scsi: use BLK_STS_OFFLINE for not fully online devices
[linux-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
de6a78b6 20#include <linux/sched/sysctl.h>
a892c8d5 21#include <linux/blk-crypto.h>
49d1ec85 22#include <linux/xarray.h>
1da177e4 23
55782138 24#include <trace/events/block.h>
9e234eea 25#include "blk.h"
67b42d0b 26#include "blk-rq-qos.h"
0bfc2455 27
be4d234d 28struct bio_alloc_cache {
fcade2ce 29 struct bio *free_list;
be4d234d
JA
30 unsigned int nr;
31};
32
de76fd89 33static struct biovec_slab {
6ac0b715
CH
34 int nr_vecs;
35 char *name;
36 struct kmem_cache *slab;
de76fd89
CH
37} bvec_slabs[] __read_mostly = {
38 { .nr_vecs = 16, .name = "biovec-16" },
39 { .nr_vecs = 64, .name = "biovec-64" },
40 { .nr_vecs = 128, .name = "biovec-128" },
a8affc03 41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
1da177e4 42};
6ac0b715 43
7a800a20
CH
44static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45{
46 switch (nr_vecs) {
47 /* smaller bios use inline vecs */
48 case 5 ... 16:
49 return &bvec_slabs[0];
50 case 17 ... 64:
51 return &bvec_slabs[1];
52 case 65 ... 128:
53 return &bvec_slabs[2];
a8affc03 54 case 129 ... BIO_MAX_VECS:
7a800a20
CH
55 return &bvec_slabs[3];
56 default:
57 BUG();
58 return NULL;
59 }
60}
1da177e4 61
1da177e4
LT
62/*
63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64 * IO code that does not need private memory pools.
65 */
f4f8154a 66struct bio_set fs_bio_set;
3f86a82a 67EXPORT_SYMBOL(fs_bio_set);
1da177e4 68
bb799ca0
JA
69/*
70 * Our slab pool management
71 */
72struct bio_slab {
73 struct kmem_cache *slab;
74 unsigned int slab_ref;
75 unsigned int slab_size;
76 char name[8];
77};
78static DEFINE_MUTEX(bio_slab_lock);
49d1ec85 79static DEFINE_XARRAY(bio_slabs);
bb799ca0 80
49d1ec85 81static struct bio_slab *create_bio_slab(unsigned int size)
bb799ca0 82{
49d1ec85 83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
bb799ca0 84
49d1ec85
ML
85 if (!bslab)
86 return NULL;
bb799ca0 87
49d1ec85
ML
88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 bslab->slab = kmem_cache_create(bslab->name, size,
1a7e76e4
CH
90 ARCH_KMALLOC_MINALIGN,
91 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
49d1ec85
ML
92 if (!bslab->slab)
93 goto fail_alloc_slab;
bb799ca0 94
49d1ec85
ML
95 bslab->slab_ref = 1;
96 bslab->slab_size = size;
bb799ca0 97
49d1ec85
ML
98 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
99 return bslab;
bb799ca0 100
49d1ec85 101 kmem_cache_destroy(bslab->slab);
bb799ca0 102
49d1ec85
ML
103fail_alloc_slab:
104 kfree(bslab);
105 return NULL;
106}
bb799ca0 107
49d1ec85
ML
108static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
109{
9f180e31 110 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
49d1ec85 111}
bb799ca0 112
49d1ec85
ML
113static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
114{
115 unsigned int size = bs_bio_slab_size(bs);
116 struct bio_slab *bslab;
bb799ca0 117
49d1ec85
ML
118 mutex_lock(&bio_slab_lock);
119 bslab = xa_load(&bio_slabs, size);
120 if (bslab)
121 bslab->slab_ref++;
122 else
123 bslab = create_bio_slab(size);
bb799ca0 124 mutex_unlock(&bio_slab_lock);
49d1ec85
ML
125
126 if (bslab)
127 return bslab->slab;
128 return NULL;
bb799ca0
JA
129}
130
131static void bio_put_slab(struct bio_set *bs)
132{
133 struct bio_slab *bslab = NULL;
49d1ec85 134 unsigned int slab_size = bs_bio_slab_size(bs);
bb799ca0
JA
135
136 mutex_lock(&bio_slab_lock);
137
49d1ec85 138 bslab = xa_load(&bio_slabs, slab_size);
bb799ca0
JA
139 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
140 goto out;
141
49d1ec85
ML
142 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
143
bb799ca0
JA
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
49d1ec85
ML
149 xa_erase(&bio_slabs, slab_size);
150
bb799ca0 151 kmem_cache_destroy(bslab->slab);
49d1ec85 152 kfree(bslab);
bb799ca0
JA
153
154out:
155 mutex_unlock(&bio_slab_lock);
156}
157
7a800a20 158void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
7ba1ba12 159{
9e8c0d0d 160 BUG_ON(nr_vecs > BIO_MAX_VECS);
ed996a52 161
a8affc03 162 if (nr_vecs == BIO_MAX_VECS)
9f060e22 163 mempool_free(bv, pool);
7a800a20
CH
164 else if (nr_vecs > BIO_INLINE_VECS)
165 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
bb799ca0 166}
bb799ca0 167
f2c3eb9b
CH
168/*
169 * Make the first allocation restricted and don't dump info on allocation
170 * failures, since we'll fall back to the mempool in case of failure.
171 */
172static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
173{
174 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
175 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
bb799ca0
JA
176}
177
7a800a20
CH
178struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
179 gfp_t gfp_mask)
1da177e4 180{
7a800a20 181 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
1da177e4 182
7a800a20 183 if (WARN_ON_ONCE(!bvs))
7ff9345f 184 return NULL;
7ff9345f
JA
185
186 /*
7a800a20
CH
187 * Upgrade the nr_vecs request to take full advantage of the allocation.
188 * We also rely on this in the bvec_free path.
7ff9345f 189 */
7a800a20 190 *nr_vecs = bvs->nr_vecs;
7ff9345f 191
7ff9345f 192 /*
f007a3d6
CH
193 * Try a slab allocation first for all smaller allocations. If that
194 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
a8affc03 195 * The mempool is sized to handle up to BIO_MAX_VECS entries.
7ff9345f 196 */
a8affc03 197 if (*nr_vecs < BIO_MAX_VECS) {
f007a3d6 198 struct bio_vec *bvl;
1da177e4 199
f2c3eb9b 200 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
7a800a20 201 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
f007a3d6 202 return bvl;
a8affc03 203 *nr_vecs = BIO_MAX_VECS;
7ff9345f
JA
204 }
205
f007a3d6 206 return mempool_alloc(pool, gfp_mask);
1da177e4
LT
207}
208
9ae3b3f5 209void bio_uninit(struct bio *bio)
1da177e4 210{
db9819c7
CH
211#ifdef CONFIG_BLK_CGROUP
212 if (bio->bi_blkg) {
213 blkg_put(bio->bi_blkg);
214 bio->bi_blkg = NULL;
215 }
216#endif
ece841ab
JT
217 if (bio_integrity(bio))
218 bio_integrity_free(bio);
a892c8d5
ST
219
220 bio_crypt_free_ctx(bio);
4254bba1 221}
9ae3b3f5 222EXPORT_SYMBOL(bio_uninit);
7ba1ba12 223
4254bba1
KO
224static void bio_free(struct bio *bio)
225{
226 struct bio_set *bs = bio->bi_pool;
227 void *p;
228
9ae3b3f5 229 bio_uninit(bio);
4254bba1
KO
230
231 if (bs) {
7a800a20 232 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
4254bba1
KO
233
234 /*
235 * If we have front padding, adjust the bio pointer before freeing
236 */
237 p = bio;
bb799ca0
JA
238 p -= bs->front_pad;
239
8aa6ba2f 240 mempool_free(p, &bs->bio_pool);
4254bba1
KO
241 } else {
242 /* Bio was allocated by bio_kmalloc() */
243 kfree(bio);
244 }
3676347a
PO
245}
246
9ae3b3f5
JA
247/*
248 * Users of this function have their own bio allocation. Subsequently,
249 * they must remember to pair any call to bio_init() with bio_uninit()
250 * when IO has completed, or when the bio is released.
251 */
49add496
CH
252void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
253 unsigned short max_vecs, unsigned int opf)
1da177e4 254{
da521626 255 bio->bi_next = NULL;
49add496
CH
256 bio->bi_bdev = bdev;
257 bio->bi_opf = opf;
da521626
JA
258 bio->bi_flags = 0;
259 bio->bi_ioprio = 0;
260 bio->bi_write_hint = 0;
261 bio->bi_status = 0;
262 bio->bi_iter.bi_sector = 0;
263 bio->bi_iter.bi_size = 0;
264 bio->bi_iter.bi_idx = 0;
265 bio->bi_iter.bi_bvec_done = 0;
266 bio->bi_end_io = NULL;
267 bio->bi_private = NULL;
268#ifdef CONFIG_BLK_CGROUP
269 bio->bi_blkg = NULL;
270 bio->bi_issue.value = 0;
49add496
CH
271 if (bdev)
272 bio_associate_blkg(bio);
da521626
JA
273#ifdef CONFIG_BLK_CGROUP_IOCOST
274 bio->bi_iocost_cost = 0;
275#endif
276#endif
277#ifdef CONFIG_BLK_INLINE_ENCRYPTION
278 bio->bi_crypt_context = NULL;
279#endif
280#ifdef CONFIG_BLK_DEV_INTEGRITY
281 bio->bi_integrity = NULL;
282#endif
283 bio->bi_vcnt = 0;
284
c4cf5261 285 atomic_set(&bio->__bi_remaining, 1);
dac56212 286 atomic_set(&bio->__bi_cnt, 1);
3e08773c 287 bio->bi_cookie = BLK_QC_T_NONE;
3a83f467 288
3a83f467 289 bio->bi_max_vecs = max_vecs;
da521626
JA
290 bio->bi_io_vec = table;
291 bio->bi_pool = NULL;
1da177e4 292}
a112a71d 293EXPORT_SYMBOL(bio_init);
1da177e4 294
f44b48c7
KO
295/**
296 * bio_reset - reinitialize a bio
297 * @bio: bio to reset
a7c50c94
CH
298 * @bdev: block device to use the bio for
299 * @opf: operation and flags for bio
f44b48c7
KO
300 *
301 * Description:
302 * After calling bio_reset(), @bio will be in the same state as a freshly
303 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
304 * preserved are the ones that are initialized by bio_alloc_bioset(). See
305 * comment in struct bio.
306 */
a7c50c94 307void bio_reset(struct bio *bio, struct block_device *bdev, unsigned int opf)
f44b48c7 308{
9ae3b3f5 309 bio_uninit(bio);
f44b48c7 310 memset(bio, 0, BIO_RESET_BYTES);
c4cf5261 311 atomic_set(&bio->__bi_remaining, 1);
a7c50c94
CH
312 bio->bi_bdev = bdev;
313 bio->bi_opf = opf;
f44b48c7
KO
314}
315EXPORT_SYMBOL(bio_reset);
316
38f8baae 317static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 318{
4246a0b6
CH
319 struct bio *parent = bio->bi_private;
320
3edf5346 321 if (bio->bi_status && !parent->bi_status)
4e4cbee9 322 parent->bi_status = bio->bi_status;
196d38bc 323 bio_put(bio);
38f8baae
CH
324 return parent;
325}
326
327static void bio_chain_endio(struct bio *bio)
328{
329 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
330}
331
332/**
333 * bio_chain - chain bio completions
1051a902 334 * @bio: the target bio
5b874af6 335 * @parent: the parent bio of @bio
196d38bc
KO
336 *
337 * The caller won't have a bi_end_io called when @bio completes - instead,
338 * @parent's bi_end_io won't be called until both @parent and @bio have
339 * completed; the chained bio will also be freed when it completes.
340 *
341 * The caller must not set bi_private or bi_end_io in @bio.
342 */
343void bio_chain(struct bio *bio, struct bio *parent)
344{
345 BUG_ON(bio->bi_private || bio->bi_end_io);
346
347 bio->bi_private = parent;
348 bio->bi_end_io = bio_chain_endio;
c4cf5261 349 bio_inc_remaining(parent);
196d38bc
KO
350}
351EXPORT_SYMBOL(bio_chain);
352
0a3140ea
CK
353struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
354 unsigned int nr_pages, unsigned int opf, gfp_t gfp)
3b005bf6 355{
07888c66 356 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
0a3140ea 357
3b005bf6
CH
358 if (bio) {
359 bio_chain(bio, new);
360 submit_bio(bio);
361 }
362
363 return new;
364}
365EXPORT_SYMBOL_GPL(blk_next_bio);
366
df2cb6da
KO
367static void bio_alloc_rescue(struct work_struct *work)
368{
369 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
370 struct bio *bio;
371
372 while (1) {
373 spin_lock(&bs->rescue_lock);
374 bio = bio_list_pop(&bs->rescue_list);
375 spin_unlock(&bs->rescue_lock);
376
377 if (!bio)
378 break;
379
ed00aabd 380 submit_bio_noacct(bio);
df2cb6da
KO
381 }
382}
383
384static void punt_bios_to_rescuer(struct bio_set *bs)
385{
386 struct bio_list punt, nopunt;
387 struct bio *bio;
388
47e0fb46
N
389 if (WARN_ON_ONCE(!bs->rescue_workqueue))
390 return;
df2cb6da
KO
391 /*
392 * In order to guarantee forward progress we must punt only bios that
393 * were allocated from this bio_set; otherwise, if there was a bio on
394 * there for a stacking driver higher up in the stack, processing it
395 * could require allocating bios from this bio_set, and doing that from
396 * our own rescuer would be bad.
397 *
398 * Since bio lists are singly linked, pop them all instead of trying to
399 * remove from the middle of the list:
400 */
401
402 bio_list_init(&punt);
403 bio_list_init(&nopunt);
404
f5fe1b51 405 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 406 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 407 current->bio_list[0] = nopunt;
df2cb6da 408
f5fe1b51
N
409 bio_list_init(&nopunt);
410 while ((bio = bio_list_pop(&current->bio_list[1])))
411 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
412 current->bio_list[1] = nopunt;
df2cb6da
KO
413
414 spin_lock(&bs->rescue_lock);
415 bio_list_merge(&bs->rescue_list, &punt);
416 spin_unlock(&bs->rescue_lock);
417
418 queue_work(bs->rescue_workqueue, &bs->rescue_work);
419}
420
1da177e4
LT
421/**
422 * bio_alloc_bioset - allocate a bio for I/O
609be106
CH
423 * @bdev: block device to allocate the bio for (can be %NULL)
424 * @nr_vecs: number of bvecs to pre-allocate
425 * @opf: operation and flags for bio
519c8e9f 426 * @gfp_mask: the GFP_* mask given to the slab allocator
db18efac 427 * @bs: the bio_set to allocate from.
1da177e4 428 *
3175199a 429 * Allocate a bio from the mempools in @bs.
3f86a82a 430 *
3175199a
CH
431 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
432 * allocate a bio. This is due to the mempool guarantees. To make this work,
433 * callers must never allocate more than 1 bio at a time from the general pool.
434 * Callers that need to allocate more than 1 bio must always submit the
435 * previously allocated bio for IO before attempting to allocate a new one.
436 * Failure to do so can cause deadlocks under memory pressure.
3f86a82a 437 *
3175199a
CH
438 * Note that when running under submit_bio_noacct() (i.e. any block driver),
439 * bios are not submitted until after you return - see the code in
440 * submit_bio_noacct() that converts recursion into iteration, to prevent
441 * stack overflows.
df2cb6da 442 *
3175199a
CH
443 * This would normally mean allocating multiple bios under submit_bio_noacct()
444 * would be susceptible to deadlocks, but we have
445 * deadlock avoidance code that resubmits any blocked bios from a rescuer
446 * thread.
df2cb6da 447 *
3175199a
CH
448 * However, we do not guarantee forward progress for allocations from other
449 * mempools. Doing multiple allocations from the same mempool under
450 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
451 * for per bio allocations.
df2cb6da 452 *
3175199a 453 * Returns: Pointer to new bio on success, NULL on failure.
3f86a82a 454 */
609be106
CH
455struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
456 unsigned int opf, gfp_t gfp_mask,
7a88fa19 457 struct bio_set *bs)
1da177e4 458{
df2cb6da 459 gfp_t saved_gfp = gfp_mask;
451a9ebf
TH
460 struct bio *bio;
461 void *p;
462
609be106
CH
463 /* should not use nobvec bioset for nr_vecs > 0 */
464 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
3175199a 465 return NULL;
df2cb6da 466
3175199a
CH
467 /*
468 * submit_bio_noacct() converts recursion to iteration; this means if
469 * we're running beneath it, any bios we allocate and submit will not be
470 * submitted (and thus freed) until after we return.
471 *
472 * This exposes us to a potential deadlock if we allocate multiple bios
473 * from the same bio_set() while running underneath submit_bio_noacct().
474 * If we were to allocate multiple bios (say a stacking block driver
475 * that was splitting bios), we would deadlock if we exhausted the
476 * mempool's reserve.
477 *
478 * We solve this, and guarantee forward progress, with a rescuer
479 * workqueue per bio_set. If we go to allocate and there are bios on
480 * current->bio_list, we first try the allocation without
481 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
482 * blocking to the rescuer workqueue before we retry with the original
483 * gfp_flags.
484 */
485 if (current->bio_list &&
486 (!bio_list_empty(&current->bio_list[0]) ||
487 !bio_list_empty(&current->bio_list[1])) &&
488 bs->rescue_workqueue)
489 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
490
491 p = mempool_alloc(&bs->bio_pool, gfp_mask);
492 if (!p && gfp_mask != saved_gfp) {
493 punt_bios_to_rescuer(bs);
494 gfp_mask = saved_gfp;
8aa6ba2f 495 p = mempool_alloc(&bs->bio_pool, gfp_mask);
3f86a82a 496 }
451a9ebf
TH
497 if (unlikely(!p))
498 return NULL;
1da177e4 499
3175199a 500 bio = p + bs->front_pad;
609be106 501 if (nr_vecs > BIO_INLINE_VECS) {
3175199a 502 struct bio_vec *bvl = NULL;
34053979 503
609be106 504 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
df2cb6da
KO
505 if (!bvl && gfp_mask != saved_gfp) {
506 punt_bios_to_rescuer(bs);
507 gfp_mask = saved_gfp;
609be106 508 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
df2cb6da 509 }
34053979
IM
510 if (unlikely(!bvl))
511 goto err_free;
a38352e0 512
49add496 513 bio_init(bio, bdev, bvl, nr_vecs, opf);
609be106 514 } else if (nr_vecs) {
49add496 515 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
3175199a 516 } else {
49add496 517 bio_init(bio, bdev, NULL, 0, opf);
1da177e4 518 }
3f86a82a
KO
519
520 bio->bi_pool = bs;
1da177e4 521 return bio;
34053979
IM
522
523err_free:
8aa6ba2f 524 mempool_free(p, &bs->bio_pool);
34053979 525 return NULL;
1da177e4 526}
a112a71d 527EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 528
3175199a
CH
529/**
530 * bio_kmalloc - kmalloc a bio for I/O
531 * @gfp_mask: the GFP_* mask given to the slab allocator
532 * @nr_iovecs: number of iovecs to pre-allocate
533 *
534 * Use kmalloc to allocate and initialize a bio.
535 *
536 * Returns: Pointer to new bio on success, NULL on failure.
537 */
0f2e6ab8 538struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
3175199a
CH
539{
540 struct bio *bio;
541
542 if (nr_iovecs > UIO_MAXIOV)
543 return NULL;
544
545 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
546 if (unlikely(!bio))
547 return NULL;
49add496
CH
548 bio_init(bio, NULL, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs,
549 0);
3175199a
CH
550 bio->bi_pool = NULL;
551 return bio;
552}
553EXPORT_SYMBOL(bio_kmalloc);
554
6f822e1b 555void zero_fill_bio(struct bio *bio)
1da177e4 556{
7988613b
KO
557 struct bio_vec bv;
558 struct bvec_iter iter;
1da177e4 559
ab6c340e
CH
560 bio_for_each_segment(bv, bio, iter)
561 memzero_bvec(&bv);
1da177e4 562}
6f822e1b 563EXPORT_SYMBOL(zero_fill_bio);
1da177e4 564
83c9c547
ML
565/**
566 * bio_truncate - truncate the bio to small size of @new_size
567 * @bio: the bio to be truncated
568 * @new_size: new size for truncating the bio
569 *
570 * Description:
571 * Truncate the bio to new size of @new_size. If bio_op(bio) is
572 * REQ_OP_READ, zero the truncated part. This function should only
573 * be used for handling corner cases, such as bio eod.
574 */
4f7ab09a 575static void bio_truncate(struct bio *bio, unsigned new_size)
85a8ce62
ML
576{
577 struct bio_vec bv;
578 struct bvec_iter iter;
579 unsigned int done = 0;
580 bool truncated = false;
581
582 if (new_size >= bio->bi_iter.bi_size)
583 return;
584
83c9c547 585 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
586 goto exit;
587
588 bio_for_each_segment(bv, bio, iter) {
589 if (done + bv.bv_len > new_size) {
590 unsigned offset;
591
592 if (!truncated)
593 offset = new_size - done;
594 else
595 offset = 0;
3ee859e3
OH
596 zero_user(bv.bv_page, bv.bv_offset + offset,
597 bv.bv_len - offset);
85a8ce62
ML
598 truncated = true;
599 }
600 done += bv.bv_len;
601 }
602
603 exit:
604 /*
605 * Don't touch bvec table here and make it really immutable, since
606 * fs bio user has to retrieve all pages via bio_for_each_segment_all
607 * in its .end_bio() callback.
608 *
609 * It is enough to truncate bio by updating .bi_size since we can make
610 * correct bvec with the updated .bi_size for drivers.
611 */
612 bio->bi_iter.bi_size = new_size;
613}
614
29125ed6
CH
615/**
616 * guard_bio_eod - truncate a BIO to fit the block device
617 * @bio: bio to truncate
618 *
619 * This allows us to do IO even on the odd last sectors of a device, even if the
620 * block size is some multiple of the physical sector size.
621 *
622 * We'll just truncate the bio to the size of the device, and clear the end of
623 * the buffer head manually. Truly out-of-range accesses will turn into actual
624 * I/O errors, this only handles the "we need to be able to do I/O at the final
625 * sector" case.
626 */
627void guard_bio_eod(struct bio *bio)
628{
309dca30 629 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
630
631 if (!maxsector)
632 return;
633
634 /*
635 * If the *whole* IO is past the end of the device,
636 * let it through, and the IO layer will turn it into
637 * an EIO.
638 */
639 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
640 return;
641
642 maxsector -= bio->bi_iter.bi_sector;
643 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
644 return;
645
646 bio_truncate(bio, maxsector << 9);
647}
648
be4d234d
JA
649#define ALLOC_CACHE_MAX 512
650#define ALLOC_CACHE_SLACK 64
651
652static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
653 unsigned int nr)
654{
655 unsigned int i = 0;
656 struct bio *bio;
657
fcade2ce
JA
658 while ((bio = cache->free_list) != NULL) {
659 cache->free_list = bio->bi_next;
be4d234d
JA
660 cache->nr--;
661 bio_free(bio);
662 if (++i == nr)
663 break;
664 }
665}
666
667static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
668{
669 struct bio_set *bs;
670
671 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
672 if (bs->cache) {
673 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
674
675 bio_alloc_cache_prune(cache, -1U);
676 }
677 return 0;
678}
679
680static void bio_alloc_cache_destroy(struct bio_set *bs)
681{
682 int cpu;
683
684 if (!bs->cache)
685 return;
686
687 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
688 for_each_possible_cpu(cpu) {
689 struct bio_alloc_cache *cache;
690
691 cache = per_cpu_ptr(bs->cache, cpu);
692 bio_alloc_cache_prune(cache, -1U);
693 }
694 free_percpu(bs->cache);
695}
696
1da177e4
LT
697/**
698 * bio_put - release a reference to a bio
699 * @bio: bio to release reference to
700 *
701 * Description:
702 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 703 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
704 **/
705void bio_put(struct bio *bio)
706{
be4d234d 707 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
9e8c0d0d 708 BUG_ON(!atomic_read(&bio->__bi_cnt));
be4d234d
JA
709 if (!atomic_dec_and_test(&bio->__bi_cnt))
710 return;
711 }
dac56212 712
be4d234d
JA
713 if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
714 struct bio_alloc_cache *cache;
715
716 bio_uninit(bio);
717 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
fcade2ce
JA
718 bio->bi_next = cache->free_list;
719 cache->free_list = bio;
be4d234d
JA
720 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
721 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
722 put_cpu();
723 } else {
724 bio_free(bio);
dac56212 725 }
1da177e4 726}
a112a71d 727EXPORT_SYMBOL(bio_put);
1da177e4 728
59d276fe
KO
729/**
730 * __bio_clone_fast - clone a bio that shares the original bio's biovec
731 * @bio: destination bio
732 * @bio_src: bio to clone
733 *
734 * Clone a &bio. Caller will own the returned bio, but not
735 * the actual data it points to. Reference count of returned
736 * bio will be one.
737 *
738 * Caller must ensure that @bio_src is not freed before @bio.
739 */
740void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
741{
7a800a20 742 WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
59d276fe
KO
743
744 /*
309dca30 745 * most users will be overriding ->bi_bdev with a new target,
59d276fe
KO
746 * so we don't set nor calculate new physical/hw segment counts here
747 */
309dca30 748 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 749 bio_set_flag(bio, BIO_CLONED);
111be883
SL
750 if (bio_flagged(bio_src, BIO_THROTTLED))
751 bio_set_flag(bio, BIO_THROTTLED);
46bbf653
CH
752 if (bio_flagged(bio_src, BIO_REMAPPED))
753 bio_set_flag(bio, BIO_REMAPPED);
1eff9d32 754 bio->bi_opf = bio_src->bi_opf;
ca474b73 755 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 756 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
757 bio->bi_iter = bio_src->bi_iter;
758 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 759
db6638d7 760 bio_clone_blkg_association(bio, bio_src);
e439bedf 761 blkcg_bio_issue_init(bio);
59d276fe
KO
762}
763EXPORT_SYMBOL(__bio_clone_fast);
764
765/**
766 * bio_clone_fast - clone a bio that shares the original bio's biovec
767 * @bio: bio to clone
768 * @gfp_mask: allocation priority
769 * @bs: bio_set to allocate from
770 *
771 * Like __bio_clone_fast, only also allocates the returned bio
772 */
773struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
774{
775 struct bio *b;
776
609be106 777 b = bio_alloc_bioset(NULL, 0, 0, gfp_mask, bs);
59d276fe
KO
778 if (!b)
779 return NULL;
780
781 __bio_clone_fast(b, bio);
782
07560151
EB
783 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
784 goto err_put;
a892c8d5 785
07560151
EB
786 if (bio_integrity(bio) &&
787 bio_integrity_clone(b, bio, gfp_mask) < 0)
788 goto err_put;
59d276fe
KO
789
790 return b;
07560151
EB
791
792err_put:
793 bio_put(b);
794 return NULL;
59d276fe
KO
795}
796EXPORT_SYMBOL(bio_clone_fast);
797
5cbd28e3
CH
798const char *bio_devname(struct bio *bio, char *buf)
799{
309dca30 800 return bdevname(bio->bi_bdev, buf);
5cbd28e3
CH
801}
802EXPORT_SYMBOL(bio_devname);
803
9a6083be
CH
804/**
805 * bio_full - check if the bio is full
806 * @bio: bio to check
807 * @len: length of one segment to be added
808 *
809 * Return true if @bio is full and one segment with @len bytes can't be
810 * added to the bio, otherwise return false
811 */
812static inline bool bio_full(struct bio *bio, unsigned len)
813{
814 if (bio->bi_vcnt >= bio->bi_max_vecs)
815 return true;
816 if (bio->bi_iter.bi_size > UINT_MAX - len)
817 return true;
818 return false;
819}
820
5919482e
ML
821static inline bool page_is_mergeable(const struct bio_vec *bv,
822 struct page *page, unsigned int len, unsigned int off,
ff896738 823 bool *same_page)
5919482e 824{
d8166519
MWO
825 size_t bv_end = bv->bv_offset + bv->bv_len;
826 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
827 phys_addr_t page_addr = page_to_phys(page);
828
829 if (vec_end_addr + 1 != page_addr + off)
830 return false;
831 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
832 return false;
52d52d1c 833
ff896738 834 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
d8166519
MWO
835 if (*same_page)
836 return true;
837 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
5919482e
ML
838}
839
9774b391
CH
840/**
841 * __bio_try_merge_page - try appending data to an existing bvec.
842 * @bio: destination bio
843 * @page: start page to add
844 * @len: length of the data to add
845 * @off: offset of the data relative to @page
846 * @same_page: return if the segment has been merged inside the same page
847 *
848 * Try to add the data at @page + @off to the last bvec of @bio. This is a
849 * useful optimisation for file systems with a block size smaller than the
850 * page size.
851 *
852 * Warn if (@len, @off) crosses pages in case that @same_page is true.
853 *
854 * Return %true on success or %false on failure.
855 */
856static bool __bio_try_merge_page(struct bio *bio, struct page *page,
857 unsigned int len, unsigned int off, bool *same_page)
858{
859 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
860 return false;
861
862 if (bio->bi_vcnt > 0) {
863 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
864
865 if (page_is_mergeable(bv, page, len, off, same_page)) {
866 if (bio->bi_iter.bi_size > UINT_MAX - len) {
867 *same_page = false;
868 return false;
869 }
870 bv->bv_len += len;
871 bio->bi_iter.bi_size += len;
872 return true;
873 }
874 }
875 return false;
876}
877
e4581105
CH
878/*
879 * Try to merge a page into a segment, while obeying the hardware segment
880 * size limit. This is not for normal read/write bios, but for passthrough
881 * or Zone Append operations that we can't split.
882 */
883static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
884 struct page *page, unsigned len,
885 unsigned offset, bool *same_page)
489fbbcb 886{
384209cd 887 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
888 unsigned long mask = queue_segment_boundary(q);
889 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
890 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
891
892 if ((addr1 | mask) != (addr2 | mask))
893 return false;
489fbbcb
ML
894 if (bv->bv_len + len > queue_max_segment_size(q))
895 return false;
384209cd 896 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
897}
898
1da177e4 899/**
e4581105
CH
900 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
901 * @q: the target queue
902 * @bio: destination bio
903 * @page: page to add
904 * @len: vec entry length
905 * @offset: vec entry offset
906 * @max_sectors: maximum number of sectors that can be added
907 * @same_page: return if the segment has been merged inside the same page
c66a14d0 908 *
e4581105
CH
909 * Add a page to a bio while respecting the hardware max_sectors, max_segment
910 * and gap limitations.
1da177e4 911 */
e4581105 912int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 913 struct page *page, unsigned int len, unsigned int offset,
e4581105 914 unsigned int max_sectors, bool *same_page)
1da177e4 915{
1da177e4
LT
916 struct bio_vec *bvec;
917
e4581105 918 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
919 return 0;
920
e4581105 921 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
922 return 0;
923
80cfd548 924 if (bio->bi_vcnt > 0) {
e4581105 925 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 926 return len;
320ea869
CH
927
928 /*
929 * If the queue doesn't support SG gaps and adding this segment
930 * would create a gap, disallow it.
931 */
384209cd 932 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
933 if (bvec_gap_to_prev(q, bvec, offset))
934 return 0;
80cfd548
JA
935 }
936
79d08f89 937 if (bio_full(bio, len))
1da177e4
LT
938 return 0;
939
14ccb66b 940 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
941 return 0;
942
fcbf6a08
ML
943 bvec = &bio->bi_io_vec[bio->bi_vcnt];
944 bvec->bv_page = page;
945 bvec->bv_len = len;
946 bvec->bv_offset = offset;
947 bio->bi_vcnt++;
dcdca753 948 bio->bi_iter.bi_size += len;
1da177e4
LT
949 return len;
950}
19047087 951
e4581105
CH
952/**
953 * bio_add_pc_page - attempt to add page to passthrough bio
954 * @q: the target queue
955 * @bio: destination bio
956 * @page: page to add
957 * @len: vec entry length
958 * @offset: vec entry offset
959 *
960 * Attempt to add a page to the bio_vec maplist. This can fail for a
961 * number of reasons, such as the bio being full or target block device
962 * limitations. The target block device must allow bio's up to PAGE_SIZE,
963 * so it is always possible to add a single page to an empty bio.
964 *
965 * This should only be used by passthrough bios.
966 */
19047087
ML
967int bio_add_pc_page(struct request_queue *q, struct bio *bio,
968 struct page *page, unsigned int len, unsigned int offset)
969{
d1916c86 970 bool same_page = false;
e4581105
CH
971 return bio_add_hw_page(q, bio, page, len, offset,
972 queue_max_hw_sectors(q), &same_page);
19047087 973}
a112a71d 974EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 975
ae29333f
JT
976/**
977 * bio_add_zone_append_page - attempt to add page to zone-append bio
978 * @bio: destination bio
979 * @page: page to add
980 * @len: vec entry length
981 * @offset: vec entry offset
982 *
983 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
984 * for a zone-append request. This can fail for a number of reasons, such as the
985 * bio being full or the target block device is not a zoned block device or
986 * other limitations of the target block device. The target block device must
987 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
988 * to an empty bio.
989 *
990 * Returns: number of bytes added to the bio, or 0 in case of a failure.
991 */
992int bio_add_zone_append_page(struct bio *bio, struct page *page,
993 unsigned int len, unsigned int offset)
994{
3caee463 995 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae29333f
JT
996 bool same_page = false;
997
998 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
999 return 0;
1000
1001 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
1002 return 0;
1003
1004 return bio_add_hw_page(q, bio, page, len, offset,
1005 queue_max_zone_append_sectors(q), &same_page);
1006}
1007EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1008
0aa69fd3 1009/**
551879a4 1010 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 1011 * @bio: destination bio
551879a4
ML
1012 * @page: start page to add
1013 * @len: length of the data to add, may cross pages
1014 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
1015 *
1016 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
1017 * that @bio has space for another bvec.
1018 */
1019void __bio_add_page(struct bio *bio, struct page *page,
1020 unsigned int len, unsigned int off)
1021{
1022 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 1023
0aa69fd3 1024 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 1025 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
1026
1027 bv->bv_page = page;
1028 bv->bv_offset = off;
1029 bv->bv_len = len;
c66a14d0 1030
c66a14d0 1031 bio->bi_iter.bi_size += len;
0aa69fd3 1032 bio->bi_vcnt++;
b8e24a93
JW
1033
1034 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
1035 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
1036}
1037EXPORT_SYMBOL_GPL(__bio_add_page);
1038
1039/**
551879a4 1040 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 1041 * @bio: destination bio
551879a4
ML
1042 * @page: start page to add
1043 * @len: vec entry length, may cross pages
1044 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 1045 *
551879a4 1046 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
1047 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1048 */
1049int bio_add_page(struct bio *bio, struct page *page,
1050 unsigned int len, unsigned int offset)
1051{
ff896738
CH
1052 bool same_page = false;
1053
1054 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 1055 if (bio_full(bio, len))
0aa69fd3
CH
1056 return 0;
1057 __bio_add_page(bio, page, len, offset);
1058 }
c66a14d0 1059 return len;
1da177e4 1060}
a112a71d 1061EXPORT_SYMBOL(bio_add_page);
1da177e4 1062
85f5a74c
MWO
1063/**
1064 * bio_add_folio - Attempt to add part of a folio to a bio.
1065 * @bio: BIO to add to.
1066 * @folio: Folio to add.
1067 * @len: How many bytes from the folio to add.
1068 * @off: First byte in this folio to add.
1069 *
1070 * Filesystems that use folios can call this function instead of calling
1071 * bio_add_page() for each page in the folio. If @off is bigger than
1072 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1073 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1074 *
1075 * Return: Whether the addition was successful.
1076 */
1077bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1078 size_t off)
1079{
1080 if (len > UINT_MAX || off > UINT_MAX)
455a844d 1081 return false;
85f5a74c
MWO
1082 return bio_add_page(bio, &folio->page, len, off) > 0;
1083}
1084
c809084a 1085void __bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
1086{
1087 struct bvec_iter_all iter_all;
1088 struct bio_vec *bvec;
7321ecbf 1089
d241a95f
CH
1090 bio_for_each_segment_all(bvec, bio, iter_all) {
1091 if (mark_dirty && !PageCompound(bvec->bv_page))
1092 set_page_dirty_lock(bvec->bv_page);
7321ecbf 1093 put_page(bvec->bv_page);
d241a95f 1094 }
7321ecbf 1095}
c809084a 1096EXPORT_SYMBOL_GPL(__bio_release_pages);
7321ecbf 1097
1bb6b810 1098void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
6d0c48ae 1099{
fa5fa8ec
PB
1100 size_t size = iov_iter_count(iter);
1101
7a800a20 1102 WARN_ON_ONCE(bio->bi_max_vecs);
c42bca92 1103
fa5fa8ec
PB
1104 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1105 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1106 size_t max_sectors = queue_max_zone_append_sectors(q);
1107
1108 size = min(size, max_sectors << SECTOR_SHIFT);
1109 }
1110
c42bca92 1111 bio->bi_vcnt = iter->nr_segs;
c42bca92
PB
1112 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1113 bio->bi_iter.bi_bvec_done = iter->iov_offset;
fa5fa8ec 1114 bio->bi_iter.bi_size = size;
ed97ce5e 1115 bio_set_flag(bio, BIO_NO_PAGE_REF);
977be012 1116 bio_set_flag(bio, BIO_CLONED);
7de55b7d 1117}
c42bca92 1118
d9cf3bd5
PB
1119static void bio_put_pages(struct page **pages, size_t size, size_t off)
1120{
1121 size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1122
1123 for (i = 0; i < nr; i++)
1124 put_page(pages[i]);
1125}
1126
576ed913
CH
1127#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1128
2cefe4db 1129/**
17d51b10 1130 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
1131 * @bio: bio to add pages to
1132 * @iter: iov iterator describing the region to be mapped
1133 *
17d51b10 1134 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 1135 * pages will have to be released using put_page() when done.
17d51b10 1136 * For multi-segment *iter, this function only adds pages from the
3cf14889 1137 * next non-empty segment of the iov iterator.
2cefe4db 1138 */
17d51b10 1139static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 1140{
576ed913
CH
1141 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1142 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
1143 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1144 struct page **pages = (struct page **)bv;
45691804 1145 bool same_page = false;
576ed913
CH
1146 ssize_t size, left;
1147 unsigned len, i;
b403ea24 1148 size_t offset;
576ed913
CH
1149
1150 /*
1151 * Move page array up in the allocated memory for the bio vecs as far as
1152 * possible so that we can start filling biovecs from the beginning
1153 * without overwriting the temporary page array.
1154 */
1155 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1156 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db 1157
35c820e7 1158 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
2cefe4db
KO
1159 if (unlikely(size <= 0))
1160 return size ? size : -EFAULT;
2cefe4db 1161
576ed913
CH
1162 for (left = size, i = 0; left > 0; left -= len, i++) {
1163 struct page *page = pages[i];
2cefe4db 1164
576ed913 1165 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
1166
1167 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1168 if (same_page)
1169 put_page(page);
1170 } else {
d9cf3bd5
PB
1171 if (WARN_ON_ONCE(bio_full(bio, len))) {
1172 bio_put_pages(pages + i, left, offset);
1173 return -EINVAL;
1174 }
45691804
CH
1175 __bio_add_page(bio, page, len, offset);
1176 }
576ed913 1177 offset = 0;
2cefe4db
KO
1178 }
1179
2cefe4db
KO
1180 iov_iter_advance(iter, size);
1181 return 0;
1182}
17d51b10 1183
0512a75b
KB
1184static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1185{
1186 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1187 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
3caee463 1188 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
0512a75b
KB
1189 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1190 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1191 struct page **pages = (struct page **)bv;
1192 ssize_t size, left;
1193 unsigned len, i;
1194 size_t offset;
4977d121 1195 int ret = 0;
0512a75b
KB
1196
1197 if (WARN_ON_ONCE(!max_append_sectors))
1198 return 0;
1199
1200 /*
1201 * Move page array up in the allocated memory for the bio vecs as far as
1202 * possible so that we can start filling biovecs from the beginning
1203 * without overwriting the temporary page array.
1204 */
1205 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1206 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1207
1208 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1209 if (unlikely(size <= 0))
1210 return size ? size : -EFAULT;
1211
1212 for (left = size, i = 0; left > 0; left -= len, i++) {
1213 struct page *page = pages[i];
1214 bool same_page = false;
1215
1216 len = min_t(size_t, PAGE_SIZE - offset, left);
1217 if (bio_add_hw_page(q, bio, page, len, offset,
4977d121 1218 max_append_sectors, &same_page) != len) {
d9cf3bd5 1219 bio_put_pages(pages + i, left, offset);
4977d121
NA
1220 ret = -EINVAL;
1221 break;
1222 }
0512a75b
KB
1223 if (same_page)
1224 put_page(page);
1225 offset = 0;
1226 }
1227
4977d121
NA
1228 iov_iter_advance(iter, size - left);
1229 return ret;
0512a75b
KB
1230}
1231
17d51b10 1232/**
6d0c48ae 1233 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1234 * @bio: bio to add pages to
6d0c48ae
JA
1235 * @iter: iov iterator describing the region to be added
1236 *
1237 * This takes either an iterator pointing to user memory, or one pointing to
1238 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1239 * map them into the kernel. On IO completion, the caller should put those
c42bca92
PB
1240 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1241 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1242 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1243 * completed by a call to ->ki_complete() or returns with an error other than
1244 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1245 * on IO completion. If it isn't, then pages should be released.
17d51b10 1246 *
17d51b10 1247 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1248 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1249 * MM encounters an error pinning the requested pages, it stops. Error
1250 * is returned only if 0 pages could be pinned.
0cf41e5e
PB
1251 *
1252 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1253 * responsible for setting BIO_WORKINGSET if necessary.
17d51b10
MW
1254 */
1255int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1256{
c42bca92 1257 int ret = 0;
14eacf12 1258
c42bca92 1259 if (iov_iter_is_bvec(iter)) {
fa5fa8ec
PB
1260 bio_iov_bvec_set(bio, iter);
1261 iov_iter_advance(iter, bio->bi_iter.bi_size);
1262 return 0;
c42bca92 1263 }
17d51b10
MW
1264
1265 do {
86004515 1266 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
0512a75b 1267 ret = __bio_iov_append_get_pages(bio, iter);
86004515
CH
1268 else
1269 ret = __bio_iov_iter_get_pages(bio, iter);
79d08f89 1270 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 1271
0cf41e5e
PB
1272 /* don't account direct I/O as memory stall */
1273 bio_clear_flag(bio, BIO_WORKINGSET);
14eacf12 1274 return bio->bi_vcnt ? 0 : ret;
17d51b10 1275}
29b2a3aa 1276EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1277
4246a0b6 1278static void submit_bio_wait_endio(struct bio *bio)
9e882242 1279{
65e53aab 1280 complete(bio->bi_private);
9e882242
KO
1281}
1282
1283/**
1284 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1285 * @bio: The &struct bio which describes the I/O
1286 *
1287 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1288 * bio_endio() on failure.
3d289d68
JK
1289 *
1290 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1291 * result in bio reference to be consumed. The caller must drop the reference
1292 * on his own.
9e882242 1293 */
4e49ea4a 1294int submit_bio_wait(struct bio *bio)
9e882242 1295{
309dca30
CH
1296 DECLARE_COMPLETION_ONSTACK_MAP(done,
1297 bio->bi_bdev->bd_disk->lockdep_map);
de6a78b6 1298 unsigned long hang_check;
9e882242 1299
65e53aab 1300 bio->bi_private = &done;
9e882242 1301 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1302 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1303 submit_bio(bio);
de6a78b6
ML
1304
1305 /* Prevent hang_check timer from firing at us during very long I/O */
1306 hang_check = sysctl_hung_task_timeout_secs;
1307 if (hang_check)
1308 while (!wait_for_completion_io_timeout(&done,
1309 hang_check * (HZ/2)))
1310 ;
1311 else
1312 wait_for_completion_io(&done);
9e882242 1313
65e53aab 1314 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1315}
1316EXPORT_SYMBOL(submit_bio_wait);
1317
d4aa57a1 1318void __bio_advance(struct bio *bio, unsigned bytes)
054bdf64
KO
1319{
1320 if (bio_integrity(bio))
1321 bio_integrity_advance(bio, bytes);
1322
a892c8d5 1323 bio_crypt_advance(bio, bytes);
4550dd6c 1324 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64 1325}
d4aa57a1 1326EXPORT_SYMBOL(__bio_advance);
054bdf64 1327
45db54d5
KO
1328void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1329 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1330{
45db54d5 1331 while (src_iter->bi_size && dst_iter->bi_size) {
f8b679a0
CH
1332 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1333 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1334 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1335 void *src_buf;
1336
1337 src_buf = bvec_kmap_local(&src_bv);
1338 memcpy_to_bvec(&dst_bv, src_buf);
1339 kunmap_local(src_buf);
6e6e811d 1340
22b56c29
PB
1341 bio_advance_iter_single(src, src_iter, bytes);
1342 bio_advance_iter_single(dst, dst_iter, bytes);
16ac3d63
KO
1343 }
1344}
38a72dac
KO
1345EXPORT_SYMBOL(bio_copy_data_iter);
1346
1347/**
45db54d5
KO
1348 * bio_copy_data - copy contents of data buffers from one bio to another
1349 * @src: source bio
1350 * @dst: destination bio
38a72dac
KO
1351 *
1352 * Stops when it reaches the end of either @src or @dst - that is, copies
1353 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1354 */
1355void bio_copy_data(struct bio *dst, struct bio *src)
1356{
45db54d5
KO
1357 struct bvec_iter src_iter = src->bi_iter;
1358 struct bvec_iter dst_iter = dst->bi_iter;
1359
1360 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1361}
16ac3d63
KO
1362EXPORT_SYMBOL(bio_copy_data);
1363
491221f8 1364void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1365{
1366 struct bio_vec *bvec;
6dc4f100 1367 struct bvec_iter_all iter_all;
1dfa0f68 1368
2b070cfe 1369 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1370 __free_page(bvec->bv_page);
1371}
491221f8 1372EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1373
1da177e4
LT
1374/*
1375 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1376 * for performing direct-IO in BIOs.
1377 *
1378 * The problem is that we cannot run set_page_dirty() from interrupt context
1379 * because the required locks are not interrupt-safe. So what we can do is to
1380 * mark the pages dirty _before_ performing IO. And in interrupt context,
1381 * check that the pages are still dirty. If so, fine. If not, redirty them
1382 * in process context.
1383 *
1384 * We special-case compound pages here: normally this means reads into hugetlb
1385 * pages. The logic in here doesn't really work right for compound pages
1386 * because the VM does not uniformly chase down the head page in all cases.
1387 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1388 * handle them at all. So we skip compound pages here at an early stage.
1389 *
1390 * Note that this code is very hard to test under normal circumstances because
1391 * direct-io pins the pages with get_user_pages(). This makes
1392 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1393 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1394 * pagecache.
1395 *
1396 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1397 * deferred bio dirtying paths.
1398 */
1399
1400/*
1401 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1402 */
1403void bio_set_pages_dirty(struct bio *bio)
1404{
cb34e057 1405 struct bio_vec *bvec;
6dc4f100 1406 struct bvec_iter_all iter_all;
1da177e4 1407
2b070cfe 1408 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1409 if (!PageCompound(bvec->bv_page))
1410 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1411 }
1412}
1413
1da177e4
LT
1414/*
1415 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1416 * If they are, then fine. If, however, some pages are clean then they must
1417 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1418 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1419 *
1420 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1421 * here on. It will run one put_page() against each page and will run one
1422 * bio_put() against the BIO.
1da177e4
LT
1423 */
1424
65f27f38 1425static void bio_dirty_fn(struct work_struct *work);
1da177e4 1426
65f27f38 1427static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1428static DEFINE_SPINLOCK(bio_dirty_lock);
1429static struct bio *bio_dirty_list;
1430
1431/*
1432 * This runs in process context
1433 */
65f27f38 1434static void bio_dirty_fn(struct work_struct *work)
1da177e4 1435{
24d5493f 1436 struct bio *bio, *next;
1da177e4 1437
24d5493f
CH
1438 spin_lock_irq(&bio_dirty_lock);
1439 next = bio_dirty_list;
1da177e4 1440 bio_dirty_list = NULL;
24d5493f 1441 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1442
24d5493f
CH
1443 while ((bio = next) != NULL) {
1444 next = bio->bi_private;
1da177e4 1445
d241a95f 1446 bio_release_pages(bio, true);
1da177e4 1447 bio_put(bio);
1da177e4
LT
1448 }
1449}
1450
1451void bio_check_pages_dirty(struct bio *bio)
1452{
cb34e057 1453 struct bio_vec *bvec;
24d5493f 1454 unsigned long flags;
6dc4f100 1455 struct bvec_iter_all iter_all;
1da177e4 1456
2b070cfe 1457 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1458 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1459 goto defer;
1da177e4
LT
1460 }
1461
d241a95f 1462 bio_release_pages(bio, false);
24d5493f
CH
1463 bio_put(bio);
1464 return;
1465defer:
1466 spin_lock_irqsave(&bio_dirty_lock, flags);
1467 bio->bi_private = bio_dirty_list;
1468 bio_dirty_list = bio;
1469 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1470 schedule_work(&bio_dirty_work);
1da177e4
LT
1471}
1472
c4cf5261
JA
1473static inline bool bio_remaining_done(struct bio *bio)
1474{
1475 /*
1476 * If we're not chaining, then ->__bi_remaining is always 1 and
1477 * we always end io on the first invocation.
1478 */
1479 if (!bio_flagged(bio, BIO_CHAIN))
1480 return true;
1481
1482 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1483
326e1dbb 1484 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1485 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1486 return true;
326e1dbb 1487 }
c4cf5261
JA
1488
1489 return false;
1490}
1491
1da177e4
LT
1492/**
1493 * bio_endio - end I/O on a bio
1494 * @bio: bio
1da177e4
LT
1495 *
1496 * Description:
4246a0b6
CH
1497 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1498 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1499 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1500 *
1501 * bio_endio() can be called several times on a bio that has been chained
1502 * using bio_chain(). The ->bi_end_io() function will only be called the
60b6a7e6 1503 * last time.
1da177e4 1504 **/
4246a0b6 1505void bio_endio(struct bio *bio)
1da177e4 1506{
ba8c6967 1507again:
2b885517 1508 if (!bio_remaining_done(bio))
ba8c6967 1509 return;
7c20f116
CH
1510 if (!bio_integrity_endio(bio))
1511 return;
1da177e4 1512
a647a524 1513 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED))
3caee463 1514 rq_qos_done_bio(bdev_get_queue(bio->bi_bdev), bio);
67b42d0b 1515
60b6a7e6 1516 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
3caee463 1517 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
60b6a7e6
EH
1518 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1519 }
1520
ba8c6967
CH
1521 /*
1522 * Need to have a real endio function for chained bios, otherwise
1523 * various corner cases will break (like stacking block devices that
1524 * save/restore bi_end_io) - however, we want to avoid unbounded
1525 * recursion and blowing the stack. Tail call optimization would
1526 * handle this, but compiling with frame pointers also disables
1527 * gcc's sibling call optimization.
1528 */
1529 if (bio->bi_end_io == bio_chain_endio) {
1530 bio = __bio_chain_endio(bio);
1531 goto again;
196d38bc 1532 }
ba8c6967 1533
9e234eea 1534 blk_throtl_bio_endio(bio);
b222dd2f
SL
1535 /* release cgroup info */
1536 bio_uninit(bio);
ba8c6967
CH
1537 if (bio->bi_end_io)
1538 bio->bi_end_io(bio);
1da177e4 1539}
a112a71d 1540EXPORT_SYMBOL(bio_endio);
1da177e4 1541
20d0189b
KO
1542/**
1543 * bio_split - split a bio
1544 * @bio: bio to split
1545 * @sectors: number of sectors to split from the front of @bio
1546 * @gfp: gfp mask
1547 * @bs: bio set to allocate from
1548 *
1549 * Allocates and returns a new bio which represents @sectors from the start of
1550 * @bio, and updates @bio to represent the remaining sectors.
1551 *
f3f5da62 1552 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1553 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1554 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1555 */
1556struct bio *bio_split(struct bio *bio, int sectors,
1557 gfp_t gfp, struct bio_set *bs)
1558{
f341a4d3 1559 struct bio *split;
20d0189b
KO
1560
1561 BUG_ON(sectors <= 0);
1562 BUG_ON(sectors >= bio_sectors(bio));
1563
0512a75b
KB
1564 /* Zone append commands cannot be split */
1565 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1566 return NULL;
1567
f9d03f96 1568 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1569 if (!split)
1570 return NULL;
1571
1572 split->bi_iter.bi_size = sectors << 9;
1573
1574 if (bio_integrity(split))
fbd08e76 1575 bio_integrity_trim(split);
20d0189b
KO
1576
1577 bio_advance(bio, split->bi_iter.bi_size);
1578
fbbaf700 1579 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1580 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1581
20d0189b
KO
1582 return split;
1583}
1584EXPORT_SYMBOL(bio_split);
1585
6678d83f
KO
1586/**
1587 * bio_trim - trim a bio
1588 * @bio: bio to trim
1589 * @offset: number of sectors to trim from the front of @bio
1590 * @size: size we want to trim @bio to, in sectors
e83502ca
CK
1591 *
1592 * This function is typically used for bios that are cloned and submitted
1593 * to the underlying device in parts.
6678d83f 1594 */
e83502ca 1595void bio_trim(struct bio *bio, sector_t offset, sector_t size)
6678d83f 1596{
e83502ca
CK
1597 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1598 offset + size > bio->bi_iter.bi_size))
1599 return;
6678d83f
KO
1600
1601 size <<= 9;
4f024f37 1602 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1603 return;
1604
6678d83f 1605 bio_advance(bio, offset << 9);
4f024f37 1606 bio->bi_iter.bi_size = size;
376a78ab
DM
1607
1608 if (bio_integrity(bio))
fbd08e76 1609 bio_integrity_trim(bio);
6678d83f
KO
1610}
1611EXPORT_SYMBOL_GPL(bio_trim);
1612
1da177e4
LT
1613/*
1614 * create memory pools for biovec's in a bio_set.
1615 * use the global biovec slabs created for general use.
1616 */
8aa6ba2f 1617int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1618{
7a800a20 1619 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1da177e4 1620
8aa6ba2f 1621 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1622}
1623
917a38c7
KO
1624/*
1625 * bioset_exit - exit a bioset initialized with bioset_init()
1626 *
1627 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1628 * kzalloc()).
1629 */
1630void bioset_exit(struct bio_set *bs)
1da177e4 1631{
be4d234d 1632 bio_alloc_cache_destroy(bs);
df2cb6da
KO
1633 if (bs->rescue_workqueue)
1634 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1635 bs->rescue_workqueue = NULL;
df2cb6da 1636
8aa6ba2f
KO
1637 mempool_exit(&bs->bio_pool);
1638 mempool_exit(&bs->bvec_pool);
9f060e22 1639
7878cba9 1640 bioset_integrity_free(bs);
917a38c7
KO
1641 if (bs->bio_slab)
1642 bio_put_slab(bs);
1643 bs->bio_slab = NULL;
1644}
1645EXPORT_SYMBOL(bioset_exit);
1da177e4 1646
917a38c7
KO
1647/**
1648 * bioset_init - Initialize a bio_set
dad08527 1649 * @bs: pool to initialize
917a38c7
KO
1650 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1651 * @front_pad: Number of bytes to allocate in front of the returned bio
1652 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1653 * and %BIOSET_NEED_RESCUER
1654 *
dad08527
KO
1655 * Description:
1656 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1657 * to ask for a number of bytes to be allocated in front of the bio.
1658 * Front pad allocation is useful for embedding the bio inside
1659 * another structure, to avoid allocating extra data to go with the bio.
1660 * Note that the bio must be embedded at the END of that structure always,
1661 * or things will break badly.
1662 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1663 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1664 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1665 * dispatch queued requests when the mempool runs out of space.
1666 *
917a38c7
KO
1667 */
1668int bioset_init(struct bio_set *bs,
1669 unsigned int pool_size,
1670 unsigned int front_pad,
1671 int flags)
1672{
917a38c7 1673 bs->front_pad = front_pad;
9f180e31
ML
1674 if (flags & BIOSET_NEED_BVECS)
1675 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1676 else
1677 bs->back_pad = 0;
917a38c7
KO
1678
1679 spin_lock_init(&bs->rescue_lock);
1680 bio_list_init(&bs->rescue_list);
1681 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1682
49d1ec85 1683 bs->bio_slab = bio_find_or_create_slab(bs);
917a38c7
KO
1684 if (!bs->bio_slab)
1685 return -ENOMEM;
1686
1687 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1688 goto bad;
1689
1690 if ((flags & BIOSET_NEED_BVECS) &&
1691 biovec_init_pool(&bs->bvec_pool, pool_size))
1692 goto bad;
1693
be4d234d
JA
1694 if (flags & BIOSET_NEED_RESCUER) {
1695 bs->rescue_workqueue = alloc_workqueue("bioset",
1696 WQ_MEM_RECLAIM, 0);
1697 if (!bs->rescue_workqueue)
1698 goto bad;
1699 }
1700 if (flags & BIOSET_PERCPU_CACHE) {
1701 bs->cache = alloc_percpu(struct bio_alloc_cache);
1702 if (!bs->cache)
1703 goto bad;
1704 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1705 }
917a38c7
KO
1706
1707 return 0;
1708bad:
1709 bioset_exit(bs);
1710 return -ENOMEM;
1711}
1712EXPORT_SYMBOL(bioset_init);
1713
28e89fd9
JA
1714/*
1715 * Initialize and setup a new bio_set, based on the settings from
1716 * another bio_set.
1717 */
1718int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1719{
1720 int flags;
1721
1722 flags = 0;
1723 if (src->bvec_pool.min_nr)
1724 flags |= BIOSET_NEED_BVECS;
1725 if (src->rescue_workqueue)
1726 flags |= BIOSET_NEED_RESCUER;
1727
1728 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1729}
1730EXPORT_SYMBOL(bioset_init_from_src);
1731
be4d234d
JA
1732/**
1733 * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1734 * @kiocb: kiocb describing the IO
b77c88c2 1735 * @bdev: block device to allocate the bio for (can be %NULL)
0ef47db1 1736 * @nr_vecs: number of iovecs to pre-allocate
b77c88c2 1737 * @opf: operation and flags for bio
be4d234d
JA
1738 * @bs: bio_set to allocate from
1739 *
1740 * Description:
1741 * Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1742 * used to check if we should dip into the per-cpu bio_set allocation
3d5b3fbe
JA
1743 * cache. The allocation uses GFP_KERNEL internally. On return, the
1744 * bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1745 * MUST be done from process context, not hard/soft IRQ.
be4d234d
JA
1746 *
1747 */
b77c88c2
CH
1748struct bio *bio_alloc_kiocb(struct kiocb *kiocb, struct block_device *bdev,
1749 unsigned short nr_vecs, unsigned int opf, struct bio_set *bs)
be4d234d
JA
1750{
1751 struct bio_alloc_cache *cache;
1752 struct bio *bio;
1753
1754 if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
b77c88c2 1755 return bio_alloc_bioset(bdev, nr_vecs, opf, GFP_KERNEL, bs);
be4d234d
JA
1756
1757 cache = per_cpu_ptr(bs->cache, get_cpu());
fcade2ce
JA
1758 if (cache->free_list) {
1759 bio = cache->free_list;
1760 cache->free_list = bio->bi_next;
be4d234d
JA
1761 cache->nr--;
1762 put_cpu();
49add496
CH
1763 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL,
1764 nr_vecs, opf);
be4d234d
JA
1765 bio->bi_pool = bs;
1766 bio_set_flag(bio, BIO_PERCPU_CACHE);
1767 return bio;
1768 }
1769 put_cpu();
b77c88c2 1770 bio = bio_alloc_bioset(bdev, nr_vecs, opf, GFP_KERNEL, bs);
be4d234d
JA
1771 bio_set_flag(bio, BIO_PERCPU_CACHE);
1772 return bio;
1773}
1774EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1775
de76fd89 1776static int __init init_bio(void)
1da177e4
LT
1777{
1778 int i;
1779
7878cba9 1780 bio_integrity_init();
1da177e4 1781
de76fd89
CH
1782 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1783 struct biovec_slab *bvs = bvec_slabs + i;
a7fcd37c 1784
de76fd89
CH
1785 bvs->slab = kmem_cache_create(bvs->name,
1786 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1787 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 1788 }
1da177e4 1789
be4d234d
JA
1790 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1791 bio_cpu_dead);
1792
f4f8154a 1793 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1794 panic("bio: can't allocate bios\n");
1795
f4f8154a 1796 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1797 panic("bio: can't create integrity pool\n");
1798
1da177e4
LT
1799 return 0;
1800}
1da177e4 1801subsys_initcall(init_bio);