Merge branch 'nvme-4.19' of git://git.infradead.org/nvme into for-4.19/block
[linux-block.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
08e18eab 31#include <linux/blk-cgroup.h>
1da177e4 32
55782138 33#include <trace/events/block.h>
9e234eea 34#include "blk.h"
67b42d0b 35#include "blk-rq-qos.h"
0bfc2455 36
392ddc32
JA
37/*
38 * Test patch to inline a certain number of bi_io_vec's inside the bio
39 * itself, to shrink a bio data allocation from two mempool calls to one
40 */
41#define BIO_INLINE_VECS 4
42
1da177e4
LT
43/*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
bd5c4fac 48#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 49static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 50 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
51};
52#undef BV
53
1da177e4
LT
54/*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
f4f8154a 58struct bio_set fs_bio_set;
3f86a82a 59EXPORT_SYMBOL(fs_bio_set);
1da177e4 60
bb799ca0
JA
61/*
62 * Our slab pool management
63 */
64struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69};
70static DEFINE_MUTEX(bio_slab_lock);
71static struct bio_slab *bio_slabs;
72static unsigned int bio_slab_nr, bio_slab_max;
73
74static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75{
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
389d7b26 78 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 79 unsigned int new_bio_slab_max;
bb799ca0
JA
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
f06f135d 86 bslab = &bio_slabs[i];
bb799ca0
JA
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 102 new_bio_slab_max = bio_slab_max << 1;
389d7b26 103 new_bio_slabs = krealloc(bio_slabs,
386bc35a 104 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
105 GFP_KERNEL);
106 if (!new_bio_slabs)
bb799ca0 107 goto out_unlock;
386bc35a 108 bio_slab_max = new_bio_slab_max;
389d7b26 109 bio_slabs = new_bio_slabs;
bb799ca0
JA
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
117 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
118 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
119 if (!slab)
120 goto out_unlock;
121
bb799ca0
JA
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128}
129
130static void bio_put_slab(struct bio_set *bs)
131{
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155out:
156 mutex_unlock(&bio_slab_lock);
157}
158
7ba1ba12
MP
159unsigned int bvec_nr_vecs(unsigned short idx)
160{
161 return bvec_slabs[idx].nr_vecs;
162}
163
9f060e22 164void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 165{
ed996a52
CH
166 if (!idx)
167 return;
168 idx--;
169
170 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 171
ed996a52 172 if (idx == BVEC_POOL_MAX) {
9f060e22 173 mempool_free(bv, pool);
ed996a52 174 } else {
bb799ca0
JA
175 struct biovec_slab *bvs = bvec_slabs + idx;
176
177 kmem_cache_free(bvs->slab, bv);
178 }
179}
180
9f060e22
KO
181struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
182 mempool_t *pool)
1da177e4
LT
183{
184 struct bio_vec *bvl;
1da177e4 185
7ff9345f
JA
186 /*
187 * see comment near bvec_array define!
188 */
189 switch (nr) {
190 case 1:
191 *idx = 0;
192 break;
193 case 2 ... 4:
194 *idx = 1;
195 break;
196 case 5 ... 16:
197 *idx = 2;
198 break;
199 case 17 ... 64:
200 *idx = 3;
201 break;
202 case 65 ... 128:
203 *idx = 4;
204 break;
205 case 129 ... BIO_MAX_PAGES:
206 *idx = 5;
207 break;
208 default:
209 return NULL;
210 }
211
212 /*
213 * idx now points to the pool we want to allocate from. only the
214 * 1-vec entry pool is mempool backed.
215 */
ed996a52 216 if (*idx == BVEC_POOL_MAX) {
7ff9345f 217fallback:
9f060e22 218 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
219 } else {
220 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 221 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 222
0a0d96b0 223 /*
7ff9345f
JA
224 * Make this allocation restricted and don't dump info on
225 * allocation failures, since we'll fallback to the mempool
226 * in case of failure.
0a0d96b0 227 */
7ff9345f 228 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 229
0a0d96b0 230 /*
d0164adc 231 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 232 * is set, retry with the 1-entry mempool
0a0d96b0 233 */
7ff9345f 234 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 235 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 236 *idx = BVEC_POOL_MAX;
7ff9345f
JA
237 goto fallback;
238 }
239 }
240
ed996a52 241 (*idx)++;
1da177e4
LT
242 return bvl;
243}
244
9ae3b3f5 245void bio_uninit(struct bio *bio)
1da177e4 246{
4254bba1 247 bio_disassociate_task(bio);
4254bba1 248}
9ae3b3f5 249EXPORT_SYMBOL(bio_uninit);
7ba1ba12 250
4254bba1
KO
251static void bio_free(struct bio *bio)
252{
253 struct bio_set *bs = bio->bi_pool;
254 void *p;
255
9ae3b3f5 256 bio_uninit(bio);
4254bba1
KO
257
258 if (bs) {
8aa6ba2f 259 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
260
261 /*
262 * If we have front padding, adjust the bio pointer before freeing
263 */
264 p = bio;
bb799ca0
JA
265 p -= bs->front_pad;
266
8aa6ba2f 267 mempool_free(p, &bs->bio_pool);
4254bba1
KO
268 } else {
269 /* Bio was allocated by bio_kmalloc() */
270 kfree(bio);
271 }
3676347a
PO
272}
273
9ae3b3f5
JA
274/*
275 * Users of this function have their own bio allocation. Subsequently,
276 * they must remember to pair any call to bio_init() with bio_uninit()
277 * when IO has completed, or when the bio is released.
278 */
3a83f467
ML
279void bio_init(struct bio *bio, struct bio_vec *table,
280 unsigned short max_vecs)
1da177e4 281{
2b94de55 282 memset(bio, 0, sizeof(*bio));
c4cf5261 283 atomic_set(&bio->__bi_remaining, 1);
dac56212 284 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
285
286 bio->bi_io_vec = table;
287 bio->bi_max_vecs = max_vecs;
1da177e4 288}
a112a71d 289EXPORT_SYMBOL(bio_init);
1da177e4 290
f44b48c7
KO
291/**
292 * bio_reset - reinitialize a bio
293 * @bio: bio to reset
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
301void bio_reset(struct bio *bio)
302{
303 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
304
9ae3b3f5 305 bio_uninit(bio);
f44b48c7
KO
306
307 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 308 bio->bi_flags = flags;
c4cf5261 309 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
310}
311EXPORT_SYMBOL(bio_reset);
312
38f8baae 313static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 314{
4246a0b6
CH
315 struct bio *parent = bio->bi_private;
316
4e4cbee9
CH
317 if (!parent->bi_status)
318 parent->bi_status = bio->bi_status;
196d38bc 319 bio_put(bio);
38f8baae
CH
320 return parent;
321}
322
323static void bio_chain_endio(struct bio *bio)
324{
325 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
326}
327
328/**
329 * bio_chain - chain bio completions
1051a902
RD
330 * @bio: the target bio
331 * @parent: the @bio's parent bio
196d38bc
KO
332 *
333 * The caller won't have a bi_end_io called when @bio completes - instead,
334 * @parent's bi_end_io won't be called until both @parent and @bio have
335 * completed; the chained bio will also be freed when it completes.
336 *
337 * The caller must not set bi_private or bi_end_io in @bio.
338 */
339void bio_chain(struct bio *bio, struct bio *parent)
340{
341 BUG_ON(bio->bi_private || bio->bi_end_io);
342
343 bio->bi_private = parent;
344 bio->bi_end_io = bio_chain_endio;
c4cf5261 345 bio_inc_remaining(parent);
196d38bc
KO
346}
347EXPORT_SYMBOL(bio_chain);
348
df2cb6da
KO
349static void bio_alloc_rescue(struct work_struct *work)
350{
351 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
352 struct bio *bio;
353
354 while (1) {
355 spin_lock(&bs->rescue_lock);
356 bio = bio_list_pop(&bs->rescue_list);
357 spin_unlock(&bs->rescue_lock);
358
359 if (!bio)
360 break;
361
362 generic_make_request(bio);
363 }
364}
365
366static void punt_bios_to_rescuer(struct bio_set *bs)
367{
368 struct bio_list punt, nopunt;
369 struct bio *bio;
370
47e0fb46
N
371 if (WARN_ON_ONCE(!bs->rescue_workqueue))
372 return;
df2cb6da
KO
373 /*
374 * In order to guarantee forward progress we must punt only bios that
375 * were allocated from this bio_set; otherwise, if there was a bio on
376 * there for a stacking driver higher up in the stack, processing it
377 * could require allocating bios from this bio_set, and doing that from
378 * our own rescuer would be bad.
379 *
380 * Since bio lists are singly linked, pop them all instead of trying to
381 * remove from the middle of the list:
382 */
383
384 bio_list_init(&punt);
385 bio_list_init(&nopunt);
386
f5fe1b51 387 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 388 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 389 current->bio_list[0] = nopunt;
df2cb6da 390
f5fe1b51
N
391 bio_list_init(&nopunt);
392 while ((bio = bio_list_pop(&current->bio_list[1])))
393 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
394 current->bio_list[1] = nopunt;
df2cb6da
KO
395
396 spin_lock(&bs->rescue_lock);
397 bio_list_merge(&bs->rescue_list, &punt);
398 spin_unlock(&bs->rescue_lock);
399
400 queue_work(bs->rescue_workqueue, &bs->rescue_work);
401}
402
1da177e4
LT
403/**
404 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 405 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 406 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 407 * @bs: the bio_set to allocate from.
1da177e4
LT
408 *
409 * Description:
3f86a82a
KO
410 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
411 * backed by the @bs's mempool.
412 *
d0164adc
MG
413 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
414 * always be able to allocate a bio. This is due to the mempool guarantees.
415 * To make this work, callers must never allocate more than 1 bio at a time
416 * from this pool. Callers that need to allocate more than 1 bio must always
417 * submit the previously allocated bio for IO before attempting to allocate
418 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 419 *
df2cb6da
KO
420 * Note that when running under generic_make_request() (i.e. any block
421 * driver), bios are not submitted until after you return - see the code in
422 * generic_make_request() that converts recursion into iteration, to prevent
423 * stack overflows.
424 *
425 * This would normally mean allocating multiple bios under
426 * generic_make_request() would be susceptible to deadlocks, but we have
427 * deadlock avoidance code that resubmits any blocked bios from a rescuer
428 * thread.
429 *
430 * However, we do not guarantee forward progress for allocations from other
431 * mempools. Doing multiple allocations from the same mempool under
432 * generic_make_request() should be avoided - instead, use bio_set's front_pad
433 * for per bio allocations.
434 *
3f86a82a
KO
435 * RETURNS:
436 * Pointer to new bio on success, NULL on failure.
437 */
7a88fa19
DC
438struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
439 struct bio_set *bs)
1da177e4 440{
df2cb6da 441 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
442 unsigned front_pad;
443 unsigned inline_vecs;
34053979 444 struct bio_vec *bvl = NULL;
451a9ebf
TH
445 struct bio *bio;
446 void *p;
447
3f86a82a
KO
448 if (!bs) {
449 if (nr_iovecs > UIO_MAXIOV)
450 return NULL;
451
452 p = kmalloc(sizeof(struct bio) +
453 nr_iovecs * sizeof(struct bio_vec),
454 gfp_mask);
455 front_pad = 0;
456 inline_vecs = nr_iovecs;
457 } else {
d8f429e1 458 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
459 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
460 nr_iovecs > 0))
d8f429e1 461 return NULL;
df2cb6da
KO
462 /*
463 * generic_make_request() converts recursion to iteration; this
464 * means if we're running beneath it, any bios we allocate and
465 * submit will not be submitted (and thus freed) until after we
466 * return.
467 *
468 * This exposes us to a potential deadlock if we allocate
469 * multiple bios from the same bio_set() while running
470 * underneath generic_make_request(). If we were to allocate
471 * multiple bios (say a stacking block driver that was splitting
472 * bios), we would deadlock if we exhausted the mempool's
473 * reserve.
474 *
475 * We solve this, and guarantee forward progress, with a rescuer
476 * workqueue per bio_set. If we go to allocate and there are
477 * bios on current->bio_list, we first try the allocation
d0164adc
MG
478 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
479 * bios we would be blocking to the rescuer workqueue before
480 * we retry with the original gfp_flags.
df2cb6da
KO
481 */
482
f5fe1b51
N
483 if (current->bio_list &&
484 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
485 !bio_list_empty(&current->bio_list[1])) &&
486 bs->rescue_workqueue)
d0164adc 487 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 488
8aa6ba2f 489 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
490 if (!p && gfp_mask != saved_gfp) {
491 punt_bios_to_rescuer(bs);
492 gfp_mask = saved_gfp;
8aa6ba2f 493 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
494 }
495
3f86a82a
KO
496 front_pad = bs->front_pad;
497 inline_vecs = BIO_INLINE_VECS;
498 }
499
451a9ebf
TH
500 if (unlikely(!p))
501 return NULL;
1da177e4 502
3f86a82a 503 bio = p + front_pad;
3a83f467 504 bio_init(bio, NULL, 0);
34053979 505
3f86a82a 506 if (nr_iovecs > inline_vecs) {
ed996a52
CH
507 unsigned long idx = 0;
508
8aa6ba2f 509 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
510 if (!bvl && gfp_mask != saved_gfp) {
511 punt_bios_to_rescuer(bs);
512 gfp_mask = saved_gfp;
8aa6ba2f 513 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
514 }
515
34053979
IM
516 if (unlikely(!bvl))
517 goto err_free;
a38352e0 518
ed996a52 519 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
520 } else if (nr_iovecs) {
521 bvl = bio->bi_inline_vecs;
1da177e4 522 }
3f86a82a
KO
523
524 bio->bi_pool = bs;
34053979 525 bio->bi_max_vecs = nr_iovecs;
34053979 526 bio->bi_io_vec = bvl;
1da177e4 527 return bio;
34053979
IM
528
529err_free:
8aa6ba2f 530 mempool_free(p, &bs->bio_pool);
34053979 531 return NULL;
1da177e4 532}
a112a71d 533EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 534
38a72dac 535void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
536{
537 unsigned long flags;
7988613b
KO
538 struct bio_vec bv;
539 struct bvec_iter iter;
1da177e4 540
38a72dac 541 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
542 char *data = bvec_kmap_irq(&bv, &flags);
543 memset(data, 0, bv.bv_len);
544 flush_dcache_page(bv.bv_page);
1da177e4
LT
545 bvec_kunmap_irq(data, &flags);
546 }
547}
38a72dac 548EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4
LT
549
550/**
551 * bio_put - release a reference to a bio
552 * @bio: bio to release reference to
553 *
554 * Description:
555 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 556 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
557 **/
558void bio_put(struct bio *bio)
559{
dac56212 560 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 561 bio_free(bio);
dac56212
JA
562 else {
563 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
564
565 /*
566 * last put frees it
567 */
568 if (atomic_dec_and_test(&bio->__bi_cnt))
569 bio_free(bio);
570 }
1da177e4 571}
a112a71d 572EXPORT_SYMBOL(bio_put);
1da177e4 573
165125e1 574inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
575{
576 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
577 blk_recount_segments(q, bio);
578
579 return bio->bi_phys_segments;
580}
a112a71d 581EXPORT_SYMBOL(bio_phys_segments);
1da177e4 582
59d276fe
KO
583/**
584 * __bio_clone_fast - clone a bio that shares the original bio's biovec
585 * @bio: destination bio
586 * @bio_src: bio to clone
587 *
588 * Clone a &bio. Caller will own the returned bio, but not
589 * the actual data it points to. Reference count of returned
590 * bio will be one.
591 *
592 * Caller must ensure that @bio_src is not freed before @bio.
593 */
594void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
595{
ed996a52 596 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
597
598 /*
74d46992 599 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
600 * so we don't set nor calculate new physical/hw segment counts here
601 */
74d46992 602 bio->bi_disk = bio_src->bi_disk;
62530ed8 603 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 604 bio_set_flag(bio, BIO_CLONED);
111be883
SL
605 if (bio_flagged(bio_src, BIO_THROTTLED))
606 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 607 bio->bi_opf = bio_src->bi_opf;
cb6934f8 608 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
609 bio->bi_iter = bio_src->bi_iter;
610 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e
PV
611
612 bio_clone_blkcg_association(bio, bio_src);
59d276fe
KO
613}
614EXPORT_SYMBOL(__bio_clone_fast);
615
616/**
617 * bio_clone_fast - clone a bio that shares the original bio's biovec
618 * @bio: bio to clone
619 * @gfp_mask: allocation priority
620 * @bs: bio_set to allocate from
621 *
622 * Like __bio_clone_fast, only also allocates the returned bio
623 */
624struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
625{
626 struct bio *b;
627
628 b = bio_alloc_bioset(gfp_mask, 0, bs);
629 if (!b)
630 return NULL;
631
632 __bio_clone_fast(b, bio);
633
634 if (bio_integrity(bio)) {
635 int ret;
636
637 ret = bio_integrity_clone(b, bio, gfp_mask);
638
639 if (ret < 0) {
640 bio_put(b);
641 return NULL;
642 }
643 }
644
645 return b;
646}
647EXPORT_SYMBOL(bio_clone_fast);
648
1da177e4 649/**
c66a14d0
KO
650 * bio_add_pc_page - attempt to add page to bio
651 * @q: the target queue
652 * @bio: destination bio
653 * @page: page to add
654 * @len: vec entry length
655 * @offset: vec entry offset
1da177e4 656 *
c66a14d0
KO
657 * Attempt to add a page to the bio_vec maplist. This can fail for a
658 * number of reasons, such as the bio being full or target block device
659 * limitations. The target block device must allow bio's up to PAGE_SIZE,
660 * so it is always possible to add a single page to an empty bio.
661 *
662 * This should only be used by REQ_PC bios.
1da177e4 663 */
c66a14d0
KO
664int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
665 *page, unsigned int len, unsigned int offset)
1da177e4
LT
666{
667 int retried_segments = 0;
668 struct bio_vec *bvec;
669
670 /*
671 * cloned bio must not modify vec list
672 */
673 if (unlikely(bio_flagged(bio, BIO_CLONED)))
674 return 0;
675
c66a14d0 676 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
677 return 0;
678
80cfd548
JA
679 /*
680 * For filesystems with a blocksize smaller than the pagesize
681 * we will often be called with the same page as last time and
682 * a consecutive offset. Optimize this special case.
683 */
684 if (bio->bi_vcnt > 0) {
685 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
686
687 if (page == prev->bv_page &&
688 offset == prev->bv_offset + prev->bv_len) {
689 prev->bv_len += len;
fcbf6a08 690 bio->bi_iter.bi_size += len;
80cfd548
JA
691 goto done;
692 }
66cb45aa
JA
693
694 /*
695 * If the queue doesn't support SG gaps and adding this
696 * offset would create a gap, disallow it.
697 */
03100aad 698 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 699 return 0;
80cfd548
JA
700 }
701
0aa69fd3 702 if (bio_full(bio))
1da177e4
LT
703 return 0;
704
705 /*
fcbf6a08
ML
706 * setup the new entry, we might clear it again later if we
707 * cannot add the page
708 */
709 bvec = &bio->bi_io_vec[bio->bi_vcnt];
710 bvec->bv_page = page;
711 bvec->bv_len = len;
712 bvec->bv_offset = offset;
713 bio->bi_vcnt++;
714 bio->bi_phys_segments++;
715 bio->bi_iter.bi_size += len;
716
717 /*
718 * Perform a recount if the number of segments is greater
719 * than queue_max_segments(q).
1da177e4
LT
720 */
721
fcbf6a08 722 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
723
724 if (retried_segments)
fcbf6a08 725 goto failed;
1da177e4
LT
726
727 retried_segments = 1;
728 blk_recount_segments(q, bio);
729 }
730
1da177e4 731 /* If we may be able to merge these biovecs, force a recount */
fcbf6a08 732 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
b7c44ed9 733 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 734
80cfd548 735 done:
1da177e4 736 return len;
fcbf6a08
ML
737
738 failed:
739 bvec->bv_page = NULL;
740 bvec->bv_len = 0;
741 bvec->bv_offset = 0;
742 bio->bi_vcnt--;
743 bio->bi_iter.bi_size -= len;
744 blk_recount_segments(q, bio);
745 return 0;
1da177e4 746}
a112a71d 747EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 748
1da177e4 749/**
0aa69fd3
CH
750 * __bio_try_merge_page - try appending data to an existing bvec.
751 * @bio: destination bio
752 * @page: page to add
753 * @len: length of the data to add
754 * @off: offset of the data in @page
1da177e4 755 *
0aa69fd3
CH
756 * Try to add the data at @page + @off to the last bvec of @bio. This is a
757 * a useful optimisation for file systems with a block size smaller than the
758 * page size.
759 *
760 * Return %true on success or %false on failure.
1da177e4 761 */
0aa69fd3
CH
762bool __bio_try_merge_page(struct bio *bio, struct page *page,
763 unsigned int len, unsigned int off)
1da177e4 764{
c66a14d0 765 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 766 return false;
762380ad 767
c66a14d0 768 if (bio->bi_vcnt > 0) {
0aa69fd3 769 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
58a4915a 770
0aa69fd3 771 if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
c66a14d0 772 bv->bv_len += len;
0aa69fd3
CH
773 bio->bi_iter.bi_size += len;
774 return true;
c66a14d0
KO
775 }
776 }
0aa69fd3
CH
777 return false;
778}
779EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 780
0aa69fd3
CH
781/**
782 * __bio_add_page - add page to a bio in a new segment
783 * @bio: destination bio
784 * @page: page to add
785 * @len: length of the data to add
786 * @off: offset of the data in @page
787 *
788 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
789 * that @bio has space for another bvec.
790 */
791void __bio_add_page(struct bio *bio, struct page *page,
792 unsigned int len, unsigned int off)
793{
794 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 795
0aa69fd3
CH
796 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
797 WARN_ON_ONCE(bio_full(bio));
798
799 bv->bv_page = page;
800 bv->bv_offset = off;
801 bv->bv_len = len;
c66a14d0 802
c66a14d0 803 bio->bi_iter.bi_size += len;
0aa69fd3
CH
804 bio->bi_vcnt++;
805}
806EXPORT_SYMBOL_GPL(__bio_add_page);
807
808/**
809 * bio_add_page - attempt to add page to bio
810 * @bio: destination bio
811 * @page: page to add
812 * @len: vec entry length
813 * @offset: vec entry offset
814 *
815 * Attempt to add a page to the bio_vec maplist. This will only fail
816 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
817 */
818int bio_add_page(struct bio *bio, struct page *page,
819 unsigned int len, unsigned int offset)
820{
821 if (!__bio_try_merge_page(bio, page, len, offset)) {
822 if (bio_full(bio))
823 return 0;
824 __bio_add_page(bio, page, len, offset);
825 }
c66a14d0 826 return len;
1da177e4 827}
a112a71d 828EXPORT_SYMBOL(bio_add_page);
1da177e4 829
2cefe4db
KO
830/**
831 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
832 * @bio: bio to add pages to
833 * @iter: iov iterator describing the region to be mapped
834 *
835 * Pins as many pages from *iter and appends them to @bio's bvec array. The
836 * pages will have to be released using put_page() when done.
837 */
838int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
839{
840 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
841 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
842 struct page **pages = (struct page **)bv;
843 size_t offset, diff;
844 ssize_t size;
845
846 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
847 if (unlikely(size <= 0))
848 return size ? size : -EFAULT;
849 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
850
851 /*
852 * Deep magic below: We need to walk the pinned pages backwards
853 * because we are abusing the space allocated for the bio_vecs
854 * for the page array. Because the bio_vecs are larger than the
855 * page pointers by definition this will always work. But it also
856 * means we can't use bio_add_page, so any changes to it's semantics
857 * need to be reflected here as well.
858 */
859 bio->bi_iter.bi_size += size;
860 bio->bi_vcnt += nr_pages;
861
862 diff = (nr_pages * PAGE_SIZE - offset) - size;
863 while (nr_pages--) {
864 bv[nr_pages].bv_page = pages[nr_pages];
865 bv[nr_pages].bv_len = PAGE_SIZE;
866 bv[nr_pages].bv_offset = 0;
867 }
868
869 bv[0].bv_offset += offset;
870 bv[0].bv_len -= offset;
871 if (diff)
872 bv[bio->bi_vcnt - 1].bv_len -= diff;
873
874 iov_iter_advance(iter, size);
875 return 0;
876}
877EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
878
4246a0b6 879static void submit_bio_wait_endio(struct bio *bio)
9e882242 880{
65e53aab 881 complete(bio->bi_private);
9e882242
KO
882}
883
884/**
885 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
886 * @bio: The &struct bio which describes the I/O
887 *
888 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
889 * bio_endio() on failure.
3d289d68
JK
890 *
891 * WARNING: Unlike to how submit_bio() is usually used, this function does not
892 * result in bio reference to be consumed. The caller must drop the reference
893 * on his own.
9e882242 894 */
4e49ea4a 895int submit_bio_wait(struct bio *bio)
9e882242 896{
e319e1fb 897 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
9e882242 898
65e53aab 899 bio->bi_private = &done;
9e882242 900 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 901 bio->bi_opf |= REQ_SYNC;
4e49ea4a 902 submit_bio(bio);
65e53aab 903 wait_for_completion_io(&done);
9e882242 904
65e53aab 905 return blk_status_to_errno(bio->bi_status);
9e882242
KO
906}
907EXPORT_SYMBOL(submit_bio_wait);
908
054bdf64
KO
909/**
910 * bio_advance - increment/complete a bio by some number of bytes
911 * @bio: bio to advance
912 * @bytes: number of bytes to complete
913 *
914 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
915 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
916 * be updated on the last bvec as well.
917 *
918 * @bio will then represent the remaining, uncompleted portion of the io.
919 */
920void bio_advance(struct bio *bio, unsigned bytes)
921{
922 if (bio_integrity(bio))
923 bio_integrity_advance(bio, bytes);
924
4550dd6c 925 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
926}
927EXPORT_SYMBOL(bio_advance);
928
45db54d5
KO
929void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
930 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 931{
1cb9dda4 932 struct bio_vec src_bv, dst_bv;
16ac3d63 933 void *src_p, *dst_p;
1cb9dda4 934 unsigned bytes;
16ac3d63 935
45db54d5
KO
936 while (src_iter->bi_size && dst_iter->bi_size) {
937 src_bv = bio_iter_iovec(src, *src_iter);
938 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
939
940 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 941
1cb9dda4
KO
942 src_p = kmap_atomic(src_bv.bv_page);
943 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 944
1cb9dda4
KO
945 memcpy(dst_p + dst_bv.bv_offset,
946 src_p + src_bv.bv_offset,
16ac3d63
KO
947 bytes);
948
949 kunmap_atomic(dst_p);
950 kunmap_atomic(src_p);
951
6e6e811d
KO
952 flush_dcache_page(dst_bv.bv_page);
953
45db54d5
KO
954 bio_advance_iter(src, src_iter, bytes);
955 bio_advance_iter(dst, dst_iter, bytes);
16ac3d63
KO
956 }
957}
38a72dac
KO
958EXPORT_SYMBOL(bio_copy_data_iter);
959
960/**
45db54d5
KO
961 * bio_copy_data - copy contents of data buffers from one bio to another
962 * @src: source bio
963 * @dst: destination bio
38a72dac
KO
964 *
965 * Stops when it reaches the end of either @src or @dst - that is, copies
966 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
967 */
968void bio_copy_data(struct bio *dst, struct bio *src)
969{
45db54d5
KO
970 struct bvec_iter src_iter = src->bi_iter;
971 struct bvec_iter dst_iter = dst->bi_iter;
972
973 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 974}
16ac3d63
KO
975EXPORT_SYMBOL(bio_copy_data);
976
45db54d5
KO
977/**
978 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
979 * another
980 * @src: source bio list
981 * @dst: destination bio list
982 *
983 * Stops when it reaches the end of either the @src list or @dst list - that is,
984 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
985 * bios).
986 */
987void bio_list_copy_data(struct bio *dst, struct bio *src)
988{
989 struct bvec_iter src_iter = src->bi_iter;
990 struct bvec_iter dst_iter = dst->bi_iter;
991
992 while (1) {
993 if (!src_iter.bi_size) {
994 src = src->bi_next;
995 if (!src)
996 break;
997
998 src_iter = src->bi_iter;
999 }
1000
1001 if (!dst_iter.bi_size) {
1002 dst = dst->bi_next;
1003 if (!dst)
1004 break;
1005
1006 dst_iter = dst->bi_iter;
1007 }
1008
1009 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1010 }
1011}
1012EXPORT_SYMBOL(bio_list_copy_data);
1013
1da177e4 1014struct bio_map_data {
152e283f 1015 int is_our_pages;
26e49cfc
KO
1016 struct iov_iter iter;
1017 struct iovec iov[];
1da177e4
LT
1018};
1019
0e5b935d 1020static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
76029ff3 1021 gfp_t gfp_mask)
1da177e4 1022{
0e5b935d
AV
1023 struct bio_map_data *bmd;
1024 if (data->nr_segs > UIO_MAXIOV)
f3f63c1c 1025 return NULL;
1da177e4 1026
0e5b935d
AV
1027 bmd = kmalloc(sizeof(struct bio_map_data) +
1028 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1029 if (!bmd)
1030 return NULL;
1031 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1032 bmd->iter = *data;
1033 bmd->iter.iov = bmd->iov;
1034 return bmd;
1da177e4
LT
1035}
1036
9124d3fe
DP
1037/**
1038 * bio_copy_from_iter - copy all pages from iov_iter to bio
1039 * @bio: The &struct bio which describes the I/O as destination
1040 * @iter: iov_iter as source
1041 *
1042 * Copy all pages from iov_iter to bio.
1043 * Returns 0 on success, or error on failure.
1044 */
98a09d61 1045static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
c5dec1c3 1046{
9124d3fe 1047 int i;
c5dec1c3 1048 struct bio_vec *bvec;
c5dec1c3 1049
d74c6d51 1050 bio_for_each_segment_all(bvec, bio, i) {
9124d3fe 1051 ssize_t ret;
c5dec1c3 1052
9124d3fe
DP
1053 ret = copy_page_from_iter(bvec->bv_page,
1054 bvec->bv_offset,
1055 bvec->bv_len,
98a09d61 1056 iter);
9124d3fe 1057
98a09d61 1058 if (!iov_iter_count(iter))
9124d3fe
DP
1059 break;
1060
1061 if (ret < bvec->bv_len)
1062 return -EFAULT;
c5dec1c3
FT
1063 }
1064
9124d3fe
DP
1065 return 0;
1066}
1067
1068/**
1069 * bio_copy_to_iter - copy all pages from bio to iov_iter
1070 * @bio: The &struct bio which describes the I/O as source
1071 * @iter: iov_iter as destination
1072 *
1073 * Copy all pages from bio to iov_iter.
1074 * Returns 0 on success, or error on failure.
1075 */
1076static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1077{
1078 int i;
1079 struct bio_vec *bvec;
1080
1081 bio_for_each_segment_all(bvec, bio, i) {
1082 ssize_t ret;
1083
1084 ret = copy_page_to_iter(bvec->bv_page,
1085 bvec->bv_offset,
1086 bvec->bv_len,
1087 &iter);
1088
1089 if (!iov_iter_count(&iter))
1090 break;
1091
1092 if (ret < bvec->bv_len)
1093 return -EFAULT;
1094 }
1095
1096 return 0;
c5dec1c3
FT
1097}
1098
491221f8 1099void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1100{
1101 struct bio_vec *bvec;
1102 int i;
1103
1104 bio_for_each_segment_all(bvec, bio, i)
1105 __free_page(bvec->bv_page);
1106}
491221f8 1107EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1108
1da177e4
LT
1109/**
1110 * bio_uncopy_user - finish previously mapped bio
1111 * @bio: bio being terminated
1112 *
ddad8dd0 1113 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1114 * to user space in case of a read.
1115 */
1116int bio_uncopy_user(struct bio *bio)
1117{
1118 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1119 int ret = 0;
1da177e4 1120
35dc2483
RD
1121 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1122 /*
1123 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1124 * don't copy into a random user address space, just free
1125 * and return -EINTR so user space doesn't expect any data.
35dc2483 1126 */
2d99b55d
HR
1127 if (!current->mm)
1128 ret = -EINTR;
1129 else if (bio_data_dir(bio) == READ)
9124d3fe 1130 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1131 if (bmd->is_our_pages)
1132 bio_free_pages(bio);
35dc2483 1133 }
c8db4448 1134 kfree(bmd);
1da177e4
LT
1135 bio_put(bio);
1136 return ret;
1137}
1138
1139/**
c5dec1c3 1140 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1141 * @q: destination block queue
1142 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1143 * @iter: iovec iterator
1144 * @gfp_mask: memory allocation flags
1da177e4
LT
1145 *
1146 * Prepares and returns a bio for indirect user io, bouncing data
1147 * to/from kernel pages as necessary. Must be paired with
1148 * call bio_uncopy_user() on io completion.
1149 */
152e283f
FT
1150struct bio *bio_copy_user_iov(struct request_queue *q,
1151 struct rq_map_data *map_data,
e81cef5d 1152 struct iov_iter *iter,
26e49cfc 1153 gfp_t gfp_mask)
1da177e4 1154{
1da177e4 1155 struct bio_map_data *bmd;
1da177e4
LT
1156 struct page *page;
1157 struct bio *bio;
d16d44eb
AV
1158 int i = 0, ret;
1159 int nr_pages;
26e49cfc 1160 unsigned int len = iter->count;
bd5cecea 1161 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1162
0e5b935d 1163 bmd = bio_alloc_map_data(iter, gfp_mask);
1da177e4
LT
1164 if (!bmd)
1165 return ERR_PTR(-ENOMEM);
1166
26e49cfc
KO
1167 /*
1168 * We need to do a deep copy of the iov_iter including the iovecs.
1169 * The caller provided iov might point to an on-stack or otherwise
1170 * shortlived one.
1171 */
1172 bmd->is_our_pages = map_data ? 0 : 1;
26e49cfc 1173
d16d44eb
AV
1174 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1175 if (nr_pages > BIO_MAX_PAGES)
1176 nr_pages = BIO_MAX_PAGES;
26e49cfc 1177
1da177e4 1178 ret = -ENOMEM;
a9e9dc24 1179 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1180 if (!bio)
1181 goto out_bmd;
1182
1da177e4 1183 ret = 0;
56c451f4
FT
1184
1185 if (map_data) {
e623ddb4 1186 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1187 i = map_data->offset / PAGE_SIZE;
1188 }
1da177e4 1189 while (len) {
e623ddb4 1190 unsigned int bytes = PAGE_SIZE;
1da177e4 1191
56c451f4
FT
1192 bytes -= offset;
1193
1da177e4
LT
1194 if (bytes > len)
1195 bytes = len;
1196
152e283f 1197 if (map_data) {
e623ddb4 1198 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1199 ret = -ENOMEM;
1200 break;
1201 }
e623ddb4
FT
1202
1203 page = map_data->pages[i / nr_pages];
1204 page += (i % nr_pages);
1205
1206 i++;
1207 } else {
152e283f 1208 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1209 if (!page) {
1210 ret = -ENOMEM;
1211 break;
1212 }
1da177e4
LT
1213 }
1214
56c451f4 1215 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1216 break;
1da177e4
LT
1217
1218 len -= bytes;
56c451f4 1219 offset = 0;
1da177e4
LT
1220 }
1221
1222 if (ret)
1223 goto cleanup;
1224
2884d0be
AV
1225 if (map_data)
1226 map_data->offset += bio->bi_iter.bi_size;
1227
1da177e4
LT
1228 /*
1229 * success
1230 */
26e49cfc 1231 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1232 (map_data && map_data->from_user)) {
98a09d61 1233 ret = bio_copy_from_iter(bio, iter);
c5dec1c3
FT
1234 if (ret)
1235 goto cleanup;
98a09d61
AV
1236 } else {
1237 iov_iter_advance(iter, bio->bi_iter.bi_size);
1da177e4
LT
1238 }
1239
26e49cfc 1240 bio->bi_private = bmd;
2884d0be
AV
1241 if (map_data && map_data->null_mapped)
1242 bio_set_flag(bio, BIO_NULL_MAPPED);
1da177e4
LT
1243 return bio;
1244cleanup:
152e283f 1245 if (!map_data)
1dfa0f68 1246 bio_free_pages(bio);
1da177e4
LT
1247 bio_put(bio);
1248out_bmd:
c8db4448 1249 kfree(bmd);
1da177e4
LT
1250 return ERR_PTR(ret);
1251}
1252
37f19e57
CH
1253/**
1254 * bio_map_user_iov - map user iovec into bio
1255 * @q: the struct request_queue for the bio
1256 * @iter: iovec iterator
1257 * @gfp_mask: memory allocation flags
1258 *
1259 * Map the user space address into a bio suitable for io to a block
1260 * device. Returns an error pointer in case of error.
1261 */
1262struct bio *bio_map_user_iov(struct request_queue *q,
e81cef5d 1263 struct iov_iter *iter,
37f19e57 1264 gfp_t gfp_mask)
1da177e4 1265{
26e49cfc 1266 int j;
1da177e4 1267 struct bio *bio;
076098e5 1268 int ret;
2b04e8f6 1269 struct bio_vec *bvec;
1da177e4 1270
b282cc76 1271 if (!iov_iter_count(iter))
1da177e4
LT
1272 return ERR_PTR(-EINVAL);
1273
b282cc76 1274 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1da177e4
LT
1275 if (!bio)
1276 return ERR_PTR(-ENOMEM);
1277
0a0f1513 1278 while (iov_iter_count(iter)) {
629e42bc 1279 struct page **pages;
076098e5
AV
1280 ssize_t bytes;
1281 size_t offs, added = 0;
1282 int npages;
1da177e4 1283
0a0f1513 1284 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
076098e5
AV
1285 if (unlikely(bytes <= 0)) {
1286 ret = bytes ? bytes : -EFAULT;
f1970baf 1287 goto out_unmap;
99172157 1288 }
f1970baf 1289
076098e5 1290 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
f1970baf 1291
98f0bc99
AV
1292 if (unlikely(offs & queue_dma_alignment(q))) {
1293 ret = -EINVAL;
1294 j = 0;
1295 } else {
1296 for (j = 0; j < npages; j++) {
1297 struct page *page = pages[j];
1298 unsigned int n = PAGE_SIZE - offs;
1299 unsigned short prev_bi_vcnt = bio->bi_vcnt;
f1970baf 1300
98f0bc99
AV
1301 if (n > bytes)
1302 n = bytes;
95d78c28 1303
98f0bc99
AV
1304 if (!bio_add_pc_page(q, bio, page, n, offs))
1305 break;
1da177e4 1306
98f0bc99
AV
1307 /*
1308 * check if vector was merged with previous
1309 * drop page reference if needed
1310 */
1311 if (bio->bi_vcnt == prev_bi_vcnt)
1312 put_page(page);
1313
1314 added += n;
1315 bytes -= n;
1316 offs = 0;
1317 }
0a0f1513 1318 iov_iter_advance(iter, added);
f1970baf 1319 }
1da177e4 1320 /*
f1970baf 1321 * release the pages we didn't map into the bio, if any
1da177e4 1322 */
629e42bc 1323 while (j < npages)
09cbfeaf 1324 put_page(pages[j++]);
629e42bc 1325 kvfree(pages);
e2e115d1
AV
1326 /* couldn't stuff something into bio? */
1327 if (bytes)
1328 break;
1da177e4
LT
1329 }
1330
b7c44ed9 1331 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1332
1333 /*
5fad1b64 1334 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1335 * it would normally disappear when its bi_end_io is run.
1336 * however, we need it for the unmap, so grab an extra
1337 * reference to it
1338 */
1339 bio_get(bio);
1da177e4 1340 return bio;
f1970baf
JB
1341
1342 out_unmap:
2b04e8f6
AV
1343 bio_for_each_segment_all(bvec, bio, j) {
1344 put_page(bvec->bv_page);
f1970baf 1345 }
1da177e4
LT
1346 bio_put(bio);
1347 return ERR_PTR(ret);
1348}
1349
1da177e4
LT
1350static void __bio_unmap_user(struct bio *bio)
1351{
1352 struct bio_vec *bvec;
1353 int i;
1354
1355 /*
1356 * make sure we dirty pages we wrote to
1357 */
d74c6d51 1358 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1359 if (bio_data_dir(bio) == READ)
1360 set_page_dirty_lock(bvec->bv_page);
1361
09cbfeaf 1362 put_page(bvec->bv_page);
1da177e4
LT
1363 }
1364
1365 bio_put(bio);
1366}
1367
1368/**
1369 * bio_unmap_user - unmap a bio
1370 * @bio: the bio being unmapped
1371 *
5fad1b64
BVA
1372 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1373 * process context.
1da177e4
LT
1374 *
1375 * bio_unmap_user() may sleep.
1376 */
1377void bio_unmap_user(struct bio *bio)
1378{
1379 __bio_unmap_user(bio);
1380 bio_put(bio);
1381}
1382
4246a0b6 1383static void bio_map_kern_endio(struct bio *bio)
b823825e 1384{
b823825e 1385 bio_put(bio);
b823825e
JA
1386}
1387
75c72b83
CH
1388/**
1389 * bio_map_kern - map kernel address into bio
1390 * @q: the struct request_queue for the bio
1391 * @data: pointer to buffer to map
1392 * @len: length in bytes
1393 * @gfp_mask: allocation flags for bio allocation
1394 *
1395 * Map the kernel address into a bio suitable for io to a block
1396 * device. Returns an error pointer in case of error.
1397 */
1398struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1399 gfp_t gfp_mask)
df46b9a4
MC
1400{
1401 unsigned long kaddr = (unsigned long)data;
1402 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1403 unsigned long start = kaddr >> PAGE_SHIFT;
1404 const int nr_pages = end - start;
1405 int offset, i;
1406 struct bio *bio;
1407
a9e9dc24 1408 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1409 if (!bio)
1410 return ERR_PTR(-ENOMEM);
1411
1412 offset = offset_in_page(kaddr);
1413 for (i = 0; i < nr_pages; i++) {
1414 unsigned int bytes = PAGE_SIZE - offset;
1415
1416 if (len <= 0)
1417 break;
1418
1419 if (bytes > len)
1420 bytes = len;
1421
defd94b7 1422 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1423 offset) < bytes) {
1424 /* we don't support partial mappings */
1425 bio_put(bio);
1426 return ERR_PTR(-EINVAL);
1427 }
df46b9a4
MC
1428
1429 data += bytes;
1430 len -= bytes;
1431 offset = 0;
1432 }
1433
b823825e 1434 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1435 return bio;
1436}
a112a71d 1437EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1438
4246a0b6 1439static void bio_copy_kern_endio(struct bio *bio)
68154e90 1440{
1dfa0f68
CH
1441 bio_free_pages(bio);
1442 bio_put(bio);
1443}
1444
4246a0b6 1445static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1446{
42d2683a 1447 char *p = bio->bi_private;
1dfa0f68 1448 struct bio_vec *bvec;
68154e90
FT
1449 int i;
1450
d74c6d51 1451 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1452 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1453 p += bvec->bv_len;
68154e90
FT
1454 }
1455
4246a0b6 1456 bio_copy_kern_endio(bio);
68154e90
FT
1457}
1458
1459/**
1460 * bio_copy_kern - copy kernel address into bio
1461 * @q: the struct request_queue for the bio
1462 * @data: pointer to buffer to copy
1463 * @len: length in bytes
1464 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1465 * @reading: data direction is READ
68154e90
FT
1466 *
1467 * copy the kernel address into a bio suitable for io to a block
1468 * device. Returns an error pointer in case of error.
1469 */
1470struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1471 gfp_t gfp_mask, int reading)
1472{
42d2683a
CH
1473 unsigned long kaddr = (unsigned long)data;
1474 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1475 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1476 struct bio *bio;
1477 void *p = data;
1dfa0f68 1478 int nr_pages = 0;
68154e90 1479
42d2683a
CH
1480 /*
1481 * Overflow, abort
1482 */
1483 if (end < start)
1484 return ERR_PTR(-EINVAL);
68154e90 1485
42d2683a
CH
1486 nr_pages = end - start;
1487 bio = bio_kmalloc(gfp_mask, nr_pages);
1488 if (!bio)
1489 return ERR_PTR(-ENOMEM);
68154e90 1490
42d2683a
CH
1491 while (len) {
1492 struct page *page;
1493 unsigned int bytes = PAGE_SIZE;
68154e90 1494
42d2683a
CH
1495 if (bytes > len)
1496 bytes = len;
1497
1498 page = alloc_page(q->bounce_gfp | gfp_mask);
1499 if (!page)
1500 goto cleanup;
1501
1502 if (!reading)
1503 memcpy(page_address(page), p, bytes);
1504
1505 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1506 break;
1507
1508 len -= bytes;
1509 p += bytes;
68154e90
FT
1510 }
1511
1dfa0f68
CH
1512 if (reading) {
1513 bio->bi_end_io = bio_copy_kern_endio_read;
1514 bio->bi_private = data;
1515 } else {
1516 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1517 }
76029ff3 1518
68154e90 1519 return bio;
42d2683a
CH
1520
1521cleanup:
1dfa0f68 1522 bio_free_pages(bio);
42d2683a
CH
1523 bio_put(bio);
1524 return ERR_PTR(-ENOMEM);
68154e90
FT
1525}
1526
1da177e4
LT
1527/*
1528 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1529 * for performing direct-IO in BIOs.
1530 *
1531 * The problem is that we cannot run set_page_dirty() from interrupt context
1532 * because the required locks are not interrupt-safe. So what we can do is to
1533 * mark the pages dirty _before_ performing IO. And in interrupt context,
1534 * check that the pages are still dirty. If so, fine. If not, redirty them
1535 * in process context.
1536 *
1537 * We special-case compound pages here: normally this means reads into hugetlb
1538 * pages. The logic in here doesn't really work right for compound pages
1539 * because the VM does not uniformly chase down the head page in all cases.
1540 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1541 * handle them at all. So we skip compound pages here at an early stage.
1542 *
1543 * Note that this code is very hard to test under normal circumstances because
1544 * direct-io pins the pages with get_user_pages(). This makes
1545 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1546 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1547 * pagecache.
1548 *
1549 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1550 * deferred bio dirtying paths.
1551 */
1552
1553/*
1554 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1555 */
1556void bio_set_pages_dirty(struct bio *bio)
1557{
cb34e057 1558 struct bio_vec *bvec;
1da177e4
LT
1559 int i;
1560
cb34e057 1561 bio_for_each_segment_all(bvec, bio, i) {
3bb50983
CH
1562 if (!PageCompound(bvec->bv_page))
1563 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1564 }
1565}
1900fcc4 1566EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1da177e4 1567
86b6c7a7 1568static void bio_release_pages(struct bio *bio)
1da177e4 1569{
cb34e057 1570 struct bio_vec *bvec;
1da177e4
LT
1571 int i;
1572
24d5493f
CH
1573 bio_for_each_segment_all(bvec, bio, i)
1574 put_page(bvec->bv_page);
1da177e4
LT
1575}
1576
1577/*
1578 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1579 * If they are, then fine. If, however, some pages are clean then they must
1580 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1581 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1582 *
1583 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1584 * here on. It will run one put_page() against each page and will run one
1585 * bio_put() against the BIO.
1da177e4
LT
1586 */
1587
65f27f38 1588static void bio_dirty_fn(struct work_struct *work);
1da177e4 1589
65f27f38 1590static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1591static DEFINE_SPINLOCK(bio_dirty_lock);
1592static struct bio *bio_dirty_list;
1593
1594/*
1595 * This runs in process context
1596 */
65f27f38 1597static void bio_dirty_fn(struct work_struct *work)
1da177e4 1598{
24d5493f 1599 struct bio *bio, *next;
1da177e4 1600
24d5493f
CH
1601 spin_lock_irq(&bio_dirty_lock);
1602 next = bio_dirty_list;
1da177e4 1603 bio_dirty_list = NULL;
24d5493f 1604 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1605
24d5493f
CH
1606 while ((bio = next) != NULL) {
1607 next = bio->bi_private;
1da177e4
LT
1608
1609 bio_set_pages_dirty(bio);
1610 bio_release_pages(bio);
1611 bio_put(bio);
1da177e4
LT
1612 }
1613}
1614
1615void bio_check_pages_dirty(struct bio *bio)
1616{
cb34e057 1617 struct bio_vec *bvec;
24d5493f 1618 unsigned long flags;
1da177e4
LT
1619 int i;
1620
cb34e057 1621 bio_for_each_segment_all(bvec, bio, i) {
24d5493f
CH
1622 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1623 goto defer;
1da177e4
LT
1624 }
1625
24d5493f
CH
1626 bio_release_pages(bio);
1627 bio_put(bio);
1628 return;
1629defer:
1630 spin_lock_irqsave(&bio_dirty_lock, flags);
1631 bio->bi_private = bio_dirty_list;
1632 bio_dirty_list = bio;
1633 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1634 schedule_work(&bio_dirty_work);
1da177e4 1635}
1900fcc4 1636EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1da177e4 1637
ddcf35d3 1638void generic_start_io_acct(struct request_queue *q, int op,
d62e26b3 1639 unsigned long sectors, struct hd_struct *part)
394ffa50 1640{
ddcf35d3 1641 const int sgrp = op_stat_group(op);
394ffa50
GZ
1642 int cpu = part_stat_lock();
1643
d62e26b3 1644 part_round_stats(q, cpu, part);
ddcf35d3
MC
1645 part_stat_inc(cpu, part, ios[sgrp]);
1646 part_stat_add(cpu, part, sectors[sgrp], sectors);
1647 part_inc_in_flight(q, part, op_is_write(op));
394ffa50
GZ
1648
1649 part_stat_unlock();
1650}
1651EXPORT_SYMBOL(generic_start_io_acct);
1652
ddcf35d3 1653void generic_end_io_acct(struct request_queue *q, int req_op,
d62e26b3 1654 struct hd_struct *part, unsigned long start_time)
394ffa50
GZ
1655{
1656 unsigned long duration = jiffies - start_time;
ddcf35d3 1657 const int sgrp = op_stat_group(req_op);
394ffa50
GZ
1658 int cpu = part_stat_lock();
1659
ddcf35d3 1660 part_stat_add(cpu, part, ticks[sgrp], duration);
d62e26b3 1661 part_round_stats(q, cpu, part);
ddcf35d3 1662 part_dec_in_flight(q, part, op_is_write(req_op));
394ffa50
GZ
1663
1664 part_stat_unlock();
1665}
1666EXPORT_SYMBOL(generic_end_io_acct);
1667
2d4dc890
IL
1668#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1669void bio_flush_dcache_pages(struct bio *bi)
1670{
7988613b
KO
1671 struct bio_vec bvec;
1672 struct bvec_iter iter;
2d4dc890 1673
7988613b
KO
1674 bio_for_each_segment(bvec, bi, iter)
1675 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1676}
1677EXPORT_SYMBOL(bio_flush_dcache_pages);
1678#endif
1679
c4cf5261
JA
1680static inline bool bio_remaining_done(struct bio *bio)
1681{
1682 /*
1683 * If we're not chaining, then ->__bi_remaining is always 1 and
1684 * we always end io on the first invocation.
1685 */
1686 if (!bio_flagged(bio, BIO_CHAIN))
1687 return true;
1688
1689 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1690
326e1dbb 1691 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1692 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1693 return true;
326e1dbb 1694 }
c4cf5261
JA
1695
1696 return false;
1697}
1698
1da177e4
LT
1699/**
1700 * bio_endio - end I/O on a bio
1701 * @bio: bio
1da177e4
LT
1702 *
1703 * Description:
4246a0b6
CH
1704 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1705 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1706 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1707 *
1708 * bio_endio() can be called several times on a bio that has been chained
1709 * using bio_chain(). The ->bi_end_io() function will only be called the
1710 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1711 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1712 **/
4246a0b6 1713void bio_endio(struct bio *bio)
1da177e4 1714{
ba8c6967 1715again:
2b885517 1716 if (!bio_remaining_done(bio))
ba8c6967 1717 return;
7c20f116
CH
1718 if (!bio_integrity_endio(bio))
1719 return;
1da177e4 1720
67b42d0b
JB
1721 if (bio->bi_disk)
1722 rq_qos_done_bio(bio->bi_disk->queue, bio);
1723
ba8c6967
CH
1724 /*
1725 * Need to have a real endio function for chained bios, otherwise
1726 * various corner cases will break (like stacking block devices that
1727 * save/restore bi_end_io) - however, we want to avoid unbounded
1728 * recursion and blowing the stack. Tail call optimization would
1729 * handle this, but compiling with frame pointers also disables
1730 * gcc's sibling call optimization.
1731 */
1732 if (bio->bi_end_io == bio_chain_endio) {
1733 bio = __bio_chain_endio(bio);
1734 goto again;
196d38bc 1735 }
ba8c6967 1736
74d46992
CH
1737 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1738 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1739 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1740 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1741 }
1742
9e234eea 1743 blk_throtl_bio_endio(bio);
b222dd2f
SL
1744 /* release cgroup info */
1745 bio_uninit(bio);
ba8c6967
CH
1746 if (bio->bi_end_io)
1747 bio->bi_end_io(bio);
1da177e4 1748}
a112a71d 1749EXPORT_SYMBOL(bio_endio);
1da177e4 1750
20d0189b
KO
1751/**
1752 * bio_split - split a bio
1753 * @bio: bio to split
1754 * @sectors: number of sectors to split from the front of @bio
1755 * @gfp: gfp mask
1756 * @bs: bio set to allocate from
1757 *
1758 * Allocates and returns a new bio which represents @sectors from the start of
1759 * @bio, and updates @bio to represent the remaining sectors.
1760 *
f3f5da62
MP
1761 * Unless this is a discard request the newly allocated bio will point
1762 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1763 * @bio is not freed before the split.
20d0189b
KO
1764 */
1765struct bio *bio_split(struct bio *bio, int sectors,
1766 gfp_t gfp, struct bio_set *bs)
1767{
f341a4d3 1768 struct bio *split;
20d0189b
KO
1769
1770 BUG_ON(sectors <= 0);
1771 BUG_ON(sectors >= bio_sectors(bio));
1772
f9d03f96 1773 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1774 if (!split)
1775 return NULL;
1776
1777 split->bi_iter.bi_size = sectors << 9;
1778
1779 if (bio_integrity(split))
fbd08e76 1780 bio_integrity_trim(split);
20d0189b
KO
1781
1782 bio_advance(bio, split->bi_iter.bi_size);
1783
fbbaf700 1784 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1785 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1786
20d0189b
KO
1787 return split;
1788}
1789EXPORT_SYMBOL(bio_split);
1790
6678d83f
KO
1791/**
1792 * bio_trim - trim a bio
1793 * @bio: bio to trim
1794 * @offset: number of sectors to trim from the front of @bio
1795 * @size: size we want to trim @bio to, in sectors
1796 */
1797void bio_trim(struct bio *bio, int offset, int size)
1798{
1799 /* 'bio' is a cloned bio which we need to trim to match
1800 * the given offset and size.
6678d83f 1801 */
6678d83f
KO
1802
1803 size <<= 9;
4f024f37 1804 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1805 return;
1806
b7c44ed9 1807 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1808
1809 bio_advance(bio, offset << 9);
1810
4f024f37 1811 bio->bi_iter.bi_size = size;
376a78ab
DM
1812
1813 if (bio_integrity(bio))
fbd08e76 1814 bio_integrity_trim(bio);
376a78ab 1815
6678d83f
KO
1816}
1817EXPORT_SYMBOL_GPL(bio_trim);
1818
1da177e4
LT
1819/*
1820 * create memory pools for biovec's in a bio_set.
1821 * use the global biovec slabs created for general use.
1822 */
8aa6ba2f 1823int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1824{
ed996a52 1825 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1826
8aa6ba2f 1827 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1828}
1829
917a38c7
KO
1830/*
1831 * bioset_exit - exit a bioset initialized with bioset_init()
1832 *
1833 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1834 * kzalloc()).
1835 */
1836void bioset_exit(struct bio_set *bs)
1da177e4 1837{
df2cb6da
KO
1838 if (bs->rescue_workqueue)
1839 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1840 bs->rescue_workqueue = NULL;
df2cb6da 1841
8aa6ba2f
KO
1842 mempool_exit(&bs->bio_pool);
1843 mempool_exit(&bs->bvec_pool);
9f060e22 1844
7878cba9 1845 bioset_integrity_free(bs);
917a38c7
KO
1846 if (bs->bio_slab)
1847 bio_put_slab(bs);
1848 bs->bio_slab = NULL;
1849}
1850EXPORT_SYMBOL(bioset_exit);
1da177e4 1851
917a38c7
KO
1852/**
1853 * bioset_init - Initialize a bio_set
dad08527 1854 * @bs: pool to initialize
917a38c7
KO
1855 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1856 * @front_pad: Number of bytes to allocate in front of the returned bio
1857 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1858 * and %BIOSET_NEED_RESCUER
1859 *
dad08527
KO
1860 * Description:
1861 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1862 * to ask for a number of bytes to be allocated in front of the bio.
1863 * Front pad allocation is useful for embedding the bio inside
1864 * another structure, to avoid allocating extra data to go with the bio.
1865 * Note that the bio must be embedded at the END of that structure always,
1866 * or things will break badly.
1867 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1868 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1869 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1870 * dispatch queued requests when the mempool runs out of space.
1871 *
917a38c7
KO
1872 */
1873int bioset_init(struct bio_set *bs,
1874 unsigned int pool_size,
1875 unsigned int front_pad,
1876 int flags)
1877{
1878 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1879
1880 bs->front_pad = front_pad;
1881
1882 spin_lock_init(&bs->rescue_lock);
1883 bio_list_init(&bs->rescue_list);
1884 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1885
1886 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1887 if (!bs->bio_slab)
1888 return -ENOMEM;
1889
1890 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1891 goto bad;
1892
1893 if ((flags & BIOSET_NEED_BVECS) &&
1894 biovec_init_pool(&bs->bvec_pool, pool_size))
1895 goto bad;
1896
1897 if (!(flags & BIOSET_NEED_RESCUER))
1898 return 0;
1899
1900 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1901 if (!bs->rescue_workqueue)
1902 goto bad;
1903
1904 return 0;
1905bad:
1906 bioset_exit(bs);
1907 return -ENOMEM;
1908}
1909EXPORT_SYMBOL(bioset_init);
1910
28e89fd9
JA
1911/*
1912 * Initialize and setup a new bio_set, based on the settings from
1913 * another bio_set.
1914 */
1915int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1916{
1917 int flags;
1918
1919 flags = 0;
1920 if (src->bvec_pool.min_nr)
1921 flags |= BIOSET_NEED_BVECS;
1922 if (src->rescue_workqueue)
1923 flags |= BIOSET_NEED_RESCUER;
1924
1925 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1926}
1927EXPORT_SYMBOL(bioset_init_from_src);
1928
852c788f 1929#ifdef CONFIG_BLK_CGROUP
1d933cf0 1930
0d3bd88d
TH
1931#ifdef CONFIG_MEMCG
1932/**
1933 * bio_associate_blkcg_from_page - associate a bio with the page's blkcg
1934 * @bio: target bio
1935 * @page: the page to lookup the blkcg from
1936 *
1937 * Associate @bio with the blkcg from @page's owning memcg. This works like
1938 * every other associate function wrt references.
1939 */
1940int bio_associate_blkcg_from_page(struct bio *bio, struct page *page)
1941{
1942 struct cgroup_subsys_state *blkcg_css;
1943
1944 if (unlikely(bio->bi_css))
1945 return -EBUSY;
1946 if (!page->mem_cgroup)
1947 return 0;
1948 blkcg_css = cgroup_get_e_css(page->mem_cgroup->css.cgroup,
1949 &io_cgrp_subsys);
1950 bio->bi_css = blkcg_css;
1951 return 0;
1952}
1953#endif /* CONFIG_MEMCG */
1954
1d933cf0
TH
1955/**
1956 * bio_associate_blkcg - associate a bio with the specified blkcg
1957 * @bio: target bio
1958 * @blkcg_css: css of the blkcg to associate
1959 *
1960 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1961 * treat @bio as if it were issued by a task which belongs to the blkcg.
1962 *
1963 * This function takes an extra reference of @blkcg_css which will be put
1964 * when @bio is released. The caller must own @bio and is responsible for
1965 * synchronizing calls to this function.
1966 */
1967int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1968{
1969 if (unlikely(bio->bi_css))
1970 return -EBUSY;
1971 css_get(blkcg_css);
1972 bio->bi_css = blkcg_css;
1973 return 0;
1974}
5aa2a96b 1975EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1d933cf0 1976
08e18eab
JB
1977/**
1978 * bio_associate_blkg - associate a bio with the specified blkg
1979 * @bio: target bio
1980 * @blkg: the blkg to associate
1981 *
1982 * Associate @bio with the blkg specified by @blkg. This is the queue specific
1983 * blkcg information associated with the @bio, a reference will be taken on the
1984 * @blkg and will be freed when the bio is freed.
1985 */
1986int bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
1987{
1988 if (unlikely(bio->bi_blkg))
1989 return -EBUSY;
1990 blkg_get(blkg);
1991 bio->bi_blkg = blkg;
1992 return 0;
1993}
1994
852c788f
TH
1995/**
1996 * bio_disassociate_task - undo bio_associate_current()
1997 * @bio: target bio
1998 */
1999void bio_disassociate_task(struct bio *bio)
2000{
2001 if (bio->bi_ioc) {
2002 put_io_context(bio->bi_ioc);
2003 bio->bi_ioc = NULL;
2004 }
2005 if (bio->bi_css) {
2006 css_put(bio->bi_css);
2007 bio->bi_css = NULL;
2008 }
08e18eab
JB
2009 if (bio->bi_blkg) {
2010 blkg_put(bio->bi_blkg);
2011 bio->bi_blkg = NULL;
2012 }
852c788f
TH
2013}
2014
20bd723e
PV
2015/**
2016 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2017 * @dst: destination bio
2018 * @src: source bio
2019 */
2020void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2021{
2022 if (src->bi_css)
2023 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2024}
8a8e6f84 2025EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
852c788f
TH
2026#endif /* CONFIG_BLK_CGROUP */
2027
1da177e4
LT
2028static void __init biovec_init_slabs(void)
2029{
2030 int i;
2031
ed996a52 2032 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2033 int size;
2034 struct biovec_slab *bvs = bvec_slabs + i;
2035
a7fcd37c
JA
2036 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2037 bvs->slab = NULL;
2038 continue;
2039 }
a7fcd37c 2040
1da177e4
LT
2041 size = bvs->nr_vecs * sizeof(struct bio_vec);
2042 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2043 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2044 }
2045}
2046
2047static int __init init_bio(void)
2048{
bb799ca0
JA
2049 bio_slab_max = 2;
2050 bio_slab_nr = 0;
6396bb22
KC
2051 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2052 GFP_KERNEL);
bb799ca0
JA
2053 if (!bio_slabs)
2054 panic("bio: can't allocate bios\n");
1da177e4 2055
7878cba9 2056 bio_integrity_init();
1da177e4
LT
2057 biovec_init_slabs();
2058
f4f8154a 2059 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
2060 panic("bio: can't allocate bios\n");
2061
f4f8154a 2062 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
2063 panic("bio: can't create integrity pool\n");
2064
1da177e4
LT
2065 return 0;
2066}
1da177e4 2067subsys_initcall(init_bio);