fs: add kiocb alloc cache flag
[linux-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
de6a78b6 20#include <linux/sched/sysctl.h>
a892c8d5 21#include <linux/blk-crypto.h>
49d1ec85 22#include <linux/xarray.h>
1da177e4 23
55782138 24#include <trace/events/block.h>
9e234eea 25#include "blk.h"
67b42d0b 26#include "blk-rq-qos.h"
0bfc2455 27
de76fd89 28static struct biovec_slab {
6ac0b715
CH
29 int nr_vecs;
30 char *name;
31 struct kmem_cache *slab;
de76fd89
CH
32} bvec_slabs[] __read_mostly = {
33 { .nr_vecs = 16, .name = "biovec-16" },
34 { .nr_vecs = 64, .name = "biovec-64" },
35 { .nr_vecs = 128, .name = "biovec-128" },
a8affc03 36 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
1da177e4 37};
6ac0b715 38
7a800a20
CH
39static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
40{
41 switch (nr_vecs) {
42 /* smaller bios use inline vecs */
43 case 5 ... 16:
44 return &bvec_slabs[0];
45 case 17 ... 64:
46 return &bvec_slabs[1];
47 case 65 ... 128:
48 return &bvec_slabs[2];
a8affc03 49 case 129 ... BIO_MAX_VECS:
7a800a20
CH
50 return &bvec_slabs[3];
51 default:
52 BUG();
53 return NULL;
54 }
55}
1da177e4 56
1da177e4
LT
57/*
58 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
59 * IO code that does not need private memory pools.
60 */
f4f8154a 61struct bio_set fs_bio_set;
3f86a82a 62EXPORT_SYMBOL(fs_bio_set);
1da177e4 63
bb799ca0
JA
64/*
65 * Our slab pool management
66 */
67struct bio_slab {
68 struct kmem_cache *slab;
69 unsigned int slab_ref;
70 unsigned int slab_size;
71 char name[8];
72};
73static DEFINE_MUTEX(bio_slab_lock);
49d1ec85 74static DEFINE_XARRAY(bio_slabs);
bb799ca0 75
49d1ec85 76static struct bio_slab *create_bio_slab(unsigned int size)
bb799ca0 77{
49d1ec85 78 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
bb799ca0 79
49d1ec85
ML
80 if (!bslab)
81 return NULL;
bb799ca0 82
49d1ec85
ML
83 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
84 bslab->slab = kmem_cache_create(bslab->name, size,
85 ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
86 if (!bslab->slab)
87 goto fail_alloc_slab;
bb799ca0 88
49d1ec85
ML
89 bslab->slab_ref = 1;
90 bslab->slab_size = size;
bb799ca0 91
49d1ec85
ML
92 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
93 return bslab;
bb799ca0 94
49d1ec85 95 kmem_cache_destroy(bslab->slab);
bb799ca0 96
49d1ec85
ML
97fail_alloc_slab:
98 kfree(bslab);
99 return NULL;
100}
bb799ca0 101
49d1ec85
ML
102static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
103{
9f180e31 104 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
49d1ec85 105}
bb799ca0 106
49d1ec85
ML
107static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
108{
109 unsigned int size = bs_bio_slab_size(bs);
110 struct bio_slab *bslab;
bb799ca0 111
49d1ec85
ML
112 mutex_lock(&bio_slab_lock);
113 bslab = xa_load(&bio_slabs, size);
114 if (bslab)
115 bslab->slab_ref++;
116 else
117 bslab = create_bio_slab(size);
bb799ca0 118 mutex_unlock(&bio_slab_lock);
49d1ec85
ML
119
120 if (bslab)
121 return bslab->slab;
122 return NULL;
bb799ca0
JA
123}
124
125static void bio_put_slab(struct bio_set *bs)
126{
127 struct bio_slab *bslab = NULL;
49d1ec85 128 unsigned int slab_size = bs_bio_slab_size(bs);
bb799ca0
JA
129
130 mutex_lock(&bio_slab_lock);
131
49d1ec85 132 bslab = xa_load(&bio_slabs, slab_size);
bb799ca0
JA
133 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
134 goto out;
135
49d1ec85
ML
136 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
137
bb799ca0
JA
138 WARN_ON(!bslab->slab_ref);
139
140 if (--bslab->slab_ref)
141 goto out;
142
49d1ec85
ML
143 xa_erase(&bio_slabs, slab_size);
144
bb799ca0 145 kmem_cache_destroy(bslab->slab);
49d1ec85 146 kfree(bslab);
bb799ca0
JA
147
148out:
149 mutex_unlock(&bio_slab_lock);
150}
151
7a800a20 152void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
7ba1ba12 153{
a8affc03 154 BIO_BUG_ON(nr_vecs > BIO_MAX_VECS);
ed996a52 155
a8affc03 156 if (nr_vecs == BIO_MAX_VECS)
9f060e22 157 mempool_free(bv, pool);
7a800a20
CH
158 else if (nr_vecs > BIO_INLINE_VECS)
159 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
bb799ca0 160}
bb799ca0 161
f2c3eb9b
CH
162/*
163 * Make the first allocation restricted and don't dump info on allocation
164 * failures, since we'll fall back to the mempool in case of failure.
165 */
166static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
167{
168 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
169 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
bb799ca0
JA
170}
171
7a800a20
CH
172struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
173 gfp_t gfp_mask)
1da177e4 174{
7a800a20 175 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
1da177e4 176
7a800a20 177 if (WARN_ON_ONCE(!bvs))
7ff9345f 178 return NULL;
7ff9345f
JA
179
180 /*
7a800a20
CH
181 * Upgrade the nr_vecs request to take full advantage of the allocation.
182 * We also rely on this in the bvec_free path.
7ff9345f 183 */
7a800a20 184 *nr_vecs = bvs->nr_vecs;
7ff9345f 185
7ff9345f 186 /*
f007a3d6
CH
187 * Try a slab allocation first for all smaller allocations. If that
188 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
a8affc03 189 * The mempool is sized to handle up to BIO_MAX_VECS entries.
7ff9345f 190 */
a8affc03 191 if (*nr_vecs < BIO_MAX_VECS) {
f007a3d6 192 struct bio_vec *bvl;
1da177e4 193
f2c3eb9b 194 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
7a800a20 195 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
f007a3d6 196 return bvl;
a8affc03 197 *nr_vecs = BIO_MAX_VECS;
7ff9345f
JA
198 }
199
f007a3d6 200 return mempool_alloc(pool, gfp_mask);
1da177e4
LT
201}
202
9ae3b3f5 203void bio_uninit(struct bio *bio)
1da177e4 204{
db9819c7
CH
205#ifdef CONFIG_BLK_CGROUP
206 if (bio->bi_blkg) {
207 blkg_put(bio->bi_blkg);
208 bio->bi_blkg = NULL;
209 }
210#endif
ece841ab
JT
211 if (bio_integrity(bio))
212 bio_integrity_free(bio);
a892c8d5
ST
213
214 bio_crypt_free_ctx(bio);
4254bba1 215}
9ae3b3f5 216EXPORT_SYMBOL(bio_uninit);
7ba1ba12 217
4254bba1
KO
218static void bio_free(struct bio *bio)
219{
220 struct bio_set *bs = bio->bi_pool;
221 void *p;
222
9ae3b3f5 223 bio_uninit(bio);
4254bba1
KO
224
225 if (bs) {
7a800a20 226 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
4254bba1
KO
227
228 /*
229 * If we have front padding, adjust the bio pointer before freeing
230 */
231 p = bio;
bb799ca0
JA
232 p -= bs->front_pad;
233
8aa6ba2f 234 mempool_free(p, &bs->bio_pool);
4254bba1
KO
235 } else {
236 /* Bio was allocated by bio_kmalloc() */
237 kfree(bio);
238 }
3676347a
PO
239}
240
9ae3b3f5
JA
241/*
242 * Users of this function have their own bio allocation. Subsequently,
243 * they must remember to pair any call to bio_init() with bio_uninit()
244 * when IO has completed, or when the bio is released.
245 */
3a83f467
ML
246void bio_init(struct bio *bio, struct bio_vec *table,
247 unsigned short max_vecs)
1da177e4 248{
da521626
JA
249 bio->bi_next = NULL;
250 bio->bi_bdev = NULL;
251 bio->bi_opf = 0;
252 bio->bi_flags = 0;
253 bio->bi_ioprio = 0;
254 bio->bi_write_hint = 0;
255 bio->bi_status = 0;
256 bio->bi_iter.bi_sector = 0;
257 bio->bi_iter.bi_size = 0;
258 bio->bi_iter.bi_idx = 0;
259 bio->bi_iter.bi_bvec_done = 0;
260 bio->bi_end_io = NULL;
261 bio->bi_private = NULL;
262#ifdef CONFIG_BLK_CGROUP
263 bio->bi_blkg = NULL;
264 bio->bi_issue.value = 0;
265#ifdef CONFIG_BLK_CGROUP_IOCOST
266 bio->bi_iocost_cost = 0;
267#endif
268#endif
269#ifdef CONFIG_BLK_INLINE_ENCRYPTION
270 bio->bi_crypt_context = NULL;
271#endif
272#ifdef CONFIG_BLK_DEV_INTEGRITY
273 bio->bi_integrity = NULL;
274#endif
275 bio->bi_vcnt = 0;
276
c4cf5261 277 atomic_set(&bio->__bi_remaining, 1);
dac56212 278 atomic_set(&bio->__bi_cnt, 1);
3a83f467 279
3a83f467 280 bio->bi_max_vecs = max_vecs;
da521626
JA
281 bio->bi_io_vec = table;
282 bio->bi_pool = NULL;
1da177e4 283}
a112a71d 284EXPORT_SYMBOL(bio_init);
1da177e4 285
f44b48c7
KO
286/**
287 * bio_reset - reinitialize a bio
288 * @bio: bio to reset
289 *
290 * Description:
291 * After calling bio_reset(), @bio will be in the same state as a freshly
292 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
293 * preserved are the ones that are initialized by bio_alloc_bioset(). See
294 * comment in struct bio.
295 */
296void bio_reset(struct bio *bio)
297{
9ae3b3f5 298 bio_uninit(bio);
f44b48c7 299 memset(bio, 0, BIO_RESET_BYTES);
c4cf5261 300 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
301}
302EXPORT_SYMBOL(bio_reset);
303
38f8baae 304static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 305{
4246a0b6
CH
306 struct bio *parent = bio->bi_private;
307
3edf5346 308 if (bio->bi_status && !parent->bi_status)
4e4cbee9 309 parent->bi_status = bio->bi_status;
196d38bc 310 bio_put(bio);
38f8baae
CH
311 return parent;
312}
313
314static void bio_chain_endio(struct bio *bio)
315{
316 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
317}
318
319/**
320 * bio_chain - chain bio completions
1051a902 321 * @bio: the target bio
5b874af6 322 * @parent: the parent bio of @bio
196d38bc
KO
323 *
324 * The caller won't have a bi_end_io called when @bio completes - instead,
325 * @parent's bi_end_io won't be called until both @parent and @bio have
326 * completed; the chained bio will also be freed when it completes.
327 *
328 * The caller must not set bi_private or bi_end_io in @bio.
329 */
330void bio_chain(struct bio *bio, struct bio *parent)
331{
332 BUG_ON(bio->bi_private || bio->bi_end_io);
333
334 bio->bi_private = parent;
335 bio->bi_end_io = bio_chain_endio;
c4cf5261 336 bio_inc_remaining(parent);
196d38bc
KO
337}
338EXPORT_SYMBOL(bio_chain);
339
df2cb6da
KO
340static void bio_alloc_rescue(struct work_struct *work)
341{
342 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
343 struct bio *bio;
344
345 while (1) {
346 spin_lock(&bs->rescue_lock);
347 bio = bio_list_pop(&bs->rescue_list);
348 spin_unlock(&bs->rescue_lock);
349
350 if (!bio)
351 break;
352
ed00aabd 353 submit_bio_noacct(bio);
df2cb6da
KO
354 }
355}
356
357static void punt_bios_to_rescuer(struct bio_set *bs)
358{
359 struct bio_list punt, nopunt;
360 struct bio *bio;
361
47e0fb46
N
362 if (WARN_ON_ONCE(!bs->rescue_workqueue))
363 return;
df2cb6da
KO
364 /*
365 * In order to guarantee forward progress we must punt only bios that
366 * were allocated from this bio_set; otherwise, if there was a bio on
367 * there for a stacking driver higher up in the stack, processing it
368 * could require allocating bios from this bio_set, and doing that from
369 * our own rescuer would be bad.
370 *
371 * Since bio lists are singly linked, pop them all instead of trying to
372 * remove from the middle of the list:
373 */
374
375 bio_list_init(&punt);
376 bio_list_init(&nopunt);
377
f5fe1b51 378 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 379 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 380 current->bio_list[0] = nopunt;
df2cb6da 381
f5fe1b51
N
382 bio_list_init(&nopunt);
383 while ((bio = bio_list_pop(&current->bio_list[1])))
384 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
385 current->bio_list[1] = nopunt;
df2cb6da
KO
386
387 spin_lock(&bs->rescue_lock);
388 bio_list_merge(&bs->rescue_list, &punt);
389 spin_unlock(&bs->rescue_lock);
390
391 queue_work(bs->rescue_workqueue, &bs->rescue_work);
392}
393
1da177e4
LT
394/**
395 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 396 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 397 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 398 * @bs: the bio_set to allocate from.
1da177e4 399 *
3175199a 400 * Allocate a bio from the mempools in @bs.
3f86a82a 401 *
3175199a
CH
402 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
403 * allocate a bio. This is due to the mempool guarantees. To make this work,
404 * callers must never allocate more than 1 bio at a time from the general pool.
405 * Callers that need to allocate more than 1 bio must always submit the
406 * previously allocated bio for IO before attempting to allocate a new one.
407 * Failure to do so can cause deadlocks under memory pressure.
3f86a82a 408 *
3175199a
CH
409 * Note that when running under submit_bio_noacct() (i.e. any block driver),
410 * bios are not submitted until after you return - see the code in
411 * submit_bio_noacct() that converts recursion into iteration, to prevent
412 * stack overflows.
df2cb6da 413 *
3175199a
CH
414 * This would normally mean allocating multiple bios under submit_bio_noacct()
415 * would be susceptible to deadlocks, but we have
416 * deadlock avoidance code that resubmits any blocked bios from a rescuer
417 * thread.
df2cb6da 418 *
3175199a
CH
419 * However, we do not guarantee forward progress for allocations from other
420 * mempools. Doing multiple allocations from the same mempool under
421 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
422 * for per bio allocations.
df2cb6da 423 *
3175199a 424 * Returns: Pointer to new bio on success, NULL on failure.
3f86a82a 425 */
0f2e6ab8 426struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
7a88fa19 427 struct bio_set *bs)
1da177e4 428{
df2cb6da 429 gfp_t saved_gfp = gfp_mask;
451a9ebf
TH
430 struct bio *bio;
431 void *p;
432
3175199a
CH
433 /* should not use nobvec bioset for nr_iovecs > 0 */
434 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
435 return NULL;
df2cb6da 436
3175199a
CH
437 /*
438 * submit_bio_noacct() converts recursion to iteration; this means if
439 * we're running beneath it, any bios we allocate and submit will not be
440 * submitted (and thus freed) until after we return.
441 *
442 * This exposes us to a potential deadlock if we allocate multiple bios
443 * from the same bio_set() while running underneath submit_bio_noacct().
444 * If we were to allocate multiple bios (say a stacking block driver
445 * that was splitting bios), we would deadlock if we exhausted the
446 * mempool's reserve.
447 *
448 * We solve this, and guarantee forward progress, with a rescuer
449 * workqueue per bio_set. If we go to allocate and there are bios on
450 * current->bio_list, we first try the allocation without
451 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
452 * blocking to the rescuer workqueue before we retry with the original
453 * gfp_flags.
454 */
455 if (current->bio_list &&
456 (!bio_list_empty(&current->bio_list[0]) ||
457 !bio_list_empty(&current->bio_list[1])) &&
458 bs->rescue_workqueue)
459 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
460
461 p = mempool_alloc(&bs->bio_pool, gfp_mask);
462 if (!p && gfp_mask != saved_gfp) {
463 punt_bios_to_rescuer(bs);
464 gfp_mask = saved_gfp;
8aa6ba2f 465 p = mempool_alloc(&bs->bio_pool, gfp_mask);
3f86a82a 466 }
451a9ebf
TH
467 if (unlikely(!p))
468 return NULL;
1da177e4 469
3175199a
CH
470 bio = p + bs->front_pad;
471 if (nr_iovecs > BIO_INLINE_VECS) {
3175199a 472 struct bio_vec *bvl = NULL;
34053979 473
7a800a20 474 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
df2cb6da
KO
475 if (!bvl && gfp_mask != saved_gfp) {
476 punt_bios_to_rescuer(bs);
477 gfp_mask = saved_gfp;
7a800a20 478 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
df2cb6da 479 }
34053979
IM
480 if (unlikely(!bvl))
481 goto err_free;
a38352e0 482
7a800a20 483 bio_init(bio, bvl, nr_iovecs);
3f86a82a 484 } else if (nr_iovecs) {
3175199a
CH
485 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
486 } else {
487 bio_init(bio, NULL, 0);
1da177e4 488 }
3f86a82a
KO
489
490 bio->bi_pool = bs;
1da177e4 491 return bio;
34053979
IM
492
493err_free:
8aa6ba2f 494 mempool_free(p, &bs->bio_pool);
34053979 495 return NULL;
1da177e4 496}
a112a71d 497EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 498
3175199a
CH
499/**
500 * bio_kmalloc - kmalloc a bio for I/O
501 * @gfp_mask: the GFP_* mask given to the slab allocator
502 * @nr_iovecs: number of iovecs to pre-allocate
503 *
504 * Use kmalloc to allocate and initialize a bio.
505 *
506 * Returns: Pointer to new bio on success, NULL on failure.
507 */
0f2e6ab8 508struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
3175199a
CH
509{
510 struct bio *bio;
511
512 if (nr_iovecs > UIO_MAXIOV)
513 return NULL;
514
515 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
516 if (unlikely(!bio))
517 return NULL;
518 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
519 bio->bi_pool = NULL;
520 return bio;
521}
522EXPORT_SYMBOL(bio_kmalloc);
523
6f822e1b 524void zero_fill_bio(struct bio *bio)
1da177e4
LT
525{
526 unsigned long flags;
7988613b
KO
527 struct bio_vec bv;
528 struct bvec_iter iter;
1da177e4 529
6f822e1b 530 bio_for_each_segment(bv, bio, iter) {
7988613b
KO
531 char *data = bvec_kmap_irq(&bv, &flags);
532 memset(data, 0, bv.bv_len);
533 flush_dcache_page(bv.bv_page);
1da177e4
LT
534 bvec_kunmap_irq(data, &flags);
535 }
536}
6f822e1b 537EXPORT_SYMBOL(zero_fill_bio);
1da177e4 538
83c9c547
ML
539/**
540 * bio_truncate - truncate the bio to small size of @new_size
541 * @bio: the bio to be truncated
542 * @new_size: new size for truncating the bio
543 *
544 * Description:
545 * Truncate the bio to new size of @new_size. If bio_op(bio) is
546 * REQ_OP_READ, zero the truncated part. This function should only
547 * be used for handling corner cases, such as bio eod.
548 */
85a8ce62
ML
549void bio_truncate(struct bio *bio, unsigned new_size)
550{
551 struct bio_vec bv;
552 struct bvec_iter iter;
553 unsigned int done = 0;
554 bool truncated = false;
555
556 if (new_size >= bio->bi_iter.bi_size)
557 return;
558
83c9c547 559 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
560 goto exit;
561
562 bio_for_each_segment(bv, bio, iter) {
563 if (done + bv.bv_len > new_size) {
564 unsigned offset;
565
566 if (!truncated)
567 offset = new_size - done;
568 else
569 offset = 0;
570 zero_user(bv.bv_page, offset, bv.bv_len - offset);
571 truncated = true;
572 }
573 done += bv.bv_len;
574 }
575
576 exit:
577 /*
578 * Don't touch bvec table here and make it really immutable, since
579 * fs bio user has to retrieve all pages via bio_for_each_segment_all
580 * in its .end_bio() callback.
581 *
582 * It is enough to truncate bio by updating .bi_size since we can make
583 * correct bvec with the updated .bi_size for drivers.
584 */
585 bio->bi_iter.bi_size = new_size;
586}
587
29125ed6
CH
588/**
589 * guard_bio_eod - truncate a BIO to fit the block device
590 * @bio: bio to truncate
591 *
592 * This allows us to do IO even on the odd last sectors of a device, even if the
593 * block size is some multiple of the physical sector size.
594 *
595 * We'll just truncate the bio to the size of the device, and clear the end of
596 * the buffer head manually. Truly out-of-range accesses will turn into actual
597 * I/O errors, this only handles the "we need to be able to do I/O at the final
598 * sector" case.
599 */
600void guard_bio_eod(struct bio *bio)
601{
309dca30 602 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
603
604 if (!maxsector)
605 return;
606
607 /*
608 * If the *whole* IO is past the end of the device,
609 * let it through, and the IO layer will turn it into
610 * an EIO.
611 */
612 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
613 return;
614
615 maxsector -= bio->bi_iter.bi_sector;
616 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
617 return;
618
619 bio_truncate(bio, maxsector << 9);
620}
621
1da177e4
LT
622/**
623 * bio_put - release a reference to a bio
624 * @bio: bio to release reference to
625 *
626 * Description:
627 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 628 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
629 **/
630void bio_put(struct bio *bio)
631{
dac56212 632 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 633 bio_free(bio);
dac56212
JA
634 else {
635 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
636
637 /*
638 * last put frees it
639 */
640 if (atomic_dec_and_test(&bio->__bi_cnt))
641 bio_free(bio);
642 }
1da177e4 643}
a112a71d 644EXPORT_SYMBOL(bio_put);
1da177e4 645
59d276fe
KO
646/**
647 * __bio_clone_fast - clone a bio that shares the original bio's biovec
648 * @bio: destination bio
649 * @bio_src: bio to clone
650 *
651 * Clone a &bio. Caller will own the returned bio, but not
652 * the actual data it points to. Reference count of returned
653 * bio will be one.
654 *
655 * Caller must ensure that @bio_src is not freed before @bio.
656 */
657void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
658{
7a800a20 659 WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
59d276fe
KO
660
661 /*
309dca30 662 * most users will be overriding ->bi_bdev with a new target,
59d276fe
KO
663 * so we don't set nor calculate new physical/hw segment counts here
664 */
309dca30 665 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 666 bio_set_flag(bio, BIO_CLONED);
111be883
SL
667 if (bio_flagged(bio_src, BIO_THROTTLED))
668 bio_set_flag(bio, BIO_THROTTLED);
46bbf653
CH
669 if (bio_flagged(bio_src, BIO_REMAPPED))
670 bio_set_flag(bio, BIO_REMAPPED);
1eff9d32 671 bio->bi_opf = bio_src->bi_opf;
ca474b73 672 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 673 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
674 bio->bi_iter = bio_src->bi_iter;
675 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 676
db6638d7 677 bio_clone_blkg_association(bio, bio_src);
e439bedf 678 blkcg_bio_issue_init(bio);
59d276fe
KO
679}
680EXPORT_SYMBOL(__bio_clone_fast);
681
682/**
683 * bio_clone_fast - clone a bio that shares the original bio's biovec
684 * @bio: bio to clone
685 * @gfp_mask: allocation priority
686 * @bs: bio_set to allocate from
687 *
688 * Like __bio_clone_fast, only also allocates the returned bio
689 */
690struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
691{
692 struct bio *b;
693
694 b = bio_alloc_bioset(gfp_mask, 0, bs);
695 if (!b)
696 return NULL;
697
698 __bio_clone_fast(b, bio);
699
07560151
EB
700 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
701 goto err_put;
a892c8d5 702
07560151
EB
703 if (bio_integrity(bio) &&
704 bio_integrity_clone(b, bio, gfp_mask) < 0)
705 goto err_put;
59d276fe
KO
706
707 return b;
07560151
EB
708
709err_put:
710 bio_put(b);
711 return NULL;
59d276fe
KO
712}
713EXPORT_SYMBOL(bio_clone_fast);
714
5cbd28e3
CH
715const char *bio_devname(struct bio *bio, char *buf)
716{
309dca30 717 return bdevname(bio->bi_bdev, buf);
5cbd28e3
CH
718}
719EXPORT_SYMBOL(bio_devname);
720
5919482e
ML
721static inline bool page_is_mergeable(const struct bio_vec *bv,
722 struct page *page, unsigned int len, unsigned int off,
ff896738 723 bool *same_page)
5919482e 724{
d8166519
MWO
725 size_t bv_end = bv->bv_offset + bv->bv_len;
726 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
727 phys_addr_t page_addr = page_to_phys(page);
728
729 if (vec_end_addr + 1 != page_addr + off)
730 return false;
731 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
732 return false;
52d52d1c 733
ff896738 734 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
d8166519
MWO
735 if (*same_page)
736 return true;
737 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
5919482e
ML
738}
739
e4581105
CH
740/*
741 * Try to merge a page into a segment, while obeying the hardware segment
742 * size limit. This is not for normal read/write bios, but for passthrough
743 * or Zone Append operations that we can't split.
744 */
745static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
746 struct page *page, unsigned len,
747 unsigned offset, bool *same_page)
489fbbcb 748{
384209cd 749 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
750 unsigned long mask = queue_segment_boundary(q);
751 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
752 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
753
754 if ((addr1 | mask) != (addr2 | mask))
755 return false;
489fbbcb
ML
756 if (bv->bv_len + len > queue_max_segment_size(q))
757 return false;
384209cd 758 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
759}
760
1da177e4 761/**
e4581105
CH
762 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
763 * @q: the target queue
764 * @bio: destination bio
765 * @page: page to add
766 * @len: vec entry length
767 * @offset: vec entry offset
768 * @max_sectors: maximum number of sectors that can be added
769 * @same_page: return if the segment has been merged inside the same page
c66a14d0 770 *
e4581105
CH
771 * Add a page to a bio while respecting the hardware max_sectors, max_segment
772 * and gap limitations.
1da177e4 773 */
e4581105 774int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 775 struct page *page, unsigned int len, unsigned int offset,
e4581105 776 unsigned int max_sectors, bool *same_page)
1da177e4 777{
1da177e4
LT
778 struct bio_vec *bvec;
779
e4581105 780 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
781 return 0;
782
e4581105 783 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
784 return 0;
785
80cfd548 786 if (bio->bi_vcnt > 0) {
e4581105 787 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 788 return len;
320ea869
CH
789
790 /*
791 * If the queue doesn't support SG gaps and adding this segment
792 * would create a gap, disallow it.
793 */
384209cd 794 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
795 if (bvec_gap_to_prev(q, bvec, offset))
796 return 0;
80cfd548
JA
797 }
798
79d08f89 799 if (bio_full(bio, len))
1da177e4
LT
800 return 0;
801
14ccb66b 802 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
803 return 0;
804
fcbf6a08
ML
805 bvec = &bio->bi_io_vec[bio->bi_vcnt];
806 bvec->bv_page = page;
807 bvec->bv_len = len;
808 bvec->bv_offset = offset;
809 bio->bi_vcnt++;
dcdca753 810 bio->bi_iter.bi_size += len;
1da177e4
LT
811 return len;
812}
19047087 813
e4581105
CH
814/**
815 * bio_add_pc_page - attempt to add page to passthrough bio
816 * @q: the target queue
817 * @bio: destination bio
818 * @page: page to add
819 * @len: vec entry length
820 * @offset: vec entry offset
821 *
822 * Attempt to add a page to the bio_vec maplist. This can fail for a
823 * number of reasons, such as the bio being full or target block device
824 * limitations. The target block device must allow bio's up to PAGE_SIZE,
825 * so it is always possible to add a single page to an empty bio.
826 *
827 * This should only be used by passthrough bios.
828 */
19047087
ML
829int bio_add_pc_page(struct request_queue *q, struct bio *bio,
830 struct page *page, unsigned int len, unsigned int offset)
831{
d1916c86 832 bool same_page = false;
e4581105
CH
833 return bio_add_hw_page(q, bio, page, len, offset,
834 queue_max_hw_sectors(q), &same_page);
19047087 835}
a112a71d 836EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 837
ae29333f
JT
838/**
839 * bio_add_zone_append_page - attempt to add page to zone-append bio
840 * @bio: destination bio
841 * @page: page to add
842 * @len: vec entry length
843 * @offset: vec entry offset
844 *
845 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
846 * for a zone-append request. This can fail for a number of reasons, such as the
847 * bio being full or the target block device is not a zoned block device or
848 * other limitations of the target block device. The target block device must
849 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
850 * to an empty bio.
851 *
852 * Returns: number of bytes added to the bio, or 0 in case of a failure.
853 */
854int bio_add_zone_append_page(struct bio *bio, struct page *page,
855 unsigned int len, unsigned int offset)
856{
582cd91f 857 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
ae29333f
JT
858 bool same_page = false;
859
860 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
861 return 0;
862
863 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
864 return 0;
865
866 return bio_add_hw_page(q, bio, page, len, offset,
867 queue_max_zone_append_sectors(q), &same_page);
868}
869EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
870
1da177e4 871/**
0aa69fd3
CH
872 * __bio_try_merge_page - try appending data to an existing bvec.
873 * @bio: destination bio
551879a4 874 * @page: start page to add
0aa69fd3 875 * @len: length of the data to add
551879a4 876 * @off: offset of the data relative to @page
ff896738 877 * @same_page: return if the segment has been merged inside the same page
1da177e4 878 *
0aa69fd3 879 * Try to add the data at @page + @off to the last bvec of @bio. This is a
3cf14889 880 * useful optimisation for file systems with a block size smaller than the
0aa69fd3
CH
881 * page size.
882 *
551879a4
ML
883 * Warn if (@len, @off) crosses pages in case that @same_page is true.
884 *
0aa69fd3 885 * Return %true on success or %false on failure.
1da177e4 886 */
0aa69fd3 887bool __bio_try_merge_page(struct bio *bio, struct page *page,
ff896738 888 unsigned int len, unsigned int off, bool *same_page)
1da177e4 889{
c66a14d0 890 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 891 return false;
762380ad 892
cc90bc68 893 if (bio->bi_vcnt > 0) {
0aa69fd3 894 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
895
896 if (page_is_mergeable(bv, page, len, off, same_page)) {
35c820e7 897 if (bio->bi_iter.bi_size > UINT_MAX - len) {
2cd896a5 898 *same_page = false;
cc90bc68 899 return false;
2cd896a5 900 }
5919482e
ML
901 bv->bv_len += len;
902 bio->bi_iter.bi_size += len;
903 return true;
904 }
c66a14d0 905 }
0aa69fd3
CH
906 return false;
907}
908EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 909
0aa69fd3 910/**
551879a4 911 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 912 * @bio: destination bio
551879a4
ML
913 * @page: start page to add
914 * @len: length of the data to add, may cross pages
915 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
916 *
917 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
918 * that @bio has space for another bvec.
919 */
920void __bio_add_page(struct bio *bio, struct page *page,
921 unsigned int len, unsigned int off)
922{
923 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 924
0aa69fd3 925 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 926 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
927
928 bv->bv_page = page;
929 bv->bv_offset = off;
930 bv->bv_len = len;
c66a14d0 931
c66a14d0 932 bio->bi_iter.bi_size += len;
0aa69fd3 933 bio->bi_vcnt++;
b8e24a93
JW
934
935 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
936 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
937}
938EXPORT_SYMBOL_GPL(__bio_add_page);
939
940/**
551879a4 941 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 942 * @bio: destination bio
551879a4
ML
943 * @page: start page to add
944 * @len: vec entry length, may cross pages
945 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 946 *
551879a4 947 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
948 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
949 */
950int bio_add_page(struct bio *bio, struct page *page,
951 unsigned int len, unsigned int offset)
952{
ff896738
CH
953 bool same_page = false;
954
955 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 956 if (bio_full(bio, len))
0aa69fd3
CH
957 return 0;
958 __bio_add_page(bio, page, len, offset);
959 }
c66a14d0 960 return len;
1da177e4 961}
a112a71d 962EXPORT_SYMBOL(bio_add_page);
1da177e4 963
d241a95f 964void bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
965{
966 struct bvec_iter_all iter_all;
967 struct bio_vec *bvec;
7321ecbf 968
b2d0d991
CH
969 if (bio_flagged(bio, BIO_NO_PAGE_REF))
970 return;
971
d241a95f
CH
972 bio_for_each_segment_all(bvec, bio, iter_all) {
973 if (mark_dirty && !PageCompound(bvec->bv_page))
974 set_page_dirty_lock(bvec->bv_page);
7321ecbf 975 put_page(bvec->bv_page);
d241a95f 976 }
7321ecbf 977}
29b2a3aa 978EXPORT_SYMBOL_GPL(bio_release_pages);
7321ecbf 979
7de55b7d 980static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
6d0c48ae 981{
7a800a20 982 WARN_ON_ONCE(bio->bi_max_vecs);
c42bca92
PB
983
984 bio->bi_vcnt = iter->nr_segs;
c42bca92
PB
985 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
986 bio->bi_iter.bi_bvec_done = iter->iov_offset;
987 bio->bi_iter.bi_size = iter->count;
ed97ce5e 988 bio_set_flag(bio, BIO_NO_PAGE_REF);
977be012 989 bio_set_flag(bio, BIO_CLONED);
7de55b7d 990}
c42bca92 991
7de55b7d
JT
992static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
993{
994 __bio_iov_bvec_set(bio, iter);
c42bca92 995 iov_iter_advance(iter, iter->count);
a10584c3 996 return 0;
6d0c48ae
JA
997}
998
7de55b7d
JT
999static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
1000{
1001 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1002 struct iov_iter i = *iter;
1003
1004 iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
1005 __bio_iov_bvec_set(bio, &i);
1006 iov_iter_advance(iter, i.count);
1007 return 0;
1008}
1009
576ed913
CH
1010#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1011
2cefe4db 1012/**
17d51b10 1013 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
1014 * @bio: bio to add pages to
1015 * @iter: iov iterator describing the region to be mapped
1016 *
17d51b10 1017 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 1018 * pages will have to be released using put_page() when done.
17d51b10 1019 * For multi-segment *iter, this function only adds pages from the
3cf14889 1020 * next non-empty segment of the iov iterator.
2cefe4db 1021 */
17d51b10 1022static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 1023{
576ed913
CH
1024 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1025 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
1026 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1027 struct page **pages = (struct page **)bv;
45691804 1028 bool same_page = false;
576ed913
CH
1029 ssize_t size, left;
1030 unsigned len, i;
b403ea24 1031 size_t offset;
576ed913
CH
1032
1033 /*
1034 * Move page array up in the allocated memory for the bio vecs as far as
1035 * possible so that we can start filling biovecs from the beginning
1036 * without overwriting the temporary page array.
1037 */
1038 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1039 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db 1040
35c820e7 1041 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
2cefe4db
KO
1042 if (unlikely(size <= 0))
1043 return size ? size : -EFAULT;
2cefe4db 1044
576ed913
CH
1045 for (left = size, i = 0; left > 0; left -= len, i++) {
1046 struct page *page = pages[i];
2cefe4db 1047
576ed913 1048 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
1049
1050 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1051 if (same_page)
1052 put_page(page);
1053 } else {
79d08f89 1054 if (WARN_ON_ONCE(bio_full(bio, len)))
45691804
CH
1055 return -EINVAL;
1056 __bio_add_page(bio, page, len, offset);
1057 }
576ed913 1058 offset = 0;
2cefe4db
KO
1059 }
1060
2cefe4db
KO
1061 iov_iter_advance(iter, size);
1062 return 0;
1063}
17d51b10 1064
0512a75b
KB
1065static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1066{
1067 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1068 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
309dca30 1069 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
0512a75b
KB
1070 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1071 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1072 struct page **pages = (struct page **)bv;
1073 ssize_t size, left;
1074 unsigned len, i;
1075 size_t offset;
4977d121 1076 int ret = 0;
0512a75b
KB
1077
1078 if (WARN_ON_ONCE(!max_append_sectors))
1079 return 0;
1080
1081 /*
1082 * Move page array up in the allocated memory for the bio vecs as far as
1083 * possible so that we can start filling biovecs from the beginning
1084 * without overwriting the temporary page array.
1085 */
1086 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1087 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1088
1089 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1090 if (unlikely(size <= 0))
1091 return size ? size : -EFAULT;
1092
1093 for (left = size, i = 0; left > 0; left -= len, i++) {
1094 struct page *page = pages[i];
1095 bool same_page = false;
1096
1097 len = min_t(size_t, PAGE_SIZE - offset, left);
1098 if (bio_add_hw_page(q, bio, page, len, offset,
4977d121
NA
1099 max_append_sectors, &same_page) != len) {
1100 ret = -EINVAL;
1101 break;
1102 }
0512a75b
KB
1103 if (same_page)
1104 put_page(page);
1105 offset = 0;
1106 }
1107
4977d121
NA
1108 iov_iter_advance(iter, size - left);
1109 return ret;
0512a75b
KB
1110}
1111
17d51b10 1112/**
6d0c48ae 1113 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1114 * @bio: bio to add pages to
6d0c48ae
JA
1115 * @iter: iov iterator describing the region to be added
1116 *
1117 * This takes either an iterator pointing to user memory, or one pointing to
1118 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1119 * map them into the kernel. On IO completion, the caller should put those
c42bca92
PB
1120 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1121 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1122 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1123 * completed by a call to ->ki_complete() or returns with an error other than
1124 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1125 * on IO completion. If it isn't, then pages should be released.
17d51b10 1126 *
17d51b10 1127 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1128 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1129 * MM encounters an error pinning the requested pages, it stops. Error
1130 * is returned only if 0 pages could be pinned.
0cf41e5e
PB
1131 *
1132 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1133 * responsible for setting BIO_WORKINGSET if necessary.
17d51b10
MW
1134 */
1135int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1136{
c42bca92 1137 int ret = 0;
14eacf12 1138
c42bca92 1139 if (iov_iter_is_bvec(iter)) {
7de55b7d
JT
1140 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1141 return bio_iov_bvec_set_append(bio, iter);
ed97ce5e 1142 return bio_iov_bvec_set(bio, iter);
c42bca92 1143 }
17d51b10
MW
1144
1145 do {
86004515 1146 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
0512a75b 1147 ret = __bio_iov_append_get_pages(bio, iter);
86004515
CH
1148 else
1149 ret = __bio_iov_iter_get_pages(bio, iter);
79d08f89 1150 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 1151
0cf41e5e
PB
1152 /* don't account direct I/O as memory stall */
1153 bio_clear_flag(bio, BIO_WORKINGSET);
14eacf12 1154 return bio->bi_vcnt ? 0 : ret;
17d51b10 1155}
29b2a3aa 1156EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1157
4246a0b6 1158static void submit_bio_wait_endio(struct bio *bio)
9e882242 1159{
65e53aab 1160 complete(bio->bi_private);
9e882242
KO
1161}
1162
1163/**
1164 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1165 * @bio: The &struct bio which describes the I/O
1166 *
1167 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1168 * bio_endio() on failure.
3d289d68
JK
1169 *
1170 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1171 * result in bio reference to be consumed. The caller must drop the reference
1172 * on his own.
9e882242 1173 */
4e49ea4a 1174int submit_bio_wait(struct bio *bio)
9e882242 1175{
309dca30
CH
1176 DECLARE_COMPLETION_ONSTACK_MAP(done,
1177 bio->bi_bdev->bd_disk->lockdep_map);
de6a78b6 1178 unsigned long hang_check;
9e882242 1179
65e53aab 1180 bio->bi_private = &done;
9e882242 1181 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1182 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1183 submit_bio(bio);
de6a78b6
ML
1184
1185 /* Prevent hang_check timer from firing at us during very long I/O */
1186 hang_check = sysctl_hung_task_timeout_secs;
1187 if (hang_check)
1188 while (!wait_for_completion_io_timeout(&done,
1189 hang_check * (HZ/2)))
1190 ;
1191 else
1192 wait_for_completion_io(&done);
9e882242 1193
65e53aab 1194 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1195}
1196EXPORT_SYMBOL(submit_bio_wait);
1197
054bdf64
KO
1198/**
1199 * bio_advance - increment/complete a bio by some number of bytes
1200 * @bio: bio to advance
1201 * @bytes: number of bytes to complete
1202 *
1203 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1204 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1205 * be updated on the last bvec as well.
1206 *
1207 * @bio will then represent the remaining, uncompleted portion of the io.
1208 */
1209void bio_advance(struct bio *bio, unsigned bytes)
1210{
1211 if (bio_integrity(bio))
1212 bio_integrity_advance(bio, bytes);
1213
a892c8d5 1214 bio_crypt_advance(bio, bytes);
4550dd6c 1215 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1216}
1217EXPORT_SYMBOL(bio_advance);
1218
45db54d5
KO
1219void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1220 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1221{
1cb9dda4 1222 struct bio_vec src_bv, dst_bv;
16ac3d63 1223 void *src_p, *dst_p;
1cb9dda4 1224 unsigned bytes;
16ac3d63 1225
45db54d5
KO
1226 while (src_iter->bi_size && dst_iter->bi_size) {
1227 src_bv = bio_iter_iovec(src, *src_iter);
1228 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1229
1230 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1231
1cb9dda4
KO
1232 src_p = kmap_atomic(src_bv.bv_page);
1233 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1234
1cb9dda4
KO
1235 memcpy(dst_p + dst_bv.bv_offset,
1236 src_p + src_bv.bv_offset,
16ac3d63
KO
1237 bytes);
1238
1239 kunmap_atomic(dst_p);
1240 kunmap_atomic(src_p);
1241
6e6e811d
KO
1242 flush_dcache_page(dst_bv.bv_page);
1243
22b56c29
PB
1244 bio_advance_iter_single(src, src_iter, bytes);
1245 bio_advance_iter_single(dst, dst_iter, bytes);
16ac3d63
KO
1246 }
1247}
38a72dac
KO
1248EXPORT_SYMBOL(bio_copy_data_iter);
1249
1250/**
45db54d5
KO
1251 * bio_copy_data - copy contents of data buffers from one bio to another
1252 * @src: source bio
1253 * @dst: destination bio
38a72dac
KO
1254 *
1255 * Stops when it reaches the end of either @src or @dst - that is, copies
1256 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1257 */
1258void bio_copy_data(struct bio *dst, struct bio *src)
1259{
45db54d5
KO
1260 struct bvec_iter src_iter = src->bi_iter;
1261 struct bvec_iter dst_iter = dst->bi_iter;
1262
1263 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1264}
16ac3d63
KO
1265EXPORT_SYMBOL(bio_copy_data);
1266
491221f8 1267void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1268{
1269 struct bio_vec *bvec;
6dc4f100 1270 struct bvec_iter_all iter_all;
1dfa0f68 1271
2b070cfe 1272 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1273 __free_page(bvec->bv_page);
1274}
491221f8 1275EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1276
1da177e4
LT
1277/*
1278 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1279 * for performing direct-IO in BIOs.
1280 *
1281 * The problem is that we cannot run set_page_dirty() from interrupt context
1282 * because the required locks are not interrupt-safe. So what we can do is to
1283 * mark the pages dirty _before_ performing IO. And in interrupt context,
1284 * check that the pages are still dirty. If so, fine. If not, redirty them
1285 * in process context.
1286 *
1287 * We special-case compound pages here: normally this means reads into hugetlb
1288 * pages. The logic in here doesn't really work right for compound pages
1289 * because the VM does not uniformly chase down the head page in all cases.
1290 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1291 * handle them at all. So we skip compound pages here at an early stage.
1292 *
1293 * Note that this code is very hard to test under normal circumstances because
1294 * direct-io pins the pages with get_user_pages(). This makes
1295 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1296 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1297 * pagecache.
1298 *
1299 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1300 * deferred bio dirtying paths.
1301 */
1302
1303/*
1304 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1305 */
1306void bio_set_pages_dirty(struct bio *bio)
1307{
cb34e057 1308 struct bio_vec *bvec;
6dc4f100 1309 struct bvec_iter_all iter_all;
1da177e4 1310
2b070cfe 1311 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1312 if (!PageCompound(bvec->bv_page))
1313 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1314 }
1315}
1316
1da177e4
LT
1317/*
1318 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1319 * If they are, then fine. If, however, some pages are clean then they must
1320 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1321 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1322 *
1323 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1324 * here on. It will run one put_page() against each page and will run one
1325 * bio_put() against the BIO.
1da177e4
LT
1326 */
1327
65f27f38 1328static void bio_dirty_fn(struct work_struct *work);
1da177e4 1329
65f27f38 1330static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1331static DEFINE_SPINLOCK(bio_dirty_lock);
1332static struct bio *bio_dirty_list;
1333
1334/*
1335 * This runs in process context
1336 */
65f27f38 1337static void bio_dirty_fn(struct work_struct *work)
1da177e4 1338{
24d5493f 1339 struct bio *bio, *next;
1da177e4 1340
24d5493f
CH
1341 spin_lock_irq(&bio_dirty_lock);
1342 next = bio_dirty_list;
1da177e4 1343 bio_dirty_list = NULL;
24d5493f 1344 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1345
24d5493f
CH
1346 while ((bio = next) != NULL) {
1347 next = bio->bi_private;
1da177e4 1348
d241a95f 1349 bio_release_pages(bio, true);
1da177e4 1350 bio_put(bio);
1da177e4
LT
1351 }
1352}
1353
1354void bio_check_pages_dirty(struct bio *bio)
1355{
cb34e057 1356 struct bio_vec *bvec;
24d5493f 1357 unsigned long flags;
6dc4f100 1358 struct bvec_iter_all iter_all;
1da177e4 1359
2b070cfe 1360 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1361 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1362 goto defer;
1da177e4
LT
1363 }
1364
d241a95f 1365 bio_release_pages(bio, false);
24d5493f
CH
1366 bio_put(bio);
1367 return;
1368defer:
1369 spin_lock_irqsave(&bio_dirty_lock, flags);
1370 bio->bi_private = bio_dirty_list;
1371 bio_dirty_list = bio;
1372 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1373 schedule_work(&bio_dirty_work);
1da177e4
LT
1374}
1375
c4cf5261
JA
1376static inline bool bio_remaining_done(struct bio *bio)
1377{
1378 /*
1379 * If we're not chaining, then ->__bi_remaining is always 1 and
1380 * we always end io on the first invocation.
1381 */
1382 if (!bio_flagged(bio, BIO_CHAIN))
1383 return true;
1384
1385 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1386
326e1dbb 1387 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1388 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1389 return true;
326e1dbb 1390 }
c4cf5261
JA
1391
1392 return false;
1393}
1394
1da177e4
LT
1395/**
1396 * bio_endio - end I/O on a bio
1397 * @bio: bio
1da177e4
LT
1398 *
1399 * Description:
4246a0b6
CH
1400 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1401 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1402 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1403 *
1404 * bio_endio() can be called several times on a bio that has been chained
1405 * using bio_chain(). The ->bi_end_io() function will only be called the
60b6a7e6 1406 * last time.
1da177e4 1407 **/
4246a0b6 1408void bio_endio(struct bio *bio)
1da177e4 1409{
ba8c6967 1410again:
2b885517 1411 if (!bio_remaining_done(bio))
ba8c6967 1412 return;
7c20f116
CH
1413 if (!bio_integrity_endio(bio))
1414 return;
1da177e4 1415
309dca30
CH
1416 if (bio->bi_bdev)
1417 rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
67b42d0b 1418
60b6a7e6
EH
1419 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1420 trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
1421 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1422 }
1423
ba8c6967
CH
1424 /*
1425 * Need to have a real endio function for chained bios, otherwise
1426 * various corner cases will break (like stacking block devices that
1427 * save/restore bi_end_io) - however, we want to avoid unbounded
1428 * recursion and blowing the stack. Tail call optimization would
1429 * handle this, but compiling with frame pointers also disables
1430 * gcc's sibling call optimization.
1431 */
1432 if (bio->bi_end_io == bio_chain_endio) {
1433 bio = __bio_chain_endio(bio);
1434 goto again;
196d38bc 1435 }
ba8c6967 1436
9e234eea 1437 blk_throtl_bio_endio(bio);
b222dd2f
SL
1438 /* release cgroup info */
1439 bio_uninit(bio);
ba8c6967
CH
1440 if (bio->bi_end_io)
1441 bio->bi_end_io(bio);
1da177e4 1442}
a112a71d 1443EXPORT_SYMBOL(bio_endio);
1da177e4 1444
20d0189b
KO
1445/**
1446 * bio_split - split a bio
1447 * @bio: bio to split
1448 * @sectors: number of sectors to split from the front of @bio
1449 * @gfp: gfp mask
1450 * @bs: bio set to allocate from
1451 *
1452 * Allocates and returns a new bio which represents @sectors from the start of
1453 * @bio, and updates @bio to represent the remaining sectors.
1454 *
f3f5da62 1455 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1456 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1457 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1458 */
1459struct bio *bio_split(struct bio *bio, int sectors,
1460 gfp_t gfp, struct bio_set *bs)
1461{
f341a4d3 1462 struct bio *split;
20d0189b
KO
1463
1464 BUG_ON(sectors <= 0);
1465 BUG_ON(sectors >= bio_sectors(bio));
1466
0512a75b
KB
1467 /* Zone append commands cannot be split */
1468 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1469 return NULL;
1470
f9d03f96 1471 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1472 if (!split)
1473 return NULL;
1474
1475 split->bi_iter.bi_size = sectors << 9;
1476
1477 if (bio_integrity(split))
fbd08e76 1478 bio_integrity_trim(split);
20d0189b
KO
1479
1480 bio_advance(bio, split->bi_iter.bi_size);
1481
fbbaf700 1482 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1483 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1484
20d0189b
KO
1485 return split;
1486}
1487EXPORT_SYMBOL(bio_split);
1488
6678d83f
KO
1489/**
1490 * bio_trim - trim a bio
1491 * @bio: bio to trim
1492 * @offset: number of sectors to trim from the front of @bio
1493 * @size: size we want to trim @bio to, in sectors
1494 */
1495void bio_trim(struct bio *bio, int offset, int size)
1496{
1497 /* 'bio' is a cloned bio which we need to trim to match
1498 * the given offset and size.
6678d83f 1499 */
6678d83f
KO
1500
1501 size <<= 9;
4f024f37 1502 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1503 return;
1504
6678d83f 1505 bio_advance(bio, offset << 9);
4f024f37 1506 bio->bi_iter.bi_size = size;
376a78ab
DM
1507
1508 if (bio_integrity(bio))
fbd08e76 1509 bio_integrity_trim(bio);
376a78ab 1510
6678d83f
KO
1511}
1512EXPORT_SYMBOL_GPL(bio_trim);
1513
1da177e4
LT
1514/*
1515 * create memory pools for biovec's in a bio_set.
1516 * use the global biovec slabs created for general use.
1517 */
8aa6ba2f 1518int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1519{
7a800a20 1520 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1da177e4 1521
8aa6ba2f 1522 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1523}
1524
917a38c7
KO
1525/*
1526 * bioset_exit - exit a bioset initialized with bioset_init()
1527 *
1528 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1529 * kzalloc()).
1530 */
1531void bioset_exit(struct bio_set *bs)
1da177e4 1532{
df2cb6da
KO
1533 if (bs->rescue_workqueue)
1534 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1535 bs->rescue_workqueue = NULL;
df2cb6da 1536
8aa6ba2f
KO
1537 mempool_exit(&bs->bio_pool);
1538 mempool_exit(&bs->bvec_pool);
9f060e22 1539
7878cba9 1540 bioset_integrity_free(bs);
917a38c7
KO
1541 if (bs->bio_slab)
1542 bio_put_slab(bs);
1543 bs->bio_slab = NULL;
1544}
1545EXPORT_SYMBOL(bioset_exit);
1da177e4 1546
917a38c7
KO
1547/**
1548 * bioset_init - Initialize a bio_set
dad08527 1549 * @bs: pool to initialize
917a38c7
KO
1550 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1551 * @front_pad: Number of bytes to allocate in front of the returned bio
1552 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1553 * and %BIOSET_NEED_RESCUER
1554 *
dad08527
KO
1555 * Description:
1556 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1557 * to ask for a number of bytes to be allocated in front of the bio.
1558 * Front pad allocation is useful for embedding the bio inside
1559 * another structure, to avoid allocating extra data to go with the bio.
1560 * Note that the bio must be embedded at the END of that structure always,
1561 * or things will break badly.
1562 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1563 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1564 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1565 * dispatch queued requests when the mempool runs out of space.
1566 *
917a38c7
KO
1567 */
1568int bioset_init(struct bio_set *bs,
1569 unsigned int pool_size,
1570 unsigned int front_pad,
1571 int flags)
1572{
917a38c7 1573 bs->front_pad = front_pad;
9f180e31
ML
1574 if (flags & BIOSET_NEED_BVECS)
1575 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1576 else
1577 bs->back_pad = 0;
917a38c7
KO
1578
1579 spin_lock_init(&bs->rescue_lock);
1580 bio_list_init(&bs->rescue_list);
1581 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1582
49d1ec85 1583 bs->bio_slab = bio_find_or_create_slab(bs);
917a38c7
KO
1584 if (!bs->bio_slab)
1585 return -ENOMEM;
1586
1587 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1588 goto bad;
1589
1590 if ((flags & BIOSET_NEED_BVECS) &&
1591 biovec_init_pool(&bs->bvec_pool, pool_size))
1592 goto bad;
1593
1594 if (!(flags & BIOSET_NEED_RESCUER))
1595 return 0;
1596
1597 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1598 if (!bs->rescue_workqueue)
1599 goto bad;
1600
1601 return 0;
1602bad:
1603 bioset_exit(bs);
1604 return -ENOMEM;
1605}
1606EXPORT_SYMBOL(bioset_init);
1607
28e89fd9
JA
1608/*
1609 * Initialize and setup a new bio_set, based on the settings from
1610 * another bio_set.
1611 */
1612int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1613{
1614 int flags;
1615
1616 flags = 0;
1617 if (src->bvec_pool.min_nr)
1618 flags |= BIOSET_NEED_BVECS;
1619 if (src->rescue_workqueue)
1620 flags |= BIOSET_NEED_RESCUER;
1621
1622 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1623}
1624EXPORT_SYMBOL(bioset_init_from_src);
1625
de76fd89 1626static int __init init_bio(void)
1da177e4
LT
1627{
1628 int i;
1629
7878cba9 1630 bio_integrity_init();
1da177e4 1631
de76fd89
CH
1632 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1633 struct biovec_slab *bvs = bvec_slabs + i;
a7fcd37c 1634
de76fd89
CH
1635 bvs->slab = kmem_cache_create(bvs->name,
1636 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1637 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 1638 }
1da177e4 1639
f4f8154a 1640 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1641 panic("bio: can't allocate bios\n");
1642
f4f8154a 1643 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1644 panic("bio: can't create integrity pool\n");
1645
1da177e4
LT
1646 return 0;
1647}
1da177e4 1648subsys_initcall(init_bio);