < start)
1553 return ERR_PTR(-EINVAL);
68154e90 1554
42d2683a
CH
1555 nr_pages = end - start;
1556 bio = bio_kmalloc(gfp_mask, nr_pages);
1557 if (!bio)
1558 return ERR_PTR(-ENOMEM);
68154e90 1559
42d2683a
CH
1560 while (len) {
1561 struct page *page;
1562 unsigned int bytes = PAGE_SIZE;
68154e90 1563
42d2683a
CH
1564 if (bytes > len)
1565 bytes = len;
1566
1567 page = alloc_page(q->bounce_gfp | gfp_mask);
1568 if (!page)
1569 goto cleanup;
1570
1571 if (!reading)
1572 memcpy(page_address(page), p, bytes);
1573
1574 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1575 break;
1576
1577 len -= bytes;
1578 p += bytes;
68154e90
FT
1579 }
1580
1dfa0f68
CH
1581 if (reading) {
1582 bio->bi_end_io = bio_copy_kern_endio_read;
1583 bio->bi_private = data;
1584 } else {
1585 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1586 }
76029ff3 1587
68154e90 1588 return bio;
42d2683a
CH
1589
1590cleanup:
1dfa0f68 1591 bio_free_pages(bio);
42d2683a
CH
1592 bio_put(bio);
1593 return ERR_PTR(-ENOMEM);
68154e90
FT
1594}
1595
1da177e4
LT
1596/*
1597 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1598 * for performing direct-IO in BIOs.
1599 *
1600 * The problem is that we cannot run set_page_dirty() from interrupt context
1601 * because the required locks are not interrupt-safe. So what we can do is to
1602 * mark the pages dirty _before_ performing IO. And in interrupt context,
1603 * check that the pages are still dirty. If so, fine. If not, redirty them
1604 * in process context.
1605 *
1606 * We special-case compound pages here: normally this means reads into hugetlb
1607 * pages. The logic in here doesn't really work right for compound pages
1608 * because the VM does not uniformly chase down the head page in all cases.
1609 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1610 * handle them at all. So we skip compound pages here at an early stage.
1611 *
1612 * Note that this code is very hard to test under normal circumstances because
1613 * direct-io pins the pages with get_user_pages(). This makes
1614 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1615 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1616 * pagecache.
1617 *
1618 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1619 * deferred bio dirtying paths.
1620 */
1621
1622/*
1623 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1624 */
1625void bio_set_pages_dirty(struct bio *bio)
1626{
cb34e057 1627 struct bio_vec *bvec;
6dc4f100 1628 struct bvec_iter_all iter_all;
1da177e4 1629
2b070cfe 1630 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1631 if (!PageCompound(bvec->bv_page))
1632 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1633 }
1634}
1635
1da177e4
LT
1636/*
1637 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1638 * If they are, then fine. If, however, some pages are clean then they must
1639 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1640 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1641 *
1642 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1643 * here on. It will run one put_page() against each page and will run one
1644 * bio_put() against the BIO.
1da177e4
LT
1645 */
1646
65f27f38 1647static void bio_dirty_fn(struct work_struct *work);
1da177e4 1648
65f27f38 1649static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1650static DEFINE_SPINLOCK(bio_dirty_lock);
1651static struct bio *bio_dirty_list;
1652
1653/*
1654 * This runs in process context
1655 */
65f27f38 1656static void bio_dirty_fn(struct work_struct *work)
1da177e4 1657{
24d5493f 1658 struct bio *bio, *next;
1da177e4 1659
24d5493f
CH
1660 spin_lock_irq(&bio_dirty_lock);
1661 next = bio_dirty_list;
1da177e4 1662 bio_dirty_list = NULL;
24d5493f 1663 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1664
24d5493f
CH
1665 while ((bio = next) != NULL) {
1666 next = bio->bi_private;
1da177e4 1667
d241a95f 1668 bio_release_pages(bio, true);
1da177e4 1669 bio_put(bio);
1da177e4
LT
1670 }
1671}
1672
1673void bio_check_pages_dirty(struct bio *bio)
1674{
cb34e057 1675 struct bio_vec *bvec;
24d5493f 1676 unsigned long flags;
6dc4f100 1677 struct bvec_iter_all iter_all;
1da177e4 1678
2b070cfe 1679 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1680 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1681 goto defer;
1da177e4
LT
1682 }
1683
d241a95f 1684 bio_release_pages(bio, false);
24d5493f
CH
1685 bio_put(bio);
1686 return;
1687defer:
1688 spin_lock_irqsave(&bio_dirty_lock, flags);
1689 bio->bi_private = bio_dirty_list;
1690 bio_dirty_list = bio;
1691 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1692 schedule_work(&bio_dirty_work);
1da177e4
LT
1693}
1694
5b18b5a7
MP
1695void update_io_ticks(struct hd_struct *part, unsigned long now)
1696{
1697 unsigned long stamp;
1698again:
1699 stamp = READ_ONCE(part->stamp);
1700 if (unlikely(stamp != now)) {
1701 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1702 __part_stat_add(part, io_ticks, 1);
1703 }
1704 }
1705 if (part->partno) {
1706 part = &part_to_disk(part)->part0;
1707 goto again;
1708 }
1709}
1da177e4 1710
ddcf35d3 1711void generic_start_io_acct(struct request_queue *q, int op,
d62e26b3 1712 unsigned long sectors, struct hd_struct *part)
394ffa50 1713{
ddcf35d3 1714 const int sgrp = op_stat_group(op);
394ffa50 1715
112f158f
MS
1716 part_stat_lock();
1717
5b18b5a7 1718 update_io_ticks(part, jiffies);
112f158f
MS
1719 part_stat_inc(part, ios[sgrp]);
1720 part_stat_add(part, sectors[sgrp], sectors);
ddcf35d3 1721 part_inc_in_flight(q, part, op_is_write(op));
394ffa50
GZ
1722
1723 part_stat_unlock();
1724}
1725EXPORT_SYMBOL(generic_start_io_acct);
1726
ddcf35d3 1727void generic_end_io_acct(struct request_queue *q, int req_op,
d62e26b3 1728 struct hd_struct *part, unsigned long start_time)
394ffa50 1729{
5b18b5a7
MP
1730 unsigned long now = jiffies;
1731 unsigned long duration = now - start_time;
ddcf35d3 1732 const int sgrp = op_stat_group(req_op);
394ffa50 1733
112f158f
MS
1734 part_stat_lock();
1735
5b18b5a7 1736 update_io_ticks(part, now);
112f158f 1737 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
5b18b5a7 1738 part_stat_add(part, time_in_queue, duration);
ddcf35d3 1739 part_dec_in_flight(q, part, op_is_write(req_op));
394ffa50
GZ
1740
1741 part_stat_unlock();
1742}
1743EXPORT_SYMBOL(generic_end_io_acct);
1744
c4cf5261
JA
1745static inline bool bio_remaining_done(struct bio *bio)
1746{
1747 /*
1748 * If we're not chaining, then ->__bi_remaining is always 1 and
1749 * we always end io on the first invocation.
1750 */
1751 if (!bio_flagged(bio, BIO_CHAIN))
1752 return true;
1753
1754 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1755
326e1dbb 1756 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1757 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1758 return true;
326e1dbb 1759 }
c4cf5261
JA
1760
1761 return false;
1762}
1763
1da177e4
LT
1764/**
1765 * bio_endio - end I/O on a bio
1766 * @bio: bio
1da177e4
LT
1767 *
1768 * Description:
4246a0b6
CH
1769 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1770 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1771 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1772 *
1773 * bio_endio() can be called several times on a bio that has been chained
1774 * using bio_chain(). The ->bi_end_io() function will only be called the
1775 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1776 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1777 **/
4246a0b6 1778void bio_endio(struct bio *bio)
1da177e4 1779{
ba8c6967 1780again:
2b885517 1781 if (!bio_remaining_done(bio))
ba8c6967 1782 return;
7c20f116
CH
1783 if (!bio_integrity_endio(bio))
1784 return;
1da177e4 1785
67b42d0b
JB
1786 if (bio->bi_disk)
1787 rq_qos_done_bio(bio->bi_disk->queue, bio);
1788
ba8c6967
CH
1789 /*
1790 * Need to have a real endio function for chained bios, otherwise
1791 * various corner cases will break (like stacking block devices that
1792 * save/restore bi_end_io) - however, we want to avoid unbounded
1793 * recursion and blowing the stack. Tail call optimization would
1794 * handle this, but compiling with frame pointers also disables
1795 * gcc's sibling call optimization.
1796 */
1797 if (bio->bi_end_io == bio_chain_endio) {
1798 bio = __bio_chain_endio(bio);
1799 goto again;
196d38bc 1800 }
ba8c6967 1801
74d46992
CH
1802 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1803 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1804 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1805 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1806 }
1807
9e234eea 1808 blk_throtl_bio_endio(bio);
b222dd2f
SL
1809 /* release cgroup info */
1810 bio_uninit(bio);
ba8c6967
CH
1811 if (bio->bi_end_io)
1812 bio->bi_end_io(bio);
1da177e4 1813}
a112a71d 1814EXPORT_SYMBOL(bio_endio);
1da177e4 1815
20d0189b
KO
1816/**
1817 * bio_split - split a bio
1818 * @bio: bio to split
1819 * @sectors: number of sectors to split from the front of @bio
1820 * @gfp: gfp mask
1821 * @bs: bio set to allocate from
1822 *
1823 * Allocates and returns a new bio which represents @sectors from the start of
1824 * @bio, and updates @bio to represent the remaining sectors.
1825 *
f3f5da62
MP
1826 * Unless this is a discard request the newly allocated bio will point
1827 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1828 * @bio is not freed before the split.
20d0189b
KO
1829 */
1830struct bio *bio_split(struct bio *bio, int sectors,
1831 gfp_t gfp, struct bio_set *bs)
1832{
f341a4d3 1833 struct bio *split;
20d0189b
KO
1834
1835 BUG_ON(sectors <= 0);
1836 BUG_ON(sectors >= bio_sectors(bio));
1837
f9d03f96 1838 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1839 if (!split)
1840 return NULL;
1841
1842 split->bi_iter.bi_size = sectors << 9;
1843
1844 if (bio_integrity(split))
fbd08e76 1845 bio_integrity_trim(split);
20d0189b
KO
1846
1847 bio_advance(bio, split->bi_iter.bi_size);
1848
fbbaf700 1849 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1850 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1851
20d0189b
KO
1852 return split;
1853}
1854EXPORT_SYMBOL(bio_split);
1855
6678d83f
KO
1856/**
1857 * bio_trim - trim a bio
1858 * @bio: bio to trim
1859 * @offset: number of sectors to trim from the front of @bio
1860 * @size: size we want to trim @bio to, in sectors
1861 */
1862void bio_trim(struct bio *bio, int offset, int size)
1863{
1864 /* 'bio' is a cloned bio which we need to trim to match
1865 * the given offset and size.
6678d83f 1866 */
6678d83f
KO
1867
1868 size <<= 9;
4f024f37 1869 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1870 return;
1871
6678d83f 1872 bio_advance(bio, offset << 9);
4f024f37 1873 bio->bi_iter.bi_size = size;
376a78ab
DM
1874
1875 if (bio_integrity(bio))
fbd08e76 1876 bio_integrity_trim(bio);
376a78ab 1877
6678d83f
KO
1878}
1879EXPORT_SYMBOL_GPL(bio_trim);
1880
1da177e4
LT
1881/*
1882 * create memory pools for biovec's in a bio_set.
1883 * use the global biovec slabs created for general use.
1884 */
8aa6ba2f 1885int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1886{
ed996a52 1887 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1888
8aa6ba2f 1889 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1890}
1891
917a38c7
KO
1892/*
1893 * bioset_exit - exit a bioset initialized with bioset_init()
1894 *
1895 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1896 * kzalloc()).
1897 */
1898void bioset_exit(struct bio_set *bs)
1da177e4 1899{
df2cb6da
KO
1900 if (bs->rescue_workqueue)
1901 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1902 bs->rescue_workqueue = NULL;
df2cb6da 1903
8aa6ba2f
KO
1904 mempool_exit(&bs->bio_pool);
1905 mempool_exit(&bs->bvec_pool);
9f060e22 1906
7878cba9 1907 bioset_integrity_free(bs);
917a38c7
KO
1908 if (bs->bio_slab)
1909 bio_put_slab(bs);
1910 bs->bio_slab = NULL;
1911}
1912EXPORT_SYMBOL(bioset_exit);
1da177e4 1913
917a38c7
KO
1914/**
1915 * bioset_init - Initialize a bio_set
dad08527 1916 * @bs: pool to initialize
917a38c7
KO
1917 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1918 * @front_pad: Number of bytes to allocate in front of the returned bio
1919 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1920 * and %BIOSET_NEED_RESCUER
1921 *
dad08527
KO
1922 * Description:
1923 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1924 * to ask for a number of bytes to be allocated in front of the bio.
1925 * Front pad allocation is useful for embedding the bio inside
1926 * another structure, to avoid allocating extra data to go with the bio.
1927 * Note that the bio must be embedded at the END of that structure always,
1928 * or things will break badly.
1929 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1930 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1931 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1932 * dispatch queued requests when the mempool runs out of space.
1933 *
917a38c7
KO
1934 */
1935int bioset_init(struct bio_set *bs,
1936 unsigned int pool_size,
1937 unsigned int front_pad,
1938 int flags)
1939{
1940 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1941
1942 bs->front_pad = front_pad;
1943
1944 spin_lock_init(&bs->rescue_lock);
1945 bio_list_init(&bs->rescue_list);
1946 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1947
1948 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1949 if (!bs->bio_slab)
1950 return -ENOMEM;
1951
1952 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1953 goto bad;
1954
1955 if ((flags & BIOSET_NEED_BVECS) &&
1956 biovec_init_pool(&bs->bvec_pool, pool_size))
1957 goto bad;
1958
1959 if (!(flags & BIOSET_NEED_RESCUER))
1960 return 0;
1961
1962 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1963 if (!bs->rescue_workqueue)
1964 goto bad;
1965
1966 return 0;
1967bad:
1968 bioset_exit(bs);
1969 return -ENOMEM;
1970}
1971EXPORT_SYMBOL(bioset_init);
1972
28e89fd9
JA
1973/*
1974 * Initialize and setup a new bio_set, based on the settings from
1975 * another bio_set.
1976 */
1977int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1978{
1979 int flags;
1980
1981 flags = 0;
1982 if (src->bvec_pool.min_nr)
1983 flags |= BIOSET_NEED_BVECS;
1984 if (src->rescue_workqueue)
1985 flags |= BIOSET_NEED_RESCUER;
1986
1987 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1988}
1989EXPORT_SYMBOL(bioset_init_from_src);
1990
852c788f 1991#ifdef CONFIG_BLK_CGROUP
1d933cf0 1992
74b7c02a 1993/**
2268c0fe 1994 * bio_disassociate_blkg - puts back the blkg reference if associated
74b7c02a 1995 * @bio: target bio
74b7c02a 1996 *
2268c0fe 1997 * Helper to disassociate the blkg from @bio if a blkg is associated.
74b7c02a 1998 */
2268c0fe 1999void bio_disassociate_blkg(struct bio *bio)
74b7c02a 2000{
2268c0fe
DZ
2001 if (bio->bi_blkg) {
2002 blkg_put(bio->bi_blkg);
2003 bio->bi_blkg = NULL;
2004 }
74b7c02a 2005}
892ad71f 2006EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
74b7c02a 2007
a7b39b4e 2008/**
2268c0fe 2009 * __bio_associate_blkg - associate a bio with the a blkg
a7b39b4e 2010 * @bio: target bio
b5f2954d 2011 * @blkg: the blkg to associate
b5f2954d 2012 *
beea9da0
DZ
2013 * This tries to associate @bio with the specified @blkg. Association failure
2014 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2015 * be anything between @blkg and the root_blkg. This situation only happens
2016 * when a cgroup is dying and then the remaining bios will spill to the closest
2017 * alive blkg.
a7b39b4e 2018 *
beea9da0
DZ
2019 * A reference will be taken on the @blkg and will be released when @bio is
2020 * freed.
a7b39b4e 2021 */
2268c0fe 2022static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
a7b39b4e 2023{
2268c0fe
DZ
2024 bio_disassociate_blkg(bio);
2025
7754f669 2026 bio->bi_blkg = blkg_tryget_closest(blkg);
a7b39b4e
DZF
2027}
2028
d459d853 2029/**
fd42df30 2030 * bio_associate_blkg_from_css - associate a bio with a specified css
d459d853 2031 * @bio: target bio
fd42df30 2032 * @css: target css
d459d853 2033 *
fd42df30 2034 * Associate @bio with the blkg found by combining the css's blkg and the
fc5a828b
DZ
2035 * request_queue of the @bio. This falls back to the queue's root_blkg if
2036 * the association fails with the css.
d459d853 2037 */
fd42df30
DZ
2038void bio_associate_blkg_from_css(struct bio *bio,
2039 struct cgroup_subsys_state *css)
d459d853 2040{
fc5a828b
DZ
2041 struct request_queue *q = bio->bi_disk->queue;
2042 struct blkcg_gq *blkg;
2043
2044 rcu_read_lock();
2045
2046 if (!css || !css->parent)
2047 blkg = q->root_blkg;
2048 else
2049 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2050
2051 __bio_associate_blkg(bio, blkg);
2052
2053 rcu_read_unlock();
d459d853 2054}
fd42df30 2055EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
d459d853 2056
6a7f6d86 2057#ifdef CONFIG_MEMCG
852c788f 2058/**
6a7f6d86 2059 * bio_associate_blkg_from_page - associate a bio with the page's blkg
852c788f 2060 * @bio: target bio
6a7f6d86
DZ
2061 * @page: the page to lookup the blkcg from
2062 *
2063 * Associate @bio with the blkg from @page's owning memcg and the respective
fc5a828b
DZ
2064 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2065 * root_blkg.
852c788f 2066 */
6a7f6d86 2067void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
852c788f 2068{
6a7f6d86
DZ
2069 struct cgroup_subsys_state *css;
2070
6a7f6d86
DZ
2071 if (!page->mem_cgroup)
2072 return;
2073
fc5a828b
DZ
2074 rcu_read_lock();
2075
2076 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2077 bio_associate_blkg_from_css(bio, css);
2078
2079 rcu_read_unlock();
6a7f6d86
DZ
2080}
2081#endif /* CONFIG_MEMCG */
2082
2268c0fe
DZ
2083/**
2084 * bio_associate_blkg - associate a bio with a blkg
2085 * @bio: target bio
2086 *
2087 * Associate @bio with the blkg found from the bio's css and request_queue.
2088 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2089 * already associated, the css is reused and association redone as the
2090 * request_queue may have changed.
2091 */
2092void bio_associate_blkg(struct bio *bio)
2093{
fc5a828b 2094 struct cgroup_subsys_state *css;
2268c0fe
DZ
2095
2096 rcu_read_lock();
2097
db6638d7 2098 if (bio->bi_blkg)
fc5a828b 2099 css = &bio_blkcg(bio)->css;
db6638d7 2100 else
fc5a828b 2101 css = blkcg_css();
2268c0fe 2102
fc5a828b 2103 bio_associate_blkg_from_css(bio, css);
2268c0fe
DZ
2104
2105 rcu_read_unlock();
852c788f 2106}
5cdf2e3f 2107EXPORT_SYMBOL_GPL(bio_associate_blkg);
852c788f 2108
20bd723e 2109/**
db6638d7 2110 * bio_clone_blkg_association - clone blkg association from src to dst bio
20bd723e
PV
2111 * @dst: destination bio
2112 * @src: source bio
2113 */
db6638d7 2114void bio_clone_blkg_association(struct bio *dst, struct bio *src)
20bd723e 2115{
6ab21879
DZ
2116 rcu_read_lock();
2117
fc5a828b 2118 if (src->bi_blkg)
2268c0fe 2119 __bio_associate_blkg(dst, src->bi_blkg);
6ab21879
DZ
2120
2121 rcu_read_unlock();
20bd723e 2122}
db6638d7 2123EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
852c788f
TH
2124#endif /* CONFIG_BLK_CGROUP */
2125
1da177e4
LT
2126static void __init biovec_init_slabs(void)
2127{
2128 int i;
2129
ed996a52 2130 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2131 int size;
2132 struct biovec_slab *bvs = bvec_slabs + i;
2133
a7fcd37c
JA
2134 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2135 bvs->slab = NULL;
2136 continue;
2137 }
a7fcd37c 2138
1da177e4
LT
2139 size = bvs->nr_vecs * sizeof(struct bio_vec);
2140 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2141 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2142 }
2143}
2144
2145static int __init init_bio(void)
2146{
bb799ca0
JA
2147 bio_slab_max = 2;
2148 bio_slab_nr = 0;
6396bb22
KC
2149 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2150 GFP_KERNEL);
2b24e6f6
JT
2151
2152 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2153
bb799ca0
JA
2154 if (!bio_slabs)
2155 panic("bio: can't allocate bios\n");
1da177e4 2156
7878cba9 2157 bio_integrity_init();
1da177e4
LT
2158 biovec_init_slabs();
2159
f4f8154a 2160 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
2161 panic("bio: can't allocate bios\n");
2162
f4f8154a 2163 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
2164 panic("bio: can't create integrity pool\n");
2165
1da177e4
LT
2166 return 0;
2167}
1da177e4 2168subsys_initcall(init_bio);