dm: use bio_uninit instead of bio_disassociate_blkg
[linux-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
de6a78b6 20#include <linux/sched/sysctl.h>
a892c8d5 21#include <linux/blk-crypto.h>
1da177e4 22
55782138 23#include <trace/events/block.h>
9e234eea 24#include "blk.h"
67b42d0b 25#include "blk-rq-qos.h"
0bfc2455 26
392ddc32
JA
27/*
28 * Test patch to inline a certain number of bi_io_vec's inside the bio
29 * itself, to shrink a bio data allocation from two mempool calls to one
30 */
31#define BIO_INLINE_VECS 4
32
1da177e4
LT
33/*
34 * if you change this list, also change bvec_alloc or things will
35 * break badly! cannot be bigger than what you can fit into an
36 * unsigned short
37 */
bd5c4fac 38#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 39static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 40 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
41};
42#undef BV
43
1da177e4
LT
44/*
45 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
46 * IO code that does not need private memory pools.
47 */
f4f8154a 48struct bio_set fs_bio_set;
3f86a82a 49EXPORT_SYMBOL(fs_bio_set);
1da177e4 50
bb799ca0
JA
51/*
52 * Our slab pool management
53 */
54struct bio_slab {
55 struct kmem_cache *slab;
56 unsigned int slab_ref;
57 unsigned int slab_size;
58 char name[8];
59};
60static DEFINE_MUTEX(bio_slab_lock);
61static struct bio_slab *bio_slabs;
62static unsigned int bio_slab_nr, bio_slab_max;
63
64static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
65{
66 unsigned int sz = sizeof(struct bio) + extra_size;
67 struct kmem_cache *slab = NULL;
389d7b26 68 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 69 unsigned int new_bio_slab_max;
bb799ca0
JA
70 unsigned int i, entry = -1;
71
72 mutex_lock(&bio_slab_lock);
73
74 i = 0;
75 while (i < bio_slab_nr) {
f06f135d 76 bslab = &bio_slabs[i];
bb799ca0
JA
77
78 if (!bslab->slab && entry == -1)
79 entry = i;
80 else if (bslab->slab_size == sz) {
81 slab = bslab->slab;
82 bslab->slab_ref++;
83 break;
84 }
85 i++;
86 }
87
88 if (slab)
89 goto out_unlock;
90
91 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 92 new_bio_slab_max = bio_slab_max << 1;
389d7b26 93 new_bio_slabs = krealloc(bio_slabs,
386bc35a 94 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
95 GFP_KERNEL);
96 if (!new_bio_slabs)
bb799ca0 97 goto out_unlock;
386bc35a 98 bio_slab_max = new_bio_slab_max;
389d7b26 99 bio_slabs = new_bio_slabs;
bb799ca0
JA
100 }
101 if (entry == -1)
102 entry = bio_slab_nr++;
103
104 bslab = &bio_slabs[entry];
105
106 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
107 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
108 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
109 if (!slab)
110 goto out_unlock;
111
bb799ca0
JA
112 bslab->slab = slab;
113 bslab->slab_ref = 1;
114 bslab->slab_size = sz;
115out_unlock:
116 mutex_unlock(&bio_slab_lock);
117 return slab;
118}
119
120static void bio_put_slab(struct bio_set *bs)
121{
122 struct bio_slab *bslab = NULL;
123 unsigned int i;
124
125 mutex_lock(&bio_slab_lock);
126
127 for (i = 0; i < bio_slab_nr; i++) {
128 if (bs->bio_slab == bio_slabs[i].slab) {
129 bslab = &bio_slabs[i];
130 break;
131 }
132 }
133
134 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
135 goto out;
136
137 WARN_ON(!bslab->slab_ref);
138
139 if (--bslab->slab_ref)
140 goto out;
141
142 kmem_cache_destroy(bslab->slab);
143 bslab->slab = NULL;
144
145out:
146 mutex_unlock(&bio_slab_lock);
147}
148
7ba1ba12
MP
149unsigned int bvec_nr_vecs(unsigned short idx)
150{
d6c02a9b 151 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
152}
153
9f060e22 154void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 155{
ed996a52
CH
156 if (!idx)
157 return;
158 idx--;
159
160 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 161
ed996a52 162 if (idx == BVEC_POOL_MAX) {
9f060e22 163 mempool_free(bv, pool);
ed996a52 164 } else {
bb799ca0
JA
165 struct biovec_slab *bvs = bvec_slabs + idx;
166
167 kmem_cache_free(bvs->slab, bv);
168 }
169}
170
9f060e22
KO
171struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
172 mempool_t *pool)
1da177e4
LT
173{
174 struct bio_vec *bvl;
1da177e4 175
7ff9345f
JA
176 /*
177 * see comment near bvec_array define!
178 */
179 switch (nr) {
180 case 1:
181 *idx = 0;
182 break;
183 case 2 ... 4:
184 *idx = 1;
185 break;
186 case 5 ... 16:
187 *idx = 2;
188 break;
189 case 17 ... 64:
190 *idx = 3;
191 break;
192 case 65 ... 128:
193 *idx = 4;
194 break;
195 case 129 ... BIO_MAX_PAGES:
196 *idx = 5;
197 break;
198 default:
199 return NULL;
200 }
201
202 /*
203 * idx now points to the pool we want to allocate from. only the
204 * 1-vec entry pool is mempool backed.
205 */
ed996a52 206 if (*idx == BVEC_POOL_MAX) {
7ff9345f 207fallback:
9f060e22 208 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
209 } else {
210 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 211 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 212
0a0d96b0 213 /*
7ff9345f
JA
214 * Make this allocation restricted and don't dump info on
215 * allocation failures, since we'll fallback to the mempool
216 * in case of failure.
0a0d96b0 217 */
7ff9345f 218 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 219
0a0d96b0 220 /*
d0164adc 221 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 222 * is set, retry with the 1-entry mempool
0a0d96b0 223 */
7ff9345f 224 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 225 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 226 *idx = BVEC_POOL_MAX;
7ff9345f
JA
227 goto fallback;
228 }
229 }
230
ed996a52 231 (*idx)++;
1da177e4
LT
232 return bvl;
233}
234
9ae3b3f5 235void bio_uninit(struct bio *bio)
1da177e4 236{
6f70fb66 237 bio_disassociate_blkg(bio);
ece841ab
JT
238
239 if (bio_integrity(bio))
240 bio_integrity_free(bio);
a892c8d5
ST
241
242 bio_crypt_free_ctx(bio);
4254bba1 243}
9ae3b3f5 244EXPORT_SYMBOL(bio_uninit);
7ba1ba12 245
4254bba1
KO
246static void bio_free(struct bio *bio)
247{
248 struct bio_set *bs = bio->bi_pool;
249 void *p;
250
9ae3b3f5 251 bio_uninit(bio);
4254bba1
KO
252
253 if (bs) {
8aa6ba2f 254 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
255
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
bb799ca0
JA
260 p -= bs->front_pad;
261
8aa6ba2f 262 mempool_free(p, &bs->bio_pool);
4254bba1
KO
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
266 }
3676347a
PO
267}
268
9ae3b3f5
JA
269/*
270 * Users of this function have their own bio allocation. Subsequently,
271 * they must remember to pair any call to bio_init() with bio_uninit()
272 * when IO has completed, or when the bio is released.
273 */
3a83f467
ML
274void bio_init(struct bio *bio, struct bio_vec *table,
275 unsigned short max_vecs)
1da177e4 276{
2b94de55 277 memset(bio, 0, sizeof(*bio));
c4cf5261 278 atomic_set(&bio->__bi_remaining, 1);
dac56212 279 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
280
281 bio->bi_io_vec = table;
282 bio->bi_max_vecs = max_vecs;
1da177e4 283}
a112a71d 284EXPORT_SYMBOL(bio_init);
1da177e4 285
f44b48c7
KO
286/**
287 * bio_reset - reinitialize a bio
288 * @bio: bio to reset
289 *
290 * Description:
291 * After calling bio_reset(), @bio will be in the same state as a freshly
292 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
293 * preserved are the ones that are initialized by bio_alloc_bioset(). See
294 * comment in struct bio.
295 */
296void bio_reset(struct bio *bio)
297{
298 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
299
9ae3b3f5 300 bio_uninit(bio);
f44b48c7
KO
301
302 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 303 bio->bi_flags = flags;
c4cf5261 304 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
305}
306EXPORT_SYMBOL(bio_reset);
307
38f8baae 308static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 309{
4246a0b6
CH
310 struct bio *parent = bio->bi_private;
311
4e4cbee9
CH
312 if (!parent->bi_status)
313 parent->bi_status = bio->bi_status;
196d38bc 314 bio_put(bio);
38f8baae
CH
315 return parent;
316}
317
318static void bio_chain_endio(struct bio *bio)
319{
320 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
321}
322
323/**
324 * bio_chain - chain bio completions
1051a902
RD
325 * @bio: the target bio
326 * @parent: the @bio's parent bio
196d38bc
KO
327 *
328 * The caller won't have a bi_end_io called when @bio completes - instead,
329 * @parent's bi_end_io won't be called until both @parent and @bio have
330 * completed; the chained bio will also be freed when it completes.
331 *
332 * The caller must not set bi_private or bi_end_io in @bio.
333 */
334void bio_chain(struct bio *bio, struct bio *parent)
335{
336 BUG_ON(bio->bi_private || bio->bi_end_io);
337
338 bio->bi_private = parent;
339 bio->bi_end_io = bio_chain_endio;
c4cf5261 340 bio_inc_remaining(parent);
196d38bc
KO
341}
342EXPORT_SYMBOL(bio_chain);
343
df2cb6da
KO
344static void bio_alloc_rescue(struct work_struct *work)
345{
346 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
347 struct bio *bio;
348
349 while (1) {
350 spin_lock(&bs->rescue_lock);
351 bio = bio_list_pop(&bs->rescue_list);
352 spin_unlock(&bs->rescue_lock);
353
354 if (!bio)
355 break;
356
357 generic_make_request(bio);
358 }
359}
360
361static void punt_bios_to_rescuer(struct bio_set *bs)
362{
363 struct bio_list punt, nopunt;
364 struct bio *bio;
365
47e0fb46
N
366 if (WARN_ON_ONCE(!bs->rescue_workqueue))
367 return;
df2cb6da
KO
368 /*
369 * In order to guarantee forward progress we must punt only bios that
370 * were allocated from this bio_set; otherwise, if there was a bio on
371 * there for a stacking driver higher up in the stack, processing it
372 * could require allocating bios from this bio_set, and doing that from
373 * our own rescuer would be bad.
374 *
375 * Since bio lists are singly linked, pop them all instead of trying to
376 * remove from the middle of the list:
377 */
378
379 bio_list_init(&punt);
380 bio_list_init(&nopunt);
381
f5fe1b51 382 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 383 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 384 current->bio_list[0] = nopunt;
df2cb6da 385
f5fe1b51
N
386 bio_list_init(&nopunt);
387 while ((bio = bio_list_pop(&current->bio_list[1])))
388 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
389 current->bio_list[1] = nopunt;
df2cb6da
KO
390
391 spin_lock(&bs->rescue_lock);
392 bio_list_merge(&bs->rescue_list, &punt);
393 spin_unlock(&bs->rescue_lock);
394
395 queue_work(bs->rescue_workqueue, &bs->rescue_work);
396}
397
1da177e4
LT
398/**
399 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 400 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 401 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 402 * @bs: the bio_set to allocate from.
1da177e4
LT
403 *
404 * Description:
3f86a82a
KO
405 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
406 * backed by the @bs's mempool.
407 *
d0164adc
MG
408 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
409 * always be able to allocate a bio. This is due to the mempool guarantees.
410 * To make this work, callers must never allocate more than 1 bio at a time
411 * from this pool. Callers that need to allocate more than 1 bio must always
412 * submit the previously allocated bio for IO before attempting to allocate
413 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 414 *
df2cb6da
KO
415 * Note that when running under generic_make_request() (i.e. any block
416 * driver), bios are not submitted until after you return - see the code in
417 * generic_make_request() that converts recursion into iteration, to prevent
418 * stack overflows.
419 *
420 * This would normally mean allocating multiple bios under
421 * generic_make_request() would be susceptible to deadlocks, but we have
422 * deadlock avoidance code that resubmits any blocked bios from a rescuer
423 * thread.
424 *
425 * However, we do not guarantee forward progress for allocations from other
426 * mempools. Doing multiple allocations from the same mempool under
427 * generic_make_request() should be avoided - instead, use bio_set's front_pad
428 * for per bio allocations.
429 *
3f86a82a
KO
430 * RETURNS:
431 * Pointer to new bio on success, NULL on failure.
432 */
7a88fa19
DC
433struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
434 struct bio_set *bs)
1da177e4 435{
df2cb6da 436 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
437 unsigned front_pad;
438 unsigned inline_vecs;
34053979 439 struct bio_vec *bvl = NULL;
451a9ebf
TH
440 struct bio *bio;
441 void *p;
442
3f86a82a
KO
443 if (!bs) {
444 if (nr_iovecs > UIO_MAXIOV)
445 return NULL;
446
1f4fe21c 447 p = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
3f86a82a
KO
448 front_pad = 0;
449 inline_vecs = nr_iovecs;
450 } else {
d8f429e1 451 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
452 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
453 nr_iovecs > 0))
d8f429e1 454 return NULL;
df2cb6da
KO
455 /*
456 * generic_make_request() converts recursion to iteration; this
457 * means if we're running beneath it, any bios we allocate and
458 * submit will not be submitted (and thus freed) until after we
459 * return.
460 *
461 * This exposes us to a potential deadlock if we allocate
462 * multiple bios from the same bio_set() while running
463 * underneath generic_make_request(). If we were to allocate
464 * multiple bios (say a stacking block driver that was splitting
465 * bios), we would deadlock if we exhausted the mempool's
466 * reserve.
467 *
468 * We solve this, and guarantee forward progress, with a rescuer
469 * workqueue per bio_set. If we go to allocate and there are
470 * bios on current->bio_list, we first try the allocation
d0164adc
MG
471 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
472 * bios we would be blocking to the rescuer workqueue before
473 * we retry with the original gfp_flags.
df2cb6da
KO
474 */
475
f5fe1b51
N
476 if (current->bio_list &&
477 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
478 !bio_list_empty(&current->bio_list[1])) &&
479 bs->rescue_workqueue)
d0164adc 480 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 481
8aa6ba2f 482 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
483 if (!p && gfp_mask != saved_gfp) {
484 punt_bios_to_rescuer(bs);
485 gfp_mask = saved_gfp;
8aa6ba2f 486 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
487 }
488
3f86a82a
KO
489 front_pad = bs->front_pad;
490 inline_vecs = BIO_INLINE_VECS;
491 }
492
451a9ebf
TH
493 if (unlikely(!p))
494 return NULL;
1da177e4 495
3f86a82a 496 bio = p + front_pad;
3a83f467 497 bio_init(bio, NULL, 0);
34053979 498
3f86a82a 499 if (nr_iovecs > inline_vecs) {
ed996a52
CH
500 unsigned long idx = 0;
501
8aa6ba2f 502 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
503 if (!bvl && gfp_mask != saved_gfp) {
504 punt_bios_to_rescuer(bs);
505 gfp_mask = saved_gfp;
8aa6ba2f 506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
507 }
508
34053979
IM
509 if (unlikely(!bvl))
510 goto err_free;
a38352e0 511
ed996a52 512 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
513 } else if (nr_iovecs) {
514 bvl = bio->bi_inline_vecs;
1da177e4 515 }
3f86a82a
KO
516
517 bio->bi_pool = bs;
34053979 518 bio->bi_max_vecs = nr_iovecs;
34053979 519 bio->bi_io_vec = bvl;
1da177e4 520 return bio;
34053979
IM
521
522err_free:
8aa6ba2f 523 mempool_free(p, &bs->bio_pool);
34053979 524 return NULL;
1da177e4 525}
a112a71d 526EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 527
38a72dac 528void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
529{
530 unsigned long flags;
7988613b
KO
531 struct bio_vec bv;
532 struct bvec_iter iter;
1da177e4 533
38a72dac 534 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
535 char *data = bvec_kmap_irq(&bv, &flags);
536 memset(data, 0, bv.bv_len);
537 flush_dcache_page(bv.bv_page);
1da177e4
LT
538 bvec_kunmap_irq(data, &flags);
539 }
540}
38a72dac 541EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4 542
83c9c547
ML
543/**
544 * bio_truncate - truncate the bio to small size of @new_size
545 * @bio: the bio to be truncated
546 * @new_size: new size for truncating the bio
547 *
548 * Description:
549 * Truncate the bio to new size of @new_size. If bio_op(bio) is
550 * REQ_OP_READ, zero the truncated part. This function should only
551 * be used for handling corner cases, such as bio eod.
552 */
85a8ce62
ML
553void bio_truncate(struct bio *bio, unsigned new_size)
554{
555 struct bio_vec bv;
556 struct bvec_iter iter;
557 unsigned int done = 0;
558 bool truncated = false;
559
560 if (new_size >= bio->bi_iter.bi_size)
561 return;
562
83c9c547 563 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
564 goto exit;
565
566 bio_for_each_segment(bv, bio, iter) {
567 if (done + bv.bv_len > new_size) {
568 unsigned offset;
569
570 if (!truncated)
571 offset = new_size - done;
572 else
573 offset = 0;
574 zero_user(bv.bv_page, offset, bv.bv_len - offset);
575 truncated = true;
576 }
577 done += bv.bv_len;
578 }
579
580 exit:
581 /*
582 * Don't touch bvec table here and make it really immutable, since
583 * fs bio user has to retrieve all pages via bio_for_each_segment_all
584 * in its .end_bio() callback.
585 *
586 * It is enough to truncate bio by updating .bi_size since we can make
587 * correct bvec with the updated .bi_size for drivers.
588 */
589 bio->bi_iter.bi_size = new_size;
590}
591
29125ed6
CH
592/**
593 * guard_bio_eod - truncate a BIO to fit the block device
594 * @bio: bio to truncate
595 *
596 * This allows us to do IO even on the odd last sectors of a device, even if the
597 * block size is some multiple of the physical sector size.
598 *
599 * We'll just truncate the bio to the size of the device, and clear the end of
600 * the buffer head manually. Truly out-of-range accesses will turn into actual
601 * I/O errors, this only handles the "we need to be able to do I/O at the final
602 * sector" case.
603 */
604void guard_bio_eod(struct bio *bio)
605{
606 sector_t maxsector;
607 struct hd_struct *part;
608
609 rcu_read_lock();
610 part = __disk_get_part(bio->bi_disk, bio->bi_partno);
611 if (part)
612 maxsector = part_nr_sects_read(part);
613 else
614 maxsector = get_capacity(bio->bi_disk);
615 rcu_read_unlock();
616
617 if (!maxsector)
618 return;
619
620 /*
621 * If the *whole* IO is past the end of the device,
622 * let it through, and the IO layer will turn it into
623 * an EIO.
624 */
625 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
626 return;
627
628 maxsector -= bio->bi_iter.bi_sector;
629 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
630 return;
631
632 bio_truncate(bio, maxsector << 9);
633}
634
1da177e4
LT
635/**
636 * bio_put - release a reference to a bio
637 * @bio: bio to release reference to
638 *
639 * Description:
640 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 641 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
642 **/
643void bio_put(struct bio *bio)
644{
dac56212 645 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 646 bio_free(bio);
dac56212
JA
647 else {
648 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
649
650 /*
651 * last put frees it
652 */
653 if (atomic_dec_and_test(&bio->__bi_cnt))
654 bio_free(bio);
655 }
1da177e4 656}
a112a71d 657EXPORT_SYMBOL(bio_put);
1da177e4 658
59d276fe
KO
659/**
660 * __bio_clone_fast - clone a bio that shares the original bio's biovec
661 * @bio: destination bio
662 * @bio_src: bio to clone
663 *
664 * Clone a &bio. Caller will own the returned bio, but not
665 * the actual data it points to. Reference count of returned
666 * bio will be one.
667 *
668 * Caller must ensure that @bio_src is not freed before @bio.
669 */
670void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
671{
ed996a52 672 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
673
674 /*
74d46992 675 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
676 * so we don't set nor calculate new physical/hw segment counts here
677 */
74d46992 678 bio->bi_disk = bio_src->bi_disk;
62530ed8 679 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 680 bio_set_flag(bio, BIO_CLONED);
111be883
SL
681 if (bio_flagged(bio_src, BIO_THROTTLED))
682 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 683 bio->bi_opf = bio_src->bi_opf;
ca474b73 684 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 685 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
686 bio->bi_iter = bio_src->bi_iter;
687 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 688
db6638d7 689 bio_clone_blkg_association(bio, bio_src);
e439bedf 690 blkcg_bio_issue_init(bio);
59d276fe
KO
691}
692EXPORT_SYMBOL(__bio_clone_fast);
693
694/**
695 * bio_clone_fast - clone a bio that shares the original bio's biovec
696 * @bio: bio to clone
697 * @gfp_mask: allocation priority
698 * @bs: bio_set to allocate from
699 *
700 * Like __bio_clone_fast, only also allocates the returned bio
701 */
702struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
703{
704 struct bio *b;
705
706 b = bio_alloc_bioset(gfp_mask, 0, bs);
707 if (!b)
708 return NULL;
709
710 __bio_clone_fast(b, bio);
711
a892c8d5
ST
712 bio_crypt_clone(b, bio, gfp_mask);
713
59d276fe
KO
714 if (bio_integrity(bio)) {
715 int ret;
716
717 ret = bio_integrity_clone(b, bio, gfp_mask);
718
719 if (ret < 0) {
720 bio_put(b);
721 return NULL;
722 }
723 }
724
725 return b;
726}
727EXPORT_SYMBOL(bio_clone_fast);
728
5cbd28e3
CH
729const char *bio_devname(struct bio *bio, char *buf)
730{
731 return disk_name(bio->bi_disk, bio->bi_partno, buf);
732}
733EXPORT_SYMBOL(bio_devname);
734
5919482e
ML
735static inline bool page_is_mergeable(const struct bio_vec *bv,
736 struct page *page, unsigned int len, unsigned int off,
ff896738 737 bool *same_page)
5919482e
ML
738{
739 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
740 bv->bv_offset + bv->bv_len - 1;
741 phys_addr_t page_addr = page_to_phys(page);
742
743 if (vec_end_addr + 1 != page_addr + off)
744 return false;
745 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
746 return false;
52d52d1c 747
ff896738
CH
748 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
749 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
750 return false;
5919482e
ML
751 return true;
752}
753
e4581105
CH
754/*
755 * Try to merge a page into a segment, while obeying the hardware segment
756 * size limit. This is not for normal read/write bios, but for passthrough
757 * or Zone Append operations that we can't split.
758 */
759static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
760 struct page *page, unsigned len,
761 unsigned offset, bool *same_page)
489fbbcb 762{
384209cd 763 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
764 unsigned long mask = queue_segment_boundary(q);
765 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
766 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
767
768 if ((addr1 | mask) != (addr2 | mask))
769 return false;
489fbbcb
ML
770 if (bv->bv_len + len > queue_max_segment_size(q))
771 return false;
384209cd 772 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
773}
774
1da177e4 775/**
e4581105
CH
776 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
777 * @q: the target queue
778 * @bio: destination bio
779 * @page: page to add
780 * @len: vec entry length
781 * @offset: vec entry offset
782 * @max_sectors: maximum number of sectors that can be added
783 * @same_page: return if the segment has been merged inside the same page
c66a14d0 784 *
e4581105
CH
785 * Add a page to a bio while respecting the hardware max_sectors, max_segment
786 * and gap limitations.
1da177e4 787 */
e4581105 788int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 789 struct page *page, unsigned int len, unsigned int offset,
e4581105 790 unsigned int max_sectors, bool *same_page)
1da177e4 791{
1da177e4
LT
792 struct bio_vec *bvec;
793
e4581105 794 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
795 return 0;
796
e4581105 797 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
798 return 0;
799
80cfd548 800 if (bio->bi_vcnt > 0) {
e4581105 801 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 802 return len;
320ea869
CH
803
804 /*
805 * If the queue doesn't support SG gaps and adding this segment
806 * would create a gap, disallow it.
807 */
384209cd 808 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
809 if (bvec_gap_to_prev(q, bvec, offset))
810 return 0;
80cfd548
JA
811 }
812
79d08f89 813 if (bio_full(bio, len))
1da177e4
LT
814 return 0;
815
14ccb66b 816 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
817 return 0;
818
fcbf6a08
ML
819 bvec = &bio->bi_io_vec[bio->bi_vcnt];
820 bvec->bv_page = page;
821 bvec->bv_len = len;
822 bvec->bv_offset = offset;
823 bio->bi_vcnt++;
dcdca753 824 bio->bi_iter.bi_size += len;
1da177e4
LT
825 return len;
826}
19047087 827
e4581105
CH
828/**
829 * bio_add_pc_page - attempt to add page to passthrough bio
830 * @q: the target queue
831 * @bio: destination bio
832 * @page: page to add
833 * @len: vec entry length
834 * @offset: vec entry offset
835 *
836 * Attempt to add a page to the bio_vec maplist. This can fail for a
837 * number of reasons, such as the bio being full or target block device
838 * limitations. The target block device must allow bio's up to PAGE_SIZE,
839 * so it is always possible to add a single page to an empty bio.
840 *
841 * This should only be used by passthrough bios.
842 */
19047087
ML
843int bio_add_pc_page(struct request_queue *q, struct bio *bio,
844 struct page *page, unsigned int len, unsigned int offset)
845{
d1916c86 846 bool same_page = false;
e4581105
CH
847 return bio_add_hw_page(q, bio, page, len, offset,
848 queue_max_hw_sectors(q), &same_page);
19047087 849}
a112a71d 850EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 851
1da177e4 852/**
0aa69fd3
CH
853 * __bio_try_merge_page - try appending data to an existing bvec.
854 * @bio: destination bio
551879a4 855 * @page: start page to add
0aa69fd3 856 * @len: length of the data to add
551879a4 857 * @off: offset of the data relative to @page
ff896738 858 * @same_page: return if the segment has been merged inside the same page
1da177e4 859 *
0aa69fd3
CH
860 * Try to add the data at @page + @off to the last bvec of @bio. This is a
861 * a useful optimisation for file systems with a block size smaller than the
862 * page size.
863 *
551879a4
ML
864 * Warn if (@len, @off) crosses pages in case that @same_page is true.
865 *
0aa69fd3 866 * Return %true on success or %false on failure.
1da177e4 867 */
0aa69fd3 868bool __bio_try_merge_page(struct bio *bio, struct page *page,
ff896738 869 unsigned int len, unsigned int off, bool *same_page)
1da177e4 870{
c66a14d0 871 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 872 return false;
762380ad 873
cc90bc68 874 if (bio->bi_vcnt > 0) {
0aa69fd3 875 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
876
877 if (page_is_mergeable(bv, page, len, off, same_page)) {
cc90bc68
AG
878 if (bio->bi_iter.bi_size > UINT_MAX - len)
879 return false;
5919482e
ML
880 bv->bv_len += len;
881 bio->bi_iter.bi_size += len;
882 return true;
883 }
c66a14d0 884 }
0aa69fd3
CH
885 return false;
886}
887EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 888
0aa69fd3 889/**
551879a4 890 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 891 * @bio: destination bio
551879a4
ML
892 * @page: start page to add
893 * @len: length of the data to add, may cross pages
894 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
895 *
896 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
897 * that @bio has space for another bvec.
898 */
899void __bio_add_page(struct bio *bio, struct page *page,
900 unsigned int len, unsigned int off)
901{
902 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 903
0aa69fd3 904 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 905 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
906
907 bv->bv_page = page;
908 bv->bv_offset = off;
909 bv->bv_len = len;
c66a14d0 910
c66a14d0 911 bio->bi_iter.bi_size += len;
0aa69fd3 912 bio->bi_vcnt++;
b8e24a93
JW
913
914 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
915 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
916}
917EXPORT_SYMBOL_GPL(__bio_add_page);
918
919/**
551879a4 920 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 921 * @bio: destination bio
551879a4
ML
922 * @page: start page to add
923 * @len: vec entry length, may cross pages
924 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 925 *
551879a4 926 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
927 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
928 */
929int bio_add_page(struct bio *bio, struct page *page,
930 unsigned int len, unsigned int offset)
931{
ff896738
CH
932 bool same_page = false;
933
934 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 935 if (bio_full(bio, len))
0aa69fd3
CH
936 return 0;
937 __bio_add_page(bio, page, len, offset);
938 }
c66a14d0 939 return len;
1da177e4 940}
a112a71d 941EXPORT_SYMBOL(bio_add_page);
1da177e4 942
d241a95f 943void bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
944{
945 struct bvec_iter_all iter_all;
946 struct bio_vec *bvec;
7321ecbf 947
b2d0d991
CH
948 if (bio_flagged(bio, BIO_NO_PAGE_REF))
949 return;
950
d241a95f
CH
951 bio_for_each_segment_all(bvec, bio, iter_all) {
952 if (mark_dirty && !PageCompound(bvec->bv_page))
953 set_page_dirty_lock(bvec->bv_page);
7321ecbf 954 put_page(bvec->bv_page);
d241a95f 955 }
7321ecbf 956}
29b2a3aa 957EXPORT_SYMBOL_GPL(bio_release_pages);
7321ecbf 958
6d0c48ae
JA
959static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
960{
961 const struct bio_vec *bv = iter->bvec;
962 unsigned int len;
963 size_t size;
964
965 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
966 return -EINVAL;
967
968 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
969 size = bio_add_page(bio, bv->bv_page, len,
970 bv->bv_offset + iter->iov_offset);
a10584c3
CH
971 if (unlikely(size != len))
972 return -EINVAL;
a10584c3
CH
973 iov_iter_advance(iter, size);
974 return 0;
6d0c48ae
JA
975}
976
576ed913
CH
977#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
978
2cefe4db 979/**
17d51b10 980 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
981 * @bio: bio to add pages to
982 * @iter: iov iterator describing the region to be mapped
983 *
17d51b10 984 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 985 * pages will have to be released using put_page() when done.
17d51b10
MW
986 * For multi-segment *iter, this function only adds pages from the
987 * the next non-empty segment of the iov iterator.
2cefe4db 988 */
17d51b10 989static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 990{
576ed913
CH
991 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
992 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
993 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
994 struct page **pages = (struct page **)bv;
45691804 995 bool same_page = false;
576ed913
CH
996 ssize_t size, left;
997 unsigned len, i;
b403ea24 998 size_t offset;
576ed913
CH
999
1000 /*
1001 * Move page array up in the allocated memory for the bio vecs as far as
1002 * possible so that we can start filling biovecs from the beginning
1003 * without overwriting the temporary page array.
1004 */
1005 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1006 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
1007
1008 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1009 if (unlikely(size <= 0))
1010 return size ? size : -EFAULT;
2cefe4db 1011
576ed913
CH
1012 for (left = size, i = 0; left > 0; left -= len, i++) {
1013 struct page *page = pages[i];
2cefe4db 1014
576ed913 1015 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
1016
1017 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1018 if (same_page)
1019 put_page(page);
1020 } else {
79d08f89 1021 if (WARN_ON_ONCE(bio_full(bio, len)))
45691804
CH
1022 return -EINVAL;
1023 __bio_add_page(bio, page, len, offset);
1024 }
576ed913 1025 offset = 0;
2cefe4db
KO
1026 }
1027
2cefe4db
KO
1028 iov_iter_advance(iter, size);
1029 return 0;
1030}
17d51b10 1031
0512a75b
KB
1032static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1033{
1034 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1035 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1036 struct request_queue *q = bio->bi_disk->queue;
1037 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1038 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1039 struct page **pages = (struct page **)bv;
1040 ssize_t size, left;
1041 unsigned len, i;
1042 size_t offset;
1043
1044 if (WARN_ON_ONCE(!max_append_sectors))
1045 return 0;
1046
1047 /*
1048 * Move page array up in the allocated memory for the bio vecs as far as
1049 * possible so that we can start filling biovecs from the beginning
1050 * without overwriting the temporary page array.
1051 */
1052 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1053 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1054
1055 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1056 if (unlikely(size <= 0))
1057 return size ? size : -EFAULT;
1058
1059 for (left = size, i = 0; left > 0; left -= len, i++) {
1060 struct page *page = pages[i];
1061 bool same_page = false;
1062
1063 len = min_t(size_t, PAGE_SIZE - offset, left);
1064 if (bio_add_hw_page(q, bio, page, len, offset,
1065 max_append_sectors, &same_page) != len)
1066 return -EINVAL;
1067 if (same_page)
1068 put_page(page);
1069 offset = 0;
1070 }
1071
1072 iov_iter_advance(iter, size);
1073 return 0;
1074}
1075
17d51b10 1076/**
6d0c48ae 1077 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1078 * @bio: bio to add pages to
6d0c48ae
JA
1079 * @iter: iov iterator describing the region to be added
1080 *
1081 * This takes either an iterator pointing to user memory, or one pointing to
1082 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1083 * map them into the kernel. On IO completion, the caller should put those
399254aa
JA
1084 * pages. If we're adding kernel pages, and the caller told us it's safe to
1085 * do so, we just have to add the pages to the bio directly. We don't grab an
1086 * extra reference to those pages (the user should already have that), and we
1087 * don't put the page on IO completion. The caller needs to check if the bio is
1088 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
1089 * released.
17d51b10 1090 *
17d51b10 1091 * The function tries, but does not guarantee, to pin as many pages as
6d0c48ae
JA
1092 * fit into the bio, or are requested in *iter, whatever is smaller. If
1093 * MM encounters an error pinning the requested pages, it stops. Error
1094 * is returned only if 0 pages could be pinned.
17d51b10
MW
1095 */
1096int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1097{
6d0c48ae 1098 const bool is_bvec = iov_iter_is_bvec(iter);
14eacf12
CH
1099 int ret;
1100
1101 if (WARN_ON_ONCE(bio->bi_vcnt))
1102 return -EINVAL;
17d51b10
MW
1103
1104 do {
0512a75b
KB
1105 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1106 if (WARN_ON_ONCE(is_bvec))
1107 return -EINVAL;
1108 ret = __bio_iov_append_get_pages(bio, iter);
1109 } else {
1110 if (is_bvec)
1111 ret = __bio_iov_bvec_add_pages(bio, iter);
1112 else
1113 ret = __bio_iov_iter_get_pages(bio, iter);
1114 }
79d08f89 1115 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 1116
b6207430 1117 if (is_bvec)
7321ecbf 1118 bio_set_flag(bio, BIO_NO_PAGE_REF);
14eacf12 1119 return bio->bi_vcnt ? 0 : ret;
17d51b10 1120}
29b2a3aa 1121EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1122
4246a0b6 1123static void submit_bio_wait_endio(struct bio *bio)
9e882242 1124{
65e53aab 1125 complete(bio->bi_private);
9e882242
KO
1126}
1127
1128/**
1129 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1130 * @bio: The &struct bio which describes the I/O
1131 *
1132 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1133 * bio_endio() on failure.
3d289d68
JK
1134 *
1135 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1136 * result in bio reference to be consumed. The caller must drop the reference
1137 * on his own.
9e882242 1138 */
4e49ea4a 1139int submit_bio_wait(struct bio *bio)
9e882242 1140{
e319e1fb 1141 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
de6a78b6 1142 unsigned long hang_check;
9e882242 1143
65e53aab 1144 bio->bi_private = &done;
9e882242 1145 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1146 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1147 submit_bio(bio);
de6a78b6
ML
1148
1149 /* Prevent hang_check timer from firing at us during very long I/O */
1150 hang_check = sysctl_hung_task_timeout_secs;
1151 if (hang_check)
1152 while (!wait_for_completion_io_timeout(&done,
1153 hang_check * (HZ/2)))
1154 ;
1155 else
1156 wait_for_completion_io(&done);
9e882242 1157
65e53aab 1158 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1159}
1160EXPORT_SYMBOL(submit_bio_wait);
1161
054bdf64
KO
1162/**
1163 * bio_advance - increment/complete a bio by some number of bytes
1164 * @bio: bio to advance
1165 * @bytes: number of bytes to complete
1166 *
1167 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1168 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1169 * be updated on the last bvec as well.
1170 *
1171 * @bio will then represent the remaining, uncompleted portion of the io.
1172 */
1173void bio_advance(struct bio *bio, unsigned bytes)
1174{
1175 if (bio_integrity(bio))
1176 bio_integrity_advance(bio, bytes);
1177
a892c8d5 1178 bio_crypt_advance(bio, bytes);
4550dd6c 1179 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1180}
1181EXPORT_SYMBOL(bio_advance);
1182
45db54d5
KO
1183void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1184 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1185{
1cb9dda4 1186 struct bio_vec src_bv, dst_bv;
16ac3d63 1187 void *src_p, *dst_p;
1cb9dda4 1188 unsigned bytes;
16ac3d63 1189
45db54d5
KO
1190 while (src_iter->bi_size && dst_iter->bi_size) {
1191 src_bv = bio_iter_iovec(src, *src_iter);
1192 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1193
1194 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1195
1cb9dda4
KO
1196 src_p = kmap_atomic(src_bv.bv_page);
1197 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1198
1cb9dda4
KO
1199 memcpy(dst_p + dst_bv.bv_offset,
1200 src_p + src_bv.bv_offset,
16ac3d63
KO
1201 bytes);
1202
1203 kunmap_atomic(dst_p);
1204 kunmap_atomic(src_p);
1205
6e6e811d
KO
1206 flush_dcache_page(dst_bv.bv_page);
1207
45db54d5
KO
1208 bio_advance_iter(src, src_iter, bytes);
1209 bio_advance_iter(dst, dst_iter, bytes);
16ac3d63
KO
1210 }
1211}
38a72dac
KO
1212EXPORT_SYMBOL(bio_copy_data_iter);
1213
1214/**
45db54d5
KO
1215 * bio_copy_data - copy contents of data buffers from one bio to another
1216 * @src: source bio
1217 * @dst: destination bio
38a72dac
KO
1218 *
1219 * Stops when it reaches the end of either @src or @dst - that is, copies
1220 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1221 */
1222void bio_copy_data(struct bio *dst, struct bio *src)
1223{
45db54d5
KO
1224 struct bvec_iter src_iter = src->bi_iter;
1225 struct bvec_iter dst_iter = dst->bi_iter;
1226
1227 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1228}
16ac3d63
KO
1229EXPORT_SYMBOL(bio_copy_data);
1230
45db54d5
KO
1231/**
1232 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1233 * another
1234 * @src: source bio list
1235 * @dst: destination bio list
1236 *
1237 * Stops when it reaches the end of either the @src list or @dst list - that is,
1238 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1239 * bios).
1240 */
1241void bio_list_copy_data(struct bio *dst, struct bio *src)
1242{
1243 struct bvec_iter src_iter = src->bi_iter;
1244 struct bvec_iter dst_iter = dst->bi_iter;
1245
1246 while (1) {
1247 if (!src_iter.bi_size) {
1248 src = src->bi_next;
1249 if (!src)
1250 break;
1251
1252 src_iter = src->bi_iter;
1253 }
1254
1255 if (!dst_iter.bi_size) {
1256 dst = dst->bi_next;
1257 if (!dst)
1258 break;
1259
1260 dst_iter = dst->bi_iter;
1261 }
1262
1263 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1264 }
1265}
1266EXPORT_SYMBOL(bio_list_copy_data);
1267
491221f8 1268void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1269{
1270 struct bio_vec *bvec;
6dc4f100 1271 struct bvec_iter_all iter_all;
1dfa0f68 1272
2b070cfe 1273 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1274 __free_page(bvec->bv_page);
1275}
491221f8 1276EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1277
1da177e4
LT
1278/*
1279 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1280 * for performing direct-IO in BIOs.
1281 *
1282 * The problem is that we cannot run set_page_dirty() from interrupt context
1283 * because the required locks are not interrupt-safe. So what we can do is to
1284 * mark the pages dirty _before_ performing IO. And in interrupt context,
1285 * check that the pages are still dirty. If so, fine. If not, redirty them
1286 * in process context.
1287 *
1288 * We special-case compound pages here: normally this means reads into hugetlb
1289 * pages. The logic in here doesn't really work right for compound pages
1290 * because the VM does not uniformly chase down the head page in all cases.
1291 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1292 * handle them at all. So we skip compound pages here at an early stage.
1293 *
1294 * Note that this code is very hard to test under normal circumstances because
1295 * direct-io pins the pages with get_user_pages(). This makes
1296 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1297 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1298 * pagecache.
1299 *
1300 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1301 * deferred bio dirtying paths.
1302 */
1303
1304/*
1305 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1306 */
1307void bio_set_pages_dirty(struct bio *bio)
1308{
cb34e057 1309 struct bio_vec *bvec;
6dc4f100 1310 struct bvec_iter_all iter_all;
1da177e4 1311
2b070cfe 1312 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1313 if (!PageCompound(bvec->bv_page))
1314 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1315 }
1316}
1317
1da177e4
LT
1318/*
1319 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1320 * If they are, then fine. If, however, some pages are clean then they must
1321 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1322 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1323 *
1324 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1325 * here on. It will run one put_page() against each page and will run one
1326 * bio_put() against the BIO.
1da177e4
LT
1327 */
1328
65f27f38 1329static void bio_dirty_fn(struct work_struct *work);
1da177e4 1330
65f27f38 1331static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1332static DEFINE_SPINLOCK(bio_dirty_lock);
1333static struct bio *bio_dirty_list;
1334
1335/*
1336 * This runs in process context
1337 */
65f27f38 1338static void bio_dirty_fn(struct work_struct *work)
1da177e4 1339{
24d5493f 1340 struct bio *bio, *next;
1da177e4 1341
24d5493f
CH
1342 spin_lock_irq(&bio_dirty_lock);
1343 next = bio_dirty_list;
1da177e4 1344 bio_dirty_list = NULL;
24d5493f 1345 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1346
24d5493f
CH
1347 while ((bio = next) != NULL) {
1348 next = bio->bi_private;
1da177e4 1349
d241a95f 1350 bio_release_pages(bio, true);
1da177e4 1351 bio_put(bio);
1da177e4
LT
1352 }
1353}
1354
1355void bio_check_pages_dirty(struct bio *bio)
1356{
cb34e057 1357 struct bio_vec *bvec;
24d5493f 1358 unsigned long flags;
6dc4f100 1359 struct bvec_iter_all iter_all;
1da177e4 1360
2b070cfe 1361 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1362 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1363 goto defer;
1da177e4
LT
1364 }
1365
d241a95f 1366 bio_release_pages(bio, false);
24d5493f
CH
1367 bio_put(bio);
1368 return;
1369defer:
1370 spin_lock_irqsave(&bio_dirty_lock, flags);
1371 bio->bi_private = bio_dirty_list;
1372 bio_dirty_list = bio;
1373 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1374 schedule_work(&bio_dirty_work);
1da177e4
LT
1375}
1376
c4cf5261
JA
1377static inline bool bio_remaining_done(struct bio *bio)
1378{
1379 /*
1380 * If we're not chaining, then ->__bi_remaining is always 1 and
1381 * we always end io on the first invocation.
1382 */
1383 if (!bio_flagged(bio, BIO_CHAIN))
1384 return true;
1385
1386 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1387
326e1dbb 1388 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1389 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1390 return true;
326e1dbb 1391 }
c4cf5261
JA
1392
1393 return false;
1394}
1395
1da177e4
LT
1396/**
1397 * bio_endio - end I/O on a bio
1398 * @bio: bio
1da177e4
LT
1399 *
1400 * Description:
4246a0b6
CH
1401 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1402 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1403 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1404 *
1405 * bio_endio() can be called several times on a bio that has been chained
1406 * using bio_chain(). The ->bi_end_io() function will only be called the
1407 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1408 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1409 **/
4246a0b6 1410void bio_endio(struct bio *bio)
1da177e4 1411{
ba8c6967 1412again:
2b885517 1413 if (!bio_remaining_done(bio))
ba8c6967 1414 return;
7c20f116
CH
1415 if (!bio_integrity_endio(bio))
1416 return;
1da177e4 1417
67b42d0b
JB
1418 if (bio->bi_disk)
1419 rq_qos_done_bio(bio->bi_disk->queue, bio);
1420
ba8c6967
CH
1421 /*
1422 * Need to have a real endio function for chained bios, otherwise
1423 * various corner cases will break (like stacking block devices that
1424 * save/restore bi_end_io) - however, we want to avoid unbounded
1425 * recursion and blowing the stack. Tail call optimization would
1426 * handle this, but compiling with frame pointers also disables
1427 * gcc's sibling call optimization.
1428 */
1429 if (bio->bi_end_io == bio_chain_endio) {
1430 bio = __bio_chain_endio(bio);
1431 goto again;
196d38bc 1432 }
ba8c6967 1433
74d46992 1434 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
d24de76a 1435 trace_block_bio_complete(bio->bi_disk->queue, bio);
fbbaf700
N
1436 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1437 }
1438
9e234eea 1439 blk_throtl_bio_endio(bio);
b222dd2f
SL
1440 /* release cgroup info */
1441 bio_uninit(bio);
ba8c6967
CH
1442 if (bio->bi_end_io)
1443 bio->bi_end_io(bio);
1da177e4 1444}
a112a71d 1445EXPORT_SYMBOL(bio_endio);
1da177e4 1446
20d0189b
KO
1447/**
1448 * bio_split - split a bio
1449 * @bio: bio to split
1450 * @sectors: number of sectors to split from the front of @bio
1451 * @gfp: gfp mask
1452 * @bs: bio set to allocate from
1453 *
1454 * Allocates and returns a new bio which represents @sectors from the start of
1455 * @bio, and updates @bio to represent the remaining sectors.
1456 *
f3f5da62 1457 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1458 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1459 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1460 */
1461struct bio *bio_split(struct bio *bio, int sectors,
1462 gfp_t gfp, struct bio_set *bs)
1463{
f341a4d3 1464 struct bio *split;
20d0189b
KO
1465
1466 BUG_ON(sectors <= 0);
1467 BUG_ON(sectors >= bio_sectors(bio));
1468
0512a75b
KB
1469 /* Zone append commands cannot be split */
1470 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1471 return NULL;
1472
f9d03f96 1473 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1474 if (!split)
1475 return NULL;
1476
1477 split->bi_iter.bi_size = sectors << 9;
1478
1479 if (bio_integrity(split))
fbd08e76 1480 bio_integrity_trim(split);
20d0189b
KO
1481
1482 bio_advance(bio, split->bi_iter.bi_size);
1483
fbbaf700 1484 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1485 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1486
20d0189b
KO
1487 return split;
1488}
1489EXPORT_SYMBOL(bio_split);
1490
6678d83f
KO
1491/**
1492 * bio_trim - trim a bio
1493 * @bio: bio to trim
1494 * @offset: number of sectors to trim from the front of @bio
1495 * @size: size we want to trim @bio to, in sectors
1496 */
1497void bio_trim(struct bio *bio, int offset, int size)
1498{
1499 /* 'bio' is a cloned bio which we need to trim to match
1500 * the given offset and size.
6678d83f 1501 */
6678d83f
KO
1502
1503 size <<= 9;
4f024f37 1504 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1505 return;
1506
6678d83f 1507 bio_advance(bio, offset << 9);
4f024f37 1508 bio->bi_iter.bi_size = size;
376a78ab
DM
1509
1510 if (bio_integrity(bio))
fbd08e76 1511 bio_integrity_trim(bio);
376a78ab 1512
6678d83f
KO
1513}
1514EXPORT_SYMBOL_GPL(bio_trim);
1515
1da177e4
LT
1516/*
1517 * create memory pools for biovec's in a bio_set.
1518 * use the global biovec slabs created for general use.
1519 */
8aa6ba2f 1520int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1521{
ed996a52 1522 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1523
8aa6ba2f 1524 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1525}
1526
917a38c7
KO
1527/*
1528 * bioset_exit - exit a bioset initialized with bioset_init()
1529 *
1530 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1531 * kzalloc()).
1532 */
1533void bioset_exit(struct bio_set *bs)
1da177e4 1534{
df2cb6da
KO
1535 if (bs->rescue_workqueue)
1536 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1537 bs->rescue_workqueue = NULL;
df2cb6da 1538
8aa6ba2f
KO
1539 mempool_exit(&bs->bio_pool);
1540 mempool_exit(&bs->bvec_pool);
9f060e22 1541
7878cba9 1542 bioset_integrity_free(bs);
917a38c7
KO
1543 if (bs->bio_slab)
1544 bio_put_slab(bs);
1545 bs->bio_slab = NULL;
1546}
1547EXPORT_SYMBOL(bioset_exit);
1da177e4 1548
917a38c7
KO
1549/**
1550 * bioset_init - Initialize a bio_set
dad08527 1551 * @bs: pool to initialize
917a38c7
KO
1552 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1553 * @front_pad: Number of bytes to allocate in front of the returned bio
1554 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1555 * and %BIOSET_NEED_RESCUER
1556 *
dad08527
KO
1557 * Description:
1558 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1559 * to ask for a number of bytes to be allocated in front of the bio.
1560 * Front pad allocation is useful for embedding the bio inside
1561 * another structure, to avoid allocating extra data to go with the bio.
1562 * Note that the bio must be embedded at the END of that structure always,
1563 * or things will break badly.
1564 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1565 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1566 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1567 * dispatch queued requests when the mempool runs out of space.
1568 *
917a38c7
KO
1569 */
1570int bioset_init(struct bio_set *bs,
1571 unsigned int pool_size,
1572 unsigned int front_pad,
1573 int flags)
1574{
1575 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1576
1577 bs->front_pad = front_pad;
1578
1579 spin_lock_init(&bs->rescue_lock);
1580 bio_list_init(&bs->rescue_list);
1581 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1582
1583 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1584 if (!bs->bio_slab)
1585 return -ENOMEM;
1586
1587 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1588 goto bad;
1589
1590 if ((flags & BIOSET_NEED_BVECS) &&
1591 biovec_init_pool(&bs->bvec_pool, pool_size))
1592 goto bad;
1593
1594 if (!(flags & BIOSET_NEED_RESCUER))
1595 return 0;
1596
1597 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1598 if (!bs->rescue_workqueue)
1599 goto bad;
1600
1601 return 0;
1602bad:
1603 bioset_exit(bs);
1604 return -ENOMEM;
1605}
1606EXPORT_SYMBOL(bioset_init);
1607
28e89fd9
JA
1608/*
1609 * Initialize and setup a new bio_set, based on the settings from
1610 * another bio_set.
1611 */
1612int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1613{
1614 int flags;
1615
1616 flags = 0;
1617 if (src->bvec_pool.min_nr)
1618 flags |= BIOSET_NEED_BVECS;
1619 if (src->rescue_workqueue)
1620 flags |= BIOSET_NEED_RESCUER;
1621
1622 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1623}
1624EXPORT_SYMBOL(bioset_init_from_src);
1625
852c788f 1626#ifdef CONFIG_BLK_CGROUP
1d933cf0 1627
74b7c02a 1628/**
2268c0fe 1629 * bio_disassociate_blkg - puts back the blkg reference if associated
74b7c02a 1630 * @bio: target bio
74b7c02a 1631 *
2268c0fe 1632 * Helper to disassociate the blkg from @bio if a blkg is associated.
74b7c02a 1633 */
2268c0fe 1634void bio_disassociate_blkg(struct bio *bio)
74b7c02a 1635{
2268c0fe
DZ
1636 if (bio->bi_blkg) {
1637 blkg_put(bio->bi_blkg);
1638 bio->bi_blkg = NULL;
1639 }
74b7c02a 1640}
892ad71f 1641EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
74b7c02a 1642
a7b39b4e 1643/**
2268c0fe 1644 * __bio_associate_blkg - associate a bio with the a blkg
a7b39b4e 1645 * @bio: target bio
b5f2954d 1646 * @blkg: the blkg to associate
b5f2954d 1647 *
beea9da0
DZ
1648 * This tries to associate @bio with the specified @blkg. Association failure
1649 * is handled by walking up the blkg tree. Therefore, the blkg associated can
1650 * be anything between @blkg and the root_blkg. This situation only happens
1651 * when a cgroup is dying and then the remaining bios will spill to the closest
1652 * alive blkg.
a7b39b4e 1653 *
beea9da0
DZ
1654 * A reference will be taken on the @blkg and will be released when @bio is
1655 * freed.
a7b39b4e 1656 */
2268c0fe 1657static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
a7b39b4e 1658{
2268c0fe
DZ
1659 bio_disassociate_blkg(bio);
1660
7754f669 1661 bio->bi_blkg = blkg_tryget_closest(blkg);
a7b39b4e
DZF
1662}
1663
d459d853 1664/**
fd42df30 1665 * bio_associate_blkg_from_css - associate a bio with a specified css
d459d853 1666 * @bio: target bio
fd42df30 1667 * @css: target css
d459d853 1668 *
fd42df30 1669 * Associate @bio with the blkg found by combining the css's blkg and the
fc5a828b
DZ
1670 * request_queue of the @bio. This falls back to the queue's root_blkg if
1671 * the association fails with the css.
d459d853 1672 */
fd42df30
DZ
1673void bio_associate_blkg_from_css(struct bio *bio,
1674 struct cgroup_subsys_state *css)
d459d853 1675{
fc5a828b
DZ
1676 struct request_queue *q = bio->bi_disk->queue;
1677 struct blkcg_gq *blkg;
1678
1679 rcu_read_lock();
1680
1681 if (!css || !css->parent)
1682 blkg = q->root_blkg;
1683 else
1684 blkg = blkg_lookup_create(css_to_blkcg(css), q);
1685
1686 __bio_associate_blkg(bio, blkg);
1687
1688 rcu_read_unlock();
d459d853 1689}
fd42df30 1690EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
d459d853 1691
6a7f6d86 1692#ifdef CONFIG_MEMCG
852c788f 1693/**
6a7f6d86 1694 * bio_associate_blkg_from_page - associate a bio with the page's blkg
852c788f 1695 * @bio: target bio
6a7f6d86
DZ
1696 * @page: the page to lookup the blkcg from
1697 *
1698 * Associate @bio with the blkg from @page's owning memcg and the respective
fc5a828b
DZ
1699 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
1700 * root_blkg.
852c788f 1701 */
6a7f6d86 1702void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
852c788f 1703{
6a7f6d86
DZ
1704 struct cgroup_subsys_state *css;
1705
6a7f6d86
DZ
1706 if (!page->mem_cgroup)
1707 return;
1708
fc5a828b
DZ
1709 rcu_read_lock();
1710
1711 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
1712 bio_associate_blkg_from_css(bio, css);
1713
1714 rcu_read_unlock();
6a7f6d86
DZ
1715}
1716#endif /* CONFIG_MEMCG */
1717
2268c0fe
DZ
1718/**
1719 * bio_associate_blkg - associate a bio with a blkg
1720 * @bio: target bio
1721 *
1722 * Associate @bio with the blkg found from the bio's css and request_queue.
1723 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
1724 * already associated, the css is reused and association redone as the
1725 * request_queue may have changed.
1726 */
1727void bio_associate_blkg(struct bio *bio)
1728{
fc5a828b 1729 struct cgroup_subsys_state *css;
2268c0fe
DZ
1730
1731 rcu_read_lock();
1732
db6638d7 1733 if (bio->bi_blkg)
fc5a828b 1734 css = &bio_blkcg(bio)->css;
db6638d7 1735 else
fc5a828b 1736 css = blkcg_css();
2268c0fe 1737
fc5a828b 1738 bio_associate_blkg_from_css(bio, css);
2268c0fe
DZ
1739
1740 rcu_read_unlock();
852c788f 1741}
5cdf2e3f 1742EXPORT_SYMBOL_GPL(bio_associate_blkg);
852c788f 1743
20bd723e 1744/**
db6638d7 1745 * bio_clone_blkg_association - clone blkg association from src to dst bio
20bd723e
PV
1746 * @dst: destination bio
1747 * @src: source bio
1748 */
db6638d7 1749void bio_clone_blkg_association(struct bio *dst, struct bio *src)
20bd723e 1750{
6ab21879
DZ
1751 rcu_read_lock();
1752
fc5a828b 1753 if (src->bi_blkg)
2268c0fe 1754 __bio_associate_blkg(dst, src->bi_blkg);
6ab21879
DZ
1755
1756 rcu_read_unlock();
20bd723e 1757}
db6638d7 1758EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
852c788f
TH
1759#endif /* CONFIG_BLK_CGROUP */
1760
1da177e4
LT
1761static void __init biovec_init_slabs(void)
1762{
1763 int i;
1764
ed996a52 1765 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
1766 int size;
1767 struct biovec_slab *bvs = bvec_slabs + i;
1768
a7fcd37c
JA
1769 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1770 bvs->slab = NULL;
1771 continue;
1772 }
a7fcd37c 1773
1da177e4
LT
1774 size = bvs->nr_vecs * sizeof(struct bio_vec);
1775 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1776 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1777 }
1778}
1779
1780static int __init init_bio(void)
1781{
bb799ca0
JA
1782 bio_slab_max = 2;
1783 bio_slab_nr = 0;
6396bb22
KC
1784 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
1785 GFP_KERNEL);
2b24e6f6
JT
1786
1787 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
1788
bb799ca0
JA
1789 if (!bio_slabs)
1790 panic("bio: can't allocate bios\n");
1da177e4 1791
7878cba9 1792 bio_integrity_init();
1da177e4
LT
1793 biovec_init_slabs();
1794
f4f8154a 1795 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1796 panic("bio: can't allocate bios\n");
1797
f4f8154a 1798 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1799 panic("bio: can't create integrity pool\n");
1800
1da177e4
LT
1801 return 0;
1802}
1da177e4 1803subsys_initcall(init_bio);