blk-crypto: use bio_kmalloc in blk_crypto_clone_bio
[linux-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
de6a78b6 20#include <linux/sched/sysctl.h>
a892c8d5 21#include <linux/blk-crypto.h>
49d1ec85 22#include <linux/xarray.h>
1da177e4 23
55782138 24#include <trace/events/block.h>
9e234eea 25#include "blk.h"
67b42d0b 26#include "blk-rq-qos.h"
0bfc2455 27
392ddc32
JA
28/*
29 * Test patch to inline a certain number of bi_io_vec's inside the bio
30 * itself, to shrink a bio data allocation from two mempool calls to one
31 */
32#define BIO_INLINE_VECS 4
33
1da177e4
LT
34/*
35 * if you change this list, also change bvec_alloc or things will
36 * break badly! cannot be bigger than what you can fit into an
37 * unsigned short
38 */
bd5c4fac 39#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 40static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 41 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
42};
43#undef BV
44
1da177e4
LT
45/*
46 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
47 * IO code that does not need private memory pools.
48 */
f4f8154a 49struct bio_set fs_bio_set;
3f86a82a 50EXPORT_SYMBOL(fs_bio_set);
1da177e4 51
bb799ca0
JA
52/*
53 * Our slab pool management
54 */
55struct bio_slab {
56 struct kmem_cache *slab;
57 unsigned int slab_ref;
58 unsigned int slab_size;
59 char name[8];
60};
61static DEFINE_MUTEX(bio_slab_lock);
49d1ec85 62static DEFINE_XARRAY(bio_slabs);
bb799ca0 63
49d1ec85 64static struct bio_slab *create_bio_slab(unsigned int size)
bb799ca0 65{
49d1ec85 66 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
bb799ca0 67
49d1ec85
ML
68 if (!bslab)
69 return NULL;
bb799ca0 70
49d1ec85
ML
71 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
72 bslab->slab = kmem_cache_create(bslab->name, size,
73 ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
74 if (!bslab->slab)
75 goto fail_alloc_slab;
bb799ca0 76
49d1ec85
ML
77 bslab->slab_ref = 1;
78 bslab->slab_size = size;
bb799ca0 79
49d1ec85
ML
80 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
81 return bslab;
bb799ca0 82
49d1ec85 83 kmem_cache_destroy(bslab->slab);
bb799ca0 84
49d1ec85
ML
85fail_alloc_slab:
86 kfree(bslab);
87 return NULL;
88}
bb799ca0 89
49d1ec85
ML
90static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
91{
9f180e31 92 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
49d1ec85
ML
93}
94
95static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
96{
97 unsigned int size = bs_bio_slab_size(bs);
98 struct bio_slab *bslab;
99
100 mutex_lock(&bio_slab_lock);
101 bslab = xa_load(&bio_slabs, size);
102 if (bslab)
103 bslab->slab_ref++;
104 else
105 bslab = create_bio_slab(size);
bb799ca0 106 mutex_unlock(&bio_slab_lock);
49d1ec85
ML
107
108 if (bslab)
109 return bslab->slab;
110 return NULL;
bb799ca0
JA
111}
112
113static void bio_put_slab(struct bio_set *bs)
114{
115 struct bio_slab *bslab = NULL;
49d1ec85 116 unsigned int slab_size = bs_bio_slab_size(bs);
bb799ca0
JA
117
118 mutex_lock(&bio_slab_lock);
119
49d1ec85 120 bslab = xa_load(&bio_slabs, slab_size);
bb799ca0
JA
121 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
122 goto out;
123
49d1ec85
ML
124 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
125
bb799ca0
JA
126 WARN_ON(!bslab->slab_ref);
127
128 if (--bslab->slab_ref)
129 goto out;
130
49d1ec85
ML
131 xa_erase(&bio_slabs, slab_size);
132
bb799ca0 133 kmem_cache_destroy(bslab->slab);
49d1ec85 134 kfree(bslab);
bb799ca0
JA
135
136out:
137 mutex_unlock(&bio_slab_lock);
138}
139
7ba1ba12
MP
140unsigned int bvec_nr_vecs(unsigned short idx)
141{
d6c02a9b 142 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
143}
144
9f060e22 145void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 146{
ed996a52
CH
147 if (!idx)
148 return;
149 idx--;
150
151 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 152
ed996a52 153 if (idx == BVEC_POOL_MAX) {
9f060e22 154 mempool_free(bv, pool);
ed996a52 155 } else {
bb799ca0
JA
156 struct biovec_slab *bvs = bvec_slabs + idx;
157
158 kmem_cache_free(bvs->slab, bv);
159 }
160}
161
9f060e22
KO
162struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
163 mempool_t *pool)
1da177e4
LT
164{
165 struct bio_vec *bvl;
1da177e4 166
7ff9345f
JA
167 /*
168 * see comment near bvec_array define!
169 */
170 switch (nr) {
171 case 1:
172 *idx = 0;
173 break;
174 case 2 ... 4:
175 *idx = 1;
176 break;
177 case 5 ... 16:
178 *idx = 2;
179 break;
180 case 17 ... 64:
181 *idx = 3;
182 break;
183 case 65 ... 128:
184 *idx = 4;
185 break;
186 case 129 ... BIO_MAX_PAGES:
187 *idx = 5;
188 break;
189 default:
190 return NULL;
191 }
192
193 /*
194 * idx now points to the pool we want to allocate from. only the
195 * 1-vec entry pool is mempool backed.
196 */
ed996a52 197 if (*idx == BVEC_POOL_MAX) {
7ff9345f 198fallback:
9f060e22 199 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
200 } else {
201 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 202 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 203
0a0d96b0 204 /*
7ff9345f
JA
205 * Make this allocation restricted and don't dump info on
206 * allocation failures, since we'll fallback to the mempool
207 * in case of failure.
0a0d96b0 208 */
7ff9345f 209 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 210
0a0d96b0 211 /*
d0164adc 212 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 213 * is set, retry with the 1-entry mempool
0a0d96b0 214 */
7ff9345f 215 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 216 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 217 *idx = BVEC_POOL_MAX;
7ff9345f
JA
218 goto fallback;
219 }
220 }
221
ed996a52 222 (*idx)++;
1da177e4
LT
223 return bvl;
224}
225
9ae3b3f5 226void bio_uninit(struct bio *bio)
1da177e4 227{
db9819c7
CH
228#ifdef CONFIG_BLK_CGROUP
229 if (bio->bi_blkg) {
230 blkg_put(bio->bi_blkg);
231 bio->bi_blkg = NULL;
232 }
233#endif
ece841ab
JT
234 if (bio_integrity(bio))
235 bio_integrity_free(bio);
a892c8d5
ST
236
237 bio_crypt_free_ctx(bio);
4254bba1 238}
9ae3b3f5 239EXPORT_SYMBOL(bio_uninit);
7ba1ba12 240
4254bba1
KO
241static void bio_free(struct bio *bio)
242{
243 struct bio_set *bs = bio->bi_pool;
244 void *p;
245
9ae3b3f5 246 bio_uninit(bio);
4254bba1
KO
247
248 if (bs) {
8aa6ba2f 249 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
250
251 /*
252 * If we have front padding, adjust the bio pointer before freeing
253 */
254 p = bio;
bb799ca0
JA
255 p -= bs->front_pad;
256
8aa6ba2f 257 mempool_free(p, &bs->bio_pool);
4254bba1
KO
258 } else {
259 /* Bio was allocated by bio_kmalloc() */
260 kfree(bio);
261 }
3676347a
PO
262}
263
9ae3b3f5
JA
264/*
265 * Users of this function have their own bio allocation. Subsequently,
266 * they must remember to pair any call to bio_init() with bio_uninit()
267 * when IO has completed, or when the bio is released.
268 */
3a83f467
ML
269void bio_init(struct bio *bio, struct bio_vec *table,
270 unsigned short max_vecs)
1da177e4 271{
2b94de55 272 memset(bio, 0, sizeof(*bio));
c4cf5261 273 atomic_set(&bio->__bi_remaining, 1);
dac56212 274 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
275
276 bio->bi_io_vec = table;
277 bio->bi_max_vecs = max_vecs;
1da177e4 278}
a112a71d 279EXPORT_SYMBOL(bio_init);
1da177e4 280
f44b48c7
KO
281/**
282 * bio_reset - reinitialize a bio
283 * @bio: bio to reset
284 *
285 * Description:
286 * After calling bio_reset(), @bio will be in the same state as a freshly
287 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
288 * preserved are the ones that are initialized by bio_alloc_bioset(). See
289 * comment in struct bio.
290 */
291void bio_reset(struct bio *bio)
292{
293 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
294
9ae3b3f5 295 bio_uninit(bio);
f44b48c7
KO
296
297 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 298 bio->bi_flags = flags;
c4cf5261 299 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
300}
301EXPORT_SYMBOL(bio_reset);
302
38f8baae 303static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 304{
4246a0b6
CH
305 struct bio *parent = bio->bi_private;
306
4e4cbee9
CH
307 if (!parent->bi_status)
308 parent->bi_status = bio->bi_status;
196d38bc 309 bio_put(bio);
38f8baae
CH
310 return parent;
311}
312
313static void bio_chain_endio(struct bio *bio)
314{
315 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
316}
317
318/**
319 * bio_chain - chain bio completions
1051a902 320 * @bio: the target bio
5b874af6 321 * @parent: the parent bio of @bio
196d38bc
KO
322 *
323 * The caller won't have a bi_end_io called when @bio completes - instead,
324 * @parent's bi_end_io won't be called until both @parent and @bio have
325 * completed; the chained bio will also be freed when it completes.
326 *
327 * The caller must not set bi_private or bi_end_io in @bio.
328 */
329void bio_chain(struct bio *bio, struct bio *parent)
330{
331 BUG_ON(bio->bi_private || bio->bi_end_io);
332
333 bio->bi_private = parent;
334 bio->bi_end_io = bio_chain_endio;
c4cf5261 335 bio_inc_remaining(parent);
196d38bc
KO
336}
337EXPORT_SYMBOL(bio_chain);
338
df2cb6da
KO
339static void bio_alloc_rescue(struct work_struct *work)
340{
341 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
342 struct bio *bio;
343
344 while (1) {
345 spin_lock(&bs->rescue_lock);
346 bio = bio_list_pop(&bs->rescue_list);
347 spin_unlock(&bs->rescue_lock);
348
349 if (!bio)
350 break;
351
ed00aabd 352 submit_bio_noacct(bio);
df2cb6da
KO
353 }
354}
355
356static void punt_bios_to_rescuer(struct bio_set *bs)
357{
358 struct bio_list punt, nopunt;
359 struct bio *bio;
360
47e0fb46
N
361 if (WARN_ON_ONCE(!bs->rescue_workqueue))
362 return;
df2cb6da
KO
363 /*
364 * In order to guarantee forward progress we must punt only bios that
365 * were allocated from this bio_set; otherwise, if there was a bio on
366 * there for a stacking driver higher up in the stack, processing it
367 * could require allocating bios from this bio_set, and doing that from
368 * our own rescuer would be bad.
369 *
370 * Since bio lists are singly linked, pop them all instead of trying to
371 * remove from the middle of the list:
372 */
373
374 bio_list_init(&punt);
375 bio_list_init(&nopunt);
376
f5fe1b51 377 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 378 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 379 current->bio_list[0] = nopunt;
df2cb6da 380
f5fe1b51
N
381 bio_list_init(&nopunt);
382 while ((bio = bio_list_pop(&current->bio_list[1])))
383 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
384 current->bio_list[1] = nopunt;
df2cb6da
KO
385
386 spin_lock(&bs->rescue_lock);
387 bio_list_merge(&bs->rescue_list, &punt);
388 spin_unlock(&bs->rescue_lock);
389
390 queue_work(bs->rescue_workqueue, &bs->rescue_work);
391}
392
1da177e4
LT
393/**
394 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 395 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 396 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 397 * @bs: the bio_set to allocate from.
1da177e4
LT
398 *
399 * Description:
3f86a82a
KO
400 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
401 * backed by the @bs's mempool.
402 *
d0164adc
MG
403 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
404 * always be able to allocate a bio. This is due to the mempool guarantees.
405 * To make this work, callers must never allocate more than 1 bio at a time
406 * from this pool. Callers that need to allocate more than 1 bio must always
407 * submit the previously allocated bio for IO before attempting to allocate
408 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 409 *
ed00aabd 410 * Note that when running under submit_bio_noacct() (i.e. any block
df2cb6da 411 * driver), bios are not submitted until after you return - see the code in
ed00aabd 412 * submit_bio_noacct() that converts recursion into iteration, to prevent
df2cb6da
KO
413 * stack overflows.
414 *
415 * This would normally mean allocating multiple bios under
ed00aabd 416 * submit_bio_noacct() would be susceptible to deadlocks, but we have
df2cb6da
KO
417 * deadlock avoidance code that resubmits any blocked bios from a rescuer
418 * thread.
419 *
420 * However, we do not guarantee forward progress for allocations from other
421 * mempools. Doing multiple allocations from the same mempool under
ed00aabd 422 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
df2cb6da
KO
423 * for per bio allocations.
424 *
3f86a82a
KO
425 * RETURNS:
426 * Pointer to new bio on success, NULL on failure.
427 */
7a88fa19
DC
428struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
429 struct bio_set *bs)
1da177e4 430{
df2cb6da 431 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
432 unsigned front_pad;
433 unsigned inline_vecs;
34053979 434 struct bio_vec *bvl = NULL;
451a9ebf
TH
435 struct bio *bio;
436 void *p;
437
3f86a82a
KO
438 if (!bs) {
439 if (nr_iovecs > UIO_MAXIOV)
440 return NULL;
441
1f4fe21c 442 p = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
3f86a82a
KO
443 front_pad = 0;
444 inline_vecs = nr_iovecs;
445 } else {
d8f429e1 446 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
447 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
448 nr_iovecs > 0))
d8f429e1 449 return NULL;
df2cb6da 450 /*
ed00aabd 451 * submit_bio_noacct() converts recursion to iteration; this
df2cb6da
KO
452 * means if we're running beneath it, any bios we allocate and
453 * submit will not be submitted (and thus freed) until after we
454 * return.
455 *
456 * This exposes us to a potential deadlock if we allocate
457 * multiple bios from the same bio_set() while running
ed00aabd 458 * underneath submit_bio_noacct(). If we were to allocate
df2cb6da
KO
459 * multiple bios (say a stacking block driver that was splitting
460 * bios), we would deadlock if we exhausted the mempool's
461 * reserve.
462 *
463 * We solve this, and guarantee forward progress, with a rescuer
464 * workqueue per bio_set. If we go to allocate and there are
465 * bios on current->bio_list, we first try the allocation
d0164adc
MG
466 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
467 * bios we would be blocking to the rescuer workqueue before
468 * we retry with the original gfp_flags.
df2cb6da
KO
469 */
470
f5fe1b51
N
471 if (current->bio_list &&
472 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
473 !bio_list_empty(&current->bio_list[1])) &&
474 bs->rescue_workqueue)
d0164adc 475 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 476
8aa6ba2f 477 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
478 if (!p && gfp_mask != saved_gfp) {
479 punt_bios_to_rescuer(bs);
480 gfp_mask = saved_gfp;
8aa6ba2f 481 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
482 }
483
3f86a82a
KO
484 front_pad = bs->front_pad;
485 inline_vecs = BIO_INLINE_VECS;
486 }
487
451a9ebf
TH
488 if (unlikely(!p))
489 return NULL;
1da177e4 490
3f86a82a 491 bio = p + front_pad;
3a83f467 492 bio_init(bio, NULL, 0);
34053979 493
3f86a82a 494 if (nr_iovecs > inline_vecs) {
ed996a52
CH
495 unsigned long idx = 0;
496
8aa6ba2f 497 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
498 if (!bvl && gfp_mask != saved_gfp) {
499 punt_bios_to_rescuer(bs);
500 gfp_mask = saved_gfp;
8aa6ba2f 501 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
502 }
503
34053979
IM
504 if (unlikely(!bvl))
505 goto err_free;
a38352e0 506
ed996a52 507 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
baa2c7c9 508 bio->bi_max_vecs = bvec_nr_vecs(idx);
3f86a82a
KO
509 } else if (nr_iovecs) {
510 bvl = bio->bi_inline_vecs;
baa2c7c9 511 bio->bi_max_vecs = inline_vecs;
1da177e4 512 }
3f86a82a
KO
513
514 bio->bi_pool = bs;
34053979 515 bio->bi_io_vec = bvl;
1da177e4 516 return bio;
34053979
IM
517
518err_free:
8aa6ba2f 519 mempool_free(p, &bs->bio_pool);
34053979 520 return NULL;
1da177e4 521}
a112a71d 522EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 523
38a72dac 524void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
525{
526 unsigned long flags;
7988613b
KO
527 struct bio_vec bv;
528 struct bvec_iter iter;
1da177e4 529
38a72dac 530 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
531 char *data = bvec_kmap_irq(&bv, &flags);
532 memset(data, 0, bv.bv_len);
533 flush_dcache_page(bv.bv_page);
1da177e4
LT
534 bvec_kunmap_irq(data, &flags);
535 }
536}
38a72dac 537EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4 538
83c9c547
ML
539/**
540 * bio_truncate - truncate the bio to small size of @new_size
541 * @bio: the bio to be truncated
542 * @new_size: new size for truncating the bio
543 *
544 * Description:
545 * Truncate the bio to new size of @new_size. If bio_op(bio) is
546 * REQ_OP_READ, zero the truncated part. This function should only
547 * be used for handling corner cases, such as bio eod.
548 */
85a8ce62
ML
549void bio_truncate(struct bio *bio, unsigned new_size)
550{
551 struct bio_vec bv;
552 struct bvec_iter iter;
553 unsigned int done = 0;
554 bool truncated = false;
555
556 if (new_size >= bio->bi_iter.bi_size)
557 return;
558
83c9c547 559 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
560 goto exit;
561
562 bio_for_each_segment(bv, bio, iter) {
563 if (done + bv.bv_len > new_size) {
564 unsigned offset;
565
566 if (!truncated)
567 offset = new_size - done;
568 else
569 offset = 0;
570 zero_user(bv.bv_page, offset, bv.bv_len - offset);
571 truncated = true;
572 }
573 done += bv.bv_len;
574 }
575
576 exit:
577 /*
578 * Don't touch bvec table here and make it really immutable, since
579 * fs bio user has to retrieve all pages via bio_for_each_segment_all
580 * in its .end_bio() callback.
581 *
582 * It is enough to truncate bio by updating .bi_size since we can make
583 * correct bvec with the updated .bi_size for drivers.
584 */
585 bio->bi_iter.bi_size = new_size;
586}
587
29125ed6
CH
588/**
589 * guard_bio_eod - truncate a BIO to fit the block device
590 * @bio: bio to truncate
591 *
592 * This allows us to do IO even on the odd last sectors of a device, even if the
593 * block size is some multiple of the physical sector size.
594 *
595 * We'll just truncate the bio to the size of the device, and clear the end of
596 * the buffer head manually. Truly out-of-range accesses will turn into actual
597 * I/O errors, this only handles the "we need to be able to do I/O at the final
598 * sector" case.
599 */
600void guard_bio_eod(struct bio *bio)
601{
309dca30 602 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
603
604 if (!maxsector)
605 return;
606
607 /*
608 * If the *whole* IO is past the end of the device,
609 * let it through, and the IO layer will turn it into
610 * an EIO.
611 */
612 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
613 return;
614
615 maxsector -= bio->bi_iter.bi_sector;
616 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
617 return;
618
619 bio_truncate(bio, maxsector << 9);
620}
621
1da177e4
LT
622/**
623 * bio_put - release a reference to a bio
624 * @bio: bio to release reference to
625 *
626 * Description:
627 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 628 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
629 **/
630void bio_put(struct bio *bio)
631{
dac56212 632 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 633 bio_free(bio);
dac56212
JA
634 else {
635 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
636
637 /*
638 * last put frees it
639 */
640 if (atomic_dec_and_test(&bio->__bi_cnt))
641 bio_free(bio);
642 }
1da177e4 643}
a112a71d 644EXPORT_SYMBOL(bio_put);
1da177e4 645
59d276fe
KO
646/**
647 * __bio_clone_fast - clone a bio that shares the original bio's biovec
648 * @bio: destination bio
649 * @bio_src: bio to clone
650 *
651 * Clone a &bio. Caller will own the returned bio, but not
652 * the actual data it points to. Reference count of returned
653 * bio will be one.
654 *
655 * Caller must ensure that @bio_src is not freed before @bio.
656 */
657void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
658{
ed996a52 659 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
660
661 /*
309dca30 662 * most users will be overriding ->bi_bdev with a new target,
59d276fe
KO
663 * so we don't set nor calculate new physical/hw segment counts here
664 */
309dca30 665 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 666 bio_set_flag(bio, BIO_CLONED);
111be883
SL
667 if (bio_flagged(bio_src, BIO_THROTTLED))
668 bio_set_flag(bio, BIO_THROTTLED);
46bbf653
CH
669 if (bio_flagged(bio_src, BIO_REMAPPED))
670 bio_set_flag(bio, BIO_REMAPPED);
1eff9d32 671 bio->bi_opf = bio_src->bi_opf;
ca474b73 672 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 673 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
674 bio->bi_iter = bio_src->bi_iter;
675 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 676
db6638d7 677 bio_clone_blkg_association(bio, bio_src);
e439bedf 678 blkcg_bio_issue_init(bio);
59d276fe
KO
679}
680EXPORT_SYMBOL(__bio_clone_fast);
681
682/**
683 * bio_clone_fast - clone a bio that shares the original bio's biovec
684 * @bio: bio to clone
685 * @gfp_mask: allocation priority
686 * @bs: bio_set to allocate from
687 *
688 * Like __bio_clone_fast, only also allocates the returned bio
689 */
690struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
691{
692 struct bio *b;
693
694 b = bio_alloc_bioset(gfp_mask, 0, bs);
695 if (!b)
696 return NULL;
697
698 __bio_clone_fast(b, bio);
699
07560151
EB
700 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
701 goto err_put;
a892c8d5 702
07560151
EB
703 if (bio_integrity(bio) &&
704 bio_integrity_clone(b, bio, gfp_mask) < 0)
705 goto err_put;
59d276fe
KO
706
707 return b;
07560151
EB
708
709err_put:
710 bio_put(b);
711 return NULL;
59d276fe
KO
712}
713EXPORT_SYMBOL(bio_clone_fast);
714
5cbd28e3
CH
715const char *bio_devname(struct bio *bio, char *buf)
716{
309dca30 717 return bdevname(bio->bi_bdev, buf);
5cbd28e3
CH
718}
719EXPORT_SYMBOL(bio_devname);
720
5919482e
ML
721static inline bool page_is_mergeable(const struct bio_vec *bv,
722 struct page *page, unsigned int len, unsigned int off,
ff896738 723 bool *same_page)
5919482e 724{
d8166519
MWO
725 size_t bv_end = bv->bv_offset + bv->bv_len;
726 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
727 phys_addr_t page_addr = page_to_phys(page);
728
729 if (vec_end_addr + 1 != page_addr + off)
730 return false;
731 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
732 return false;
52d52d1c 733
ff896738 734 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
d8166519
MWO
735 if (*same_page)
736 return true;
737 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
5919482e
ML
738}
739
e4581105
CH
740/*
741 * Try to merge a page into a segment, while obeying the hardware segment
742 * size limit. This is not for normal read/write bios, but for passthrough
743 * or Zone Append operations that we can't split.
744 */
745static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
746 struct page *page, unsigned len,
747 unsigned offset, bool *same_page)
489fbbcb 748{
384209cd 749 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
750 unsigned long mask = queue_segment_boundary(q);
751 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
752 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
753
754 if ((addr1 | mask) != (addr2 | mask))
755 return false;
489fbbcb
ML
756 if (bv->bv_len + len > queue_max_segment_size(q))
757 return false;
384209cd 758 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
759}
760
1da177e4 761/**
e4581105
CH
762 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
763 * @q: the target queue
764 * @bio: destination bio
765 * @page: page to add
766 * @len: vec entry length
767 * @offset: vec entry offset
768 * @max_sectors: maximum number of sectors that can be added
769 * @same_page: return if the segment has been merged inside the same page
c66a14d0 770 *
e4581105
CH
771 * Add a page to a bio while respecting the hardware max_sectors, max_segment
772 * and gap limitations.
1da177e4 773 */
e4581105 774int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 775 struct page *page, unsigned int len, unsigned int offset,
e4581105 776 unsigned int max_sectors, bool *same_page)
1da177e4 777{
1da177e4
LT
778 struct bio_vec *bvec;
779
e4581105 780 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
781 return 0;
782
e4581105 783 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
784 return 0;
785
80cfd548 786 if (bio->bi_vcnt > 0) {
e4581105 787 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 788 return len;
320ea869
CH
789
790 /*
791 * If the queue doesn't support SG gaps and adding this segment
792 * would create a gap, disallow it.
793 */
384209cd 794 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
795 if (bvec_gap_to_prev(q, bvec, offset))
796 return 0;
80cfd548
JA
797 }
798
79d08f89 799 if (bio_full(bio, len))
1da177e4
LT
800 return 0;
801
14ccb66b 802 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
803 return 0;
804
fcbf6a08
ML
805 bvec = &bio->bi_io_vec[bio->bi_vcnt];
806 bvec->bv_page = page;
807 bvec->bv_len = len;
808 bvec->bv_offset = offset;
809 bio->bi_vcnt++;
dcdca753 810 bio->bi_iter.bi_size += len;
1da177e4
LT
811 return len;
812}
19047087 813
e4581105
CH
814/**
815 * bio_add_pc_page - attempt to add page to passthrough bio
816 * @q: the target queue
817 * @bio: destination bio
818 * @page: page to add
819 * @len: vec entry length
820 * @offset: vec entry offset
821 *
822 * Attempt to add a page to the bio_vec maplist. This can fail for a
823 * number of reasons, such as the bio being full or target block device
824 * limitations. The target block device must allow bio's up to PAGE_SIZE,
825 * so it is always possible to add a single page to an empty bio.
826 *
827 * This should only be used by passthrough bios.
828 */
19047087
ML
829int bio_add_pc_page(struct request_queue *q, struct bio *bio,
830 struct page *page, unsigned int len, unsigned int offset)
831{
d1916c86 832 bool same_page = false;
e4581105
CH
833 return bio_add_hw_page(q, bio, page, len, offset,
834 queue_max_hw_sectors(q), &same_page);
19047087 835}
a112a71d 836EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 837
1da177e4 838/**
0aa69fd3
CH
839 * __bio_try_merge_page - try appending data to an existing bvec.
840 * @bio: destination bio
551879a4 841 * @page: start page to add
0aa69fd3 842 * @len: length of the data to add
551879a4 843 * @off: offset of the data relative to @page
ff896738 844 * @same_page: return if the segment has been merged inside the same page
1da177e4 845 *
0aa69fd3 846 * Try to add the data at @page + @off to the last bvec of @bio. This is a
3cf14889 847 * useful optimisation for file systems with a block size smaller than the
0aa69fd3
CH
848 * page size.
849 *
551879a4
ML
850 * Warn if (@len, @off) crosses pages in case that @same_page is true.
851 *
0aa69fd3 852 * Return %true on success or %false on failure.
1da177e4 853 */
0aa69fd3 854bool __bio_try_merge_page(struct bio *bio, struct page *page,
ff896738 855 unsigned int len, unsigned int off, bool *same_page)
1da177e4 856{
c66a14d0 857 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 858 return false;
762380ad 859
cc90bc68 860 if (bio->bi_vcnt > 0) {
0aa69fd3 861 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
862
863 if (page_is_mergeable(bv, page, len, off, same_page)) {
2cd896a5
RH
864 if (bio->bi_iter.bi_size > UINT_MAX - len) {
865 *same_page = false;
cc90bc68 866 return false;
2cd896a5 867 }
5919482e
ML
868 bv->bv_len += len;
869 bio->bi_iter.bi_size += len;
870 return true;
871 }
c66a14d0 872 }
0aa69fd3
CH
873 return false;
874}
875EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 876
0aa69fd3 877/**
551879a4 878 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 879 * @bio: destination bio
551879a4
ML
880 * @page: start page to add
881 * @len: length of the data to add, may cross pages
882 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
883 *
884 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
885 * that @bio has space for another bvec.
886 */
887void __bio_add_page(struct bio *bio, struct page *page,
888 unsigned int len, unsigned int off)
889{
890 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 891
0aa69fd3 892 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 893 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
894
895 bv->bv_page = page;
896 bv->bv_offset = off;
897 bv->bv_len = len;
c66a14d0 898
c66a14d0 899 bio->bi_iter.bi_size += len;
0aa69fd3 900 bio->bi_vcnt++;
b8e24a93
JW
901
902 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
903 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
904}
905EXPORT_SYMBOL_GPL(__bio_add_page);
906
907/**
551879a4 908 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 909 * @bio: destination bio
551879a4
ML
910 * @page: start page to add
911 * @len: vec entry length, may cross pages
912 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 913 *
551879a4 914 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
915 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
916 */
917int bio_add_page(struct bio *bio, struct page *page,
918 unsigned int len, unsigned int offset)
919{
ff896738
CH
920 bool same_page = false;
921
922 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 923 if (bio_full(bio, len))
0aa69fd3
CH
924 return 0;
925 __bio_add_page(bio, page, len, offset);
926 }
c66a14d0 927 return len;
1da177e4 928}
a112a71d 929EXPORT_SYMBOL(bio_add_page);
1da177e4 930
d241a95f 931void bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
932{
933 struct bvec_iter_all iter_all;
934 struct bio_vec *bvec;
7321ecbf 935
b2d0d991
CH
936 if (bio_flagged(bio, BIO_NO_PAGE_REF))
937 return;
938
d241a95f
CH
939 bio_for_each_segment_all(bvec, bio, iter_all) {
940 if (mark_dirty && !PageCompound(bvec->bv_page))
941 set_page_dirty_lock(bvec->bv_page);
7321ecbf 942 put_page(bvec->bv_page);
d241a95f 943 }
7321ecbf 944}
29b2a3aa 945EXPORT_SYMBOL_GPL(bio_release_pages);
7321ecbf 946
c42bca92 947static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
6d0c48ae 948{
c42bca92
PB
949 WARN_ON_ONCE(BVEC_POOL_IDX(bio) != 0);
950
951 bio->bi_vcnt = iter->nr_segs;
952 bio->bi_max_vecs = iter->nr_segs;
953 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
954 bio->bi_iter.bi_bvec_done = iter->iov_offset;
955 bio->bi_iter.bi_size = iter->count;
956
957 iov_iter_advance(iter, iter->count);
a10584c3 958 return 0;
6d0c48ae
JA
959}
960
576ed913
CH
961#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
962
2cefe4db 963/**
17d51b10 964 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
965 * @bio: bio to add pages to
966 * @iter: iov iterator describing the region to be mapped
967 *
17d51b10 968 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 969 * pages will have to be released using put_page() when done.
17d51b10 970 * For multi-segment *iter, this function only adds pages from the
3cf14889 971 * next non-empty segment of the iov iterator.
2cefe4db 972 */
17d51b10 973static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 974{
576ed913
CH
975 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
976 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
977 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
978 struct page **pages = (struct page **)bv;
45691804 979 bool same_page = false;
576ed913
CH
980 ssize_t size, left;
981 unsigned len, i;
b403ea24 982 size_t offset;
576ed913
CH
983
984 /*
985 * Move page array up in the allocated memory for the bio vecs as far as
986 * possible so that we can start filling biovecs from the beginning
987 * without overwriting the temporary page array.
988 */
989 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
990 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
991
992 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
993 if (unlikely(size <= 0))
994 return size ? size : -EFAULT;
2cefe4db 995
576ed913
CH
996 for (left = size, i = 0; left > 0; left -= len, i++) {
997 struct page *page = pages[i];
2cefe4db 998
576ed913 999 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
1000
1001 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1002 if (same_page)
1003 put_page(page);
1004 } else {
79d08f89 1005 if (WARN_ON_ONCE(bio_full(bio, len)))
45691804
CH
1006 return -EINVAL;
1007 __bio_add_page(bio, page, len, offset);
1008 }
576ed913 1009 offset = 0;
2cefe4db
KO
1010 }
1011
2cefe4db
KO
1012 iov_iter_advance(iter, size);
1013 return 0;
1014}
17d51b10 1015
0512a75b
KB
1016static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1017{
1018 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1019 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
309dca30 1020 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
0512a75b
KB
1021 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1022 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1023 struct page **pages = (struct page **)bv;
1024 ssize_t size, left;
1025 unsigned len, i;
1026 size_t offset;
4977d121 1027 int ret = 0;
0512a75b
KB
1028
1029 if (WARN_ON_ONCE(!max_append_sectors))
1030 return 0;
1031
1032 /*
1033 * Move page array up in the allocated memory for the bio vecs as far as
1034 * possible so that we can start filling biovecs from the beginning
1035 * without overwriting the temporary page array.
1036 */
1037 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1038 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1039
1040 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1041 if (unlikely(size <= 0))
1042 return size ? size : -EFAULT;
1043
1044 for (left = size, i = 0; left > 0; left -= len, i++) {
1045 struct page *page = pages[i];
1046 bool same_page = false;
1047
1048 len = min_t(size_t, PAGE_SIZE - offset, left);
1049 if (bio_add_hw_page(q, bio, page, len, offset,
4977d121
NA
1050 max_append_sectors, &same_page) != len) {
1051 ret = -EINVAL;
1052 break;
1053 }
0512a75b
KB
1054 if (same_page)
1055 put_page(page);
1056 offset = 0;
1057 }
1058
4977d121
NA
1059 iov_iter_advance(iter, size - left);
1060 return ret;
0512a75b
KB
1061}
1062
17d51b10 1063/**
6d0c48ae 1064 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1065 * @bio: bio to add pages to
6d0c48ae
JA
1066 * @iter: iov iterator describing the region to be added
1067 *
1068 * This takes either an iterator pointing to user memory, or one pointing to
1069 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1070 * map them into the kernel. On IO completion, the caller should put those
c42bca92
PB
1071 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1072 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1073 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1074 * completed by a call to ->ki_complete() or returns with an error other than
1075 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1076 * on IO completion. If it isn't, then pages should be released.
17d51b10 1077 *
17d51b10 1078 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1079 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1080 * MM encounters an error pinning the requested pages, it stops. Error
1081 * is returned only if 0 pages could be pinned.
0cf41e5e
PB
1082 *
1083 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1084 * responsible for setting BIO_WORKINGSET if necessary.
17d51b10
MW
1085 */
1086int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1087{
c42bca92 1088 int ret = 0;
17d51b10 1089
c42bca92
PB
1090 if (iov_iter_is_bvec(iter)) {
1091 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1092 return -EINVAL;
1093 bio_iov_bvec_set(bio, iter);
1094 bio_set_flag(bio, BIO_NO_PAGE_REF);
1095 return 0;
1096 } else {
1097 do {
1098 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1099 ret = __bio_iov_append_get_pages(bio, iter);
0512a75b
KB
1100 else
1101 ret = __bio_iov_iter_get_pages(bio, iter);
c42bca92
PB
1102 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1103 }
0cf41e5e
PB
1104
1105 /* don't account direct I/O as memory stall */
1106 bio_clear_flag(bio, BIO_WORKINGSET);
14eacf12 1107 return bio->bi_vcnt ? 0 : ret;
17d51b10 1108}
29b2a3aa 1109EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1110
4246a0b6 1111static void submit_bio_wait_endio(struct bio *bio)
9e882242 1112{
65e53aab 1113 complete(bio->bi_private);
9e882242
KO
1114}
1115
1116/**
1117 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1118 * @bio: The &struct bio which describes the I/O
1119 *
1120 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1121 * bio_endio() on failure.
3d289d68
JK
1122 *
1123 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1124 * result in bio reference to be consumed. The caller must drop the reference
1125 * on his own.
9e882242 1126 */
4e49ea4a 1127int submit_bio_wait(struct bio *bio)
9e882242 1128{
309dca30
CH
1129 DECLARE_COMPLETION_ONSTACK_MAP(done,
1130 bio->bi_bdev->bd_disk->lockdep_map);
de6a78b6 1131 unsigned long hang_check;
9e882242 1132
65e53aab 1133 bio->bi_private = &done;
9e882242 1134 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1135 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1136 submit_bio(bio);
de6a78b6
ML
1137
1138 /* Prevent hang_check timer from firing at us during very long I/O */
1139 hang_check = sysctl_hung_task_timeout_secs;
1140 if (hang_check)
1141 while (!wait_for_completion_io_timeout(&done,
1142 hang_check * (HZ/2)))
1143 ;
1144 else
1145 wait_for_completion_io(&done);
9e882242 1146
65e53aab 1147 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1148}
1149EXPORT_SYMBOL(submit_bio_wait);
1150
054bdf64
KO
1151/**
1152 * bio_advance - increment/complete a bio by some number of bytes
1153 * @bio: bio to advance
1154 * @bytes: number of bytes to complete
1155 *
1156 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1157 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1158 * be updated on the last bvec as well.
1159 *
1160 * @bio will then represent the remaining, uncompleted portion of the io.
1161 */
1162void bio_advance(struct bio *bio, unsigned bytes)
1163{
1164 if (bio_integrity(bio))
1165 bio_integrity_advance(bio, bytes);
1166
a892c8d5 1167 bio_crypt_advance(bio, bytes);
4550dd6c 1168 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1169}
1170EXPORT_SYMBOL(bio_advance);
1171
45db54d5
KO
1172void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1173 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1174{
1cb9dda4 1175 struct bio_vec src_bv, dst_bv;
16ac3d63 1176 void *src_p, *dst_p;
1cb9dda4 1177 unsigned bytes;
16ac3d63 1178
45db54d5
KO
1179 while (src_iter->bi_size && dst_iter->bi_size) {
1180 src_bv = bio_iter_iovec(src, *src_iter);
1181 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1182
1183 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1184
1cb9dda4
KO
1185 src_p = kmap_atomic(src_bv.bv_page);
1186 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1187
1cb9dda4
KO
1188 memcpy(dst_p + dst_bv.bv_offset,
1189 src_p + src_bv.bv_offset,
16ac3d63
KO
1190 bytes);
1191
1192 kunmap_atomic(dst_p);
1193 kunmap_atomic(src_p);
1194
6e6e811d
KO
1195 flush_dcache_page(dst_bv.bv_page);
1196
22b56c29
PB
1197 bio_advance_iter_single(src, src_iter, bytes);
1198 bio_advance_iter_single(dst, dst_iter, bytes);
16ac3d63
KO
1199 }
1200}
38a72dac
KO
1201EXPORT_SYMBOL(bio_copy_data_iter);
1202
1203/**
45db54d5
KO
1204 * bio_copy_data - copy contents of data buffers from one bio to another
1205 * @src: source bio
1206 * @dst: destination bio
38a72dac
KO
1207 *
1208 * Stops when it reaches the end of either @src or @dst - that is, copies
1209 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1210 */
1211void bio_copy_data(struct bio *dst, struct bio *src)
1212{
45db54d5
KO
1213 struct bvec_iter src_iter = src->bi_iter;
1214 struct bvec_iter dst_iter = dst->bi_iter;
1215
1216 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1217}
16ac3d63
KO
1218EXPORT_SYMBOL(bio_copy_data);
1219
45db54d5
KO
1220/**
1221 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1222 * another
1223 * @src: source bio list
1224 * @dst: destination bio list
1225 *
1226 * Stops when it reaches the end of either the @src list or @dst list - that is,
1227 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1228 * bios).
1229 */
1230void bio_list_copy_data(struct bio *dst, struct bio *src)
1231{
1232 struct bvec_iter src_iter = src->bi_iter;
1233 struct bvec_iter dst_iter = dst->bi_iter;
1234
1235 while (1) {
1236 if (!src_iter.bi_size) {
1237 src = src->bi_next;
1238 if (!src)
1239 break;
1240
1241 src_iter = src->bi_iter;
1242 }
1243
1244 if (!dst_iter.bi_size) {
1245 dst = dst->bi_next;
1246 if (!dst)
1247 break;
1248
1249 dst_iter = dst->bi_iter;
1250 }
1251
1252 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1253 }
1254}
1255EXPORT_SYMBOL(bio_list_copy_data);
1256
491221f8 1257void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1258{
1259 struct bio_vec *bvec;
6dc4f100 1260 struct bvec_iter_all iter_all;
1dfa0f68 1261
2b070cfe 1262 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1263 __free_page(bvec->bv_page);
1264}
491221f8 1265EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1266
1da177e4
LT
1267/*
1268 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1269 * for performing direct-IO in BIOs.
1270 *
1271 * The problem is that we cannot run set_page_dirty() from interrupt context
1272 * because the required locks are not interrupt-safe. So what we can do is to
1273 * mark the pages dirty _before_ performing IO. And in interrupt context,
1274 * check that the pages are still dirty. If so, fine. If not, redirty them
1275 * in process context.
1276 *
1277 * We special-case compound pages here: normally this means reads into hugetlb
1278 * pages. The logic in here doesn't really work right for compound pages
1279 * because the VM does not uniformly chase down the head page in all cases.
1280 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1281 * handle them at all. So we skip compound pages here at an early stage.
1282 *
1283 * Note that this code is very hard to test under normal circumstances because
1284 * direct-io pins the pages with get_user_pages(). This makes
1285 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1286 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1287 * pagecache.
1288 *
1289 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1290 * deferred bio dirtying paths.
1291 */
1292
1293/*
1294 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1295 */
1296void bio_set_pages_dirty(struct bio *bio)
1297{
cb34e057 1298 struct bio_vec *bvec;
6dc4f100 1299 struct bvec_iter_all iter_all;
1da177e4 1300
2b070cfe 1301 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1302 if (!PageCompound(bvec->bv_page))
1303 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1304 }
1305}
1306
1da177e4
LT
1307/*
1308 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1309 * If they are, then fine. If, however, some pages are clean then they must
1310 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1311 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1312 *
1313 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1314 * here on. It will run one put_page() against each page and will run one
1315 * bio_put() against the BIO.
1da177e4
LT
1316 */
1317
65f27f38 1318static void bio_dirty_fn(struct work_struct *work);
1da177e4 1319
65f27f38 1320static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1321static DEFINE_SPINLOCK(bio_dirty_lock);
1322static struct bio *bio_dirty_list;
1323
1324/*
1325 * This runs in process context
1326 */
65f27f38 1327static void bio_dirty_fn(struct work_struct *work)
1da177e4 1328{
24d5493f 1329 struct bio *bio, *next;
1da177e4 1330
24d5493f
CH
1331 spin_lock_irq(&bio_dirty_lock);
1332 next = bio_dirty_list;
1da177e4 1333 bio_dirty_list = NULL;
24d5493f 1334 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1335
24d5493f
CH
1336 while ((bio = next) != NULL) {
1337 next = bio->bi_private;
1da177e4 1338
d241a95f 1339 bio_release_pages(bio, true);
1da177e4 1340 bio_put(bio);
1da177e4
LT
1341 }
1342}
1343
1344void bio_check_pages_dirty(struct bio *bio)
1345{
cb34e057 1346 struct bio_vec *bvec;
24d5493f 1347 unsigned long flags;
6dc4f100 1348 struct bvec_iter_all iter_all;
1da177e4 1349
2b070cfe 1350 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1351 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1352 goto defer;
1da177e4
LT
1353 }
1354
d241a95f 1355 bio_release_pages(bio, false);
24d5493f
CH
1356 bio_put(bio);
1357 return;
1358defer:
1359 spin_lock_irqsave(&bio_dirty_lock, flags);
1360 bio->bi_private = bio_dirty_list;
1361 bio_dirty_list = bio;
1362 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1363 schedule_work(&bio_dirty_work);
1da177e4
LT
1364}
1365
c4cf5261
JA
1366static inline bool bio_remaining_done(struct bio *bio)
1367{
1368 /*
1369 * If we're not chaining, then ->__bi_remaining is always 1 and
1370 * we always end io on the first invocation.
1371 */
1372 if (!bio_flagged(bio, BIO_CHAIN))
1373 return true;
1374
1375 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1376
326e1dbb 1377 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1378 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1379 return true;
326e1dbb 1380 }
c4cf5261
JA
1381
1382 return false;
1383}
1384
1da177e4
LT
1385/**
1386 * bio_endio - end I/O on a bio
1387 * @bio: bio
1da177e4
LT
1388 *
1389 * Description:
4246a0b6
CH
1390 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1391 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1392 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1393 *
1394 * bio_endio() can be called several times on a bio that has been chained
1395 * using bio_chain(). The ->bi_end_io() function will only be called the
1396 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1397 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1398 **/
4246a0b6 1399void bio_endio(struct bio *bio)
1da177e4 1400{
ba8c6967 1401again:
2b885517 1402 if (!bio_remaining_done(bio))
ba8c6967 1403 return;
7c20f116
CH
1404 if (!bio_integrity_endio(bio))
1405 return;
1da177e4 1406
309dca30
CH
1407 if (bio->bi_bdev)
1408 rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
67b42d0b 1409
ba8c6967
CH
1410 /*
1411 * Need to have a real endio function for chained bios, otherwise
1412 * various corner cases will break (like stacking block devices that
1413 * save/restore bi_end_io) - however, we want to avoid unbounded
1414 * recursion and blowing the stack. Tail call optimization would
1415 * handle this, but compiling with frame pointers also disables
1416 * gcc's sibling call optimization.
1417 */
1418 if (bio->bi_end_io == bio_chain_endio) {
1419 bio = __bio_chain_endio(bio);
1420 goto again;
196d38bc 1421 }
ba8c6967 1422
309dca30
CH
1423 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1424 trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
fbbaf700
N
1425 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1426 }
1427
9e234eea 1428 blk_throtl_bio_endio(bio);
b222dd2f
SL
1429 /* release cgroup info */
1430 bio_uninit(bio);
ba8c6967
CH
1431 if (bio->bi_end_io)
1432 bio->bi_end_io(bio);
1da177e4 1433}
a112a71d 1434EXPORT_SYMBOL(bio_endio);
1da177e4 1435
20d0189b
KO
1436/**
1437 * bio_split - split a bio
1438 * @bio: bio to split
1439 * @sectors: number of sectors to split from the front of @bio
1440 * @gfp: gfp mask
1441 * @bs: bio set to allocate from
1442 *
1443 * Allocates and returns a new bio which represents @sectors from the start of
1444 * @bio, and updates @bio to represent the remaining sectors.
1445 *
f3f5da62 1446 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1447 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1448 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1449 */
1450struct bio *bio_split(struct bio *bio, int sectors,
1451 gfp_t gfp, struct bio_set *bs)
1452{
f341a4d3 1453 struct bio *split;
20d0189b
KO
1454
1455 BUG_ON(sectors <= 0);
1456 BUG_ON(sectors >= bio_sectors(bio));
1457
0512a75b
KB
1458 /* Zone append commands cannot be split */
1459 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1460 return NULL;
1461
f9d03f96 1462 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1463 if (!split)
1464 return NULL;
1465
1466 split->bi_iter.bi_size = sectors << 9;
1467
1468 if (bio_integrity(split))
fbd08e76 1469 bio_integrity_trim(split);
20d0189b
KO
1470
1471 bio_advance(bio, split->bi_iter.bi_size);
1472
fbbaf700 1473 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1474 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1475
20d0189b
KO
1476 return split;
1477}
1478EXPORT_SYMBOL(bio_split);
1479
6678d83f
KO
1480/**
1481 * bio_trim - trim a bio
1482 * @bio: bio to trim
1483 * @offset: number of sectors to trim from the front of @bio
1484 * @size: size we want to trim @bio to, in sectors
1485 */
1486void bio_trim(struct bio *bio, int offset, int size)
1487{
1488 /* 'bio' is a cloned bio which we need to trim to match
1489 * the given offset and size.
6678d83f 1490 */
6678d83f
KO
1491
1492 size <<= 9;
4f024f37 1493 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1494 return;
1495
6678d83f 1496 bio_advance(bio, offset << 9);
4f024f37 1497 bio->bi_iter.bi_size = size;
376a78ab
DM
1498
1499 if (bio_integrity(bio))
fbd08e76 1500 bio_integrity_trim(bio);
376a78ab 1501
6678d83f
KO
1502}
1503EXPORT_SYMBOL_GPL(bio_trim);
1504
1da177e4
LT
1505/*
1506 * create memory pools for biovec's in a bio_set.
1507 * use the global biovec slabs created for general use.
1508 */
8aa6ba2f 1509int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1510{
ed996a52 1511 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1512
8aa6ba2f 1513 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1514}
1515
917a38c7
KO
1516/*
1517 * bioset_exit - exit a bioset initialized with bioset_init()
1518 *
1519 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1520 * kzalloc()).
1521 */
1522void bioset_exit(struct bio_set *bs)
1da177e4 1523{
df2cb6da
KO
1524 if (bs->rescue_workqueue)
1525 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1526 bs->rescue_workqueue = NULL;
df2cb6da 1527
8aa6ba2f
KO
1528 mempool_exit(&bs->bio_pool);
1529 mempool_exit(&bs->bvec_pool);
9f060e22 1530
7878cba9 1531 bioset_integrity_free(bs);
917a38c7
KO
1532 if (bs->bio_slab)
1533 bio_put_slab(bs);
1534 bs->bio_slab = NULL;
1535}
1536EXPORT_SYMBOL(bioset_exit);
1da177e4 1537
917a38c7
KO
1538/**
1539 * bioset_init - Initialize a bio_set
dad08527 1540 * @bs: pool to initialize
917a38c7
KO
1541 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1542 * @front_pad: Number of bytes to allocate in front of the returned bio
1543 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1544 * and %BIOSET_NEED_RESCUER
1545 *
dad08527
KO
1546 * Description:
1547 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1548 * to ask for a number of bytes to be allocated in front of the bio.
1549 * Front pad allocation is useful for embedding the bio inside
1550 * another structure, to avoid allocating extra data to go with the bio.
1551 * Note that the bio must be embedded at the END of that structure always,
1552 * or things will break badly.
1553 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1554 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1555 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1556 * dispatch queued requests when the mempool runs out of space.
1557 *
917a38c7
KO
1558 */
1559int bioset_init(struct bio_set *bs,
1560 unsigned int pool_size,
1561 unsigned int front_pad,
1562 int flags)
1563{
917a38c7 1564 bs->front_pad = front_pad;
9f180e31
ML
1565 if (flags & BIOSET_NEED_BVECS)
1566 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1567 else
1568 bs->back_pad = 0;
917a38c7
KO
1569
1570 spin_lock_init(&bs->rescue_lock);
1571 bio_list_init(&bs->rescue_list);
1572 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1573
49d1ec85 1574 bs->bio_slab = bio_find_or_create_slab(bs);
917a38c7
KO
1575 if (!bs->bio_slab)
1576 return -ENOMEM;
1577
1578 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1579 goto bad;
1580
1581 if ((flags & BIOSET_NEED_BVECS) &&
1582 biovec_init_pool(&bs->bvec_pool, pool_size))
1583 goto bad;
1584
1585 if (!(flags & BIOSET_NEED_RESCUER))
1586 return 0;
1587
1588 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1589 if (!bs->rescue_workqueue)
1590 goto bad;
1591
1592 return 0;
1593bad:
1594 bioset_exit(bs);
1595 return -ENOMEM;
1596}
1597EXPORT_SYMBOL(bioset_init);
1598
28e89fd9
JA
1599/*
1600 * Initialize and setup a new bio_set, based on the settings from
1601 * another bio_set.
1602 */
1603int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1604{
1605 int flags;
1606
1607 flags = 0;
1608 if (src->bvec_pool.min_nr)
1609 flags |= BIOSET_NEED_BVECS;
1610 if (src->rescue_workqueue)
1611 flags |= BIOSET_NEED_RESCUER;
1612
1613 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1614}
1615EXPORT_SYMBOL(bioset_init_from_src);
1616
1da177e4
LT
1617static void __init biovec_init_slabs(void)
1618{
1619 int i;
1620
ed996a52 1621 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
1622 int size;
1623 struct biovec_slab *bvs = bvec_slabs + i;
1624
a7fcd37c
JA
1625 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1626 bvs->slab = NULL;
1627 continue;
1628 }
a7fcd37c 1629
1da177e4
LT
1630 size = bvs->nr_vecs * sizeof(struct bio_vec);
1631 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1632 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1633 }
1634}
1635
1636static int __init init_bio(void)
1637{
2b24e6f6
JT
1638 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
1639
7878cba9 1640 bio_integrity_init();
1da177e4
LT
1641 biovec_init_slabs();
1642
f4f8154a 1643 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1644 panic("bio: can't allocate bios\n");
1645
f4f8154a 1646 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1647 panic("bio: can't create integrity pool\n");
1648
1da177e4
LT
1649 return 0;
1650}
1da177e4 1651subsys_initcall(init_bio);