blk-throttle: use queue_is_rq_based
[linux-2.6-block.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
1da177e4 31
55782138 32#include <trace/events/block.h>
9e234eea 33#include "blk.h"
0bfc2455 34
392ddc32
JA
35/*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39#define BIO_INLINE_VECS 4
40
1da177e4
LT
41/*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
1da177e4 46#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
ed996a52 47static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
1da177e4
LT
48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49};
50#undef BV
51
1da177e4
LT
52/*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
51d654e1 56struct bio_set *fs_bio_set;
3f86a82a 57EXPORT_SYMBOL(fs_bio_set);
1da177e4 58
bb799ca0
JA
59/*
60 * Our slab pool management
61 */
62struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67};
68static DEFINE_MUTEX(bio_slab_lock);
69static struct bio_slab *bio_slabs;
70static unsigned int bio_slab_nr, bio_slab_max;
71
72static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73{
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
389d7b26 76 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 77 unsigned int new_bio_slab_max;
bb799ca0
JA
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
f06f135d 84 bslab = &bio_slabs[i];
bb799ca0
JA
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 100 new_bio_slab_max = bio_slab_max << 1;
389d7b26 101 new_bio_slabs = krealloc(bio_slabs,
386bc35a 102 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
103 GFP_KERNEL);
104 if (!new_bio_slabs)
bb799ca0 105 goto out_unlock;
386bc35a 106 bio_slab_max = new_bio_slab_max;
389d7b26 107 bio_slabs = new_bio_slabs;
bb799ca0
JA
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
117 if (!slab)
118 goto out_unlock;
119
bb799ca0
JA
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
126}
127
128static void bio_put_slab(struct bio_set *bs)
129{
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
132
133 mutex_lock(&bio_slab_lock);
134
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
139 }
140 }
141
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
144
145 WARN_ON(!bslab->slab_ref);
146
147 if (--bslab->slab_ref)
148 goto out;
149
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
152
153out:
154 mutex_unlock(&bio_slab_lock);
155}
156
7ba1ba12
MP
157unsigned int bvec_nr_vecs(unsigned short idx)
158{
159 return bvec_slabs[idx].nr_vecs;
160}
161
9f060e22 162void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 163{
ed996a52
CH
164 if (!idx)
165 return;
166 idx--;
167
168 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 169
ed996a52 170 if (idx == BVEC_POOL_MAX) {
9f060e22 171 mempool_free(bv, pool);
ed996a52 172 } else {
bb799ca0
JA
173 struct biovec_slab *bvs = bvec_slabs + idx;
174
175 kmem_cache_free(bvs->slab, bv);
176 }
177}
178
9f060e22
KO
179struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 mempool_t *pool)
1da177e4
LT
181{
182 struct bio_vec *bvl;
1da177e4 183
7ff9345f
JA
184 /*
185 * see comment near bvec_array define!
186 */
187 switch (nr) {
188 case 1:
189 *idx = 0;
190 break;
191 case 2 ... 4:
192 *idx = 1;
193 break;
194 case 5 ... 16:
195 *idx = 2;
196 break;
197 case 17 ... 64:
198 *idx = 3;
199 break;
200 case 65 ... 128:
201 *idx = 4;
202 break;
203 case 129 ... BIO_MAX_PAGES:
204 *idx = 5;
205 break;
206 default:
207 return NULL;
208 }
209
210 /*
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
213 */
ed996a52 214 if (*idx == BVEC_POOL_MAX) {
7ff9345f 215fallback:
9f060e22 216 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
217 } else {
218 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 220
0a0d96b0 221 /*
7ff9345f
JA
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
0a0d96b0 225 */
7ff9345f 226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 227
0a0d96b0 228 /*
d0164adc 229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 230 * is set, retry with the 1-entry mempool
0a0d96b0 231 */
7ff9345f 232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 234 *idx = BVEC_POOL_MAX;
7ff9345f
JA
235 goto fallback;
236 }
237 }
238
ed996a52 239 (*idx)++;
1da177e4
LT
240 return bvl;
241}
242
9ae3b3f5 243void bio_uninit(struct bio *bio)
1da177e4 244{
4254bba1 245 bio_disassociate_task(bio);
4254bba1 246}
9ae3b3f5 247EXPORT_SYMBOL(bio_uninit);
7ba1ba12 248
4254bba1
KO
249static void bio_free(struct bio *bio)
250{
251 struct bio_set *bs = bio->bi_pool;
252 void *p;
253
9ae3b3f5 254 bio_uninit(bio);
4254bba1
KO
255
256 if (bs) {
ed996a52 257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
bb799ca0
JA
263 p -= bs->front_pad;
264
4254bba1
KO
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
3676347a
PO
270}
271
9ae3b3f5
JA
272/*
273 * Users of this function have their own bio allocation. Subsequently,
274 * they must remember to pair any call to bio_init() with bio_uninit()
275 * when IO has completed, or when the bio is released.
276 */
3a83f467
ML
277void bio_init(struct bio *bio, struct bio_vec *table,
278 unsigned short max_vecs)
1da177e4 279{
2b94de55 280 memset(bio, 0, sizeof(*bio));
c4cf5261 281 atomic_set(&bio->__bi_remaining, 1);
dac56212 282 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
283
284 bio->bi_io_vec = table;
285 bio->bi_max_vecs = max_vecs;
1da177e4 286}
a112a71d 287EXPORT_SYMBOL(bio_init);
1da177e4 288
f44b48c7
KO
289/**
290 * bio_reset - reinitialize a bio
291 * @bio: bio to reset
292 *
293 * Description:
294 * After calling bio_reset(), @bio will be in the same state as a freshly
295 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
296 * preserved are the ones that are initialized by bio_alloc_bioset(). See
297 * comment in struct bio.
298 */
299void bio_reset(struct bio *bio)
300{
301 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
302
9ae3b3f5 303 bio_uninit(bio);
f44b48c7
KO
304
305 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 306 bio->bi_flags = flags;
c4cf5261 307 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
308}
309EXPORT_SYMBOL(bio_reset);
310
38f8baae 311static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 312{
4246a0b6
CH
313 struct bio *parent = bio->bi_private;
314
4e4cbee9
CH
315 if (!parent->bi_status)
316 parent->bi_status = bio->bi_status;
196d38bc 317 bio_put(bio);
38f8baae
CH
318 return parent;
319}
320
321static void bio_chain_endio(struct bio *bio)
322{
323 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
324}
325
326/**
327 * bio_chain - chain bio completions
1051a902
RD
328 * @bio: the target bio
329 * @parent: the @bio's parent bio
196d38bc
KO
330 *
331 * The caller won't have a bi_end_io called when @bio completes - instead,
332 * @parent's bi_end_io won't be called until both @parent and @bio have
333 * completed; the chained bio will also be freed when it completes.
334 *
335 * The caller must not set bi_private or bi_end_io in @bio.
336 */
337void bio_chain(struct bio *bio, struct bio *parent)
338{
339 BUG_ON(bio->bi_private || bio->bi_end_io);
340
341 bio->bi_private = parent;
342 bio->bi_end_io = bio_chain_endio;
c4cf5261 343 bio_inc_remaining(parent);
196d38bc
KO
344}
345EXPORT_SYMBOL(bio_chain);
346
df2cb6da
KO
347static void bio_alloc_rescue(struct work_struct *work)
348{
349 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 struct bio *bio;
351
352 while (1) {
353 spin_lock(&bs->rescue_lock);
354 bio = bio_list_pop(&bs->rescue_list);
355 spin_unlock(&bs->rescue_lock);
356
357 if (!bio)
358 break;
359
360 generic_make_request(bio);
361 }
362}
363
364static void punt_bios_to_rescuer(struct bio_set *bs)
365{
366 struct bio_list punt, nopunt;
367 struct bio *bio;
368
47e0fb46
N
369 if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 return;
df2cb6da
KO
371 /*
372 * In order to guarantee forward progress we must punt only bios that
373 * were allocated from this bio_set; otherwise, if there was a bio on
374 * there for a stacking driver higher up in the stack, processing it
375 * could require allocating bios from this bio_set, and doing that from
376 * our own rescuer would be bad.
377 *
378 * Since bio lists are singly linked, pop them all instead of trying to
379 * remove from the middle of the list:
380 */
381
382 bio_list_init(&punt);
383 bio_list_init(&nopunt);
384
f5fe1b51 385 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 387 current->bio_list[0] = nopunt;
df2cb6da 388
f5fe1b51
N
389 bio_list_init(&nopunt);
390 while ((bio = bio_list_pop(&current->bio_list[1])))
391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 current->bio_list[1] = nopunt;
df2cb6da
KO
393
394 spin_lock(&bs->rescue_lock);
395 bio_list_merge(&bs->rescue_list, &punt);
396 spin_unlock(&bs->rescue_lock);
397
398 queue_work(bs->rescue_workqueue, &bs->rescue_work);
399}
400
1da177e4
LT
401/**
402 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 403 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 404 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 405 * @bs: the bio_set to allocate from.
1da177e4
LT
406 *
407 * Description:
3f86a82a
KO
408 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409 * backed by the @bs's mempool.
410 *
d0164adc
MG
411 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412 * always be able to allocate a bio. This is due to the mempool guarantees.
413 * To make this work, callers must never allocate more than 1 bio at a time
414 * from this pool. Callers that need to allocate more than 1 bio must always
415 * submit the previously allocated bio for IO before attempting to allocate
416 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 417 *
df2cb6da
KO
418 * Note that when running under generic_make_request() (i.e. any block
419 * driver), bios are not submitted until after you return - see the code in
420 * generic_make_request() that converts recursion into iteration, to prevent
421 * stack overflows.
422 *
423 * This would normally mean allocating multiple bios under
424 * generic_make_request() would be susceptible to deadlocks, but we have
425 * deadlock avoidance code that resubmits any blocked bios from a rescuer
426 * thread.
427 *
428 * However, we do not guarantee forward progress for allocations from other
429 * mempools. Doing multiple allocations from the same mempool under
430 * generic_make_request() should be avoided - instead, use bio_set's front_pad
431 * for per bio allocations.
432 *
3f86a82a
KO
433 * RETURNS:
434 * Pointer to new bio on success, NULL on failure.
435 */
7a88fa19
DC
436struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 struct bio_set *bs)
1da177e4 438{
df2cb6da 439 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
440 unsigned front_pad;
441 unsigned inline_vecs;
34053979 442 struct bio_vec *bvl = NULL;
451a9ebf
TH
443 struct bio *bio;
444 void *p;
445
3f86a82a
KO
446 if (!bs) {
447 if (nr_iovecs > UIO_MAXIOV)
448 return NULL;
449
450 p = kmalloc(sizeof(struct bio) +
451 nr_iovecs * sizeof(struct bio_vec),
452 gfp_mask);
453 front_pad = 0;
454 inline_vecs = nr_iovecs;
455 } else {
d8f429e1
JN
456 /* should not use nobvec bioset for nr_iovecs > 0 */
457 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
458 return NULL;
df2cb6da
KO
459 /*
460 * generic_make_request() converts recursion to iteration; this
461 * means if we're running beneath it, any bios we allocate and
462 * submit will not be submitted (and thus freed) until after we
463 * return.
464 *
465 * This exposes us to a potential deadlock if we allocate
466 * multiple bios from the same bio_set() while running
467 * underneath generic_make_request(). If we were to allocate
468 * multiple bios (say a stacking block driver that was splitting
469 * bios), we would deadlock if we exhausted the mempool's
470 * reserve.
471 *
472 * We solve this, and guarantee forward progress, with a rescuer
473 * workqueue per bio_set. If we go to allocate and there are
474 * bios on current->bio_list, we first try the allocation
d0164adc
MG
475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 * bios we would be blocking to the rescuer workqueue before
477 * we retry with the original gfp_flags.
df2cb6da
KO
478 */
479
f5fe1b51
N
480 if (current->bio_list &&
481 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
482 !bio_list_empty(&current->bio_list[1])) &&
483 bs->rescue_workqueue)
d0164adc 484 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 485
3f86a82a 486 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
487 if (!p && gfp_mask != saved_gfp) {
488 punt_bios_to_rescuer(bs);
489 gfp_mask = saved_gfp;
490 p = mempool_alloc(bs->bio_pool, gfp_mask);
491 }
492
3f86a82a
KO
493 front_pad = bs->front_pad;
494 inline_vecs = BIO_INLINE_VECS;
495 }
496
451a9ebf
TH
497 if (unlikely(!p))
498 return NULL;
1da177e4 499
3f86a82a 500 bio = p + front_pad;
3a83f467 501 bio_init(bio, NULL, 0);
34053979 502
3f86a82a 503 if (nr_iovecs > inline_vecs) {
ed996a52
CH
504 unsigned long idx = 0;
505
9f060e22 506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
507 if (!bvl && gfp_mask != saved_gfp) {
508 punt_bios_to_rescuer(bs);
509 gfp_mask = saved_gfp;
9f060e22 510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
511 }
512
34053979
IM
513 if (unlikely(!bvl))
514 goto err_free;
a38352e0 515
ed996a52 516 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
517 } else if (nr_iovecs) {
518 bvl = bio->bi_inline_vecs;
1da177e4 519 }
3f86a82a
KO
520
521 bio->bi_pool = bs;
34053979 522 bio->bi_max_vecs = nr_iovecs;
34053979 523 bio->bi_io_vec = bvl;
1da177e4 524 return bio;
34053979
IM
525
526err_free:
451a9ebf 527 mempool_free(p, bs->bio_pool);
34053979 528 return NULL;
1da177e4 529}
a112a71d 530EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 531
1da177e4
LT
532void zero_fill_bio(struct bio *bio)
533{
534 unsigned long flags;
7988613b
KO
535 struct bio_vec bv;
536 struct bvec_iter iter;
1da177e4 537
7988613b
KO
538 bio_for_each_segment(bv, bio, iter) {
539 char *data = bvec_kmap_irq(&bv, &flags);
540 memset(data, 0, bv.bv_len);
541 flush_dcache_page(bv.bv_page);
1da177e4
LT
542 bvec_kunmap_irq(data, &flags);
543 }
544}
545EXPORT_SYMBOL(zero_fill_bio);
546
547/**
548 * bio_put - release a reference to a bio
549 * @bio: bio to release reference to
550 *
551 * Description:
552 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 553 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
554 **/
555void bio_put(struct bio *bio)
556{
dac56212 557 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 558 bio_free(bio);
dac56212
JA
559 else {
560 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
561
562 /*
563 * last put frees it
564 */
565 if (atomic_dec_and_test(&bio->__bi_cnt))
566 bio_free(bio);
567 }
1da177e4 568}
a112a71d 569EXPORT_SYMBOL(bio_put);
1da177e4 570
165125e1 571inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
572{
573 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 blk_recount_segments(q, bio);
575
576 return bio->bi_phys_segments;
577}
a112a71d 578EXPORT_SYMBOL(bio_phys_segments);
1da177e4 579
59d276fe
KO
580/**
581 * __bio_clone_fast - clone a bio that shares the original bio's biovec
582 * @bio: destination bio
583 * @bio_src: bio to clone
584 *
585 * Clone a &bio. Caller will own the returned bio, but not
586 * the actual data it points to. Reference count of returned
587 * bio will be one.
588 *
589 * Caller must ensure that @bio_src is not freed before @bio.
590 */
591void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
592{
ed996a52 593 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
594
595 /*
74d46992 596 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
597 * so we don't set nor calculate new physical/hw segment counts here
598 */
74d46992 599 bio->bi_disk = bio_src->bi_disk;
62530ed8 600 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 601 bio_set_flag(bio, BIO_CLONED);
1eff9d32 602 bio->bi_opf = bio_src->bi_opf;
cb6934f8 603 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
604 bio->bi_iter = bio_src->bi_iter;
605 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e
PV
606
607 bio_clone_blkcg_association(bio, bio_src);
59d276fe
KO
608}
609EXPORT_SYMBOL(__bio_clone_fast);
610
611/**
612 * bio_clone_fast - clone a bio that shares the original bio's biovec
613 * @bio: bio to clone
614 * @gfp_mask: allocation priority
615 * @bs: bio_set to allocate from
616 *
617 * Like __bio_clone_fast, only also allocates the returned bio
618 */
619struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
620{
621 struct bio *b;
622
623 b = bio_alloc_bioset(gfp_mask, 0, bs);
624 if (!b)
625 return NULL;
626
627 __bio_clone_fast(b, bio);
628
629 if (bio_integrity(bio)) {
630 int ret;
631
632 ret = bio_integrity_clone(b, bio, gfp_mask);
633
634 if (ret < 0) {
635 bio_put(b);
636 return NULL;
637 }
638 }
639
640 return b;
641}
642EXPORT_SYMBOL(bio_clone_fast);
643
f4595875
SL
644/**
645 * bio_clone_bioset - clone a bio
646 * @bio_src: bio to clone
647 * @gfp_mask: allocation priority
648 * @bs: bio_set to allocate from
649 *
650 * Clone bio. Caller will own the returned bio, but not the actual data it
651 * points to. Reference count of returned bio will be one.
652 */
653struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
654 struct bio_set *bs)
1da177e4 655{
bdb53207
KO
656 struct bvec_iter iter;
657 struct bio_vec bv;
658 struct bio *bio;
1da177e4 659
bdb53207
KO
660 /*
661 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
662 * bio_src->bi_io_vec to bio->bi_io_vec.
663 *
664 * We can't do that anymore, because:
665 *
666 * - The point of cloning the biovec is to produce a bio with a biovec
667 * the caller can modify: bi_idx and bi_bvec_done should be 0.
668 *
669 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
670 * we tried to clone the whole thing bio_alloc_bioset() would fail.
671 * But the clone should succeed as long as the number of biovecs we
672 * actually need to allocate is fewer than BIO_MAX_PAGES.
673 *
674 * - Lastly, bi_vcnt should not be looked at or relied upon by code
675 * that does not own the bio - reason being drivers don't use it for
676 * iterating over the biovec anymore, so expecting it to be kept up
677 * to date (i.e. for clones that share the parent biovec) is just
678 * asking for trouble and would force extra work on
679 * __bio_clone_fast() anyways.
680 */
681
f4595875 682 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
bdb53207 683 if (!bio)
7ba1ba12 684 return NULL;
74d46992 685 bio->bi_disk = bio_src->bi_disk;
1eff9d32 686 bio->bi_opf = bio_src->bi_opf;
cb6934f8 687 bio->bi_write_hint = bio_src->bi_write_hint;
bdb53207
KO
688 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
689 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
7ba1ba12 690
7afafc8a
AH
691 switch (bio_op(bio)) {
692 case REQ_OP_DISCARD:
693 case REQ_OP_SECURE_ERASE:
a6f0788e 694 case REQ_OP_WRITE_ZEROES:
7afafc8a
AH
695 break;
696 case REQ_OP_WRITE_SAME:
8423ae3d 697 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
7afafc8a
AH
698 break;
699 default:
f4595875 700 bio_for_each_segment(bv, bio_src, iter)
7afafc8a
AH
701 bio->bi_io_vec[bio->bi_vcnt++] = bv;
702 break;
8423ae3d
KO
703 }
704
bdb53207
KO
705 if (bio_integrity(bio_src)) {
706 int ret;
7ba1ba12 707
bdb53207 708 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
059ea331 709 if (ret < 0) {
bdb53207 710 bio_put(bio);
7ba1ba12 711 return NULL;
059ea331 712 }
3676347a 713 }
1da177e4 714
20bd723e
PV
715 bio_clone_blkcg_association(bio, bio_src);
716
bdb53207 717 return bio;
1da177e4 718}
bf800ef1 719EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
720
721/**
c66a14d0
KO
722 * bio_add_pc_page - attempt to add page to bio
723 * @q: the target queue
724 * @bio: destination bio
725 * @page: page to add
726 * @len: vec entry length
727 * @offset: vec entry offset
1da177e4 728 *
c66a14d0
KO
729 * Attempt to add a page to the bio_vec maplist. This can fail for a
730 * number of reasons, such as the bio being full or target block device
731 * limitations. The target block device must allow bio's up to PAGE_SIZE,
732 * so it is always possible to add a single page to an empty bio.
733 *
734 * This should only be used by REQ_PC bios.
1da177e4 735 */
c66a14d0
KO
736int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
737 *page, unsigned int len, unsigned int offset)
1da177e4
LT
738{
739 int retried_segments = 0;
740 struct bio_vec *bvec;
741
742 /*
743 * cloned bio must not modify vec list
744 */
745 if (unlikely(bio_flagged(bio, BIO_CLONED)))
746 return 0;
747
c66a14d0 748 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
749 return 0;
750
80cfd548
JA
751 /*
752 * For filesystems with a blocksize smaller than the pagesize
753 * we will often be called with the same page as last time and
754 * a consecutive offset. Optimize this special case.
755 */
756 if (bio->bi_vcnt > 0) {
757 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
758
759 if (page == prev->bv_page &&
760 offset == prev->bv_offset + prev->bv_len) {
761 prev->bv_len += len;
fcbf6a08 762 bio->bi_iter.bi_size += len;
80cfd548
JA
763 goto done;
764 }
66cb45aa
JA
765
766 /*
767 * If the queue doesn't support SG gaps and adding this
768 * offset would create a gap, disallow it.
769 */
03100aad 770 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 771 return 0;
80cfd548
JA
772 }
773
774 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
775 return 0;
776
777 /*
fcbf6a08
ML
778 * setup the new entry, we might clear it again later if we
779 * cannot add the page
780 */
781 bvec = &bio->bi_io_vec[bio->bi_vcnt];
782 bvec->bv_page = page;
783 bvec->bv_len = len;
784 bvec->bv_offset = offset;
785 bio->bi_vcnt++;
786 bio->bi_phys_segments++;
787 bio->bi_iter.bi_size += len;
788
789 /*
790 * Perform a recount if the number of segments is greater
791 * than queue_max_segments(q).
1da177e4
LT
792 */
793
fcbf6a08 794 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
795
796 if (retried_segments)
fcbf6a08 797 goto failed;
1da177e4
LT
798
799 retried_segments = 1;
800 blk_recount_segments(q, bio);
801 }
802
1da177e4 803 /* If we may be able to merge these biovecs, force a recount */
fcbf6a08 804 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
b7c44ed9 805 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 806
80cfd548 807 done:
1da177e4 808 return len;
fcbf6a08
ML
809
810 failed:
811 bvec->bv_page = NULL;
812 bvec->bv_len = 0;
813 bvec->bv_offset = 0;
814 bio->bi_vcnt--;
815 bio->bi_iter.bi_size -= len;
816 blk_recount_segments(q, bio);
817 return 0;
1da177e4 818}
a112a71d 819EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 820
1da177e4
LT
821/**
822 * bio_add_page - attempt to add page to bio
823 * @bio: destination bio
824 * @page: page to add
825 * @len: vec entry length
826 * @offset: vec entry offset
827 *
c66a14d0
KO
828 * Attempt to add a page to the bio_vec maplist. This will only fail
829 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1da177e4 830 */
c66a14d0
KO
831int bio_add_page(struct bio *bio, struct page *page,
832 unsigned int len, unsigned int offset)
1da177e4 833{
c66a14d0
KO
834 struct bio_vec *bv;
835
836 /*
837 * cloned bio must not modify vec list
838 */
839 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
840 return 0;
762380ad 841
c66a14d0
KO
842 /*
843 * For filesystems with a blocksize smaller than the pagesize
844 * we will often be called with the same page as last time and
845 * a consecutive offset. Optimize this special case.
846 */
847 if (bio->bi_vcnt > 0) {
848 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
58a4915a 849
c66a14d0
KO
850 if (page == bv->bv_page &&
851 offset == bv->bv_offset + bv->bv_len) {
852 bv->bv_len += len;
853 goto done;
854 }
855 }
856
857 if (bio->bi_vcnt >= bio->bi_max_vecs)
858 return 0;
859
860 bv = &bio->bi_io_vec[bio->bi_vcnt];
861 bv->bv_page = page;
862 bv->bv_len = len;
863 bv->bv_offset = offset;
864
865 bio->bi_vcnt++;
866done:
867 bio->bi_iter.bi_size += len;
868 return len;
1da177e4 869}
a112a71d 870EXPORT_SYMBOL(bio_add_page);
1da177e4 871
2cefe4db
KO
872/**
873 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
874 * @bio: bio to add pages to
875 * @iter: iov iterator describing the region to be mapped
876 *
877 * Pins as many pages from *iter and appends them to @bio's bvec array. The
878 * pages will have to be released using put_page() when done.
879 */
880int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
881{
882 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
883 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
884 struct page **pages = (struct page **)bv;
885 size_t offset, diff;
886 ssize_t size;
887
888 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
889 if (unlikely(size <= 0))
890 return size ? size : -EFAULT;
891 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
892
893 /*
894 * Deep magic below: We need to walk the pinned pages backwards
895 * because we are abusing the space allocated for the bio_vecs
896 * for the page array. Because the bio_vecs are larger than the
897 * page pointers by definition this will always work. But it also
898 * means we can't use bio_add_page, so any changes to it's semantics
899 * need to be reflected here as well.
900 */
901 bio->bi_iter.bi_size += size;
902 bio->bi_vcnt += nr_pages;
903
904 diff = (nr_pages * PAGE_SIZE - offset) - size;
905 while (nr_pages--) {
906 bv[nr_pages].bv_page = pages[nr_pages];
907 bv[nr_pages].bv_len = PAGE_SIZE;
908 bv[nr_pages].bv_offset = 0;
909 }
910
911 bv[0].bv_offset += offset;
912 bv[0].bv_len -= offset;
913 if (diff)
914 bv[bio->bi_vcnt - 1].bv_len -= diff;
915
916 iov_iter_advance(iter, size);
917 return 0;
918}
919EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
920
4246a0b6 921static void submit_bio_wait_endio(struct bio *bio)
9e882242 922{
65e53aab 923 complete(bio->bi_private);
9e882242
KO
924}
925
926/**
927 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
928 * @bio: The &struct bio which describes the I/O
929 *
930 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
931 * bio_endio() on failure.
3d289d68
JK
932 *
933 * WARNING: Unlike to how submit_bio() is usually used, this function does not
934 * result in bio reference to be consumed. The caller must drop the reference
935 * on his own.
9e882242 936 */
4e49ea4a 937int submit_bio_wait(struct bio *bio)
9e882242 938{
e319e1fb 939 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
9e882242 940
65e53aab 941 bio->bi_private = &done;
9e882242 942 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 943 bio->bi_opf |= REQ_SYNC;
4e49ea4a 944 submit_bio(bio);
65e53aab 945 wait_for_completion_io(&done);
9e882242 946
65e53aab 947 return blk_status_to_errno(bio->bi_status);
9e882242
KO
948}
949EXPORT_SYMBOL(submit_bio_wait);
950
054bdf64
KO
951/**
952 * bio_advance - increment/complete a bio by some number of bytes
953 * @bio: bio to advance
954 * @bytes: number of bytes to complete
955 *
956 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
957 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
958 * be updated on the last bvec as well.
959 *
960 * @bio will then represent the remaining, uncompleted portion of the io.
961 */
962void bio_advance(struct bio *bio, unsigned bytes)
963{
964 if (bio_integrity(bio))
965 bio_integrity_advance(bio, bytes);
966
4550dd6c 967 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
968}
969EXPORT_SYMBOL(bio_advance);
970
16ac3d63
KO
971/**
972 * bio_copy_data - copy contents of data buffers from one chain of bios to
973 * another
974 * @src: source bio list
975 * @dst: destination bio list
976 *
977 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
978 * @src and @dst as linked lists of bios.
979 *
980 * Stops when it reaches the end of either @src or @dst - that is, copies
981 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
982 */
983void bio_copy_data(struct bio *dst, struct bio *src)
984{
1cb9dda4
KO
985 struct bvec_iter src_iter, dst_iter;
986 struct bio_vec src_bv, dst_bv;
16ac3d63 987 void *src_p, *dst_p;
1cb9dda4 988 unsigned bytes;
16ac3d63 989
1cb9dda4
KO
990 src_iter = src->bi_iter;
991 dst_iter = dst->bi_iter;
16ac3d63
KO
992
993 while (1) {
1cb9dda4
KO
994 if (!src_iter.bi_size) {
995 src = src->bi_next;
996 if (!src)
997 break;
16ac3d63 998
1cb9dda4 999 src_iter = src->bi_iter;
16ac3d63
KO
1000 }
1001
1cb9dda4
KO
1002 if (!dst_iter.bi_size) {
1003 dst = dst->bi_next;
1004 if (!dst)
1005 break;
16ac3d63 1006
1cb9dda4 1007 dst_iter = dst->bi_iter;
16ac3d63
KO
1008 }
1009
1cb9dda4
KO
1010 src_bv = bio_iter_iovec(src, src_iter);
1011 dst_bv = bio_iter_iovec(dst, dst_iter);
1012
1013 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1014
1cb9dda4
KO
1015 src_p = kmap_atomic(src_bv.bv_page);
1016 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1017
1cb9dda4
KO
1018 memcpy(dst_p + dst_bv.bv_offset,
1019 src_p + src_bv.bv_offset,
16ac3d63
KO
1020 bytes);
1021
1022 kunmap_atomic(dst_p);
1023 kunmap_atomic(src_p);
1024
1cb9dda4
KO
1025 bio_advance_iter(src, &src_iter, bytes);
1026 bio_advance_iter(dst, &dst_iter, bytes);
16ac3d63
KO
1027 }
1028}
1029EXPORT_SYMBOL(bio_copy_data);
1030
1da177e4 1031struct bio_map_data {
152e283f 1032 int is_our_pages;
26e49cfc
KO
1033 struct iov_iter iter;
1034 struct iovec iov[];
1da177e4
LT
1035};
1036
0e5b935d 1037static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
76029ff3 1038 gfp_t gfp_mask)
1da177e4 1039{
0e5b935d
AV
1040 struct bio_map_data *bmd;
1041 if (data->nr_segs > UIO_MAXIOV)
f3f63c1c 1042 return NULL;
1da177e4 1043
0e5b935d
AV
1044 bmd = kmalloc(sizeof(struct bio_map_data) +
1045 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1046 if (!bmd)
1047 return NULL;
1048 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1049 bmd->iter = *data;
1050 bmd->iter.iov = bmd->iov;
1051 return bmd;
1da177e4
LT
1052}
1053
9124d3fe
DP
1054/**
1055 * bio_copy_from_iter - copy all pages from iov_iter to bio
1056 * @bio: The &struct bio which describes the I/O as destination
1057 * @iter: iov_iter as source
1058 *
1059 * Copy all pages from iov_iter to bio.
1060 * Returns 0 on success, or error on failure.
1061 */
98a09d61 1062static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
c5dec1c3 1063{
9124d3fe 1064 int i;
c5dec1c3 1065 struct bio_vec *bvec;
c5dec1c3 1066
d74c6d51 1067 bio_for_each_segment_all(bvec, bio, i) {
9124d3fe 1068 ssize_t ret;
c5dec1c3 1069
9124d3fe
DP
1070 ret = copy_page_from_iter(bvec->bv_page,
1071 bvec->bv_offset,
1072 bvec->bv_len,
98a09d61 1073 iter);
9124d3fe 1074
98a09d61 1075 if (!iov_iter_count(iter))
9124d3fe
DP
1076 break;
1077
1078 if (ret < bvec->bv_len)
1079 return -EFAULT;
c5dec1c3
FT
1080 }
1081
9124d3fe
DP
1082 return 0;
1083}
1084
1085/**
1086 * bio_copy_to_iter - copy all pages from bio to iov_iter
1087 * @bio: The &struct bio which describes the I/O as source
1088 * @iter: iov_iter as destination
1089 *
1090 * Copy all pages from bio to iov_iter.
1091 * Returns 0 on success, or error on failure.
1092 */
1093static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1094{
1095 int i;
1096 struct bio_vec *bvec;
1097
1098 bio_for_each_segment_all(bvec, bio, i) {
1099 ssize_t ret;
1100
1101 ret = copy_page_to_iter(bvec->bv_page,
1102 bvec->bv_offset,
1103 bvec->bv_len,
1104 &iter);
1105
1106 if (!iov_iter_count(&iter))
1107 break;
1108
1109 if (ret < bvec->bv_len)
1110 return -EFAULT;
1111 }
1112
1113 return 0;
c5dec1c3
FT
1114}
1115
491221f8 1116void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1117{
1118 struct bio_vec *bvec;
1119 int i;
1120
1121 bio_for_each_segment_all(bvec, bio, i)
1122 __free_page(bvec->bv_page);
1123}
491221f8 1124EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1125
1da177e4
LT
1126/**
1127 * bio_uncopy_user - finish previously mapped bio
1128 * @bio: bio being terminated
1129 *
ddad8dd0 1130 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1131 * to user space in case of a read.
1132 */
1133int bio_uncopy_user(struct bio *bio)
1134{
1135 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1136 int ret = 0;
1da177e4 1137
35dc2483
RD
1138 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1139 /*
1140 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1141 * don't copy into a random user address space, just free
1142 * and return -EINTR so user space doesn't expect any data.
35dc2483 1143 */
2d99b55d
HR
1144 if (!current->mm)
1145 ret = -EINTR;
1146 else if (bio_data_dir(bio) == READ)
9124d3fe 1147 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1148 if (bmd->is_our_pages)
1149 bio_free_pages(bio);
35dc2483 1150 }
c8db4448 1151 kfree(bmd);
1da177e4
LT
1152 bio_put(bio);
1153 return ret;
1154}
1155
1156/**
c5dec1c3 1157 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1158 * @q: destination block queue
1159 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1160 * @iter: iovec iterator
1161 * @gfp_mask: memory allocation flags
1da177e4
LT
1162 *
1163 * Prepares and returns a bio for indirect user io, bouncing data
1164 * to/from kernel pages as necessary. Must be paired with
1165 * call bio_uncopy_user() on io completion.
1166 */
152e283f
FT
1167struct bio *bio_copy_user_iov(struct request_queue *q,
1168 struct rq_map_data *map_data,
e81cef5d 1169 struct iov_iter *iter,
26e49cfc 1170 gfp_t gfp_mask)
1da177e4 1171{
1da177e4 1172 struct bio_map_data *bmd;
1da177e4
LT
1173 struct page *page;
1174 struct bio *bio;
d16d44eb
AV
1175 int i = 0, ret;
1176 int nr_pages;
26e49cfc 1177 unsigned int len = iter->count;
bd5cecea 1178 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1179
0e5b935d 1180 bmd = bio_alloc_map_data(iter, gfp_mask);
1da177e4
LT
1181 if (!bmd)
1182 return ERR_PTR(-ENOMEM);
1183
26e49cfc
KO
1184 /*
1185 * We need to do a deep copy of the iov_iter including the iovecs.
1186 * The caller provided iov might point to an on-stack or otherwise
1187 * shortlived one.
1188 */
1189 bmd->is_our_pages = map_data ? 0 : 1;
26e49cfc 1190
d16d44eb
AV
1191 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1192 if (nr_pages > BIO_MAX_PAGES)
1193 nr_pages = BIO_MAX_PAGES;
26e49cfc 1194
1da177e4 1195 ret = -ENOMEM;
a9e9dc24 1196 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1197 if (!bio)
1198 goto out_bmd;
1199
1da177e4 1200 ret = 0;
56c451f4
FT
1201
1202 if (map_data) {
e623ddb4 1203 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1204 i = map_data->offset / PAGE_SIZE;
1205 }
1da177e4 1206 while (len) {
e623ddb4 1207 unsigned int bytes = PAGE_SIZE;
1da177e4 1208
56c451f4
FT
1209 bytes -= offset;
1210
1da177e4
LT
1211 if (bytes > len)
1212 bytes = len;
1213
152e283f 1214 if (map_data) {
e623ddb4 1215 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1216 ret = -ENOMEM;
1217 break;
1218 }
e623ddb4
FT
1219
1220 page = map_data->pages[i / nr_pages];
1221 page += (i % nr_pages);
1222
1223 i++;
1224 } else {
152e283f 1225 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1226 if (!page) {
1227 ret = -ENOMEM;
1228 break;
1229 }
1da177e4
LT
1230 }
1231
56c451f4 1232 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1233 break;
1da177e4
LT
1234
1235 len -= bytes;
56c451f4 1236 offset = 0;
1da177e4
LT
1237 }
1238
1239 if (ret)
1240 goto cleanup;
1241
2884d0be
AV
1242 if (map_data)
1243 map_data->offset += bio->bi_iter.bi_size;
1244
1da177e4
LT
1245 /*
1246 * success
1247 */
26e49cfc 1248 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1249 (map_data && map_data->from_user)) {
98a09d61 1250 ret = bio_copy_from_iter(bio, iter);
c5dec1c3
FT
1251 if (ret)
1252 goto cleanup;
98a09d61
AV
1253 } else {
1254 iov_iter_advance(iter, bio->bi_iter.bi_size);
1da177e4
LT
1255 }
1256
26e49cfc 1257 bio->bi_private = bmd;
2884d0be
AV
1258 if (map_data && map_data->null_mapped)
1259 bio_set_flag(bio, BIO_NULL_MAPPED);
1da177e4
LT
1260 return bio;
1261cleanup:
152e283f 1262 if (!map_data)
1dfa0f68 1263 bio_free_pages(bio);
1da177e4
LT
1264 bio_put(bio);
1265out_bmd:
c8db4448 1266 kfree(bmd);
1da177e4
LT
1267 return ERR_PTR(ret);
1268}
1269
37f19e57
CH
1270/**
1271 * bio_map_user_iov - map user iovec into bio
1272 * @q: the struct request_queue for the bio
1273 * @iter: iovec iterator
1274 * @gfp_mask: memory allocation flags
1275 *
1276 * Map the user space address into a bio suitable for io to a block
1277 * device. Returns an error pointer in case of error.
1278 */
1279struct bio *bio_map_user_iov(struct request_queue *q,
e81cef5d 1280 struct iov_iter *iter,
37f19e57 1281 gfp_t gfp_mask)
1da177e4 1282{
26e49cfc 1283 int j;
1da177e4 1284 struct bio *bio;
076098e5 1285 int ret;
2b04e8f6 1286 struct bio_vec *bvec;
1da177e4 1287
b282cc76 1288 if (!iov_iter_count(iter))
1da177e4
LT
1289 return ERR_PTR(-EINVAL);
1290
b282cc76 1291 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1da177e4
LT
1292 if (!bio)
1293 return ERR_PTR(-ENOMEM);
1294
0a0f1513 1295 while (iov_iter_count(iter)) {
629e42bc 1296 struct page **pages;
076098e5
AV
1297 ssize_t bytes;
1298 size_t offs, added = 0;
1299 int npages;
1da177e4 1300
0a0f1513 1301 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
076098e5
AV
1302 if (unlikely(bytes <= 0)) {
1303 ret = bytes ? bytes : -EFAULT;
f1970baf 1304 goto out_unmap;
99172157 1305 }
f1970baf 1306
076098e5 1307 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
f1970baf 1308
98f0bc99
AV
1309 if (unlikely(offs & queue_dma_alignment(q))) {
1310 ret = -EINVAL;
1311 j = 0;
1312 } else {
1313 for (j = 0; j < npages; j++) {
1314 struct page *page = pages[j];
1315 unsigned int n = PAGE_SIZE - offs;
1316 unsigned short prev_bi_vcnt = bio->bi_vcnt;
f1970baf 1317
98f0bc99
AV
1318 if (n > bytes)
1319 n = bytes;
95d78c28 1320
98f0bc99
AV
1321 if (!bio_add_pc_page(q, bio, page, n, offs))
1322 break;
1da177e4 1323
98f0bc99
AV
1324 /*
1325 * check if vector was merged with previous
1326 * drop page reference if needed
1327 */
1328 if (bio->bi_vcnt == prev_bi_vcnt)
1329 put_page(page);
1330
1331 added += n;
1332 bytes -= n;
1333 offs = 0;
1334 }
0a0f1513 1335 iov_iter_advance(iter, added);
f1970baf 1336 }
1da177e4 1337 /*
f1970baf 1338 * release the pages we didn't map into the bio, if any
1da177e4 1339 */
629e42bc 1340 while (j < npages)
09cbfeaf 1341 put_page(pages[j++]);
629e42bc 1342 kvfree(pages);
e2e115d1
AV
1343 /* couldn't stuff something into bio? */
1344 if (bytes)
1345 break;
1da177e4
LT
1346 }
1347
b7c44ed9 1348 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1349
1350 /*
5fad1b64 1351 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1352 * it would normally disappear when its bi_end_io is run.
1353 * however, we need it for the unmap, so grab an extra
1354 * reference to it
1355 */
1356 bio_get(bio);
1da177e4 1357 return bio;
f1970baf
JB
1358
1359 out_unmap:
2b04e8f6
AV
1360 bio_for_each_segment_all(bvec, bio, j) {
1361 put_page(bvec->bv_page);
f1970baf 1362 }
1da177e4
LT
1363 bio_put(bio);
1364 return ERR_PTR(ret);
1365}
1366
1da177e4
LT
1367static void __bio_unmap_user(struct bio *bio)
1368{
1369 struct bio_vec *bvec;
1370 int i;
1371
1372 /*
1373 * make sure we dirty pages we wrote to
1374 */
d74c6d51 1375 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1376 if (bio_data_dir(bio) == READ)
1377 set_page_dirty_lock(bvec->bv_page);
1378
09cbfeaf 1379 put_page(bvec->bv_page);
1da177e4
LT
1380 }
1381
1382 bio_put(bio);
1383}
1384
1385/**
1386 * bio_unmap_user - unmap a bio
1387 * @bio: the bio being unmapped
1388 *
5fad1b64
BVA
1389 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1390 * process context.
1da177e4
LT
1391 *
1392 * bio_unmap_user() may sleep.
1393 */
1394void bio_unmap_user(struct bio *bio)
1395{
1396 __bio_unmap_user(bio);
1397 bio_put(bio);
1398}
1399
4246a0b6 1400static void bio_map_kern_endio(struct bio *bio)
b823825e 1401{
b823825e 1402 bio_put(bio);
b823825e
JA
1403}
1404
75c72b83
CH
1405/**
1406 * bio_map_kern - map kernel address into bio
1407 * @q: the struct request_queue for the bio
1408 * @data: pointer to buffer to map
1409 * @len: length in bytes
1410 * @gfp_mask: allocation flags for bio allocation
1411 *
1412 * Map the kernel address into a bio suitable for io to a block
1413 * device. Returns an error pointer in case of error.
1414 */
1415struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1416 gfp_t gfp_mask)
df46b9a4
MC
1417{
1418 unsigned long kaddr = (unsigned long)data;
1419 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1420 unsigned long start = kaddr >> PAGE_SHIFT;
1421 const int nr_pages = end - start;
1422 int offset, i;
1423 struct bio *bio;
1424
a9e9dc24 1425 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1426 if (!bio)
1427 return ERR_PTR(-ENOMEM);
1428
1429 offset = offset_in_page(kaddr);
1430 for (i = 0; i < nr_pages; i++) {
1431 unsigned int bytes = PAGE_SIZE - offset;
1432
1433 if (len <= 0)
1434 break;
1435
1436 if (bytes > len)
1437 bytes = len;
1438
defd94b7 1439 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1440 offset) < bytes) {
1441 /* we don't support partial mappings */
1442 bio_put(bio);
1443 return ERR_PTR(-EINVAL);
1444 }
df46b9a4
MC
1445
1446 data += bytes;
1447 len -= bytes;
1448 offset = 0;
1449 }
1450
b823825e 1451 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1452 return bio;
1453}
a112a71d 1454EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1455
4246a0b6 1456static void bio_copy_kern_endio(struct bio *bio)
68154e90 1457{
1dfa0f68
CH
1458 bio_free_pages(bio);
1459 bio_put(bio);
1460}
1461
4246a0b6 1462static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1463{
42d2683a 1464 char *p = bio->bi_private;
1dfa0f68 1465 struct bio_vec *bvec;
68154e90
FT
1466 int i;
1467
d74c6d51 1468 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1469 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1470 p += bvec->bv_len;
68154e90
FT
1471 }
1472
4246a0b6 1473 bio_copy_kern_endio(bio);
68154e90
FT
1474}
1475
1476/**
1477 * bio_copy_kern - copy kernel address into bio
1478 * @q: the struct request_queue for the bio
1479 * @data: pointer to buffer to copy
1480 * @len: length in bytes
1481 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1482 * @reading: data direction is READ
68154e90
FT
1483 *
1484 * copy the kernel address into a bio suitable for io to a block
1485 * device. Returns an error pointer in case of error.
1486 */
1487struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1488 gfp_t gfp_mask, int reading)
1489{
42d2683a
CH
1490 unsigned long kaddr = (unsigned long)data;
1491 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1492 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1493 struct bio *bio;
1494 void *p = data;
1dfa0f68 1495 int nr_pages = 0;
68154e90 1496
42d2683a
CH
1497 /*
1498 * Overflow, abort
1499 */
1500 if (end < start)
1501 return ERR_PTR(-EINVAL);
68154e90 1502
42d2683a
CH
1503 nr_pages = end - start;
1504 bio = bio_kmalloc(gfp_mask, nr_pages);
1505 if (!bio)
1506 return ERR_PTR(-ENOMEM);
68154e90 1507
42d2683a
CH
1508 while (len) {
1509 struct page *page;
1510 unsigned int bytes = PAGE_SIZE;
68154e90 1511
42d2683a
CH
1512 if (bytes > len)
1513 bytes = len;
1514
1515 page = alloc_page(q->bounce_gfp | gfp_mask);
1516 if (!page)
1517 goto cleanup;
1518
1519 if (!reading)
1520 memcpy(page_address(page), p, bytes);
1521
1522 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1523 break;
1524
1525 len -= bytes;
1526 p += bytes;
68154e90
FT
1527 }
1528
1dfa0f68
CH
1529 if (reading) {
1530 bio->bi_end_io = bio_copy_kern_endio_read;
1531 bio->bi_private = data;
1532 } else {
1533 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1534 }
76029ff3 1535
68154e90 1536 return bio;
42d2683a
CH
1537
1538cleanup:
1dfa0f68 1539 bio_free_pages(bio);
42d2683a
CH
1540 bio_put(bio);
1541 return ERR_PTR(-ENOMEM);
68154e90
FT
1542}
1543
1da177e4
LT
1544/*
1545 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1546 * for performing direct-IO in BIOs.
1547 *
1548 * The problem is that we cannot run set_page_dirty() from interrupt context
1549 * because the required locks are not interrupt-safe. So what we can do is to
1550 * mark the pages dirty _before_ performing IO. And in interrupt context,
1551 * check that the pages are still dirty. If so, fine. If not, redirty them
1552 * in process context.
1553 *
1554 * We special-case compound pages here: normally this means reads into hugetlb
1555 * pages. The logic in here doesn't really work right for compound pages
1556 * because the VM does not uniformly chase down the head page in all cases.
1557 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1558 * handle them at all. So we skip compound pages here at an early stage.
1559 *
1560 * Note that this code is very hard to test under normal circumstances because
1561 * direct-io pins the pages with get_user_pages(). This makes
1562 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1563 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1564 * pagecache.
1565 *
1566 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1567 * deferred bio dirtying paths.
1568 */
1569
1570/*
1571 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1572 */
1573void bio_set_pages_dirty(struct bio *bio)
1574{
cb34e057 1575 struct bio_vec *bvec;
1da177e4
LT
1576 int i;
1577
cb34e057
KO
1578 bio_for_each_segment_all(bvec, bio, i) {
1579 struct page *page = bvec->bv_page;
1da177e4
LT
1580
1581 if (page && !PageCompound(page))
1582 set_page_dirty_lock(page);
1583 }
1584}
1585
86b6c7a7 1586static void bio_release_pages(struct bio *bio)
1da177e4 1587{
cb34e057 1588 struct bio_vec *bvec;
1da177e4
LT
1589 int i;
1590
cb34e057
KO
1591 bio_for_each_segment_all(bvec, bio, i) {
1592 struct page *page = bvec->bv_page;
1da177e4
LT
1593
1594 if (page)
1595 put_page(page);
1596 }
1597}
1598
1599/*
1600 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1601 * If they are, then fine. If, however, some pages are clean then they must
1602 * have been written out during the direct-IO read. So we take another ref on
1603 * the BIO and the offending pages and re-dirty the pages in process context.
1604 *
1605 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1606 * here on. It will run one put_page() against each page and will run one
1607 * bio_put() against the BIO.
1da177e4
LT
1608 */
1609
65f27f38 1610static void bio_dirty_fn(struct work_struct *work);
1da177e4 1611
65f27f38 1612static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1613static DEFINE_SPINLOCK(bio_dirty_lock);
1614static struct bio *bio_dirty_list;
1615
1616/*
1617 * This runs in process context
1618 */
65f27f38 1619static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1620{
1621 unsigned long flags;
1622 struct bio *bio;
1623
1624 spin_lock_irqsave(&bio_dirty_lock, flags);
1625 bio = bio_dirty_list;
1626 bio_dirty_list = NULL;
1627 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1628
1629 while (bio) {
1630 struct bio *next = bio->bi_private;
1631
1632 bio_set_pages_dirty(bio);
1633 bio_release_pages(bio);
1634 bio_put(bio);
1635 bio = next;
1636 }
1637}
1638
1639void bio_check_pages_dirty(struct bio *bio)
1640{
cb34e057 1641 struct bio_vec *bvec;
1da177e4
LT
1642 int nr_clean_pages = 0;
1643 int i;
1644
cb34e057
KO
1645 bio_for_each_segment_all(bvec, bio, i) {
1646 struct page *page = bvec->bv_page;
1da177e4
LT
1647
1648 if (PageDirty(page) || PageCompound(page)) {
09cbfeaf 1649 put_page(page);
cb34e057 1650 bvec->bv_page = NULL;
1da177e4
LT
1651 } else {
1652 nr_clean_pages++;
1653 }
1654 }
1655
1656 if (nr_clean_pages) {
1657 unsigned long flags;
1658
1659 spin_lock_irqsave(&bio_dirty_lock, flags);
1660 bio->bi_private = bio_dirty_list;
1661 bio_dirty_list = bio;
1662 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1663 schedule_work(&bio_dirty_work);
1664 } else {
1665 bio_put(bio);
1666 }
1667}
1668
d62e26b3
JA
1669void generic_start_io_acct(struct request_queue *q, int rw,
1670 unsigned long sectors, struct hd_struct *part)
394ffa50
GZ
1671{
1672 int cpu = part_stat_lock();
1673
d62e26b3 1674 part_round_stats(q, cpu, part);
394ffa50
GZ
1675 part_stat_inc(cpu, part, ios[rw]);
1676 part_stat_add(cpu, part, sectors[rw], sectors);
d62e26b3 1677 part_inc_in_flight(q, part, rw);
394ffa50
GZ
1678
1679 part_stat_unlock();
1680}
1681EXPORT_SYMBOL(generic_start_io_acct);
1682
d62e26b3
JA
1683void generic_end_io_acct(struct request_queue *q, int rw,
1684 struct hd_struct *part, unsigned long start_time)
394ffa50
GZ
1685{
1686 unsigned long duration = jiffies - start_time;
1687 int cpu = part_stat_lock();
1688
1689 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
1690 part_round_stats(q, cpu, part);
1691 part_dec_in_flight(q, part, rw);
394ffa50
GZ
1692
1693 part_stat_unlock();
1694}
1695EXPORT_SYMBOL(generic_end_io_acct);
1696
2d4dc890
IL
1697#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1698void bio_flush_dcache_pages(struct bio *bi)
1699{
7988613b
KO
1700 struct bio_vec bvec;
1701 struct bvec_iter iter;
2d4dc890 1702
7988613b
KO
1703 bio_for_each_segment(bvec, bi, iter)
1704 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1705}
1706EXPORT_SYMBOL(bio_flush_dcache_pages);
1707#endif
1708
c4cf5261
JA
1709static inline bool bio_remaining_done(struct bio *bio)
1710{
1711 /*
1712 * If we're not chaining, then ->__bi_remaining is always 1 and
1713 * we always end io on the first invocation.
1714 */
1715 if (!bio_flagged(bio, BIO_CHAIN))
1716 return true;
1717
1718 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1719
326e1dbb 1720 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1721 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1722 return true;
326e1dbb 1723 }
c4cf5261
JA
1724
1725 return false;
1726}
1727
1da177e4
LT
1728/**
1729 * bio_endio - end I/O on a bio
1730 * @bio: bio
1da177e4
LT
1731 *
1732 * Description:
4246a0b6
CH
1733 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1734 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1735 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1736 *
1737 * bio_endio() can be called several times on a bio that has been chained
1738 * using bio_chain(). The ->bi_end_io() function will only be called the
1739 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1740 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1741 **/
4246a0b6 1742void bio_endio(struct bio *bio)
1da177e4 1743{
ba8c6967 1744again:
2b885517 1745 if (!bio_remaining_done(bio))
ba8c6967 1746 return;
7c20f116
CH
1747 if (!bio_integrity_endio(bio))
1748 return;
1da177e4 1749
ba8c6967
CH
1750 /*
1751 * Need to have a real endio function for chained bios, otherwise
1752 * various corner cases will break (like stacking block devices that
1753 * save/restore bi_end_io) - however, we want to avoid unbounded
1754 * recursion and blowing the stack. Tail call optimization would
1755 * handle this, but compiling with frame pointers also disables
1756 * gcc's sibling call optimization.
1757 */
1758 if (bio->bi_end_io == bio_chain_endio) {
1759 bio = __bio_chain_endio(bio);
1760 goto again;
196d38bc 1761 }
ba8c6967 1762
74d46992
CH
1763 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1764 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1765 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1766 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1767 }
1768
9e234eea 1769 blk_throtl_bio_endio(bio);
b222dd2f
SL
1770 /* release cgroup info */
1771 bio_uninit(bio);
ba8c6967
CH
1772 if (bio->bi_end_io)
1773 bio->bi_end_io(bio);
1da177e4 1774}
a112a71d 1775EXPORT_SYMBOL(bio_endio);
1da177e4 1776
20d0189b
KO
1777/**
1778 * bio_split - split a bio
1779 * @bio: bio to split
1780 * @sectors: number of sectors to split from the front of @bio
1781 * @gfp: gfp mask
1782 * @bs: bio set to allocate from
1783 *
1784 * Allocates and returns a new bio which represents @sectors from the start of
1785 * @bio, and updates @bio to represent the remaining sectors.
1786 *
f3f5da62
MP
1787 * Unless this is a discard request the newly allocated bio will point
1788 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1789 * @bio is not freed before the split.
20d0189b
KO
1790 */
1791struct bio *bio_split(struct bio *bio, int sectors,
1792 gfp_t gfp, struct bio_set *bs)
1793{
f341a4d3 1794 struct bio *split;
20d0189b
KO
1795
1796 BUG_ON(sectors <= 0);
1797 BUG_ON(sectors >= bio_sectors(bio));
1798
f9d03f96 1799 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1800 if (!split)
1801 return NULL;
1802
1803 split->bi_iter.bi_size = sectors << 9;
1804
1805 if (bio_integrity(split))
fbd08e76 1806 bio_integrity_trim(split);
20d0189b
KO
1807
1808 bio_advance(bio, split->bi_iter.bi_size);
1809
fbbaf700
N
1810 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1811 bio_set_flag(bio, BIO_TRACE_COMPLETION);
1812
20d0189b
KO
1813 return split;
1814}
1815EXPORT_SYMBOL(bio_split);
1816
6678d83f
KO
1817/**
1818 * bio_trim - trim a bio
1819 * @bio: bio to trim
1820 * @offset: number of sectors to trim from the front of @bio
1821 * @size: size we want to trim @bio to, in sectors
1822 */
1823void bio_trim(struct bio *bio, int offset, int size)
1824{
1825 /* 'bio' is a cloned bio which we need to trim to match
1826 * the given offset and size.
6678d83f 1827 */
6678d83f
KO
1828
1829 size <<= 9;
4f024f37 1830 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1831 return;
1832
b7c44ed9 1833 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1834
1835 bio_advance(bio, offset << 9);
1836
4f024f37 1837 bio->bi_iter.bi_size = size;
376a78ab
DM
1838
1839 if (bio_integrity(bio))
fbd08e76 1840 bio_integrity_trim(bio);
376a78ab 1841
6678d83f
KO
1842}
1843EXPORT_SYMBOL_GPL(bio_trim);
1844
1da177e4
LT
1845/*
1846 * create memory pools for biovec's in a bio_set.
1847 * use the global biovec slabs created for general use.
1848 */
a6c39cb4 1849mempool_t *biovec_create_pool(int pool_entries)
1da177e4 1850{
ed996a52 1851 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1852
9f060e22 1853 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1854}
1855
1856void bioset_free(struct bio_set *bs)
1857{
df2cb6da
KO
1858 if (bs->rescue_workqueue)
1859 destroy_workqueue(bs->rescue_workqueue);
1860
4078def8
TH
1861 mempool_destroy(bs->bio_pool);
1862 mempool_destroy(bs->bvec_pool);
9f060e22 1863
7878cba9 1864 bioset_integrity_free(bs);
bb799ca0 1865 bio_put_slab(bs);
1da177e4
LT
1866
1867 kfree(bs);
1868}
a112a71d 1869EXPORT_SYMBOL(bioset_free);
1da177e4 1870
011067b0
N
1871/**
1872 * bioset_create - Create a bio_set
1873 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1874 * @front_pad: Number of bytes to allocate in front of the returned bio
47e0fb46
N
1875 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1876 * and %BIOSET_NEED_RESCUER
011067b0
N
1877 *
1878 * Description:
1879 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1880 * to ask for a number of bytes to be allocated in front of the bio.
1881 * Front pad allocation is useful for embedding the bio inside
1882 * another structure, to avoid allocating extra data to go with the bio.
1883 * Note that the bio must be embedded at the END of that structure always,
1884 * or things will break badly.
1885 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1886 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
47e0fb46
N
1887 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1888 * dispatch queued requests when the mempool runs out of space.
011067b0
N
1889 *
1890 */
1891struct bio_set *bioset_create(unsigned int pool_size,
1892 unsigned int front_pad,
1893 int flags)
1da177e4 1894{
392ddc32 1895 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1896 struct bio_set *bs;
1da177e4 1897
1b434498 1898 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1899 if (!bs)
1900 return NULL;
1901
bb799ca0 1902 bs->front_pad = front_pad;
1b434498 1903
df2cb6da
KO
1904 spin_lock_init(&bs->rescue_lock);
1905 bio_list_init(&bs->rescue_list);
1906 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1907
392ddc32 1908 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1909 if (!bs->bio_slab) {
1910 kfree(bs);
1911 return NULL;
1912 }
1913
1914 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1915 if (!bs->bio_pool)
1916 goto bad;
1917
011067b0 1918 if (flags & BIOSET_NEED_BVECS) {
d8f429e1
JN
1919 bs->bvec_pool = biovec_create_pool(pool_size);
1920 if (!bs->bvec_pool)
1921 goto bad;
1922 }
df2cb6da 1923
47e0fb46
N
1924 if (!(flags & BIOSET_NEED_RESCUER))
1925 return bs;
1926
df2cb6da
KO
1927 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1928 if (!bs->rescue_workqueue)
1929 goto bad;
1da177e4 1930
df2cb6da 1931 return bs;
1da177e4
LT
1932bad:
1933 bioset_free(bs);
1934 return NULL;
1935}
a112a71d 1936EXPORT_SYMBOL(bioset_create);
1da177e4 1937
852c788f 1938#ifdef CONFIG_BLK_CGROUP
1d933cf0
TH
1939
1940/**
1941 * bio_associate_blkcg - associate a bio with the specified blkcg
1942 * @bio: target bio
1943 * @blkcg_css: css of the blkcg to associate
1944 *
1945 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1946 * treat @bio as if it were issued by a task which belongs to the blkcg.
1947 *
1948 * This function takes an extra reference of @blkcg_css which will be put
1949 * when @bio is released. The caller must own @bio and is responsible for
1950 * synchronizing calls to this function.
1951 */
1952int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1953{
1954 if (unlikely(bio->bi_css))
1955 return -EBUSY;
1956 css_get(blkcg_css);
1957 bio->bi_css = blkcg_css;
1958 return 0;
1959}
5aa2a96b 1960EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1d933cf0 1961
852c788f
TH
1962/**
1963 * bio_disassociate_task - undo bio_associate_current()
1964 * @bio: target bio
1965 */
1966void bio_disassociate_task(struct bio *bio)
1967{
1968 if (bio->bi_ioc) {
1969 put_io_context(bio->bi_ioc);
1970 bio->bi_ioc = NULL;
1971 }
1972 if (bio->bi_css) {
1973 css_put(bio->bi_css);
1974 bio->bi_css = NULL;
1975 }
1976}
1977
20bd723e
PV
1978/**
1979 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
1980 * @dst: destination bio
1981 * @src: source bio
1982 */
1983void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
1984{
1985 if (src->bi_css)
1986 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
1987}
8a8e6f84 1988EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
852c788f
TH
1989#endif /* CONFIG_BLK_CGROUP */
1990
1da177e4
LT
1991static void __init biovec_init_slabs(void)
1992{
1993 int i;
1994
ed996a52 1995 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
1996 int size;
1997 struct biovec_slab *bvs = bvec_slabs + i;
1998
a7fcd37c
JA
1999 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2000 bvs->slab = NULL;
2001 continue;
2002 }
a7fcd37c 2003
1da177e4
LT
2004 size = bvs->nr_vecs * sizeof(struct bio_vec);
2005 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2006 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2007 }
2008}
2009
2010static int __init init_bio(void)
2011{
bb799ca0
JA
2012 bio_slab_max = 2;
2013 bio_slab_nr = 0;
2014 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2015 if (!bio_slabs)
2016 panic("bio: can't allocate bios\n");
1da177e4 2017
7878cba9 2018 bio_integrity_init();
1da177e4
LT
2019 biovec_init_slabs();
2020
011067b0 2021 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1da177e4
LT
2022 if (!fs_bio_set)
2023 panic("bio: can't allocate bios\n");
2024
a91a2785
MP
2025 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2026 panic("bio: can't create integrity pool\n");
2027
1da177e4
LT
2028 return 0;
2029}
1da177e4 2030subsys_initcall(init_bio);