block: pass a block_device and opf to bio_init
[linux-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
de6a78b6 20#include <linux/sched/sysctl.h>
a892c8d5 21#include <linux/blk-crypto.h>
49d1ec85 22#include <linux/xarray.h>
1da177e4 23
55782138 24#include <trace/events/block.h>
9e234eea 25#include "blk.h"
67b42d0b 26#include "blk-rq-qos.h"
0bfc2455 27
be4d234d 28struct bio_alloc_cache {
fcade2ce 29 struct bio *free_list;
be4d234d
JA
30 unsigned int nr;
31};
32
de76fd89 33static struct biovec_slab {
6ac0b715
CH
34 int nr_vecs;
35 char *name;
36 struct kmem_cache *slab;
de76fd89
CH
37} bvec_slabs[] __read_mostly = {
38 { .nr_vecs = 16, .name = "biovec-16" },
39 { .nr_vecs = 64, .name = "biovec-64" },
40 { .nr_vecs = 128, .name = "biovec-128" },
a8affc03 41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
1da177e4 42};
6ac0b715 43
7a800a20
CH
44static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45{
46 switch (nr_vecs) {
47 /* smaller bios use inline vecs */
48 case 5 ... 16:
49 return &bvec_slabs[0];
50 case 17 ... 64:
51 return &bvec_slabs[1];
52 case 65 ... 128:
53 return &bvec_slabs[2];
a8affc03 54 case 129 ... BIO_MAX_VECS:
7a800a20
CH
55 return &bvec_slabs[3];
56 default:
57 BUG();
58 return NULL;
59 }
60}
1da177e4 61
1da177e4
LT
62/*
63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64 * IO code that does not need private memory pools.
65 */
f4f8154a 66struct bio_set fs_bio_set;
3f86a82a 67EXPORT_SYMBOL(fs_bio_set);
1da177e4 68
bb799ca0
JA
69/*
70 * Our slab pool management
71 */
72struct bio_slab {
73 struct kmem_cache *slab;
74 unsigned int slab_ref;
75 unsigned int slab_size;
76 char name[8];
77};
78static DEFINE_MUTEX(bio_slab_lock);
49d1ec85 79static DEFINE_XARRAY(bio_slabs);
bb799ca0 80
49d1ec85 81static struct bio_slab *create_bio_slab(unsigned int size)
bb799ca0 82{
49d1ec85 83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
bb799ca0 84
49d1ec85
ML
85 if (!bslab)
86 return NULL;
bb799ca0 87
49d1ec85
ML
88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 bslab->slab = kmem_cache_create(bslab->name, size,
1a7e76e4
CH
90 ARCH_KMALLOC_MINALIGN,
91 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
49d1ec85
ML
92 if (!bslab->slab)
93 goto fail_alloc_slab;
bb799ca0 94
49d1ec85
ML
95 bslab->slab_ref = 1;
96 bslab->slab_size = size;
bb799ca0 97
49d1ec85
ML
98 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
99 return bslab;
bb799ca0 100
49d1ec85 101 kmem_cache_destroy(bslab->slab);
bb799ca0 102
49d1ec85
ML
103fail_alloc_slab:
104 kfree(bslab);
105 return NULL;
106}
bb799ca0 107
49d1ec85
ML
108static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
109{
9f180e31 110 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
49d1ec85 111}
bb799ca0 112
49d1ec85
ML
113static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
114{
115 unsigned int size = bs_bio_slab_size(bs);
116 struct bio_slab *bslab;
bb799ca0 117
49d1ec85
ML
118 mutex_lock(&bio_slab_lock);
119 bslab = xa_load(&bio_slabs, size);
120 if (bslab)
121 bslab->slab_ref++;
122 else
123 bslab = create_bio_slab(size);
bb799ca0 124 mutex_unlock(&bio_slab_lock);
49d1ec85
ML
125
126 if (bslab)
127 return bslab->slab;
128 return NULL;
bb799ca0
JA
129}
130
131static void bio_put_slab(struct bio_set *bs)
132{
133 struct bio_slab *bslab = NULL;
49d1ec85 134 unsigned int slab_size = bs_bio_slab_size(bs);
bb799ca0
JA
135
136 mutex_lock(&bio_slab_lock);
137
49d1ec85 138 bslab = xa_load(&bio_slabs, slab_size);
bb799ca0
JA
139 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
140 goto out;
141
49d1ec85
ML
142 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
143
bb799ca0
JA
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
49d1ec85
ML
149 xa_erase(&bio_slabs, slab_size);
150
bb799ca0 151 kmem_cache_destroy(bslab->slab);
49d1ec85 152 kfree(bslab);
bb799ca0
JA
153
154out:
155 mutex_unlock(&bio_slab_lock);
156}
157
7a800a20 158void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
7ba1ba12 159{
9e8c0d0d 160 BUG_ON(nr_vecs > BIO_MAX_VECS);
ed996a52 161
a8affc03 162 if (nr_vecs == BIO_MAX_VECS)
9f060e22 163 mempool_free(bv, pool);
7a800a20
CH
164 else if (nr_vecs > BIO_INLINE_VECS)
165 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
bb799ca0 166}
bb799ca0 167
f2c3eb9b
CH
168/*
169 * Make the first allocation restricted and don't dump info on allocation
170 * failures, since we'll fall back to the mempool in case of failure.
171 */
172static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
173{
174 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
175 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
bb799ca0
JA
176}
177
7a800a20
CH
178struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
179 gfp_t gfp_mask)
1da177e4 180{
7a800a20 181 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
1da177e4 182
7a800a20 183 if (WARN_ON_ONCE(!bvs))
7ff9345f 184 return NULL;
7ff9345f
JA
185
186 /*
7a800a20
CH
187 * Upgrade the nr_vecs request to take full advantage of the allocation.
188 * We also rely on this in the bvec_free path.
7ff9345f 189 */
7a800a20 190 *nr_vecs = bvs->nr_vecs;
7ff9345f 191
7ff9345f 192 /*
f007a3d6
CH
193 * Try a slab allocation first for all smaller allocations. If that
194 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
a8affc03 195 * The mempool is sized to handle up to BIO_MAX_VECS entries.
7ff9345f 196 */
a8affc03 197 if (*nr_vecs < BIO_MAX_VECS) {
f007a3d6 198 struct bio_vec *bvl;
1da177e4 199
f2c3eb9b 200 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
7a800a20 201 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
f007a3d6 202 return bvl;
a8affc03 203 *nr_vecs = BIO_MAX_VECS;
7ff9345f
JA
204 }
205
f007a3d6 206 return mempool_alloc(pool, gfp_mask);
1da177e4
LT
207}
208
9ae3b3f5 209void bio_uninit(struct bio *bio)
1da177e4 210{
db9819c7
CH
211#ifdef CONFIG_BLK_CGROUP
212 if (bio->bi_blkg) {
213 blkg_put(bio->bi_blkg);
214 bio->bi_blkg = NULL;
215 }
216#endif
ece841ab
JT
217 if (bio_integrity(bio))
218 bio_integrity_free(bio);
a892c8d5
ST
219
220 bio_crypt_free_ctx(bio);
4254bba1 221}
9ae3b3f5 222EXPORT_SYMBOL(bio_uninit);
7ba1ba12 223
4254bba1
KO
224static void bio_free(struct bio *bio)
225{
226 struct bio_set *bs = bio->bi_pool;
227 void *p;
228
9ae3b3f5 229 bio_uninit(bio);
4254bba1
KO
230
231 if (bs) {
7a800a20 232 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
4254bba1
KO
233
234 /*
235 * If we have front padding, adjust the bio pointer before freeing
236 */
237 p = bio;
bb799ca0
JA
238 p -= bs->front_pad;
239
8aa6ba2f 240 mempool_free(p, &bs->bio_pool);
4254bba1
KO
241 } else {
242 /* Bio was allocated by bio_kmalloc() */
243 kfree(bio);
244 }
3676347a
PO
245}
246
9ae3b3f5
JA
247/*
248 * Users of this function have their own bio allocation. Subsequently,
249 * they must remember to pair any call to bio_init() with bio_uninit()
250 * when IO has completed, or when the bio is released.
251 */
49add496
CH
252void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
253 unsigned short max_vecs, unsigned int opf)
1da177e4 254{
da521626 255 bio->bi_next = NULL;
49add496
CH
256 bio->bi_bdev = bdev;
257 bio->bi_opf = opf;
da521626
JA
258 bio->bi_flags = 0;
259 bio->bi_ioprio = 0;
260 bio->bi_write_hint = 0;
261 bio->bi_status = 0;
262 bio->bi_iter.bi_sector = 0;
263 bio->bi_iter.bi_size = 0;
264 bio->bi_iter.bi_idx = 0;
265 bio->bi_iter.bi_bvec_done = 0;
266 bio->bi_end_io = NULL;
267 bio->bi_private = NULL;
268#ifdef CONFIG_BLK_CGROUP
269 bio->bi_blkg = NULL;
270 bio->bi_issue.value = 0;
49add496
CH
271 if (bdev)
272 bio_associate_blkg(bio);
da521626
JA
273#ifdef CONFIG_BLK_CGROUP_IOCOST
274 bio->bi_iocost_cost = 0;
275#endif
276#endif
277#ifdef CONFIG_BLK_INLINE_ENCRYPTION
278 bio->bi_crypt_context = NULL;
279#endif
280#ifdef CONFIG_BLK_DEV_INTEGRITY
281 bio->bi_integrity = NULL;
282#endif
283 bio->bi_vcnt = 0;
284
c4cf5261 285 atomic_set(&bio->__bi_remaining, 1);
dac56212 286 atomic_set(&bio->__bi_cnt, 1);
3e08773c 287 bio->bi_cookie = BLK_QC_T_NONE;
3a83f467 288
3a83f467 289 bio->bi_max_vecs = max_vecs;
da521626
JA
290 bio->bi_io_vec = table;
291 bio->bi_pool = NULL;
1da177e4 292}
a112a71d 293EXPORT_SYMBOL(bio_init);
1da177e4 294
f44b48c7
KO
295/**
296 * bio_reset - reinitialize a bio
297 * @bio: bio to reset
298 *
299 * Description:
300 * After calling bio_reset(), @bio will be in the same state as a freshly
301 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
302 * preserved are the ones that are initialized by bio_alloc_bioset(). See
303 * comment in struct bio.
304 */
305void bio_reset(struct bio *bio)
306{
9ae3b3f5 307 bio_uninit(bio);
f44b48c7 308 memset(bio, 0, BIO_RESET_BYTES);
c4cf5261 309 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
310}
311EXPORT_SYMBOL(bio_reset);
312
38f8baae 313static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 314{
4246a0b6
CH
315 struct bio *parent = bio->bi_private;
316
3edf5346 317 if (bio->bi_status && !parent->bi_status)
4e4cbee9 318 parent->bi_status = bio->bi_status;
196d38bc 319 bio_put(bio);
38f8baae
CH
320 return parent;
321}
322
323static void bio_chain_endio(struct bio *bio)
324{
325 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
326}
327
328/**
329 * bio_chain - chain bio completions
1051a902 330 * @bio: the target bio
5b874af6 331 * @parent: the parent bio of @bio
196d38bc
KO
332 *
333 * The caller won't have a bi_end_io called when @bio completes - instead,
334 * @parent's bi_end_io won't be called until both @parent and @bio have
335 * completed; the chained bio will also be freed when it completes.
336 *
337 * The caller must not set bi_private or bi_end_io in @bio.
338 */
339void bio_chain(struct bio *bio, struct bio *parent)
340{
341 BUG_ON(bio->bi_private || bio->bi_end_io);
342
343 bio->bi_private = parent;
344 bio->bi_end_io = bio_chain_endio;
c4cf5261 345 bio_inc_remaining(parent);
196d38bc
KO
346}
347EXPORT_SYMBOL(bio_chain);
348
0a3140ea
CK
349struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
350 unsigned int nr_pages, unsigned int opf, gfp_t gfp)
3b005bf6 351{
07888c66 352 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
0a3140ea 353
3b005bf6
CH
354 if (bio) {
355 bio_chain(bio, new);
356 submit_bio(bio);
357 }
358
359 return new;
360}
361EXPORT_SYMBOL_GPL(blk_next_bio);
362
df2cb6da
KO
363static void bio_alloc_rescue(struct work_struct *work)
364{
365 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
366 struct bio *bio;
367
368 while (1) {
369 spin_lock(&bs->rescue_lock);
370 bio = bio_list_pop(&bs->rescue_list);
371 spin_unlock(&bs->rescue_lock);
372
373 if (!bio)
374 break;
375
ed00aabd 376 submit_bio_noacct(bio);
df2cb6da
KO
377 }
378}
379
380static void punt_bios_to_rescuer(struct bio_set *bs)
381{
382 struct bio_list punt, nopunt;
383 struct bio *bio;
384
47e0fb46
N
385 if (WARN_ON_ONCE(!bs->rescue_workqueue))
386 return;
df2cb6da
KO
387 /*
388 * In order to guarantee forward progress we must punt only bios that
389 * were allocated from this bio_set; otherwise, if there was a bio on
390 * there for a stacking driver higher up in the stack, processing it
391 * could require allocating bios from this bio_set, and doing that from
392 * our own rescuer would be bad.
393 *
394 * Since bio lists are singly linked, pop them all instead of trying to
395 * remove from the middle of the list:
396 */
397
398 bio_list_init(&punt);
399 bio_list_init(&nopunt);
400
f5fe1b51 401 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 402 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 403 current->bio_list[0] = nopunt;
df2cb6da 404
f5fe1b51
N
405 bio_list_init(&nopunt);
406 while ((bio = bio_list_pop(&current->bio_list[1])))
407 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
408 current->bio_list[1] = nopunt;
df2cb6da
KO
409
410 spin_lock(&bs->rescue_lock);
411 bio_list_merge(&bs->rescue_list, &punt);
412 spin_unlock(&bs->rescue_lock);
413
414 queue_work(bs->rescue_workqueue, &bs->rescue_work);
415}
416
1da177e4
LT
417/**
418 * bio_alloc_bioset - allocate a bio for I/O
609be106
CH
419 * @bdev: block device to allocate the bio for (can be %NULL)
420 * @nr_vecs: number of bvecs to pre-allocate
421 * @opf: operation and flags for bio
519c8e9f 422 * @gfp_mask: the GFP_* mask given to the slab allocator
db18efac 423 * @bs: the bio_set to allocate from.
1da177e4 424 *
3175199a 425 * Allocate a bio from the mempools in @bs.
3f86a82a 426 *
3175199a
CH
427 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
428 * allocate a bio. This is due to the mempool guarantees. To make this work,
429 * callers must never allocate more than 1 bio at a time from the general pool.
430 * Callers that need to allocate more than 1 bio must always submit the
431 * previously allocated bio for IO before attempting to allocate a new one.
432 * Failure to do so can cause deadlocks under memory pressure.
3f86a82a 433 *
3175199a
CH
434 * Note that when running under submit_bio_noacct() (i.e. any block driver),
435 * bios are not submitted until after you return - see the code in
436 * submit_bio_noacct() that converts recursion into iteration, to prevent
437 * stack overflows.
df2cb6da 438 *
3175199a
CH
439 * This would normally mean allocating multiple bios under submit_bio_noacct()
440 * would be susceptible to deadlocks, but we have
441 * deadlock avoidance code that resubmits any blocked bios from a rescuer
442 * thread.
df2cb6da 443 *
3175199a
CH
444 * However, we do not guarantee forward progress for allocations from other
445 * mempools. Doing multiple allocations from the same mempool under
446 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
447 * for per bio allocations.
df2cb6da 448 *
3175199a 449 * Returns: Pointer to new bio on success, NULL on failure.
3f86a82a 450 */
609be106
CH
451struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
452 unsigned int opf, gfp_t gfp_mask,
7a88fa19 453 struct bio_set *bs)
1da177e4 454{
df2cb6da 455 gfp_t saved_gfp = gfp_mask;
451a9ebf
TH
456 struct bio *bio;
457 void *p;
458
609be106
CH
459 /* should not use nobvec bioset for nr_vecs > 0 */
460 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
3175199a 461 return NULL;
df2cb6da 462
3175199a
CH
463 /*
464 * submit_bio_noacct() converts recursion to iteration; this means if
465 * we're running beneath it, any bios we allocate and submit will not be
466 * submitted (and thus freed) until after we return.
467 *
468 * This exposes us to a potential deadlock if we allocate multiple bios
469 * from the same bio_set() while running underneath submit_bio_noacct().
470 * If we were to allocate multiple bios (say a stacking block driver
471 * that was splitting bios), we would deadlock if we exhausted the
472 * mempool's reserve.
473 *
474 * We solve this, and guarantee forward progress, with a rescuer
475 * workqueue per bio_set. If we go to allocate and there are bios on
476 * current->bio_list, we first try the allocation without
477 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
478 * blocking to the rescuer workqueue before we retry with the original
479 * gfp_flags.
480 */
481 if (current->bio_list &&
482 (!bio_list_empty(&current->bio_list[0]) ||
483 !bio_list_empty(&current->bio_list[1])) &&
484 bs->rescue_workqueue)
485 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
486
487 p = mempool_alloc(&bs->bio_pool, gfp_mask);
488 if (!p && gfp_mask != saved_gfp) {
489 punt_bios_to_rescuer(bs);
490 gfp_mask = saved_gfp;
8aa6ba2f 491 p = mempool_alloc(&bs->bio_pool, gfp_mask);
3f86a82a 492 }
451a9ebf
TH
493 if (unlikely(!p))
494 return NULL;
1da177e4 495
3175199a 496 bio = p + bs->front_pad;
609be106 497 if (nr_vecs > BIO_INLINE_VECS) {
3175199a 498 struct bio_vec *bvl = NULL;
34053979 499
609be106 500 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
df2cb6da
KO
501 if (!bvl && gfp_mask != saved_gfp) {
502 punt_bios_to_rescuer(bs);
503 gfp_mask = saved_gfp;
609be106 504 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
df2cb6da 505 }
34053979
IM
506 if (unlikely(!bvl))
507 goto err_free;
a38352e0 508
49add496 509 bio_init(bio, bdev, bvl, nr_vecs, opf);
609be106 510 } else if (nr_vecs) {
49add496 511 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
3175199a 512 } else {
49add496 513 bio_init(bio, bdev, NULL, 0, opf);
1da177e4 514 }
3f86a82a
KO
515
516 bio->bi_pool = bs;
1da177e4 517 return bio;
34053979
IM
518
519err_free:
8aa6ba2f 520 mempool_free(p, &bs->bio_pool);
34053979 521 return NULL;
1da177e4 522}
a112a71d 523EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 524
3175199a
CH
525/**
526 * bio_kmalloc - kmalloc a bio for I/O
527 * @gfp_mask: the GFP_* mask given to the slab allocator
528 * @nr_iovecs: number of iovecs to pre-allocate
529 *
530 * Use kmalloc to allocate and initialize a bio.
531 *
532 * Returns: Pointer to new bio on success, NULL on failure.
533 */
0f2e6ab8 534struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
3175199a
CH
535{
536 struct bio *bio;
537
538 if (nr_iovecs > UIO_MAXIOV)
539 return NULL;
540
541 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
542 if (unlikely(!bio))
543 return NULL;
49add496
CH
544 bio_init(bio, NULL, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs,
545 0);
3175199a
CH
546 bio->bi_pool = NULL;
547 return bio;
548}
549EXPORT_SYMBOL(bio_kmalloc);
550
6f822e1b 551void zero_fill_bio(struct bio *bio)
1da177e4 552{
7988613b
KO
553 struct bio_vec bv;
554 struct bvec_iter iter;
1da177e4 555
ab6c340e
CH
556 bio_for_each_segment(bv, bio, iter)
557 memzero_bvec(&bv);
1da177e4 558}
6f822e1b 559EXPORT_SYMBOL(zero_fill_bio);
1da177e4 560
83c9c547
ML
561/**
562 * bio_truncate - truncate the bio to small size of @new_size
563 * @bio: the bio to be truncated
564 * @new_size: new size for truncating the bio
565 *
566 * Description:
567 * Truncate the bio to new size of @new_size. If bio_op(bio) is
568 * REQ_OP_READ, zero the truncated part. This function should only
569 * be used for handling corner cases, such as bio eod.
570 */
4f7ab09a 571static void bio_truncate(struct bio *bio, unsigned new_size)
85a8ce62
ML
572{
573 struct bio_vec bv;
574 struct bvec_iter iter;
575 unsigned int done = 0;
576 bool truncated = false;
577
578 if (new_size >= bio->bi_iter.bi_size)
579 return;
580
83c9c547 581 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
582 goto exit;
583
584 bio_for_each_segment(bv, bio, iter) {
585 if (done + bv.bv_len > new_size) {
586 unsigned offset;
587
588 if (!truncated)
589 offset = new_size - done;
590 else
591 offset = 0;
3ee859e3
OH
592 zero_user(bv.bv_page, bv.bv_offset + offset,
593 bv.bv_len - offset);
85a8ce62
ML
594 truncated = true;
595 }
596 done += bv.bv_len;
597 }
598
599 exit:
600 /*
601 * Don't touch bvec table here and make it really immutable, since
602 * fs bio user has to retrieve all pages via bio_for_each_segment_all
603 * in its .end_bio() callback.
604 *
605 * It is enough to truncate bio by updating .bi_size since we can make
606 * correct bvec with the updated .bi_size for drivers.
607 */
608 bio->bi_iter.bi_size = new_size;
609}
610
29125ed6
CH
611/**
612 * guard_bio_eod - truncate a BIO to fit the block device
613 * @bio: bio to truncate
614 *
615 * This allows us to do IO even on the odd last sectors of a device, even if the
616 * block size is some multiple of the physical sector size.
617 *
618 * We'll just truncate the bio to the size of the device, and clear the end of
619 * the buffer head manually. Truly out-of-range accesses will turn into actual
620 * I/O errors, this only handles the "we need to be able to do I/O at the final
621 * sector" case.
622 */
623void guard_bio_eod(struct bio *bio)
624{
309dca30 625 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
626
627 if (!maxsector)
628 return;
629
630 /*
631 * If the *whole* IO is past the end of the device,
632 * let it through, and the IO layer will turn it into
633 * an EIO.
634 */
635 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
636 return;
637
638 maxsector -= bio->bi_iter.bi_sector;
639 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
640 return;
641
642 bio_truncate(bio, maxsector << 9);
643}
644
be4d234d
JA
645#define ALLOC_CACHE_MAX 512
646#define ALLOC_CACHE_SLACK 64
647
648static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
649 unsigned int nr)
650{
651 unsigned int i = 0;
652 struct bio *bio;
653
fcade2ce
JA
654 while ((bio = cache->free_list) != NULL) {
655 cache->free_list = bio->bi_next;
be4d234d
JA
656 cache->nr--;
657 bio_free(bio);
658 if (++i == nr)
659 break;
660 }
661}
662
663static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
664{
665 struct bio_set *bs;
666
667 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
668 if (bs->cache) {
669 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
670
671 bio_alloc_cache_prune(cache, -1U);
672 }
673 return 0;
674}
675
676static void bio_alloc_cache_destroy(struct bio_set *bs)
677{
678 int cpu;
679
680 if (!bs->cache)
681 return;
682
683 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
684 for_each_possible_cpu(cpu) {
685 struct bio_alloc_cache *cache;
686
687 cache = per_cpu_ptr(bs->cache, cpu);
688 bio_alloc_cache_prune(cache, -1U);
689 }
690 free_percpu(bs->cache);
691}
692
1da177e4
LT
693/**
694 * bio_put - release a reference to a bio
695 * @bio: bio to release reference to
696 *
697 * Description:
698 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 699 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
700 **/
701void bio_put(struct bio *bio)
702{
be4d234d 703 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
9e8c0d0d 704 BUG_ON(!atomic_read(&bio->__bi_cnt));
be4d234d
JA
705 if (!atomic_dec_and_test(&bio->__bi_cnt))
706 return;
707 }
dac56212 708
be4d234d
JA
709 if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
710 struct bio_alloc_cache *cache;
711
712 bio_uninit(bio);
713 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
fcade2ce
JA
714 bio->bi_next = cache->free_list;
715 cache->free_list = bio;
be4d234d
JA
716 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
717 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
718 put_cpu();
719 } else {
720 bio_free(bio);
dac56212 721 }
1da177e4 722}
a112a71d 723EXPORT_SYMBOL(bio_put);
1da177e4 724
59d276fe
KO
725/**
726 * __bio_clone_fast - clone a bio that shares the original bio's biovec
727 * @bio: destination bio
728 * @bio_src: bio to clone
729 *
730 * Clone a &bio. Caller will own the returned bio, but not
731 * the actual data it points to. Reference count of returned
732 * bio will be one.
733 *
734 * Caller must ensure that @bio_src is not freed before @bio.
735 */
736void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
737{
7a800a20 738 WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
59d276fe
KO
739
740 /*
309dca30 741 * most users will be overriding ->bi_bdev with a new target,
59d276fe
KO
742 * so we don't set nor calculate new physical/hw segment counts here
743 */
309dca30 744 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 745 bio_set_flag(bio, BIO_CLONED);
111be883
SL
746 if (bio_flagged(bio_src, BIO_THROTTLED))
747 bio_set_flag(bio, BIO_THROTTLED);
46bbf653
CH
748 if (bio_flagged(bio_src, BIO_REMAPPED))
749 bio_set_flag(bio, BIO_REMAPPED);
1eff9d32 750 bio->bi_opf = bio_src->bi_opf;
ca474b73 751 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 752 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
753 bio->bi_iter = bio_src->bi_iter;
754 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 755
db6638d7 756 bio_clone_blkg_association(bio, bio_src);
e439bedf 757 blkcg_bio_issue_init(bio);
59d276fe
KO
758}
759EXPORT_SYMBOL(__bio_clone_fast);
760
761/**
762 * bio_clone_fast - clone a bio that shares the original bio's biovec
763 * @bio: bio to clone
764 * @gfp_mask: allocation priority
765 * @bs: bio_set to allocate from
766 *
767 * Like __bio_clone_fast, only also allocates the returned bio
768 */
769struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
770{
771 struct bio *b;
772
609be106 773 b = bio_alloc_bioset(NULL, 0, 0, gfp_mask, bs);
59d276fe
KO
774 if (!b)
775 return NULL;
776
777 __bio_clone_fast(b, bio);
778
07560151
EB
779 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
780 goto err_put;
a892c8d5 781
07560151
EB
782 if (bio_integrity(bio) &&
783 bio_integrity_clone(b, bio, gfp_mask) < 0)
784 goto err_put;
59d276fe
KO
785
786 return b;
07560151
EB
787
788err_put:
789 bio_put(b);
790 return NULL;
59d276fe
KO
791}
792EXPORT_SYMBOL(bio_clone_fast);
793
5cbd28e3
CH
794const char *bio_devname(struct bio *bio, char *buf)
795{
309dca30 796 return bdevname(bio->bi_bdev, buf);
5cbd28e3
CH
797}
798EXPORT_SYMBOL(bio_devname);
799
9a6083be
CH
800/**
801 * bio_full - check if the bio is full
802 * @bio: bio to check
803 * @len: length of one segment to be added
804 *
805 * Return true if @bio is full and one segment with @len bytes can't be
806 * added to the bio, otherwise return false
807 */
808static inline bool bio_full(struct bio *bio, unsigned len)
809{
810 if (bio->bi_vcnt >= bio->bi_max_vecs)
811 return true;
812 if (bio->bi_iter.bi_size > UINT_MAX - len)
813 return true;
814 return false;
815}
816
5919482e
ML
817static inline bool page_is_mergeable(const struct bio_vec *bv,
818 struct page *page, unsigned int len, unsigned int off,
ff896738 819 bool *same_page)
5919482e 820{
d8166519
MWO
821 size_t bv_end = bv->bv_offset + bv->bv_len;
822 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
823 phys_addr_t page_addr = page_to_phys(page);
824
825 if (vec_end_addr + 1 != page_addr + off)
826 return false;
827 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
828 return false;
52d52d1c 829
ff896738 830 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
d8166519
MWO
831 if (*same_page)
832 return true;
833 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
5919482e
ML
834}
835
9774b391
CH
836/**
837 * __bio_try_merge_page - try appending data to an existing bvec.
838 * @bio: destination bio
839 * @page: start page to add
840 * @len: length of the data to add
841 * @off: offset of the data relative to @page
842 * @same_page: return if the segment has been merged inside the same page
843 *
844 * Try to add the data at @page + @off to the last bvec of @bio. This is a
845 * useful optimisation for file systems with a block size smaller than the
846 * page size.
847 *
848 * Warn if (@len, @off) crosses pages in case that @same_page is true.
849 *
850 * Return %true on success or %false on failure.
851 */
852static bool __bio_try_merge_page(struct bio *bio, struct page *page,
853 unsigned int len, unsigned int off, bool *same_page)
854{
855 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
856 return false;
857
858 if (bio->bi_vcnt > 0) {
859 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
860
861 if (page_is_mergeable(bv, page, len, off, same_page)) {
862 if (bio->bi_iter.bi_size > UINT_MAX - len) {
863 *same_page = false;
864 return false;
865 }
866 bv->bv_len += len;
867 bio->bi_iter.bi_size += len;
868 return true;
869 }
870 }
871 return false;
872}
873
e4581105
CH
874/*
875 * Try to merge a page into a segment, while obeying the hardware segment
876 * size limit. This is not for normal read/write bios, but for passthrough
877 * or Zone Append operations that we can't split.
878 */
879static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
880 struct page *page, unsigned len,
881 unsigned offset, bool *same_page)
489fbbcb 882{
384209cd 883 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
884 unsigned long mask = queue_segment_boundary(q);
885 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
886 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
887
888 if ((addr1 | mask) != (addr2 | mask))
889 return false;
489fbbcb
ML
890 if (bv->bv_len + len > queue_max_segment_size(q))
891 return false;
384209cd 892 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
893}
894
1da177e4 895/**
e4581105
CH
896 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
897 * @q: the target queue
898 * @bio: destination bio
899 * @page: page to add
900 * @len: vec entry length
901 * @offset: vec entry offset
902 * @max_sectors: maximum number of sectors that can be added
903 * @same_page: return if the segment has been merged inside the same page
c66a14d0 904 *
e4581105
CH
905 * Add a page to a bio while respecting the hardware max_sectors, max_segment
906 * and gap limitations.
1da177e4 907 */
e4581105 908int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 909 struct page *page, unsigned int len, unsigned int offset,
e4581105 910 unsigned int max_sectors, bool *same_page)
1da177e4 911{
1da177e4
LT
912 struct bio_vec *bvec;
913
e4581105 914 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
915 return 0;
916
e4581105 917 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
918 return 0;
919
80cfd548 920 if (bio->bi_vcnt > 0) {
e4581105 921 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 922 return len;
320ea869
CH
923
924 /*
925 * If the queue doesn't support SG gaps and adding this segment
926 * would create a gap, disallow it.
927 */
384209cd 928 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
929 if (bvec_gap_to_prev(q, bvec, offset))
930 return 0;
80cfd548
JA
931 }
932
79d08f89 933 if (bio_full(bio, len))
1da177e4
LT
934 return 0;
935
14ccb66b 936 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
937 return 0;
938
fcbf6a08
ML
939 bvec = &bio->bi_io_vec[bio->bi_vcnt];
940 bvec->bv_page = page;
941 bvec->bv_len = len;
942 bvec->bv_offset = offset;
943 bio->bi_vcnt++;
dcdca753 944 bio->bi_iter.bi_size += len;
1da177e4
LT
945 return len;
946}
19047087 947
e4581105
CH
948/**
949 * bio_add_pc_page - attempt to add page to passthrough bio
950 * @q: the target queue
951 * @bio: destination bio
952 * @page: page to add
953 * @len: vec entry length
954 * @offset: vec entry offset
955 *
956 * Attempt to add a page to the bio_vec maplist. This can fail for a
957 * number of reasons, such as the bio being full or target block device
958 * limitations. The target block device must allow bio's up to PAGE_SIZE,
959 * so it is always possible to add a single page to an empty bio.
960 *
961 * This should only be used by passthrough bios.
962 */
19047087
ML
963int bio_add_pc_page(struct request_queue *q, struct bio *bio,
964 struct page *page, unsigned int len, unsigned int offset)
965{
d1916c86 966 bool same_page = false;
e4581105
CH
967 return bio_add_hw_page(q, bio, page, len, offset,
968 queue_max_hw_sectors(q), &same_page);
19047087 969}
a112a71d 970EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 971
ae29333f
JT
972/**
973 * bio_add_zone_append_page - attempt to add page to zone-append bio
974 * @bio: destination bio
975 * @page: page to add
976 * @len: vec entry length
977 * @offset: vec entry offset
978 *
979 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
980 * for a zone-append request. This can fail for a number of reasons, such as the
981 * bio being full or the target block device is not a zoned block device or
982 * other limitations of the target block device. The target block device must
983 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
984 * to an empty bio.
985 *
986 * Returns: number of bytes added to the bio, or 0 in case of a failure.
987 */
988int bio_add_zone_append_page(struct bio *bio, struct page *page,
989 unsigned int len, unsigned int offset)
990{
3caee463 991 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae29333f
JT
992 bool same_page = false;
993
994 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
995 return 0;
996
997 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
998 return 0;
999
1000 return bio_add_hw_page(q, bio, page, len, offset,
1001 queue_max_zone_append_sectors(q), &same_page);
1002}
1003EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1004
0aa69fd3 1005/**
551879a4 1006 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 1007 * @bio: destination bio
551879a4
ML
1008 * @page: start page to add
1009 * @len: length of the data to add, may cross pages
1010 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
1011 *
1012 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
1013 * that @bio has space for another bvec.
1014 */
1015void __bio_add_page(struct bio *bio, struct page *page,
1016 unsigned int len, unsigned int off)
1017{
1018 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 1019
0aa69fd3 1020 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 1021 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
1022
1023 bv->bv_page = page;
1024 bv->bv_offset = off;
1025 bv->bv_len = len;
c66a14d0 1026
c66a14d0 1027 bio->bi_iter.bi_size += len;
0aa69fd3 1028 bio->bi_vcnt++;
b8e24a93
JW
1029
1030 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
1031 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
1032}
1033EXPORT_SYMBOL_GPL(__bio_add_page);
1034
1035/**
551879a4 1036 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 1037 * @bio: destination bio
551879a4
ML
1038 * @page: start page to add
1039 * @len: vec entry length, may cross pages
1040 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 1041 *
551879a4 1042 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
1043 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1044 */
1045int bio_add_page(struct bio *bio, struct page *page,
1046 unsigned int len, unsigned int offset)
1047{
ff896738
CH
1048 bool same_page = false;
1049
1050 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 1051 if (bio_full(bio, len))
0aa69fd3
CH
1052 return 0;
1053 __bio_add_page(bio, page, len, offset);
1054 }
c66a14d0 1055 return len;
1da177e4 1056}
a112a71d 1057EXPORT_SYMBOL(bio_add_page);
1da177e4 1058
85f5a74c
MWO
1059/**
1060 * bio_add_folio - Attempt to add part of a folio to a bio.
1061 * @bio: BIO to add to.
1062 * @folio: Folio to add.
1063 * @len: How many bytes from the folio to add.
1064 * @off: First byte in this folio to add.
1065 *
1066 * Filesystems that use folios can call this function instead of calling
1067 * bio_add_page() for each page in the folio. If @off is bigger than
1068 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1069 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1070 *
1071 * Return: Whether the addition was successful.
1072 */
1073bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1074 size_t off)
1075{
1076 if (len > UINT_MAX || off > UINT_MAX)
1077 return 0;
1078 return bio_add_page(bio, &folio->page, len, off) > 0;
1079}
1080
c809084a 1081void __bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
1082{
1083 struct bvec_iter_all iter_all;
1084 struct bio_vec *bvec;
7321ecbf 1085
d241a95f
CH
1086 bio_for_each_segment_all(bvec, bio, iter_all) {
1087 if (mark_dirty && !PageCompound(bvec->bv_page))
1088 set_page_dirty_lock(bvec->bv_page);
7321ecbf 1089 put_page(bvec->bv_page);
d241a95f 1090 }
7321ecbf 1091}
c809084a 1092EXPORT_SYMBOL_GPL(__bio_release_pages);
7321ecbf 1093
1bb6b810 1094void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
6d0c48ae 1095{
fa5fa8ec
PB
1096 size_t size = iov_iter_count(iter);
1097
7a800a20 1098 WARN_ON_ONCE(bio->bi_max_vecs);
c42bca92 1099
fa5fa8ec
PB
1100 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1101 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1102 size_t max_sectors = queue_max_zone_append_sectors(q);
1103
1104 size = min(size, max_sectors << SECTOR_SHIFT);
1105 }
1106
c42bca92 1107 bio->bi_vcnt = iter->nr_segs;
c42bca92
PB
1108 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1109 bio->bi_iter.bi_bvec_done = iter->iov_offset;
fa5fa8ec 1110 bio->bi_iter.bi_size = size;
ed97ce5e 1111 bio_set_flag(bio, BIO_NO_PAGE_REF);
977be012 1112 bio_set_flag(bio, BIO_CLONED);
7de55b7d 1113}
c42bca92 1114
d9cf3bd5
PB
1115static void bio_put_pages(struct page **pages, size_t size, size_t off)
1116{
1117 size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1118
1119 for (i = 0; i < nr; i++)
1120 put_page(pages[i]);
1121}
1122
576ed913
CH
1123#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1124
2cefe4db 1125/**
17d51b10 1126 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
1127 * @bio: bio to add pages to
1128 * @iter: iov iterator describing the region to be mapped
1129 *
17d51b10 1130 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 1131 * pages will have to be released using put_page() when done.
17d51b10 1132 * For multi-segment *iter, this function only adds pages from the
3cf14889 1133 * next non-empty segment of the iov iterator.
2cefe4db 1134 */
17d51b10 1135static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 1136{
576ed913
CH
1137 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1138 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
1139 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1140 struct page **pages = (struct page **)bv;
45691804 1141 bool same_page = false;
576ed913
CH
1142 ssize_t size, left;
1143 unsigned len, i;
b403ea24 1144 size_t offset;
576ed913
CH
1145
1146 /*
1147 * Move page array up in the allocated memory for the bio vecs as far as
1148 * possible so that we can start filling biovecs from the beginning
1149 * without overwriting the temporary page array.
1150 */
1151 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1152 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db 1153
35c820e7 1154 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
2cefe4db
KO
1155 if (unlikely(size <= 0))
1156 return size ? size : -EFAULT;
2cefe4db 1157
576ed913
CH
1158 for (left = size, i = 0; left > 0; left -= len, i++) {
1159 struct page *page = pages[i];
2cefe4db 1160
576ed913 1161 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
1162
1163 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1164 if (same_page)
1165 put_page(page);
1166 } else {
d9cf3bd5
PB
1167 if (WARN_ON_ONCE(bio_full(bio, len))) {
1168 bio_put_pages(pages + i, left, offset);
1169 return -EINVAL;
1170 }
45691804
CH
1171 __bio_add_page(bio, page, len, offset);
1172 }
576ed913 1173 offset = 0;
2cefe4db
KO
1174 }
1175
2cefe4db
KO
1176 iov_iter_advance(iter, size);
1177 return 0;
1178}
17d51b10 1179
0512a75b
KB
1180static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1181{
1182 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1183 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
3caee463 1184 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
0512a75b
KB
1185 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1186 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1187 struct page **pages = (struct page **)bv;
1188 ssize_t size, left;
1189 unsigned len, i;
1190 size_t offset;
4977d121 1191 int ret = 0;
0512a75b
KB
1192
1193 if (WARN_ON_ONCE(!max_append_sectors))
1194 return 0;
1195
1196 /*
1197 * Move page array up in the allocated memory for the bio vecs as far as
1198 * possible so that we can start filling biovecs from the beginning
1199 * without overwriting the temporary page array.
1200 */
1201 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1202 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1203
1204 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1205 if (unlikely(size <= 0))
1206 return size ? size : -EFAULT;
1207
1208 for (left = size, i = 0; left > 0; left -= len, i++) {
1209 struct page *page = pages[i];
1210 bool same_page = false;
1211
1212 len = min_t(size_t, PAGE_SIZE - offset, left);
1213 if (bio_add_hw_page(q, bio, page, len, offset,
4977d121 1214 max_append_sectors, &same_page) != len) {
d9cf3bd5 1215 bio_put_pages(pages + i, left, offset);
4977d121
NA
1216 ret = -EINVAL;
1217 break;
1218 }
0512a75b
KB
1219 if (same_page)
1220 put_page(page);
1221 offset = 0;
1222 }
1223
4977d121
NA
1224 iov_iter_advance(iter, size - left);
1225 return ret;
0512a75b
KB
1226}
1227
17d51b10 1228/**
6d0c48ae 1229 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1230 * @bio: bio to add pages to
6d0c48ae
JA
1231 * @iter: iov iterator describing the region to be added
1232 *
1233 * This takes either an iterator pointing to user memory, or one pointing to
1234 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1235 * map them into the kernel. On IO completion, the caller should put those
c42bca92
PB
1236 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1237 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1238 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1239 * completed by a call to ->ki_complete() or returns with an error other than
1240 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1241 * on IO completion. If it isn't, then pages should be released.
17d51b10 1242 *
17d51b10 1243 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1244 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1245 * MM encounters an error pinning the requested pages, it stops. Error
1246 * is returned only if 0 pages could be pinned.
0cf41e5e
PB
1247 *
1248 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1249 * responsible for setting BIO_WORKINGSET if necessary.
17d51b10
MW
1250 */
1251int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1252{
c42bca92 1253 int ret = 0;
14eacf12 1254
c42bca92 1255 if (iov_iter_is_bvec(iter)) {
fa5fa8ec
PB
1256 bio_iov_bvec_set(bio, iter);
1257 iov_iter_advance(iter, bio->bi_iter.bi_size);
1258 return 0;
c42bca92 1259 }
17d51b10
MW
1260
1261 do {
86004515 1262 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
0512a75b 1263 ret = __bio_iov_append_get_pages(bio, iter);
86004515
CH
1264 else
1265 ret = __bio_iov_iter_get_pages(bio, iter);
79d08f89 1266 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 1267
0cf41e5e
PB
1268 /* don't account direct I/O as memory stall */
1269 bio_clear_flag(bio, BIO_WORKINGSET);
14eacf12 1270 return bio->bi_vcnt ? 0 : ret;
17d51b10 1271}
29b2a3aa 1272EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1273
4246a0b6 1274static void submit_bio_wait_endio(struct bio *bio)
9e882242 1275{
65e53aab 1276 complete(bio->bi_private);
9e882242
KO
1277}
1278
1279/**
1280 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1281 * @bio: The &struct bio which describes the I/O
1282 *
1283 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1284 * bio_endio() on failure.
3d289d68
JK
1285 *
1286 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1287 * result in bio reference to be consumed. The caller must drop the reference
1288 * on his own.
9e882242 1289 */
4e49ea4a 1290int submit_bio_wait(struct bio *bio)
9e882242 1291{
309dca30
CH
1292 DECLARE_COMPLETION_ONSTACK_MAP(done,
1293 bio->bi_bdev->bd_disk->lockdep_map);
de6a78b6 1294 unsigned long hang_check;
9e882242 1295
65e53aab 1296 bio->bi_private = &done;
9e882242 1297 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1298 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1299 submit_bio(bio);
de6a78b6
ML
1300
1301 /* Prevent hang_check timer from firing at us during very long I/O */
1302 hang_check = sysctl_hung_task_timeout_secs;
1303 if (hang_check)
1304 while (!wait_for_completion_io_timeout(&done,
1305 hang_check * (HZ/2)))
1306 ;
1307 else
1308 wait_for_completion_io(&done);
9e882242 1309
65e53aab 1310 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1311}
1312EXPORT_SYMBOL(submit_bio_wait);
1313
d4aa57a1 1314void __bio_advance(struct bio *bio, unsigned bytes)
054bdf64
KO
1315{
1316 if (bio_integrity(bio))
1317 bio_integrity_advance(bio, bytes);
1318
a892c8d5 1319 bio_crypt_advance(bio, bytes);
4550dd6c 1320 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64 1321}
d4aa57a1 1322EXPORT_SYMBOL(__bio_advance);
054bdf64 1323
45db54d5
KO
1324void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1325 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1326{
45db54d5 1327 while (src_iter->bi_size && dst_iter->bi_size) {
f8b679a0
CH
1328 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1329 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1330 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1331 void *src_buf;
1332
1333 src_buf = bvec_kmap_local(&src_bv);
1334 memcpy_to_bvec(&dst_bv, src_buf);
1335 kunmap_local(src_buf);
6e6e811d 1336
22b56c29
PB
1337 bio_advance_iter_single(src, src_iter, bytes);
1338 bio_advance_iter_single(dst, dst_iter, bytes);
16ac3d63
KO
1339 }
1340}
38a72dac
KO
1341EXPORT_SYMBOL(bio_copy_data_iter);
1342
1343/**
45db54d5
KO
1344 * bio_copy_data - copy contents of data buffers from one bio to another
1345 * @src: source bio
1346 * @dst: destination bio
38a72dac
KO
1347 *
1348 * Stops when it reaches the end of either @src or @dst - that is, copies
1349 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1350 */
1351void bio_copy_data(struct bio *dst, struct bio *src)
1352{
45db54d5
KO
1353 struct bvec_iter src_iter = src->bi_iter;
1354 struct bvec_iter dst_iter = dst->bi_iter;
1355
1356 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1357}
16ac3d63
KO
1358EXPORT_SYMBOL(bio_copy_data);
1359
491221f8 1360void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1361{
1362 struct bio_vec *bvec;
6dc4f100 1363 struct bvec_iter_all iter_all;
1dfa0f68 1364
2b070cfe 1365 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1366 __free_page(bvec->bv_page);
1367}
491221f8 1368EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1369
1da177e4
LT
1370/*
1371 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1372 * for performing direct-IO in BIOs.
1373 *
1374 * The problem is that we cannot run set_page_dirty() from interrupt context
1375 * because the required locks are not interrupt-safe. So what we can do is to
1376 * mark the pages dirty _before_ performing IO. And in interrupt context,
1377 * check that the pages are still dirty. If so, fine. If not, redirty them
1378 * in process context.
1379 *
1380 * We special-case compound pages here: normally this means reads into hugetlb
1381 * pages. The logic in here doesn't really work right for compound pages
1382 * because the VM does not uniformly chase down the head page in all cases.
1383 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1384 * handle them at all. So we skip compound pages here at an early stage.
1385 *
1386 * Note that this code is very hard to test under normal circumstances because
1387 * direct-io pins the pages with get_user_pages(). This makes
1388 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1389 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1390 * pagecache.
1391 *
1392 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1393 * deferred bio dirtying paths.
1394 */
1395
1396/*
1397 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1398 */
1399void bio_set_pages_dirty(struct bio *bio)
1400{
cb34e057 1401 struct bio_vec *bvec;
6dc4f100 1402 struct bvec_iter_all iter_all;
1da177e4 1403
2b070cfe 1404 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1405 if (!PageCompound(bvec->bv_page))
1406 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1407 }
1408}
1409
1da177e4
LT
1410/*
1411 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1412 * If they are, then fine. If, however, some pages are clean then they must
1413 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1414 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1415 *
1416 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1417 * here on. It will run one put_page() against each page and will run one
1418 * bio_put() against the BIO.
1da177e4
LT
1419 */
1420
65f27f38 1421static void bio_dirty_fn(struct work_struct *work);
1da177e4 1422
65f27f38 1423static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1424static DEFINE_SPINLOCK(bio_dirty_lock);
1425static struct bio *bio_dirty_list;
1426
1427/*
1428 * This runs in process context
1429 */
65f27f38 1430static void bio_dirty_fn(struct work_struct *work)
1da177e4 1431{
24d5493f 1432 struct bio *bio, *next;
1da177e4 1433
24d5493f
CH
1434 spin_lock_irq(&bio_dirty_lock);
1435 next = bio_dirty_list;
1da177e4 1436 bio_dirty_list = NULL;
24d5493f 1437 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1438
24d5493f
CH
1439 while ((bio = next) != NULL) {
1440 next = bio->bi_private;
1da177e4 1441
d241a95f 1442 bio_release_pages(bio, true);
1da177e4 1443 bio_put(bio);
1da177e4
LT
1444 }
1445}
1446
1447void bio_check_pages_dirty(struct bio *bio)
1448{
cb34e057 1449 struct bio_vec *bvec;
24d5493f 1450 unsigned long flags;
6dc4f100 1451 struct bvec_iter_all iter_all;
1da177e4 1452
2b070cfe 1453 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1454 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1455 goto defer;
1da177e4
LT
1456 }
1457
d241a95f 1458 bio_release_pages(bio, false);
24d5493f
CH
1459 bio_put(bio);
1460 return;
1461defer:
1462 spin_lock_irqsave(&bio_dirty_lock, flags);
1463 bio->bi_private = bio_dirty_list;
1464 bio_dirty_list = bio;
1465 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1466 schedule_work(&bio_dirty_work);
1da177e4
LT
1467}
1468
c4cf5261
JA
1469static inline bool bio_remaining_done(struct bio *bio)
1470{
1471 /*
1472 * If we're not chaining, then ->__bi_remaining is always 1 and
1473 * we always end io on the first invocation.
1474 */
1475 if (!bio_flagged(bio, BIO_CHAIN))
1476 return true;
1477
1478 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1479
326e1dbb 1480 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1481 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1482 return true;
326e1dbb 1483 }
c4cf5261
JA
1484
1485 return false;
1486}
1487
1da177e4
LT
1488/**
1489 * bio_endio - end I/O on a bio
1490 * @bio: bio
1da177e4
LT
1491 *
1492 * Description:
4246a0b6
CH
1493 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1494 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1495 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1496 *
1497 * bio_endio() can be called several times on a bio that has been chained
1498 * using bio_chain(). The ->bi_end_io() function will only be called the
60b6a7e6 1499 * last time.
1da177e4 1500 **/
4246a0b6 1501void bio_endio(struct bio *bio)
1da177e4 1502{
ba8c6967 1503again:
2b885517 1504 if (!bio_remaining_done(bio))
ba8c6967 1505 return;
7c20f116
CH
1506 if (!bio_integrity_endio(bio))
1507 return;
1da177e4 1508
a647a524 1509 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED))
3caee463 1510 rq_qos_done_bio(bdev_get_queue(bio->bi_bdev), bio);
67b42d0b 1511
60b6a7e6 1512 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
3caee463 1513 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
60b6a7e6
EH
1514 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1515 }
1516
ba8c6967
CH
1517 /*
1518 * Need to have a real endio function for chained bios, otherwise
1519 * various corner cases will break (like stacking block devices that
1520 * save/restore bi_end_io) - however, we want to avoid unbounded
1521 * recursion and blowing the stack. Tail call optimization would
1522 * handle this, but compiling with frame pointers also disables
1523 * gcc's sibling call optimization.
1524 */
1525 if (bio->bi_end_io == bio_chain_endio) {
1526 bio = __bio_chain_endio(bio);
1527 goto again;
196d38bc 1528 }
ba8c6967 1529
9e234eea 1530 blk_throtl_bio_endio(bio);
b222dd2f
SL
1531 /* release cgroup info */
1532 bio_uninit(bio);
ba8c6967
CH
1533 if (bio->bi_end_io)
1534 bio->bi_end_io(bio);
1da177e4 1535}
a112a71d 1536EXPORT_SYMBOL(bio_endio);
1da177e4 1537
20d0189b
KO
1538/**
1539 * bio_split - split a bio
1540 * @bio: bio to split
1541 * @sectors: number of sectors to split from the front of @bio
1542 * @gfp: gfp mask
1543 * @bs: bio set to allocate from
1544 *
1545 * Allocates and returns a new bio which represents @sectors from the start of
1546 * @bio, and updates @bio to represent the remaining sectors.
1547 *
f3f5da62 1548 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1549 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1550 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1551 */
1552struct bio *bio_split(struct bio *bio, int sectors,
1553 gfp_t gfp, struct bio_set *bs)
1554{
f341a4d3 1555 struct bio *split;
20d0189b
KO
1556
1557 BUG_ON(sectors <= 0);
1558 BUG_ON(sectors >= bio_sectors(bio));
1559
0512a75b
KB
1560 /* Zone append commands cannot be split */
1561 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1562 return NULL;
1563
f9d03f96 1564 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1565 if (!split)
1566 return NULL;
1567
1568 split->bi_iter.bi_size = sectors << 9;
1569
1570 if (bio_integrity(split))
fbd08e76 1571 bio_integrity_trim(split);
20d0189b
KO
1572
1573 bio_advance(bio, split->bi_iter.bi_size);
1574
fbbaf700 1575 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1576 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1577
20d0189b
KO
1578 return split;
1579}
1580EXPORT_SYMBOL(bio_split);
1581
6678d83f
KO
1582/**
1583 * bio_trim - trim a bio
1584 * @bio: bio to trim
1585 * @offset: number of sectors to trim from the front of @bio
1586 * @size: size we want to trim @bio to, in sectors
e83502ca
CK
1587 *
1588 * This function is typically used for bios that are cloned and submitted
1589 * to the underlying device in parts.
6678d83f 1590 */
e83502ca 1591void bio_trim(struct bio *bio, sector_t offset, sector_t size)
6678d83f 1592{
e83502ca
CK
1593 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1594 offset + size > bio->bi_iter.bi_size))
1595 return;
6678d83f
KO
1596
1597 size <<= 9;
4f024f37 1598 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1599 return;
1600
6678d83f 1601 bio_advance(bio, offset << 9);
4f024f37 1602 bio->bi_iter.bi_size = size;
376a78ab
DM
1603
1604 if (bio_integrity(bio))
fbd08e76 1605 bio_integrity_trim(bio);
6678d83f
KO
1606}
1607EXPORT_SYMBOL_GPL(bio_trim);
1608
1da177e4
LT
1609/*
1610 * create memory pools for biovec's in a bio_set.
1611 * use the global biovec slabs created for general use.
1612 */
8aa6ba2f 1613int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1614{
7a800a20 1615 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1da177e4 1616
8aa6ba2f 1617 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1618}
1619
917a38c7
KO
1620/*
1621 * bioset_exit - exit a bioset initialized with bioset_init()
1622 *
1623 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1624 * kzalloc()).
1625 */
1626void bioset_exit(struct bio_set *bs)
1da177e4 1627{
be4d234d 1628 bio_alloc_cache_destroy(bs);
df2cb6da
KO
1629 if (bs->rescue_workqueue)
1630 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1631 bs->rescue_workqueue = NULL;
df2cb6da 1632
8aa6ba2f
KO
1633 mempool_exit(&bs->bio_pool);
1634 mempool_exit(&bs->bvec_pool);
9f060e22 1635
7878cba9 1636 bioset_integrity_free(bs);
917a38c7
KO
1637 if (bs->bio_slab)
1638 bio_put_slab(bs);
1639 bs->bio_slab = NULL;
1640}
1641EXPORT_SYMBOL(bioset_exit);
1da177e4 1642
917a38c7
KO
1643/**
1644 * bioset_init - Initialize a bio_set
dad08527 1645 * @bs: pool to initialize
917a38c7
KO
1646 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1647 * @front_pad: Number of bytes to allocate in front of the returned bio
1648 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1649 * and %BIOSET_NEED_RESCUER
1650 *
dad08527
KO
1651 * Description:
1652 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1653 * to ask for a number of bytes to be allocated in front of the bio.
1654 * Front pad allocation is useful for embedding the bio inside
1655 * another structure, to avoid allocating extra data to go with the bio.
1656 * Note that the bio must be embedded at the END of that structure always,
1657 * or things will break badly.
1658 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1659 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1660 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1661 * dispatch queued requests when the mempool runs out of space.
1662 *
917a38c7
KO
1663 */
1664int bioset_init(struct bio_set *bs,
1665 unsigned int pool_size,
1666 unsigned int front_pad,
1667 int flags)
1668{
917a38c7 1669 bs->front_pad = front_pad;
9f180e31
ML
1670 if (flags & BIOSET_NEED_BVECS)
1671 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1672 else
1673 bs->back_pad = 0;
917a38c7
KO
1674
1675 spin_lock_init(&bs->rescue_lock);
1676 bio_list_init(&bs->rescue_list);
1677 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1678
49d1ec85 1679 bs->bio_slab = bio_find_or_create_slab(bs);
917a38c7
KO
1680 if (!bs->bio_slab)
1681 return -ENOMEM;
1682
1683 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1684 goto bad;
1685
1686 if ((flags & BIOSET_NEED_BVECS) &&
1687 biovec_init_pool(&bs->bvec_pool, pool_size))
1688 goto bad;
1689
be4d234d
JA
1690 if (flags & BIOSET_NEED_RESCUER) {
1691 bs->rescue_workqueue = alloc_workqueue("bioset",
1692 WQ_MEM_RECLAIM, 0);
1693 if (!bs->rescue_workqueue)
1694 goto bad;
1695 }
1696 if (flags & BIOSET_PERCPU_CACHE) {
1697 bs->cache = alloc_percpu(struct bio_alloc_cache);
1698 if (!bs->cache)
1699 goto bad;
1700 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1701 }
917a38c7
KO
1702
1703 return 0;
1704bad:
1705 bioset_exit(bs);
1706 return -ENOMEM;
1707}
1708EXPORT_SYMBOL(bioset_init);
1709
28e89fd9
JA
1710/*
1711 * Initialize and setup a new bio_set, based on the settings from
1712 * another bio_set.
1713 */
1714int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1715{
1716 int flags;
1717
1718 flags = 0;
1719 if (src->bvec_pool.min_nr)
1720 flags |= BIOSET_NEED_BVECS;
1721 if (src->rescue_workqueue)
1722 flags |= BIOSET_NEED_RESCUER;
1723
1724 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1725}
1726EXPORT_SYMBOL(bioset_init_from_src);
1727
be4d234d
JA
1728/**
1729 * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1730 * @kiocb: kiocb describing the IO
b77c88c2 1731 * @bdev: block device to allocate the bio for (can be %NULL)
0ef47db1 1732 * @nr_vecs: number of iovecs to pre-allocate
b77c88c2 1733 * @opf: operation and flags for bio
be4d234d
JA
1734 * @bs: bio_set to allocate from
1735 *
1736 * Description:
1737 * Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1738 * used to check if we should dip into the per-cpu bio_set allocation
3d5b3fbe
JA
1739 * cache. The allocation uses GFP_KERNEL internally. On return, the
1740 * bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1741 * MUST be done from process context, not hard/soft IRQ.
be4d234d
JA
1742 *
1743 */
b77c88c2
CH
1744struct bio *bio_alloc_kiocb(struct kiocb *kiocb, struct block_device *bdev,
1745 unsigned short nr_vecs, unsigned int opf, struct bio_set *bs)
be4d234d
JA
1746{
1747 struct bio_alloc_cache *cache;
1748 struct bio *bio;
1749
1750 if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
b77c88c2 1751 return bio_alloc_bioset(bdev, nr_vecs, opf, GFP_KERNEL, bs);
be4d234d
JA
1752
1753 cache = per_cpu_ptr(bs->cache, get_cpu());
fcade2ce
JA
1754 if (cache->free_list) {
1755 bio = cache->free_list;
1756 cache->free_list = bio->bi_next;
be4d234d
JA
1757 cache->nr--;
1758 put_cpu();
49add496
CH
1759 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL,
1760 nr_vecs, opf);
be4d234d
JA
1761 bio->bi_pool = bs;
1762 bio_set_flag(bio, BIO_PERCPU_CACHE);
1763 return bio;
1764 }
1765 put_cpu();
b77c88c2 1766 bio = bio_alloc_bioset(bdev, nr_vecs, opf, GFP_KERNEL, bs);
be4d234d
JA
1767 bio_set_flag(bio, BIO_PERCPU_CACHE);
1768 return bio;
1769}
1770EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1771
de76fd89 1772static int __init init_bio(void)
1da177e4
LT
1773{
1774 int i;
1775
7878cba9 1776 bio_integrity_init();
1da177e4 1777
de76fd89
CH
1778 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1779 struct biovec_slab *bvs = bvec_slabs + i;
a7fcd37c 1780
de76fd89
CH
1781 bvs->slab = kmem_cache_create(bvs->name,
1782 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1783 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 1784 }
1da177e4 1785
be4d234d
JA
1786 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1787 bio_cpu_dead);
1788
f4f8154a 1789 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1790 panic("bio: can't allocate bios\n");
1791
f4f8154a 1792 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1793 panic("bio: can't create integrity pool\n");
1794
1da177e4
LT
1795 return 0;
1796}
1da177e4 1797subsys_initcall(init_bio);