block: remove bogus comments in __bio_add_pc_page
[linux-block.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
08e18eab 31#include <linux/blk-cgroup.h>
1da177e4 32
55782138 33#include <trace/events/block.h>
9e234eea 34#include "blk.h"
67b42d0b 35#include "blk-rq-qos.h"
0bfc2455 36
392ddc32
JA
37/*
38 * Test patch to inline a certain number of bi_io_vec's inside the bio
39 * itself, to shrink a bio data allocation from two mempool calls to one
40 */
41#define BIO_INLINE_VECS 4
42
1da177e4
LT
43/*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
bd5c4fac 48#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 49static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 50 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
51};
52#undef BV
53
1da177e4
LT
54/*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
f4f8154a 58struct bio_set fs_bio_set;
3f86a82a 59EXPORT_SYMBOL(fs_bio_set);
1da177e4 60
bb799ca0
JA
61/*
62 * Our slab pool management
63 */
64struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69};
70static DEFINE_MUTEX(bio_slab_lock);
71static struct bio_slab *bio_slabs;
72static unsigned int bio_slab_nr, bio_slab_max;
73
74static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75{
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
389d7b26 78 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 79 unsigned int new_bio_slab_max;
bb799ca0
JA
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
f06f135d 86 bslab = &bio_slabs[i];
bb799ca0
JA
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 102 new_bio_slab_max = bio_slab_max << 1;
389d7b26 103 new_bio_slabs = krealloc(bio_slabs,
386bc35a 104 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
105 GFP_KERNEL);
106 if (!new_bio_slabs)
bb799ca0 107 goto out_unlock;
386bc35a 108 bio_slab_max = new_bio_slab_max;
389d7b26 109 bio_slabs = new_bio_slabs;
bb799ca0
JA
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
117 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
118 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
119 if (!slab)
120 goto out_unlock;
121
bb799ca0
JA
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128}
129
130static void bio_put_slab(struct bio_set *bs)
131{
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155out:
156 mutex_unlock(&bio_slab_lock);
157}
158
7ba1ba12
MP
159unsigned int bvec_nr_vecs(unsigned short idx)
160{
d6c02a9b 161 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
162}
163
9f060e22 164void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 165{
ed996a52
CH
166 if (!idx)
167 return;
168 idx--;
169
170 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 171
ed996a52 172 if (idx == BVEC_POOL_MAX) {
9f060e22 173 mempool_free(bv, pool);
ed996a52 174 } else {
bb799ca0
JA
175 struct biovec_slab *bvs = bvec_slabs + idx;
176
177 kmem_cache_free(bvs->slab, bv);
178 }
179}
180
9f060e22
KO
181struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
182 mempool_t *pool)
1da177e4
LT
183{
184 struct bio_vec *bvl;
1da177e4 185
7ff9345f
JA
186 /*
187 * see comment near bvec_array define!
188 */
189 switch (nr) {
190 case 1:
191 *idx = 0;
192 break;
193 case 2 ... 4:
194 *idx = 1;
195 break;
196 case 5 ... 16:
197 *idx = 2;
198 break;
199 case 17 ... 64:
200 *idx = 3;
201 break;
202 case 65 ... 128:
203 *idx = 4;
204 break;
205 case 129 ... BIO_MAX_PAGES:
206 *idx = 5;
207 break;
208 default:
209 return NULL;
210 }
211
212 /*
213 * idx now points to the pool we want to allocate from. only the
214 * 1-vec entry pool is mempool backed.
215 */
ed996a52 216 if (*idx == BVEC_POOL_MAX) {
7ff9345f 217fallback:
9f060e22 218 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
219 } else {
220 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 221 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 222
0a0d96b0 223 /*
7ff9345f
JA
224 * Make this allocation restricted and don't dump info on
225 * allocation failures, since we'll fallback to the mempool
226 * in case of failure.
0a0d96b0 227 */
7ff9345f 228 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 229
0a0d96b0 230 /*
d0164adc 231 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 232 * is set, retry with the 1-entry mempool
0a0d96b0 233 */
7ff9345f 234 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 235 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 236 *idx = BVEC_POOL_MAX;
7ff9345f
JA
237 goto fallback;
238 }
239 }
240
ed996a52 241 (*idx)++;
1da177e4
LT
242 return bvl;
243}
244
9ae3b3f5 245void bio_uninit(struct bio *bio)
1da177e4 246{
6f70fb66 247 bio_disassociate_blkg(bio);
4254bba1 248}
9ae3b3f5 249EXPORT_SYMBOL(bio_uninit);
7ba1ba12 250
4254bba1
KO
251static void bio_free(struct bio *bio)
252{
253 struct bio_set *bs = bio->bi_pool;
254 void *p;
255
9ae3b3f5 256 bio_uninit(bio);
4254bba1
KO
257
258 if (bs) {
8aa6ba2f 259 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
260
261 /*
262 * If we have front padding, adjust the bio pointer before freeing
263 */
264 p = bio;
bb799ca0
JA
265 p -= bs->front_pad;
266
8aa6ba2f 267 mempool_free(p, &bs->bio_pool);
4254bba1
KO
268 } else {
269 /* Bio was allocated by bio_kmalloc() */
270 kfree(bio);
271 }
3676347a
PO
272}
273
9ae3b3f5
JA
274/*
275 * Users of this function have their own bio allocation. Subsequently,
276 * they must remember to pair any call to bio_init() with bio_uninit()
277 * when IO has completed, or when the bio is released.
278 */
3a83f467
ML
279void bio_init(struct bio *bio, struct bio_vec *table,
280 unsigned short max_vecs)
1da177e4 281{
2b94de55 282 memset(bio, 0, sizeof(*bio));
c4cf5261 283 atomic_set(&bio->__bi_remaining, 1);
dac56212 284 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
285
286 bio->bi_io_vec = table;
287 bio->bi_max_vecs = max_vecs;
1da177e4 288}
a112a71d 289EXPORT_SYMBOL(bio_init);
1da177e4 290
f44b48c7
KO
291/**
292 * bio_reset - reinitialize a bio
293 * @bio: bio to reset
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
301void bio_reset(struct bio *bio)
302{
303 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
304
9ae3b3f5 305 bio_uninit(bio);
f44b48c7
KO
306
307 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 308 bio->bi_flags = flags;
c4cf5261 309 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
310}
311EXPORT_SYMBOL(bio_reset);
312
38f8baae 313static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 314{
4246a0b6
CH
315 struct bio *parent = bio->bi_private;
316
4e4cbee9
CH
317 if (!parent->bi_status)
318 parent->bi_status = bio->bi_status;
196d38bc 319 bio_put(bio);
38f8baae
CH
320 return parent;
321}
322
323static void bio_chain_endio(struct bio *bio)
324{
325 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
326}
327
328/**
329 * bio_chain - chain bio completions
1051a902
RD
330 * @bio: the target bio
331 * @parent: the @bio's parent bio
196d38bc
KO
332 *
333 * The caller won't have a bi_end_io called when @bio completes - instead,
334 * @parent's bi_end_io won't be called until both @parent and @bio have
335 * completed; the chained bio will also be freed when it completes.
336 *
337 * The caller must not set bi_private or bi_end_io in @bio.
338 */
339void bio_chain(struct bio *bio, struct bio *parent)
340{
341 BUG_ON(bio->bi_private || bio->bi_end_io);
342
343 bio->bi_private = parent;
344 bio->bi_end_io = bio_chain_endio;
c4cf5261 345 bio_inc_remaining(parent);
196d38bc
KO
346}
347EXPORT_SYMBOL(bio_chain);
348
df2cb6da
KO
349static void bio_alloc_rescue(struct work_struct *work)
350{
351 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
352 struct bio *bio;
353
354 while (1) {
355 spin_lock(&bs->rescue_lock);
356 bio = bio_list_pop(&bs->rescue_list);
357 spin_unlock(&bs->rescue_lock);
358
359 if (!bio)
360 break;
361
362 generic_make_request(bio);
363 }
364}
365
366static void punt_bios_to_rescuer(struct bio_set *bs)
367{
368 struct bio_list punt, nopunt;
369 struct bio *bio;
370
47e0fb46
N
371 if (WARN_ON_ONCE(!bs->rescue_workqueue))
372 return;
df2cb6da
KO
373 /*
374 * In order to guarantee forward progress we must punt only bios that
375 * were allocated from this bio_set; otherwise, if there was a bio on
376 * there for a stacking driver higher up in the stack, processing it
377 * could require allocating bios from this bio_set, and doing that from
378 * our own rescuer would be bad.
379 *
380 * Since bio lists are singly linked, pop them all instead of trying to
381 * remove from the middle of the list:
382 */
383
384 bio_list_init(&punt);
385 bio_list_init(&nopunt);
386
f5fe1b51 387 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 388 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 389 current->bio_list[0] = nopunt;
df2cb6da 390
f5fe1b51
N
391 bio_list_init(&nopunt);
392 while ((bio = bio_list_pop(&current->bio_list[1])))
393 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
394 current->bio_list[1] = nopunt;
df2cb6da
KO
395
396 spin_lock(&bs->rescue_lock);
397 bio_list_merge(&bs->rescue_list, &punt);
398 spin_unlock(&bs->rescue_lock);
399
400 queue_work(bs->rescue_workqueue, &bs->rescue_work);
401}
402
1da177e4
LT
403/**
404 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 405 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 406 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 407 * @bs: the bio_set to allocate from.
1da177e4
LT
408 *
409 * Description:
3f86a82a
KO
410 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
411 * backed by the @bs's mempool.
412 *
d0164adc
MG
413 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
414 * always be able to allocate a bio. This is due to the mempool guarantees.
415 * To make this work, callers must never allocate more than 1 bio at a time
416 * from this pool. Callers that need to allocate more than 1 bio must always
417 * submit the previously allocated bio for IO before attempting to allocate
418 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 419 *
df2cb6da
KO
420 * Note that when running under generic_make_request() (i.e. any block
421 * driver), bios are not submitted until after you return - see the code in
422 * generic_make_request() that converts recursion into iteration, to prevent
423 * stack overflows.
424 *
425 * This would normally mean allocating multiple bios under
426 * generic_make_request() would be susceptible to deadlocks, but we have
427 * deadlock avoidance code that resubmits any blocked bios from a rescuer
428 * thread.
429 *
430 * However, we do not guarantee forward progress for allocations from other
431 * mempools. Doing multiple allocations from the same mempool under
432 * generic_make_request() should be avoided - instead, use bio_set's front_pad
433 * for per bio allocations.
434 *
3f86a82a
KO
435 * RETURNS:
436 * Pointer to new bio on success, NULL on failure.
437 */
7a88fa19
DC
438struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
439 struct bio_set *bs)
1da177e4 440{
df2cb6da 441 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
442 unsigned front_pad;
443 unsigned inline_vecs;
34053979 444 struct bio_vec *bvl = NULL;
451a9ebf
TH
445 struct bio *bio;
446 void *p;
447
3f86a82a
KO
448 if (!bs) {
449 if (nr_iovecs > UIO_MAXIOV)
450 return NULL;
451
452 p = kmalloc(sizeof(struct bio) +
453 nr_iovecs * sizeof(struct bio_vec),
454 gfp_mask);
455 front_pad = 0;
456 inline_vecs = nr_iovecs;
457 } else {
d8f429e1 458 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
459 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
460 nr_iovecs > 0))
d8f429e1 461 return NULL;
df2cb6da
KO
462 /*
463 * generic_make_request() converts recursion to iteration; this
464 * means if we're running beneath it, any bios we allocate and
465 * submit will not be submitted (and thus freed) until after we
466 * return.
467 *
468 * This exposes us to a potential deadlock if we allocate
469 * multiple bios from the same bio_set() while running
470 * underneath generic_make_request(). If we were to allocate
471 * multiple bios (say a stacking block driver that was splitting
472 * bios), we would deadlock if we exhausted the mempool's
473 * reserve.
474 *
475 * We solve this, and guarantee forward progress, with a rescuer
476 * workqueue per bio_set. If we go to allocate and there are
477 * bios on current->bio_list, we first try the allocation
d0164adc
MG
478 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
479 * bios we would be blocking to the rescuer workqueue before
480 * we retry with the original gfp_flags.
df2cb6da
KO
481 */
482
f5fe1b51
N
483 if (current->bio_list &&
484 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
485 !bio_list_empty(&current->bio_list[1])) &&
486 bs->rescue_workqueue)
d0164adc 487 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 488
8aa6ba2f 489 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
490 if (!p && gfp_mask != saved_gfp) {
491 punt_bios_to_rescuer(bs);
492 gfp_mask = saved_gfp;
8aa6ba2f 493 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
494 }
495
3f86a82a
KO
496 front_pad = bs->front_pad;
497 inline_vecs = BIO_INLINE_VECS;
498 }
499
451a9ebf
TH
500 if (unlikely(!p))
501 return NULL;
1da177e4 502
3f86a82a 503 bio = p + front_pad;
3a83f467 504 bio_init(bio, NULL, 0);
34053979 505
3f86a82a 506 if (nr_iovecs > inline_vecs) {
ed996a52
CH
507 unsigned long idx = 0;
508
8aa6ba2f 509 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
510 if (!bvl && gfp_mask != saved_gfp) {
511 punt_bios_to_rescuer(bs);
512 gfp_mask = saved_gfp;
8aa6ba2f 513 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
514 }
515
34053979
IM
516 if (unlikely(!bvl))
517 goto err_free;
a38352e0 518
ed996a52 519 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
520 } else if (nr_iovecs) {
521 bvl = bio->bi_inline_vecs;
1da177e4 522 }
3f86a82a
KO
523
524 bio->bi_pool = bs;
34053979 525 bio->bi_max_vecs = nr_iovecs;
34053979 526 bio->bi_io_vec = bvl;
1da177e4 527 return bio;
34053979
IM
528
529err_free:
8aa6ba2f 530 mempool_free(p, &bs->bio_pool);
34053979 531 return NULL;
1da177e4 532}
a112a71d 533EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 534
38a72dac 535void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
536{
537 unsigned long flags;
7988613b
KO
538 struct bio_vec bv;
539 struct bvec_iter iter;
1da177e4 540
38a72dac 541 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
542 char *data = bvec_kmap_irq(&bv, &flags);
543 memset(data, 0, bv.bv_len);
544 flush_dcache_page(bv.bv_page);
1da177e4
LT
545 bvec_kunmap_irq(data, &flags);
546 }
547}
38a72dac 548EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4
LT
549
550/**
551 * bio_put - release a reference to a bio
552 * @bio: bio to release reference to
553 *
554 * Description:
555 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 556 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
557 **/
558void bio_put(struct bio *bio)
559{
dac56212 560 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 561 bio_free(bio);
dac56212
JA
562 else {
563 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
564
565 /*
566 * last put frees it
567 */
568 if (atomic_dec_and_test(&bio->__bi_cnt))
569 bio_free(bio);
570 }
1da177e4 571}
a112a71d 572EXPORT_SYMBOL(bio_put);
1da177e4 573
6c210aa5 574int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
575{
576 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
577 blk_recount_segments(q, bio);
578
579 return bio->bi_phys_segments;
580}
581
59d276fe
KO
582/**
583 * __bio_clone_fast - clone a bio that shares the original bio's biovec
584 * @bio: destination bio
585 * @bio_src: bio to clone
586 *
587 * Clone a &bio. Caller will own the returned bio, but not
588 * the actual data it points to. Reference count of returned
589 * bio will be one.
590 *
591 * Caller must ensure that @bio_src is not freed before @bio.
592 */
593void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
594{
ed996a52 595 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
596
597 /*
74d46992 598 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
599 * so we don't set nor calculate new physical/hw segment counts here
600 */
74d46992 601 bio->bi_disk = bio_src->bi_disk;
62530ed8 602 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 603 bio_set_flag(bio, BIO_CLONED);
111be883
SL
604 if (bio_flagged(bio_src, BIO_THROTTLED))
605 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 606 bio->bi_opf = bio_src->bi_opf;
ca474b73 607 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 608 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
609 bio->bi_iter = bio_src->bi_iter;
610 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 611
db6638d7 612 bio_clone_blkg_association(bio, bio_src);
e439bedf 613 blkcg_bio_issue_init(bio);
59d276fe
KO
614}
615EXPORT_SYMBOL(__bio_clone_fast);
616
617/**
618 * bio_clone_fast - clone a bio that shares the original bio's biovec
619 * @bio: bio to clone
620 * @gfp_mask: allocation priority
621 * @bs: bio_set to allocate from
622 *
623 * Like __bio_clone_fast, only also allocates the returned bio
624 */
625struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
626{
627 struct bio *b;
628
629 b = bio_alloc_bioset(gfp_mask, 0, bs);
630 if (!b)
631 return NULL;
632
633 __bio_clone_fast(b, bio);
634
635 if (bio_integrity(bio)) {
636 int ret;
637
638 ret = bio_integrity_clone(b, bio, gfp_mask);
639
640 if (ret < 0) {
641 bio_put(b);
642 return NULL;
643 }
644 }
645
646 return b;
647}
648EXPORT_SYMBOL(bio_clone_fast);
649
5919482e
ML
650static inline bool page_is_mergeable(const struct bio_vec *bv,
651 struct page *page, unsigned int len, unsigned int off,
652 bool same_page)
653{
654 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
655 bv->bv_offset + bv->bv_len - 1;
656 phys_addr_t page_addr = page_to_phys(page);
657
658 if (vec_end_addr + 1 != page_addr + off)
659 return false;
660 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
661 return false;
52d52d1c
CH
662
663 if ((vec_end_addr & PAGE_MASK) != page_addr) {
664 if (same_page)
665 return false;
666 if (pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
667 return false;
668 }
5919482e 669
551879a4
ML
670 WARN_ON_ONCE(same_page && (len + off) > PAGE_SIZE);
671
5919482e
ML
672 return true;
673}
674
489fbbcb
ML
675/*
676 * Check if the @page can be added to the current segment(@bv), and make
677 * sure to call it only if page_is_mergeable(@bv, @page) is true
678 */
679static bool can_add_page_to_seg(struct request_queue *q,
680 struct bio_vec *bv, struct page *page, unsigned len,
681 unsigned offset)
682{
683 unsigned long mask = queue_segment_boundary(q);
684 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
685 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
686
687 if ((addr1 | mask) != (addr2 | mask))
688 return false;
689
690 if (bv->bv_len + len > queue_max_segment_size(q))
691 return false;
692
693 return true;
694}
695
1da177e4 696/**
19047087 697 * __bio_add_pc_page - attempt to add page to passthrough bio
c66a14d0
KO
698 * @q: the target queue
699 * @bio: destination bio
700 * @page: page to add
701 * @len: vec entry length
702 * @offset: vec entry offset
19047087 703 * @put_same_page: put the page if it is same with last added page
1da177e4 704 *
c66a14d0
KO
705 * Attempt to add a page to the bio_vec maplist. This can fail for a
706 * number of reasons, such as the bio being full or target block device
707 * limitations. The target block device must allow bio's up to PAGE_SIZE,
708 * so it is always possible to add a single page to an empty bio.
709 *
5a8ce240 710 * This should only be used by passthrough bios.
1da177e4 711 */
4713839d 712static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
19047087
ML
713 struct page *page, unsigned int len, unsigned int offset,
714 bool put_same_page)
1da177e4 715{
1da177e4
LT
716 struct bio_vec *bvec;
717
718 /*
719 * cloned bio must not modify vec list
720 */
721 if (unlikely(bio_flagged(bio, BIO_CLONED)))
722 return 0;
723
c66a14d0 724 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
725 return 0;
726
80cfd548 727 if (bio->bi_vcnt > 0) {
5a8ce240 728 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
80cfd548 729
5a8ce240
ML
730 if (page == bvec->bv_page &&
731 offset == bvec->bv_offset + bvec->bv_len) {
19047087
ML
732 if (put_same_page)
733 put_page(page);
489fbbcb 734 bvec_merge:
5a8ce240 735 bvec->bv_len += len;
fcbf6a08 736 bio->bi_iter.bi_size += len;
80cfd548
JA
737 goto done;
738 }
66cb45aa
JA
739
740 /*
741 * If the queue doesn't support SG gaps and adding this
742 * offset would create a gap, disallow it.
743 */
5a8ce240 744 if (bvec_gap_to_prev(q, bvec, offset))
66cb45aa 745 return 0;
489fbbcb
ML
746
747 if (page_is_mergeable(bvec, page, len, offset, false) &&
748 can_add_page_to_seg(q, bvec, page, len, offset))
749 goto bvec_merge;
80cfd548
JA
750 }
751
0aa69fd3 752 if (bio_full(bio))
1da177e4
LT
753 return 0;
754
489fbbcb
ML
755 if (bio->bi_phys_segments >= queue_max_segments(q))
756 return 0;
757
fcbf6a08
ML
758 bvec = &bio->bi_io_vec[bio->bi_vcnt];
759 bvec->bv_page = page;
760 bvec->bv_len = len;
761 bvec->bv_offset = offset;
762 bio->bi_vcnt++;
fcbf6a08
ML
763 bio->bi_iter.bi_size += len;
764
80cfd548 765 done:
489fbbcb
ML
766 bio->bi_phys_segments = bio->bi_vcnt;
767 bio_set_flag(bio, BIO_SEG_VALID);
1da177e4
LT
768 return len;
769}
19047087
ML
770
771int bio_add_pc_page(struct request_queue *q, struct bio *bio,
772 struct page *page, unsigned int len, unsigned int offset)
773{
774 return __bio_add_pc_page(q, bio, page, len, offset, false);
775}
a112a71d 776EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 777
1da177e4 778/**
0aa69fd3
CH
779 * __bio_try_merge_page - try appending data to an existing bvec.
780 * @bio: destination bio
551879a4 781 * @page: start page to add
0aa69fd3 782 * @len: length of the data to add
551879a4 783 * @off: offset of the data relative to @page
07173c3e
ML
784 * @same_page: if %true only merge if the new data is in the same physical
785 * page as the last segment of the bio.
1da177e4 786 *
0aa69fd3
CH
787 * Try to add the data at @page + @off to the last bvec of @bio. This is a
788 * a useful optimisation for file systems with a block size smaller than the
789 * page size.
790 *
551879a4
ML
791 * Warn if (@len, @off) crosses pages in case that @same_page is true.
792 *
0aa69fd3 793 * Return %true on success or %false on failure.
1da177e4 794 */
0aa69fd3 795bool __bio_try_merge_page(struct bio *bio, struct page *page,
07173c3e 796 unsigned int len, unsigned int off, bool same_page)
1da177e4 797{
c66a14d0 798 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 799 return false;
762380ad 800
c66a14d0 801 if (bio->bi_vcnt > 0) {
0aa69fd3 802 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
803
804 if (page_is_mergeable(bv, page, len, off, same_page)) {
805 bv->bv_len += len;
806 bio->bi_iter.bi_size += len;
807 return true;
808 }
c66a14d0 809 }
0aa69fd3
CH
810 return false;
811}
812EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 813
0aa69fd3 814/**
551879a4 815 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 816 * @bio: destination bio
551879a4
ML
817 * @page: start page to add
818 * @len: length of the data to add, may cross pages
819 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
820 *
821 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
822 * that @bio has space for another bvec.
823 */
824void __bio_add_page(struct bio *bio, struct page *page,
825 unsigned int len, unsigned int off)
826{
827 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 828
0aa69fd3
CH
829 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
830 WARN_ON_ONCE(bio_full(bio));
831
832 bv->bv_page = page;
833 bv->bv_offset = off;
834 bv->bv_len = len;
c66a14d0 835
c66a14d0 836 bio->bi_iter.bi_size += len;
0aa69fd3
CH
837 bio->bi_vcnt++;
838}
839EXPORT_SYMBOL_GPL(__bio_add_page);
840
841/**
551879a4 842 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 843 * @bio: destination bio
551879a4
ML
844 * @page: start page to add
845 * @len: vec entry length, may cross pages
846 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 847 *
551879a4 848 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
849 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
850 */
851int bio_add_page(struct bio *bio, struct page *page,
852 unsigned int len, unsigned int offset)
853{
07173c3e 854 if (!__bio_try_merge_page(bio, page, len, offset, false)) {
0aa69fd3
CH
855 if (bio_full(bio))
856 return 0;
857 __bio_add_page(bio, page, len, offset);
858 }
c66a14d0 859 return len;
1da177e4 860}
a112a71d 861EXPORT_SYMBOL(bio_add_page);
1da177e4 862
7321ecbf
CH
863static void bio_get_pages(struct bio *bio)
864{
865 struct bvec_iter_all iter_all;
866 struct bio_vec *bvec;
7321ecbf 867
2b070cfe 868 bio_for_each_segment_all(bvec, bio, iter_all)
7321ecbf
CH
869 get_page(bvec->bv_page);
870}
871
872static void bio_release_pages(struct bio *bio)
873{
874 struct bvec_iter_all iter_all;
875 struct bio_vec *bvec;
7321ecbf 876
2b070cfe 877 bio_for_each_segment_all(bvec, bio, iter_all)
7321ecbf
CH
878 put_page(bvec->bv_page);
879}
880
6d0c48ae
JA
881static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
882{
883 const struct bio_vec *bv = iter->bvec;
884 unsigned int len;
885 size_t size;
886
887 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
888 return -EINVAL;
889
890 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
891 size = bio_add_page(bio, bv->bv_page, len,
892 bv->bv_offset + iter->iov_offset);
a10584c3
CH
893 if (unlikely(size != len))
894 return -EINVAL;
a10584c3
CH
895 iov_iter_advance(iter, size);
896 return 0;
6d0c48ae
JA
897}
898
576ed913
CH
899#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
900
2cefe4db 901/**
17d51b10 902 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
903 * @bio: bio to add pages to
904 * @iter: iov iterator describing the region to be mapped
905 *
17d51b10 906 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 907 * pages will have to be released using put_page() when done.
17d51b10
MW
908 * For multi-segment *iter, this function only adds pages from the
909 * the next non-empty segment of the iov iterator.
2cefe4db 910 */
17d51b10 911static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 912{
576ed913
CH
913 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
914 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
915 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
916 struct page **pages = (struct page **)bv;
576ed913
CH
917 ssize_t size, left;
918 unsigned len, i;
b403ea24 919 size_t offset;
576ed913
CH
920
921 /*
922 * Move page array up in the allocated memory for the bio vecs as far as
923 * possible so that we can start filling biovecs from the beginning
924 * without overwriting the temporary page array.
925 */
926 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
927 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
928
929 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
930 if (unlikely(size <= 0))
931 return size ? size : -EFAULT;
2cefe4db 932
576ed913
CH
933 for (left = size, i = 0; left > 0; left -= len, i++) {
934 struct page *page = pages[i];
2cefe4db 935
576ed913
CH
936 len = min_t(size_t, PAGE_SIZE - offset, left);
937 if (WARN_ON_ONCE(bio_add_page(bio, page, len, offset) != len))
938 return -EINVAL;
939 offset = 0;
2cefe4db
KO
940 }
941
2cefe4db
KO
942 iov_iter_advance(iter, size);
943 return 0;
944}
17d51b10
MW
945
946/**
6d0c48ae 947 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 948 * @bio: bio to add pages to
6d0c48ae
JA
949 * @iter: iov iterator describing the region to be added
950 *
951 * This takes either an iterator pointing to user memory, or one pointing to
952 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
953 * map them into the kernel. On IO completion, the caller should put those
399254aa
JA
954 * pages. If we're adding kernel pages, and the caller told us it's safe to
955 * do so, we just have to add the pages to the bio directly. We don't grab an
956 * extra reference to those pages (the user should already have that), and we
957 * don't put the page on IO completion. The caller needs to check if the bio is
958 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
959 * released.
17d51b10 960 *
17d51b10 961 * The function tries, but does not guarantee, to pin as many pages as
6d0c48ae
JA
962 * fit into the bio, or are requested in *iter, whatever is smaller. If
963 * MM encounters an error pinning the requested pages, it stops. Error
964 * is returned only if 0 pages could be pinned.
17d51b10
MW
965 */
966int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
967{
6d0c48ae 968 const bool is_bvec = iov_iter_is_bvec(iter);
14eacf12
CH
969 int ret;
970
971 if (WARN_ON_ONCE(bio->bi_vcnt))
972 return -EINVAL;
17d51b10
MW
973
974 do {
6d0c48ae
JA
975 if (is_bvec)
976 ret = __bio_iov_bvec_add_pages(bio, iter);
977 else
978 ret = __bio_iov_iter_get_pages(bio, iter);
14eacf12 979 } while (!ret && iov_iter_count(iter) && !bio_full(bio));
17d51b10 980
7321ecbf
CH
981 if (iov_iter_bvec_no_ref(iter))
982 bio_set_flag(bio, BIO_NO_PAGE_REF);
0257c0ed 983 else if (is_bvec)
7321ecbf
CH
984 bio_get_pages(bio);
985
14eacf12 986 return bio->bi_vcnt ? 0 : ret;
17d51b10 987}
2cefe4db 988
4246a0b6 989static void submit_bio_wait_endio(struct bio *bio)
9e882242 990{
65e53aab 991 complete(bio->bi_private);
9e882242
KO
992}
993
994/**
995 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
996 * @bio: The &struct bio which describes the I/O
997 *
998 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
999 * bio_endio() on failure.
3d289d68
JK
1000 *
1001 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1002 * result in bio reference to be consumed. The caller must drop the reference
1003 * on his own.
9e882242 1004 */
4e49ea4a 1005int submit_bio_wait(struct bio *bio)
9e882242 1006{
e319e1fb 1007 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
9e882242 1008
65e53aab 1009 bio->bi_private = &done;
9e882242 1010 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1011 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1012 submit_bio(bio);
65e53aab 1013 wait_for_completion_io(&done);
9e882242 1014
65e53aab 1015 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1016}
1017EXPORT_SYMBOL(submit_bio_wait);
1018
054bdf64
KO
1019/**
1020 * bio_advance - increment/complete a bio by some number of bytes
1021 * @bio: bio to advance
1022 * @bytes: number of bytes to complete
1023 *
1024 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1025 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1026 * be updated on the last bvec as well.
1027 *
1028 * @bio will then represent the remaining, uncompleted portion of the io.
1029 */
1030void bio_advance(struct bio *bio, unsigned bytes)
1031{
1032 if (bio_integrity(bio))
1033 bio_integrity_advance(bio, bytes);
1034
4550dd6c 1035 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1036}
1037EXPORT_SYMBOL(bio_advance);
1038
45db54d5
KO
1039void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1040 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1041{
1cb9dda4 1042 struct bio_vec src_bv, dst_bv;
16ac3d63 1043 void *src_p, *dst_p;
1cb9dda4 1044 unsigned bytes;
16ac3d63 1045
45db54d5
KO
1046 while (src_iter->bi_size && dst_iter->bi_size) {
1047 src_bv = bio_iter_iovec(src, *src_iter);
1048 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1049
1050 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1051
1cb9dda4
KO
1052 src_p = kmap_atomic(src_bv.bv_page);
1053 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1054
1cb9dda4
KO
1055 memcpy(dst_p + dst_bv.bv_offset,
1056 src_p + src_bv.bv_offset,
16ac3d63
KO
1057 bytes);
1058
1059 kunmap_atomic(dst_p);
1060 kunmap_atomic(src_p);
1061
6e6e811d
KO
1062 flush_dcache_page(dst_bv.bv_page);
1063
45db54d5
KO
1064 bio_advance_iter(src, src_iter, bytes);
1065 bio_advance_iter(dst, dst_iter, bytes);
16ac3d63
KO
1066 }
1067}
38a72dac
KO
1068EXPORT_SYMBOL(bio_copy_data_iter);
1069
1070/**
45db54d5
KO
1071 * bio_copy_data - copy contents of data buffers from one bio to another
1072 * @src: source bio
1073 * @dst: destination bio
38a72dac
KO
1074 *
1075 * Stops when it reaches the end of either @src or @dst - that is, copies
1076 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1077 */
1078void bio_copy_data(struct bio *dst, struct bio *src)
1079{
45db54d5
KO
1080 struct bvec_iter src_iter = src->bi_iter;
1081 struct bvec_iter dst_iter = dst->bi_iter;
1082
1083 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1084}
16ac3d63
KO
1085EXPORT_SYMBOL(bio_copy_data);
1086
45db54d5
KO
1087/**
1088 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1089 * another
1090 * @src: source bio list
1091 * @dst: destination bio list
1092 *
1093 * Stops when it reaches the end of either the @src list or @dst list - that is,
1094 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1095 * bios).
1096 */
1097void bio_list_copy_data(struct bio *dst, struct bio *src)
1098{
1099 struct bvec_iter src_iter = src->bi_iter;
1100 struct bvec_iter dst_iter = dst->bi_iter;
1101
1102 while (1) {
1103 if (!src_iter.bi_size) {
1104 src = src->bi_next;
1105 if (!src)
1106 break;
1107
1108 src_iter = src->bi_iter;
1109 }
1110
1111 if (!dst_iter.bi_size) {
1112 dst = dst->bi_next;
1113 if (!dst)
1114 break;
1115
1116 dst_iter = dst->bi_iter;
1117 }
1118
1119 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1120 }
1121}
1122EXPORT_SYMBOL(bio_list_copy_data);
1123
1da177e4 1124struct bio_map_data {
152e283f 1125 int is_our_pages;
26e49cfc
KO
1126 struct iov_iter iter;
1127 struct iovec iov[];
1da177e4
LT
1128};
1129
0e5b935d 1130static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
76029ff3 1131 gfp_t gfp_mask)
1da177e4 1132{
0e5b935d
AV
1133 struct bio_map_data *bmd;
1134 if (data->nr_segs > UIO_MAXIOV)
f3f63c1c 1135 return NULL;
1da177e4 1136
0e5b935d
AV
1137 bmd = kmalloc(sizeof(struct bio_map_data) +
1138 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1139 if (!bmd)
1140 return NULL;
1141 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1142 bmd->iter = *data;
1143 bmd->iter.iov = bmd->iov;
1144 return bmd;
1da177e4
LT
1145}
1146
9124d3fe
DP
1147/**
1148 * bio_copy_from_iter - copy all pages from iov_iter to bio
1149 * @bio: The &struct bio which describes the I/O as destination
1150 * @iter: iov_iter as source
1151 *
1152 * Copy all pages from iov_iter to bio.
1153 * Returns 0 on success, or error on failure.
1154 */
98a09d61 1155static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
c5dec1c3 1156{
c5dec1c3 1157 struct bio_vec *bvec;
6dc4f100 1158 struct bvec_iter_all iter_all;
c5dec1c3 1159
2b070cfe 1160 bio_for_each_segment_all(bvec, bio, iter_all) {
9124d3fe 1161 ssize_t ret;
c5dec1c3 1162
9124d3fe
DP
1163 ret = copy_page_from_iter(bvec->bv_page,
1164 bvec->bv_offset,
1165 bvec->bv_len,
98a09d61 1166 iter);
9124d3fe 1167
98a09d61 1168 if (!iov_iter_count(iter))
9124d3fe
DP
1169 break;
1170
1171 if (ret < bvec->bv_len)
1172 return -EFAULT;
c5dec1c3
FT
1173 }
1174
9124d3fe
DP
1175 return 0;
1176}
1177
1178/**
1179 * bio_copy_to_iter - copy all pages from bio to iov_iter
1180 * @bio: The &struct bio which describes the I/O as source
1181 * @iter: iov_iter as destination
1182 *
1183 * Copy all pages from bio to iov_iter.
1184 * Returns 0 on success, or error on failure.
1185 */
1186static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1187{
9124d3fe 1188 struct bio_vec *bvec;
6dc4f100 1189 struct bvec_iter_all iter_all;
9124d3fe 1190
2b070cfe 1191 bio_for_each_segment_all(bvec, bio, iter_all) {
9124d3fe
DP
1192 ssize_t ret;
1193
1194 ret = copy_page_to_iter(bvec->bv_page,
1195 bvec->bv_offset,
1196 bvec->bv_len,
1197 &iter);
1198
1199 if (!iov_iter_count(&iter))
1200 break;
1201
1202 if (ret < bvec->bv_len)
1203 return -EFAULT;
1204 }
1205
1206 return 0;
c5dec1c3
FT
1207}
1208
491221f8 1209void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1210{
1211 struct bio_vec *bvec;
6dc4f100 1212 struct bvec_iter_all iter_all;
1dfa0f68 1213
2b070cfe 1214 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1215 __free_page(bvec->bv_page);
1216}
491221f8 1217EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1218
1da177e4
LT
1219/**
1220 * bio_uncopy_user - finish previously mapped bio
1221 * @bio: bio being terminated
1222 *
ddad8dd0 1223 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1224 * to user space in case of a read.
1225 */
1226int bio_uncopy_user(struct bio *bio)
1227{
1228 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1229 int ret = 0;
1da177e4 1230
35dc2483
RD
1231 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1232 /*
1233 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1234 * don't copy into a random user address space, just free
1235 * and return -EINTR so user space doesn't expect any data.
35dc2483 1236 */
2d99b55d
HR
1237 if (!current->mm)
1238 ret = -EINTR;
1239 else if (bio_data_dir(bio) == READ)
9124d3fe 1240 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1241 if (bmd->is_our_pages)
1242 bio_free_pages(bio);
35dc2483 1243 }
c8db4448 1244 kfree(bmd);
1da177e4
LT
1245 bio_put(bio);
1246 return ret;
1247}
1248
1249/**
c5dec1c3 1250 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1251 * @q: destination block queue
1252 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1253 * @iter: iovec iterator
1254 * @gfp_mask: memory allocation flags
1da177e4
LT
1255 *
1256 * Prepares and returns a bio for indirect user io, bouncing data
1257 * to/from kernel pages as necessary. Must be paired with
1258 * call bio_uncopy_user() on io completion.
1259 */
152e283f
FT
1260struct bio *bio_copy_user_iov(struct request_queue *q,
1261 struct rq_map_data *map_data,
e81cef5d 1262 struct iov_iter *iter,
26e49cfc 1263 gfp_t gfp_mask)
1da177e4 1264{
1da177e4 1265 struct bio_map_data *bmd;
1da177e4
LT
1266 struct page *page;
1267 struct bio *bio;
d16d44eb
AV
1268 int i = 0, ret;
1269 int nr_pages;
26e49cfc 1270 unsigned int len = iter->count;
bd5cecea 1271 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1272
0e5b935d 1273 bmd = bio_alloc_map_data(iter, gfp_mask);
1da177e4
LT
1274 if (!bmd)
1275 return ERR_PTR(-ENOMEM);
1276
26e49cfc
KO
1277 /*
1278 * We need to do a deep copy of the iov_iter including the iovecs.
1279 * The caller provided iov might point to an on-stack or otherwise
1280 * shortlived one.
1281 */
1282 bmd->is_our_pages = map_data ? 0 : 1;
26e49cfc 1283
d16d44eb
AV
1284 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1285 if (nr_pages > BIO_MAX_PAGES)
1286 nr_pages = BIO_MAX_PAGES;
26e49cfc 1287
1da177e4 1288 ret = -ENOMEM;
a9e9dc24 1289 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1290 if (!bio)
1291 goto out_bmd;
1292
1da177e4 1293 ret = 0;
56c451f4
FT
1294
1295 if (map_data) {
e623ddb4 1296 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1297 i = map_data->offset / PAGE_SIZE;
1298 }
1da177e4 1299 while (len) {
e623ddb4 1300 unsigned int bytes = PAGE_SIZE;
1da177e4 1301
56c451f4
FT
1302 bytes -= offset;
1303
1da177e4
LT
1304 if (bytes > len)
1305 bytes = len;
1306
152e283f 1307 if (map_data) {
e623ddb4 1308 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1309 ret = -ENOMEM;
1310 break;
1311 }
e623ddb4
FT
1312
1313 page = map_data->pages[i / nr_pages];
1314 page += (i % nr_pages);
1315
1316 i++;
1317 } else {
152e283f 1318 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1319 if (!page) {
1320 ret = -ENOMEM;
1321 break;
1322 }
1da177e4
LT
1323 }
1324
a3761c3c
JG
1325 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1326 if (!map_data)
1327 __free_page(page);
1da177e4 1328 break;
a3761c3c 1329 }
1da177e4
LT
1330
1331 len -= bytes;
56c451f4 1332 offset = 0;
1da177e4
LT
1333 }
1334
1335 if (ret)
1336 goto cleanup;
1337
2884d0be
AV
1338 if (map_data)
1339 map_data->offset += bio->bi_iter.bi_size;
1340
1da177e4
LT
1341 /*
1342 * success
1343 */
00e23707 1344 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1345 (map_data && map_data->from_user)) {
98a09d61 1346 ret = bio_copy_from_iter(bio, iter);
c5dec1c3
FT
1347 if (ret)
1348 goto cleanup;
98a09d61 1349 } else {
f55adad6
KB
1350 if (bmd->is_our_pages)
1351 zero_fill_bio(bio);
98a09d61 1352 iov_iter_advance(iter, bio->bi_iter.bi_size);
1da177e4
LT
1353 }
1354
26e49cfc 1355 bio->bi_private = bmd;
2884d0be
AV
1356 if (map_data && map_data->null_mapped)
1357 bio_set_flag(bio, BIO_NULL_MAPPED);
1da177e4
LT
1358 return bio;
1359cleanup:
152e283f 1360 if (!map_data)
1dfa0f68 1361 bio_free_pages(bio);
1da177e4
LT
1362 bio_put(bio);
1363out_bmd:
c8db4448 1364 kfree(bmd);
1da177e4
LT
1365 return ERR_PTR(ret);
1366}
1367
37f19e57
CH
1368/**
1369 * bio_map_user_iov - map user iovec into bio
1370 * @q: the struct request_queue for the bio
1371 * @iter: iovec iterator
1372 * @gfp_mask: memory allocation flags
1373 *
1374 * Map the user space address into a bio suitable for io to a block
1375 * device. Returns an error pointer in case of error.
1376 */
1377struct bio *bio_map_user_iov(struct request_queue *q,
e81cef5d 1378 struct iov_iter *iter,
37f19e57 1379 gfp_t gfp_mask)
1da177e4 1380{
26e49cfc 1381 int j;
1da177e4 1382 struct bio *bio;
076098e5 1383 int ret;
2b04e8f6 1384 struct bio_vec *bvec;
6dc4f100 1385 struct bvec_iter_all iter_all;
1da177e4 1386
b282cc76 1387 if (!iov_iter_count(iter))
1da177e4
LT
1388 return ERR_PTR(-EINVAL);
1389
b282cc76 1390 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1da177e4
LT
1391 if (!bio)
1392 return ERR_PTR(-ENOMEM);
1393
0a0f1513 1394 while (iov_iter_count(iter)) {
629e42bc 1395 struct page **pages;
076098e5
AV
1396 ssize_t bytes;
1397 size_t offs, added = 0;
1398 int npages;
1da177e4 1399
0a0f1513 1400 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
076098e5
AV
1401 if (unlikely(bytes <= 0)) {
1402 ret = bytes ? bytes : -EFAULT;
f1970baf 1403 goto out_unmap;
99172157 1404 }
f1970baf 1405
076098e5 1406 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
f1970baf 1407
98f0bc99
AV
1408 if (unlikely(offs & queue_dma_alignment(q))) {
1409 ret = -EINVAL;
1410 j = 0;
1411 } else {
1412 for (j = 0; j < npages; j++) {
1413 struct page *page = pages[j];
1414 unsigned int n = PAGE_SIZE - offs;
f1970baf 1415
98f0bc99
AV
1416 if (n > bytes)
1417 n = bytes;
95d78c28 1418
19047087
ML
1419 if (!__bio_add_pc_page(q, bio, page, n, offs,
1420 true))
98f0bc99 1421 break;
1da177e4 1422
98f0bc99
AV
1423 added += n;
1424 bytes -= n;
1425 offs = 0;
1426 }
0a0f1513 1427 iov_iter_advance(iter, added);
f1970baf 1428 }
1da177e4 1429 /*
f1970baf 1430 * release the pages we didn't map into the bio, if any
1da177e4 1431 */
629e42bc 1432 while (j < npages)
09cbfeaf 1433 put_page(pages[j++]);
629e42bc 1434 kvfree(pages);
e2e115d1
AV
1435 /* couldn't stuff something into bio? */
1436 if (bytes)
1437 break;
1da177e4
LT
1438 }
1439
b7c44ed9 1440 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1441
1442 /*
5fad1b64 1443 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1444 * it would normally disappear when its bi_end_io is run.
1445 * however, we need it for the unmap, so grab an extra
1446 * reference to it
1447 */
1448 bio_get(bio);
1da177e4 1449 return bio;
f1970baf
JB
1450
1451 out_unmap:
2b070cfe 1452 bio_for_each_segment_all(bvec, bio, iter_all) {
2b04e8f6 1453 put_page(bvec->bv_page);
f1970baf 1454 }
1da177e4
LT
1455 bio_put(bio);
1456 return ERR_PTR(ret);
1457}
1458
1da177e4
LT
1459static void __bio_unmap_user(struct bio *bio)
1460{
1461 struct bio_vec *bvec;
6dc4f100 1462 struct bvec_iter_all iter_all;
1da177e4
LT
1463
1464 /*
1465 * make sure we dirty pages we wrote to
1466 */
2b070cfe 1467 bio_for_each_segment_all(bvec, bio, iter_all) {
1da177e4
LT
1468 if (bio_data_dir(bio) == READ)
1469 set_page_dirty_lock(bvec->bv_page);
1470
09cbfeaf 1471 put_page(bvec->bv_page);
1da177e4
LT
1472 }
1473
1474 bio_put(bio);
1475}
1476
1477/**
1478 * bio_unmap_user - unmap a bio
1479 * @bio: the bio being unmapped
1480 *
5fad1b64
BVA
1481 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1482 * process context.
1da177e4
LT
1483 *
1484 * bio_unmap_user() may sleep.
1485 */
1486void bio_unmap_user(struct bio *bio)
1487{
1488 __bio_unmap_user(bio);
1489 bio_put(bio);
1490}
1491
4246a0b6 1492static void bio_map_kern_endio(struct bio *bio)
b823825e 1493{
b823825e 1494 bio_put(bio);
b823825e
JA
1495}
1496
75c72b83
CH
1497/**
1498 * bio_map_kern - map kernel address into bio
1499 * @q: the struct request_queue for the bio
1500 * @data: pointer to buffer to map
1501 * @len: length in bytes
1502 * @gfp_mask: allocation flags for bio allocation
1503 *
1504 * Map the kernel address into a bio suitable for io to a block
1505 * device. Returns an error pointer in case of error.
1506 */
1507struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1508 gfp_t gfp_mask)
df46b9a4
MC
1509{
1510 unsigned long kaddr = (unsigned long)data;
1511 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1512 unsigned long start = kaddr >> PAGE_SHIFT;
1513 const int nr_pages = end - start;
1514 int offset, i;
1515 struct bio *bio;
1516
a9e9dc24 1517 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1518 if (!bio)
1519 return ERR_PTR(-ENOMEM);
1520
1521 offset = offset_in_page(kaddr);
1522 for (i = 0; i < nr_pages; i++) {
1523 unsigned int bytes = PAGE_SIZE - offset;
1524
1525 if (len <= 0)
1526 break;
1527
1528 if (bytes > len)
1529 bytes = len;
1530
defd94b7 1531 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1532 offset) < bytes) {
1533 /* we don't support partial mappings */
1534 bio_put(bio);
1535 return ERR_PTR(-EINVAL);
1536 }
df46b9a4
MC
1537
1538 data += bytes;
1539 len -= bytes;
1540 offset = 0;
1541 }
1542
b823825e 1543 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1544 return bio;
1545}
a112a71d 1546EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1547
4246a0b6 1548static void bio_copy_kern_endio(struct bio *bio)
68154e90 1549{
1dfa0f68
CH
1550 bio_free_pages(bio);
1551 bio_put(bio);
1552}
1553
4246a0b6 1554static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1555{
42d2683a 1556 char *p = bio->bi_private;
1dfa0f68 1557 struct bio_vec *bvec;
6dc4f100 1558 struct bvec_iter_all iter_all;
68154e90 1559
2b070cfe 1560 bio_for_each_segment_all(bvec, bio, iter_all) {
1dfa0f68 1561 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1562 p += bvec->bv_len;
68154e90
FT
1563 }
1564
4246a0b6 1565 bio_copy_kern_endio(bio);
68154e90
FT
1566}
1567
1568/**
1569 * bio_copy_kern - copy kernel address into bio
1570 * @q: the struct request_queue for the bio
1571 * @data: pointer to buffer to copy
1572 * @len: length in bytes
1573 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1574 * @reading: data direction is READ
68154e90
FT
1575 *
1576 * copy the kernel address into a bio suitable for io to a block
1577 * device. Returns an error pointer in case of error.
1578 */
1579struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1580 gfp_t gfp_mask, int reading)
1581{
42d2683a
CH
1582 unsigned long kaddr = (unsigned long)data;
1583 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1584 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1585 struct bio *bio;
1586 void *p = data;
1dfa0f68 1587 int nr_pages = 0;
68154e90 1588
42d2683a
CH
1589 /*
1590 * Overflow, abort
1591 */
1592 if (end < start)
1593 return ERR_PTR(-EINVAL);
68154e90 1594
42d2683a
CH
1595 nr_pages = end - start;
1596 bio = bio_kmalloc(gfp_mask, nr_pages);
1597 if (!bio)
1598 return ERR_PTR(-ENOMEM);
68154e90 1599
42d2683a
CH
1600 while (len) {
1601 struct page *page;
1602 unsigned int bytes = PAGE_SIZE;
68154e90 1603
42d2683a
CH
1604 if (bytes > len)
1605 bytes = len;
1606
1607 page = alloc_page(q->bounce_gfp | gfp_mask);
1608 if (!page)
1609 goto cleanup;
1610
1611 if (!reading)
1612 memcpy(page_address(page), p, bytes);
1613
1614 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1615 break;
1616
1617 len -= bytes;
1618 p += bytes;
68154e90
FT
1619 }
1620
1dfa0f68
CH
1621 if (reading) {
1622 bio->bi_end_io = bio_copy_kern_endio_read;
1623 bio->bi_private = data;
1624 } else {
1625 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1626 }
76029ff3 1627
68154e90 1628 return bio;
42d2683a
CH
1629
1630cleanup:
1dfa0f68 1631 bio_free_pages(bio);
42d2683a
CH
1632 bio_put(bio);
1633 return ERR_PTR(-ENOMEM);
68154e90
FT
1634}
1635
1da177e4
LT
1636/*
1637 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1638 * for performing direct-IO in BIOs.
1639 *
1640 * The problem is that we cannot run set_page_dirty() from interrupt context
1641 * because the required locks are not interrupt-safe. So what we can do is to
1642 * mark the pages dirty _before_ performing IO. And in interrupt context,
1643 * check that the pages are still dirty. If so, fine. If not, redirty them
1644 * in process context.
1645 *
1646 * We special-case compound pages here: normally this means reads into hugetlb
1647 * pages. The logic in here doesn't really work right for compound pages
1648 * because the VM does not uniformly chase down the head page in all cases.
1649 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1650 * handle them at all. So we skip compound pages here at an early stage.
1651 *
1652 * Note that this code is very hard to test under normal circumstances because
1653 * direct-io pins the pages with get_user_pages(). This makes
1654 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1655 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1656 * pagecache.
1657 *
1658 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1659 * deferred bio dirtying paths.
1660 */
1661
1662/*
1663 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1664 */
1665void bio_set_pages_dirty(struct bio *bio)
1666{
cb34e057 1667 struct bio_vec *bvec;
6dc4f100 1668 struct bvec_iter_all iter_all;
1da177e4 1669
2b070cfe 1670 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1671 if (!PageCompound(bvec->bv_page))
1672 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1673 }
1674}
1675
1da177e4
LT
1676/*
1677 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1678 * If they are, then fine. If, however, some pages are clean then they must
1679 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1680 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1681 *
1682 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1683 * here on. It will run one put_page() against each page and will run one
1684 * bio_put() against the BIO.
1da177e4
LT
1685 */
1686
65f27f38 1687static void bio_dirty_fn(struct work_struct *work);
1da177e4 1688
65f27f38 1689static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1690static DEFINE_SPINLOCK(bio_dirty_lock);
1691static struct bio *bio_dirty_list;
1692
1693/*
1694 * This runs in process context
1695 */
65f27f38 1696static void bio_dirty_fn(struct work_struct *work)
1da177e4 1697{
24d5493f 1698 struct bio *bio, *next;
1da177e4 1699
24d5493f
CH
1700 spin_lock_irq(&bio_dirty_lock);
1701 next = bio_dirty_list;
1da177e4 1702 bio_dirty_list = NULL;
24d5493f 1703 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1704
24d5493f
CH
1705 while ((bio = next) != NULL) {
1706 next = bio->bi_private;
1da177e4
LT
1707
1708 bio_set_pages_dirty(bio);
399254aa
JA
1709 if (!bio_flagged(bio, BIO_NO_PAGE_REF))
1710 bio_release_pages(bio);
1da177e4 1711 bio_put(bio);
1da177e4
LT
1712 }
1713}
1714
1715void bio_check_pages_dirty(struct bio *bio)
1716{
cb34e057 1717 struct bio_vec *bvec;
24d5493f 1718 unsigned long flags;
6dc4f100 1719 struct bvec_iter_all iter_all;
1da177e4 1720
2b070cfe 1721 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1722 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1723 goto defer;
1da177e4
LT
1724 }
1725
399254aa
JA
1726 if (!bio_flagged(bio, BIO_NO_PAGE_REF))
1727 bio_release_pages(bio);
24d5493f
CH
1728 bio_put(bio);
1729 return;
1730defer:
1731 spin_lock_irqsave(&bio_dirty_lock, flags);
1732 bio->bi_private = bio_dirty_list;
1733 bio_dirty_list = bio;
1734 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1735 schedule_work(&bio_dirty_work);
1da177e4
LT
1736}
1737
5b18b5a7
MP
1738void update_io_ticks(struct hd_struct *part, unsigned long now)
1739{
1740 unsigned long stamp;
1741again:
1742 stamp = READ_ONCE(part->stamp);
1743 if (unlikely(stamp != now)) {
1744 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1745 __part_stat_add(part, io_ticks, 1);
1746 }
1747 }
1748 if (part->partno) {
1749 part = &part_to_disk(part)->part0;
1750 goto again;
1751 }
1752}
1da177e4 1753
ddcf35d3 1754void generic_start_io_acct(struct request_queue *q, int op,
d62e26b3 1755 unsigned long sectors, struct hd_struct *part)
394ffa50 1756{
ddcf35d3 1757 const int sgrp = op_stat_group(op);
394ffa50 1758
112f158f
MS
1759 part_stat_lock();
1760
5b18b5a7 1761 update_io_ticks(part, jiffies);
112f158f
MS
1762 part_stat_inc(part, ios[sgrp]);
1763 part_stat_add(part, sectors[sgrp], sectors);
ddcf35d3 1764 part_inc_in_flight(q, part, op_is_write(op));
394ffa50
GZ
1765
1766 part_stat_unlock();
1767}
1768EXPORT_SYMBOL(generic_start_io_acct);
1769
ddcf35d3 1770void generic_end_io_acct(struct request_queue *q, int req_op,
d62e26b3 1771 struct hd_struct *part, unsigned long start_time)
394ffa50 1772{
5b18b5a7
MP
1773 unsigned long now = jiffies;
1774 unsigned long duration = now - start_time;
ddcf35d3 1775 const int sgrp = op_stat_group(req_op);
394ffa50 1776
112f158f
MS
1777 part_stat_lock();
1778
5b18b5a7 1779 update_io_ticks(part, now);
112f158f 1780 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
5b18b5a7 1781 part_stat_add(part, time_in_queue, duration);
ddcf35d3 1782 part_dec_in_flight(q, part, op_is_write(req_op));
394ffa50
GZ
1783
1784 part_stat_unlock();
1785}
1786EXPORT_SYMBOL(generic_end_io_acct);
1787
2d4dc890
IL
1788#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1789void bio_flush_dcache_pages(struct bio *bi)
1790{
7988613b
KO
1791 struct bio_vec bvec;
1792 struct bvec_iter iter;
2d4dc890 1793
7988613b
KO
1794 bio_for_each_segment(bvec, bi, iter)
1795 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1796}
1797EXPORT_SYMBOL(bio_flush_dcache_pages);
1798#endif
1799
c4cf5261
JA
1800static inline bool bio_remaining_done(struct bio *bio)
1801{
1802 /*
1803 * If we're not chaining, then ->__bi_remaining is always 1 and
1804 * we always end io on the first invocation.
1805 */
1806 if (!bio_flagged(bio, BIO_CHAIN))
1807 return true;
1808
1809 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1810
326e1dbb 1811 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1812 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1813 return true;
326e1dbb 1814 }
c4cf5261
JA
1815
1816 return false;
1817}
1818
1da177e4
LT
1819/**
1820 * bio_endio - end I/O on a bio
1821 * @bio: bio
1da177e4
LT
1822 *
1823 * Description:
4246a0b6
CH
1824 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1825 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1826 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1827 *
1828 * bio_endio() can be called several times on a bio that has been chained
1829 * using bio_chain(). The ->bi_end_io() function will only be called the
1830 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1831 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1832 **/
4246a0b6 1833void bio_endio(struct bio *bio)
1da177e4 1834{
ba8c6967 1835again:
2b885517 1836 if (!bio_remaining_done(bio))
ba8c6967 1837 return;
7c20f116
CH
1838 if (!bio_integrity_endio(bio))
1839 return;
1da177e4 1840
67b42d0b
JB
1841 if (bio->bi_disk)
1842 rq_qos_done_bio(bio->bi_disk->queue, bio);
1843
ba8c6967
CH
1844 /*
1845 * Need to have a real endio function for chained bios, otherwise
1846 * various corner cases will break (like stacking block devices that
1847 * save/restore bi_end_io) - however, we want to avoid unbounded
1848 * recursion and blowing the stack. Tail call optimization would
1849 * handle this, but compiling with frame pointers also disables
1850 * gcc's sibling call optimization.
1851 */
1852 if (bio->bi_end_io == bio_chain_endio) {
1853 bio = __bio_chain_endio(bio);
1854 goto again;
196d38bc 1855 }
ba8c6967 1856
74d46992
CH
1857 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1858 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1859 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1860 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1861 }
1862
9e234eea 1863 blk_throtl_bio_endio(bio);
b222dd2f
SL
1864 /* release cgroup info */
1865 bio_uninit(bio);
ba8c6967
CH
1866 if (bio->bi_end_io)
1867 bio->bi_end_io(bio);
1da177e4 1868}
a112a71d 1869EXPORT_SYMBOL(bio_endio);
1da177e4 1870
20d0189b
KO
1871/**
1872 * bio_split - split a bio
1873 * @bio: bio to split
1874 * @sectors: number of sectors to split from the front of @bio
1875 * @gfp: gfp mask
1876 * @bs: bio set to allocate from
1877 *
1878 * Allocates and returns a new bio which represents @sectors from the start of
1879 * @bio, and updates @bio to represent the remaining sectors.
1880 *
f3f5da62
MP
1881 * Unless this is a discard request the newly allocated bio will point
1882 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1883 * @bio is not freed before the split.
20d0189b
KO
1884 */
1885struct bio *bio_split(struct bio *bio, int sectors,
1886 gfp_t gfp, struct bio_set *bs)
1887{
f341a4d3 1888 struct bio *split;
20d0189b
KO
1889
1890 BUG_ON(sectors <= 0);
1891 BUG_ON(sectors >= bio_sectors(bio));
1892
f9d03f96 1893 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1894 if (!split)
1895 return NULL;
1896
1897 split->bi_iter.bi_size = sectors << 9;
1898
1899 if (bio_integrity(split))
fbd08e76 1900 bio_integrity_trim(split);
20d0189b
KO
1901
1902 bio_advance(bio, split->bi_iter.bi_size);
1903
fbbaf700 1904 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1905 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1906
20d0189b
KO
1907 return split;
1908}
1909EXPORT_SYMBOL(bio_split);
1910
6678d83f
KO
1911/**
1912 * bio_trim - trim a bio
1913 * @bio: bio to trim
1914 * @offset: number of sectors to trim from the front of @bio
1915 * @size: size we want to trim @bio to, in sectors
1916 */
1917void bio_trim(struct bio *bio, int offset, int size)
1918{
1919 /* 'bio' is a cloned bio which we need to trim to match
1920 * the given offset and size.
6678d83f 1921 */
6678d83f
KO
1922
1923 size <<= 9;
4f024f37 1924 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1925 return;
1926
b7c44ed9 1927 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1928
1929 bio_advance(bio, offset << 9);
1930
4f024f37 1931 bio->bi_iter.bi_size = size;
376a78ab
DM
1932
1933 if (bio_integrity(bio))
fbd08e76 1934 bio_integrity_trim(bio);
376a78ab 1935
6678d83f
KO
1936}
1937EXPORT_SYMBOL_GPL(bio_trim);
1938
1da177e4
LT
1939/*
1940 * create memory pools for biovec's in a bio_set.
1941 * use the global biovec slabs created for general use.
1942 */
8aa6ba2f 1943int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1944{
ed996a52 1945 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1946
8aa6ba2f 1947 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1948}
1949
917a38c7
KO
1950/*
1951 * bioset_exit - exit a bioset initialized with bioset_init()
1952 *
1953 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1954 * kzalloc()).
1955 */
1956void bioset_exit(struct bio_set *bs)
1da177e4 1957{
df2cb6da
KO
1958 if (bs->rescue_workqueue)
1959 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1960 bs->rescue_workqueue = NULL;
df2cb6da 1961
8aa6ba2f
KO
1962 mempool_exit(&bs->bio_pool);
1963 mempool_exit(&bs->bvec_pool);
9f060e22 1964
7878cba9 1965 bioset_integrity_free(bs);
917a38c7
KO
1966 if (bs->bio_slab)
1967 bio_put_slab(bs);
1968 bs->bio_slab = NULL;
1969}
1970EXPORT_SYMBOL(bioset_exit);
1da177e4 1971
917a38c7
KO
1972/**
1973 * bioset_init - Initialize a bio_set
dad08527 1974 * @bs: pool to initialize
917a38c7
KO
1975 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1976 * @front_pad: Number of bytes to allocate in front of the returned bio
1977 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1978 * and %BIOSET_NEED_RESCUER
1979 *
dad08527
KO
1980 * Description:
1981 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1982 * to ask for a number of bytes to be allocated in front of the bio.
1983 * Front pad allocation is useful for embedding the bio inside
1984 * another structure, to avoid allocating extra data to go with the bio.
1985 * Note that the bio must be embedded at the END of that structure always,
1986 * or things will break badly.
1987 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1988 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1989 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1990 * dispatch queued requests when the mempool runs out of space.
1991 *
917a38c7
KO
1992 */
1993int bioset_init(struct bio_set *bs,
1994 unsigned int pool_size,
1995 unsigned int front_pad,
1996 int flags)
1997{
1998 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1999
2000 bs->front_pad = front_pad;
2001
2002 spin_lock_init(&bs->rescue_lock);
2003 bio_list_init(&bs->rescue_list);
2004 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
2005
2006 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
2007 if (!bs->bio_slab)
2008 return -ENOMEM;
2009
2010 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2011 goto bad;
2012
2013 if ((flags & BIOSET_NEED_BVECS) &&
2014 biovec_init_pool(&bs->bvec_pool, pool_size))
2015 goto bad;
2016
2017 if (!(flags & BIOSET_NEED_RESCUER))
2018 return 0;
2019
2020 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2021 if (!bs->rescue_workqueue)
2022 goto bad;
2023
2024 return 0;
2025bad:
2026 bioset_exit(bs);
2027 return -ENOMEM;
2028}
2029EXPORT_SYMBOL(bioset_init);
2030
28e89fd9
JA
2031/*
2032 * Initialize and setup a new bio_set, based on the settings from
2033 * another bio_set.
2034 */
2035int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2036{
2037 int flags;
2038
2039 flags = 0;
2040 if (src->bvec_pool.min_nr)
2041 flags |= BIOSET_NEED_BVECS;
2042 if (src->rescue_workqueue)
2043 flags |= BIOSET_NEED_RESCUER;
2044
2045 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2046}
2047EXPORT_SYMBOL(bioset_init_from_src);
2048
852c788f 2049#ifdef CONFIG_BLK_CGROUP
1d933cf0 2050
74b7c02a 2051/**
2268c0fe 2052 * bio_disassociate_blkg - puts back the blkg reference if associated
74b7c02a 2053 * @bio: target bio
74b7c02a 2054 *
2268c0fe 2055 * Helper to disassociate the blkg from @bio if a blkg is associated.
74b7c02a 2056 */
2268c0fe 2057void bio_disassociate_blkg(struct bio *bio)
74b7c02a 2058{
2268c0fe
DZ
2059 if (bio->bi_blkg) {
2060 blkg_put(bio->bi_blkg);
2061 bio->bi_blkg = NULL;
2062 }
74b7c02a 2063}
892ad71f 2064EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
74b7c02a 2065
a7b39b4e 2066/**
2268c0fe 2067 * __bio_associate_blkg - associate a bio with the a blkg
a7b39b4e 2068 * @bio: target bio
b5f2954d 2069 * @blkg: the blkg to associate
b5f2954d 2070 *
beea9da0
DZ
2071 * This tries to associate @bio with the specified @blkg. Association failure
2072 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2073 * be anything between @blkg and the root_blkg. This situation only happens
2074 * when a cgroup is dying and then the remaining bios will spill to the closest
2075 * alive blkg.
a7b39b4e 2076 *
beea9da0
DZ
2077 * A reference will be taken on the @blkg and will be released when @bio is
2078 * freed.
a7b39b4e 2079 */
2268c0fe 2080static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
a7b39b4e 2081{
2268c0fe
DZ
2082 bio_disassociate_blkg(bio);
2083
7754f669 2084 bio->bi_blkg = blkg_tryget_closest(blkg);
a7b39b4e
DZF
2085}
2086
d459d853 2087/**
fd42df30 2088 * bio_associate_blkg_from_css - associate a bio with a specified css
d459d853 2089 * @bio: target bio
fd42df30 2090 * @css: target css
d459d853 2091 *
fd42df30 2092 * Associate @bio with the blkg found by combining the css's blkg and the
fc5a828b
DZ
2093 * request_queue of the @bio. This falls back to the queue's root_blkg if
2094 * the association fails with the css.
d459d853 2095 */
fd42df30
DZ
2096void bio_associate_blkg_from_css(struct bio *bio,
2097 struct cgroup_subsys_state *css)
d459d853 2098{
fc5a828b
DZ
2099 struct request_queue *q = bio->bi_disk->queue;
2100 struct blkcg_gq *blkg;
2101
2102 rcu_read_lock();
2103
2104 if (!css || !css->parent)
2105 blkg = q->root_blkg;
2106 else
2107 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2108
2109 __bio_associate_blkg(bio, blkg);
2110
2111 rcu_read_unlock();
d459d853 2112}
fd42df30 2113EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
d459d853 2114
6a7f6d86 2115#ifdef CONFIG_MEMCG
852c788f 2116/**
6a7f6d86 2117 * bio_associate_blkg_from_page - associate a bio with the page's blkg
852c788f 2118 * @bio: target bio
6a7f6d86
DZ
2119 * @page: the page to lookup the blkcg from
2120 *
2121 * Associate @bio with the blkg from @page's owning memcg and the respective
fc5a828b
DZ
2122 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2123 * root_blkg.
852c788f 2124 */
6a7f6d86 2125void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
852c788f 2126{
6a7f6d86
DZ
2127 struct cgroup_subsys_state *css;
2128
6a7f6d86
DZ
2129 if (!page->mem_cgroup)
2130 return;
2131
fc5a828b
DZ
2132 rcu_read_lock();
2133
2134 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2135 bio_associate_blkg_from_css(bio, css);
2136
2137 rcu_read_unlock();
6a7f6d86
DZ
2138}
2139#endif /* CONFIG_MEMCG */
2140
2268c0fe
DZ
2141/**
2142 * bio_associate_blkg - associate a bio with a blkg
2143 * @bio: target bio
2144 *
2145 * Associate @bio with the blkg found from the bio's css and request_queue.
2146 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2147 * already associated, the css is reused and association redone as the
2148 * request_queue may have changed.
2149 */
2150void bio_associate_blkg(struct bio *bio)
2151{
fc5a828b 2152 struct cgroup_subsys_state *css;
2268c0fe
DZ
2153
2154 rcu_read_lock();
2155
db6638d7 2156 if (bio->bi_blkg)
fc5a828b 2157 css = &bio_blkcg(bio)->css;
db6638d7 2158 else
fc5a828b 2159 css = blkcg_css();
2268c0fe 2160
fc5a828b 2161 bio_associate_blkg_from_css(bio, css);
2268c0fe
DZ
2162
2163 rcu_read_unlock();
852c788f 2164}
5cdf2e3f 2165EXPORT_SYMBOL_GPL(bio_associate_blkg);
852c788f 2166
20bd723e 2167/**
db6638d7 2168 * bio_clone_blkg_association - clone blkg association from src to dst bio
20bd723e
PV
2169 * @dst: destination bio
2170 * @src: source bio
2171 */
db6638d7 2172void bio_clone_blkg_association(struct bio *dst, struct bio *src)
20bd723e 2173{
6ab21879
DZ
2174 rcu_read_lock();
2175
fc5a828b 2176 if (src->bi_blkg)
2268c0fe 2177 __bio_associate_blkg(dst, src->bi_blkg);
6ab21879
DZ
2178
2179 rcu_read_unlock();
20bd723e 2180}
db6638d7 2181EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
852c788f
TH
2182#endif /* CONFIG_BLK_CGROUP */
2183
1da177e4
LT
2184static void __init biovec_init_slabs(void)
2185{
2186 int i;
2187
ed996a52 2188 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2189 int size;
2190 struct biovec_slab *bvs = bvec_slabs + i;
2191
a7fcd37c
JA
2192 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2193 bvs->slab = NULL;
2194 continue;
2195 }
a7fcd37c 2196
1da177e4
LT
2197 size = bvs->nr_vecs * sizeof(struct bio_vec);
2198 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2199 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2200 }
2201}
2202
2203static int __init init_bio(void)
2204{
bb799ca0
JA
2205 bio_slab_max = 2;
2206 bio_slab_nr = 0;
6396bb22
KC
2207 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2208 GFP_KERNEL);
2b24e6f6
JT
2209
2210 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2211
bb799ca0
JA
2212 if (!bio_slabs)
2213 panic("bio: can't allocate bios\n");
1da177e4 2214
7878cba9 2215 bio_integrity_init();
1da177e4
LT
2216 biovec_init_slabs();
2217
f4f8154a 2218 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
2219 panic("bio: can't allocate bios\n");
2220
f4f8154a 2221 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
2222 panic("bio: can't create integrity pool\n");
2223
1da177e4
LT
2224 return 0;
2225}
1da177e4 2226subsys_initcall(init_bio);