block: move blk_next_bio to bio.c
[linux-2.6-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
de6a78b6 20#include <linux/sched/sysctl.h>
a892c8d5 21#include <linux/blk-crypto.h>
49d1ec85 22#include <linux/xarray.h>
1da177e4 23
55782138 24#include <trace/events/block.h>
9e234eea 25#include "blk.h"
67b42d0b 26#include "blk-rq-qos.h"
0bfc2455 27
be4d234d 28struct bio_alloc_cache {
fcade2ce 29 struct bio *free_list;
be4d234d
JA
30 unsigned int nr;
31};
32
de76fd89 33static struct biovec_slab {
6ac0b715
CH
34 int nr_vecs;
35 char *name;
36 struct kmem_cache *slab;
de76fd89
CH
37} bvec_slabs[] __read_mostly = {
38 { .nr_vecs = 16, .name = "biovec-16" },
39 { .nr_vecs = 64, .name = "biovec-64" },
40 { .nr_vecs = 128, .name = "biovec-128" },
a8affc03 41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
1da177e4 42};
6ac0b715 43
7a800a20
CH
44static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45{
46 switch (nr_vecs) {
47 /* smaller bios use inline vecs */
48 case 5 ... 16:
49 return &bvec_slabs[0];
50 case 17 ... 64:
51 return &bvec_slabs[1];
52 case 65 ... 128:
53 return &bvec_slabs[2];
a8affc03 54 case 129 ... BIO_MAX_VECS:
7a800a20
CH
55 return &bvec_slabs[3];
56 default:
57 BUG();
58 return NULL;
59 }
60}
1da177e4 61
1da177e4
LT
62/*
63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64 * IO code that does not need private memory pools.
65 */
f4f8154a 66struct bio_set fs_bio_set;
3f86a82a 67EXPORT_SYMBOL(fs_bio_set);
1da177e4 68
bb799ca0
JA
69/*
70 * Our slab pool management
71 */
72struct bio_slab {
73 struct kmem_cache *slab;
74 unsigned int slab_ref;
75 unsigned int slab_size;
76 char name[8];
77};
78static DEFINE_MUTEX(bio_slab_lock);
49d1ec85 79static DEFINE_XARRAY(bio_slabs);
bb799ca0 80
49d1ec85 81static struct bio_slab *create_bio_slab(unsigned int size)
bb799ca0 82{
49d1ec85 83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
bb799ca0 84
49d1ec85
ML
85 if (!bslab)
86 return NULL;
bb799ca0 87
49d1ec85
ML
88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 bslab->slab = kmem_cache_create(bslab->name, size,
1a7e76e4
CH
90 ARCH_KMALLOC_MINALIGN,
91 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
49d1ec85
ML
92 if (!bslab->slab)
93 goto fail_alloc_slab;
bb799ca0 94
49d1ec85
ML
95 bslab->slab_ref = 1;
96 bslab->slab_size = size;
bb799ca0 97
49d1ec85
ML
98 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
99 return bslab;
bb799ca0 100
49d1ec85 101 kmem_cache_destroy(bslab->slab);
bb799ca0 102
49d1ec85
ML
103fail_alloc_slab:
104 kfree(bslab);
105 return NULL;
106}
bb799ca0 107
49d1ec85
ML
108static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
109{
9f180e31 110 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
49d1ec85 111}
bb799ca0 112
49d1ec85
ML
113static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
114{
115 unsigned int size = bs_bio_slab_size(bs);
116 struct bio_slab *bslab;
bb799ca0 117
49d1ec85
ML
118 mutex_lock(&bio_slab_lock);
119 bslab = xa_load(&bio_slabs, size);
120 if (bslab)
121 bslab->slab_ref++;
122 else
123 bslab = create_bio_slab(size);
bb799ca0 124 mutex_unlock(&bio_slab_lock);
49d1ec85
ML
125
126 if (bslab)
127 return bslab->slab;
128 return NULL;
bb799ca0
JA
129}
130
131static void bio_put_slab(struct bio_set *bs)
132{
133 struct bio_slab *bslab = NULL;
49d1ec85 134 unsigned int slab_size = bs_bio_slab_size(bs);
bb799ca0
JA
135
136 mutex_lock(&bio_slab_lock);
137
49d1ec85 138 bslab = xa_load(&bio_slabs, slab_size);
bb799ca0
JA
139 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
140 goto out;
141
49d1ec85
ML
142 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
143
bb799ca0
JA
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
49d1ec85
ML
149 xa_erase(&bio_slabs, slab_size);
150
bb799ca0 151 kmem_cache_destroy(bslab->slab);
49d1ec85 152 kfree(bslab);
bb799ca0
JA
153
154out:
155 mutex_unlock(&bio_slab_lock);
156}
157
7a800a20 158void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
7ba1ba12 159{
9e8c0d0d 160 BUG_ON(nr_vecs > BIO_MAX_VECS);
ed996a52 161
a8affc03 162 if (nr_vecs == BIO_MAX_VECS)
9f060e22 163 mempool_free(bv, pool);
7a800a20
CH
164 else if (nr_vecs > BIO_INLINE_VECS)
165 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
bb799ca0 166}
bb799ca0 167
f2c3eb9b
CH
168/*
169 * Make the first allocation restricted and don't dump info on allocation
170 * failures, since we'll fall back to the mempool in case of failure.
171 */
172static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
173{
174 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
175 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
bb799ca0
JA
176}
177
7a800a20
CH
178struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
179 gfp_t gfp_mask)
1da177e4 180{
7a800a20 181 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
1da177e4 182
7a800a20 183 if (WARN_ON_ONCE(!bvs))
7ff9345f 184 return NULL;
7ff9345f
JA
185
186 /*
7a800a20
CH
187 * Upgrade the nr_vecs request to take full advantage of the allocation.
188 * We also rely on this in the bvec_free path.
7ff9345f 189 */
7a800a20 190 *nr_vecs = bvs->nr_vecs;
7ff9345f 191
7ff9345f 192 /*
f007a3d6
CH
193 * Try a slab allocation first for all smaller allocations. If that
194 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
a8affc03 195 * The mempool is sized to handle up to BIO_MAX_VECS entries.
7ff9345f 196 */
a8affc03 197 if (*nr_vecs < BIO_MAX_VECS) {
f007a3d6 198 struct bio_vec *bvl;
1da177e4 199
f2c3eb9b 200 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
7a800a20 201 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
f007a3d6 202 return bvl;
a8affc03 203 *nr_vecs = BIO_MAX_VECS;
7ff9345f
JA
204 }
205
f007a3d6 206 return mempool_alloc(pool, gfp_mask);
1da177e4
LT
207}
208
9ae3b3f5 209void bio_uninit(struct bio *bio)
1da177e4 210{
db9819c7
CH
211#ifdef CONFIG_BLK_CGROUP
212 if (bio->bi_blkg) {
213 blkg_put(bio->bi_blkg);
214 bio->bi_blkg = NULL;
215 }
216#endif
ece841ab
JT
217 if (bio_integrity(bio))
218 bio_integrity_free(bio);
a892c8d5
ST
219
220 bio_crypt_free_ctx(bio);
4254bba1 221}
9ae3b3f5 222EXPORT_SYMBOL(bio_uninit);
7ba1ba12 223
4254bba1
KO
224static void bio_free(struct bio *bio)
225{
226 struct bio_set *bs = bio->bi_pool;
227 void *p;
228
9ae3b3f5 229 bio_uninit(bio);
4254bba1
KO
230
231 if (bs) {
7a800a20 232 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
4254bba1
KO
233
234 /*
235 * If we have front padding, adjust the bio pointer before freeing
236 */
237 p = bio;
bb799ca0
JA
238 p -= bs->front_pad;
239
8aa6ba2f 240 mempool_free(p, &bs->bio_pool);
4254bba1
KO
241 } else {
242 /* Bio was allocated by bio_kmalloc() */
243 kfree(bio);
244 }
3676347a
PO
245}
246
9ae3b3f5
JA
247/*
248 * Users of this function have their own bio allocation. Subsequently,
249 * they must remember to pair any call to bio_init() with bio_uninit()
250 * when IO has completed, or when the bio is released.
251 */
3a83f467
ML
252void bio_init(struct bio *bio, struct bio_vec *table,
253 unsigned short max_vecs)
1da177e4 254{
da521626
JA
255 bio->bi_next = NULL;
256 bio->bi_bdev = NULL;
257 bio->bi_opf = 0;
258 bio->bi_flags = 0;
259 bio->bi_ioprio = 0;
260 bio->bi_write_hint = 0;
261 bio->bi_status = 0;
262 bio->bi_iter.bi_sector = 0;
263 bio->bi_iter.bi_size = 0;
264 bio->bi_iter.bi_idx = 0;
265 bio->bi_iter.bi_bvec_done = 0;
266 bio->bi_end_io = NULL;
267 bio->bi_private = NULL;
268#ifdef CONFIG_BLK_CGROUP
269 bio->bi_blkg = NULL;
270 bio->bi_issue.value = 0;
271#ifdef CONFIG_BLK_CGROUP_IOCOST
272 bio->bi_iocost_cost = 0;
273#endif
274#endif
275#ifdef CONFIG_BLK_INLINE_ENCRYPTION
276 bio->bi_crypt_context = NULL;
277#endif
278#ifdef CONFIG_BLK_DEV_INTEGRITY
279 bio->bi_integrity = NULL;
280#endif
281 bio->bi_vcnt = 0;
282
c4cf5261 283 atomic_set(&bio->__bi_remaining, 1);
dac56212 284 atomic_set(&bio->__bi_cnt, 1);
3e08773c 285 bio->bi_cookie = BLK_QC_T_NONE;
3a83f467 286
3a83f467 287 bio->bi_max_vecs = max_vecs;
da521626
JA
288 bio->bi_io_vec = table;
289 bio->bi_pool = NULL;
1da177e4 290}
a112a71d 291EXPORT_SYMBOL(bio_init);
1da177e4 292
f44b48c7
KO
293/**
294 * bio_reset - reinitialize a bio
295 * @bio: bio to reset
296 *
297 * Description:
298 * After calling bio_reset(), @bio will be in the same state as a freshly
299 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
300 * preserved are the ones that are initialized by bio_alloc_bioset(). See
301 * comment in struct bio.
302 */
303void bio_reset(struct bio *bio)
304{
9ae3b3f5 305 bio_uninit(bio);
f44b48c7 306 memset(bio, 0, BIO_RESET_BYTES);
c4cf5261 307 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
308}
309EXPORT_SYMBOL(bio_reset);
310
38f8baae 311static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 312{
4246a0b6
CH
313 struct bio *parent = bio->bi_private;
314
3edf5346 315 if (bio->bi_status && !parent->bi_status)
4e4cbee9 316 parent->bi_status = bio->bi_status;
196d38bc 317 bio_put(bio);
38f8baae
CH
318 return parent;
319}
320
321static void bio_chain_endio(struct bio *bio)
322{
323 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
324}
325
326/**
327 * bio_chain - chain bio completions
1051a902 328 * @bio: the target bio
5b874af6 329 * @parent: the parent bio of @bio
196d38bc
KO
330 *
331 * The caller won't have a bi_end_io called when @bio completes - instead,
332 * @parent's bi_end_io won't be called until both @parent and @bio have
333 * completed; the chained bio will also be freed when it completes.
334 *
335 * The caller must not set bi_private or bi_end_io in @bio.
336 */
337void bio_chain(struct bio *bio, struct bio *parent)
338{
339 BUG_ON(bio->bi_private || bio->bi_end_io);
340
341 bio->bi_private = parent;
342 bio->bi_end_io = bio_chain_endio;
c4cf5261 343 bio_inc_remaining(parent);
196d38bc
KO
344}
345EXPORT_SYMBOL(bio_chain);
346
3b005bf6
CH
347struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp)
348{
349 struct bio *new = bio_alloc(gfp, nr_pages);
350
351 if (bio) {
352 bio_chain(bio, new);
353 submit_bio(bio);
354 }
355
356 return new;
357}
358EXPORT_SYMBOL_GPL(blk_next_bio);
359
df2cb6da
KO
360static void bio_alloc_rescue(struct work_struct *work)
361{
362 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
363 struct bio *bio;
364
365 while (1) {
366 spin_lock(&bs->rescue_lock);
367 bio = bio_list_pop(&bs->rescue_list);
368 spin_unlock(&bs->rescue_lock);
369
370 if (!bio)
371 break;
372
ed00aabd 373 submit_bio_noacct(bio);
df2cb6da
KO
374 }
375}
376
377static void punt_bios_to_rescuer(struct bio_set *bs)
378{
379 struct bio_list punt, nopunt;
380 struct bio *bio;
381
47e0fb46
N
382 if (WARN_ON_ONCE(!bs->rescue_workqueue))
383 return;
df2cb6da
KO
384 /*
385 * In order to guarantee forward progress we must punt only bios that
386 * were allocated from this bio_set; otherwise, if there was a bio on
387 * there for a stacking driver higher up in the stack, processing it
388 * could require allocating bios from this bio_set, and doing that from
389 * our own rescuer would be bad.
390 *
391 * Since bio lists are singly linked, pop them all instead of trying to
392 * remove from the middle of the list:
393 */
394
395 bio_list_init(&punt);
396 bio_list_init(&nopunt);
397
f5fe1b51 398 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 399 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 400 current->bio_list[0] = nopunt;
df2cb6da 401
f5fe1b51
N
402 bio_list_init(&nopunt);
403 while ((bio = bio_list_pop(&current->bio_list[1])))
404 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
405 current->bio_list[1] = nopunt;
df2cb6da
KO
406
407 spin_lock(&bs->rescue_lock);
408 bio_list_merge(&bs->rescue_list, &punt);
409 spin_unlock(&bs->rescue_lock);
410
411 queue_work(bs->rescue_workqueue, &bs->rescue_work);
412}
413
1da177e4
LT
414/**
415 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 416 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 417 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 418 * @bs: the bio_set to allocate from.
1da177e4 419 *
3175199a 420 * Allocate a bio from the mempools in @bs.
3f86a82a 421 *
3175199a
CH
422 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
423 * allocate a bio. This is due to the mempool guarantees. To make this work,
424 * callers must never allocate more than 1 bio at a time from the general pool.
425 * Callers that need to allocate more than 1 bio must always submit the
426 * previously allocated bio for IO before attempting to allocate a new one.
427 * Failure to do so can cause deadlocks under memory pressure.
3f86a82a 428 *
3175199a
CH
429 * Note that when running under submit_bio_noacct() (i.e. any block driver),
430 * bios are not submitted until after you return - see the code in
431 * submit_bio_noacct() that converts recursion into iteration, to prevent
432 * stack overflows.
df2cb6da 433 *
3175199a
CH
434 * This would normally mean allocating multiple bios under submit_bio_noacct()
435 * would be susceptible to deadlocks, but we have
436 * deadlock avoidance code that resubmits any blocked bios from a rescuer
437 * thread.
df2cb6da 438 *
3175199a
CH
439 * However, we do not guarantee forward progress for allocations from other
440 * mempools. Doing multiple allocations from the same mempool under
441 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
442 * for per bio allocations.
df2cb6da 443 *
3175199a 444 * Returns: Pointer to new bio on success, NULL on failure.
3f86a82a 445 */
0f2e6ab8 446struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
7a88fa19 447 struct bio_set *bs)
1da177e4 448{
df2cb6da 449 gfp_t saved_gfp = gfp_mask;
451a9ebf
TH
450 struct bio *bio;
451 void *p;
452
3175199a
CH
453 /* should not use nobvec bioset for nr_iovecs > 0 */
454 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
455 return NULL;
df2cb6da 456
3175199a
CH
457 /*
458 * submit_bio_noacct() converts recursion to iteration; this means if
459 * we're running beneath it, any bios we allocate and submit will not be
460 * submitted (and thus freed) until after we return.
461 *
462 * This exposes us to a potential deadlock if we allocate multiple bios
463 * from the same bio_set() while running underneath submit_bio_noacct().
464 * If we were to allocate multiple bios (say a stacking block driver
465 * that was splitting bios), we would deadlock if we exhausted the
466 * mempool's reserve.
467 *
468 * We solve this, and guarantee forward progress, with a rescuer
469 * workqueue per bio_set. If we go to allocate and there are bios on
470 * current->bio_list, we first try the allocation without
471 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
472 * blocking to the rescuer workqueue before we retry with the original
473 * gfp_flags.
474 */
475 if (current->bio_list &&
476 (!bio_list_empty(&current->bio_list[0]) ||
477 !bio_list_empty(&current->bio_list[1])) &&
478 bs->rescue_workqueue)
479 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
480
481 p = mempool_alloc(&bs->bio_pool, gfp_mask);
482 if (!p && gfp_mask != saved_gfp) {
483 punt_bios_to_rescuer(bs);
484 gfp_mask = saved_gfp;
8aa6ba2f 485 p = mempool_alloc(&bs->bio_pool, gfp_mask);
3f86a82a 486 }
451a9ebf
TH
487 if (unlikely(!p))
488 return NULL;
1da177e4 489
3175199a
CH
490 bio = p + bs->front_pad;
491 if (nr_iovecs > BIO_INLINE_VECS) {
3175199a 492 struct bio_vec *bvl = NULL;
34053979 493
7a800a20 494 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
df2cb6da
KO
495 if (!bvl && gfp_mask != saved_gfp) {
496 punt_bios_to_rescuer(bs);
497 gfp_mask = saved_gfp;
7a800a20 498 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
df2cb6da 499 }
34053979
IM
500 if (unlikely(!bvl))
501 goto err_free;
a38352e0 502
7a800a20 503 bio_init(bio, bvl, nr_iovecs);
3f86a82a 504 } else if (nr_iovecs) {
3175199a
CH
505 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
506 } else {
507 bio_init(bio, NULL, 0);
1da177e4 508 }
3f86a82a
KO
509
510 bio->bi_pool = bs;
1da177e4 511 return bio;
34053979
IM
512
513err_free:
8aa6ba2f 514 mempool_free(p, &bs->bio_pool);
34053979 515 return NULL;
1da177e4 516}
a112a71d 517EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 518
3175199a
CH
519/**
520 * bio_kmalloc - kmalloc a bio for I/O
521 * @gfp_mask: the GFP_* mask given to the slab allocator
522 * @nr_iovecs: number of iovecs to pre-allocate
523 *
524 * Use kmalloc to allocate and initialize a bio.
525 *
526 * Returns: Pointer to new bio on success, NULL on failure.
527 */
0f2e6ab8 528struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
3175199a
CH
529{
530 struct bio *bio;
531
532 if (nr_iovecs > UIO_MAXIOV)
533 return NULL;
534
535 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
536 if (unlikely(!bio))
537 return NULL;
538 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
539 bio->bi_pool = NULL;
540 return bio;
541}
542EXPORT_SYMBOL(bio_kmalloc);
543
6f822e1b 544void zero_fill_bio(struct bio *bio)
1da177e4 545{
7988613b
KO
546 struct bio_vec bv;
547 struct bvec_iter iter;
1da177e4 548
ab6c340e
CH
549 bio_for_each_segment(bv, bio, iter)
550 memzero_bvec(&bv);
1da177e4 551}
6f822e1b 552EXPORT_SYMBOL(zero_fill_bio);
1da177e4 553
83c9c547
ML
554/**
555 * bio_truncate - truncate the bio to small size of @new_size
556 * @bio: the bio to be truncated
557 * @new_size: new size for truncating the bio
558 *
559 * Description:
560 * Truncate the bio to new size of @new_size. If bio_op(bio) is
561 * REQ_OP_READ, zero the truncated part. This function should only
562 * be used for handling corner cases, such as bio eod.
563 */
4f7ab09a 564static void bio_truncate(struct bio *bio, unsigned new_size)
85a8ce62
ML
565{
566 struct bio_vec bv;
567 struct bvec_iter iter;
568 unsigned int done = 0;
569 bool truncated = false;
570
571 if (new_size >= bio->bi_iter.bi_size)
572 return;
573
83c9c547 574 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
575 goto exit;
576
577 bio_for_each_segment(bv, bio, iter) {
578 if (done + bv.bv_len > new_size) {
579 unsigned offset;
580
581 if (!truncated)
582 offset = new_size - done;
583 else
584 offset = 0;
3ee859e3
OH
585 zero_user(bv.bv_page, bv.bv_offset + offset,
586 bv.bv_len - offset);
85a8ce62
ML
587 truncated = true;
588 }
589 done += bv.bv_len;
590 }
591
592 exit:
593 /*
594 * Don't touch bvec table here and make it really immutable, since
595 * fs bio user has to retrieve all pages via bio_for_each_segment_all
596 * in its .end_bio() callback.
597 *
598 * It is enough to truncate bio by updating .bi_size since we can make
599 * correct bvec with the updated .bi_size for drivers.
600 */
601 bio->bi_iter.bi_size = new_size;
602}
603
29125ed6
CH
604/**
605 * guard_bio_eod - truncate a BIO to fit the block device
606 * @bio: bio to truncate
607 *
608 * This allows us to do IO even on the odd last sectors of a device, even if the
609 * block size is some multiple of the physical sector size.
610 *
611 * We'll just truncate the bio to the size of the device, and clear the end of
612 * the buffer head manually. Truly out-of-range accesses will turn into actual
613 * I/O errors, this only handles the "we need to be able to do I/O at the final
614 * sector" case.
615 */
616void guard_bio_eod(struct bio *bio)
617{
309dca30 618 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
619
620 if (!maxsector)
621 return;
622
623 /*
624 * If the *whole* IO is past the end of the device,
625 * let it through, and the IO layer will turn it into
626 * an EIO.
627 */
628 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
629 return;
630
631 maxsector -= bio->bi_iter.bi_sector;
632 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
633 return;
634
635 bio_truncate(bio, maxsector << 9);
636}
637
be4d234d
JA
638#define ALLOC_CACHE_MAX 512
639#define ALLOC_CACHE_SLACK 64
640
641static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
642 unsigned int nr)
643{
644 unsigned int i = 0;
645 struct bio *bio;
646
fcade2ce
JA
647 while ((bio = cache->free_list) != NULL) {
648 cache->free_list = bio->bi_next;
be4d234d
JA
649 cache->nr--;
650 bio_free(bio);
651 if (++i == nr)
652 break;
653 }
654}
655
656static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
657{
658 struct bio_set *bs;
659
660 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
661 if (bs->cache) {
662 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
663
664 bio_alloc_cache_prune(cache, -1U);
665 }
666 return 0;
667}
668
669static void bio_alloc_cache_destroy(struct bio_set *bs)
670{
671 int cpu;
672
673 if (!bs->cache)
674 return;
675
676 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
677 for_each_possible_cpu(cpu) {
678 struct bio_alloc_cache *cache;
679
680 cache = per_cpu_ptr(bs->cache, cpu);
681 bio_alloc_cache_prune(cache, -1U);
682 }
683 free_percpu(bs->cache);
684}
685
1da177e4
LT
686/**
687 * bio_put - release a reference to a bio
688 * @bio: bio to release reference to
689 *
690 * Description:
691 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 692 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
693 **/
694void bio_put(struct bio *bio)
695{
be4d234d 696 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
9e8c0d0d 697 BUG_ON(!atomic_read(&bio->__bi_cnt));
be4d234d
JA
698 if (!atomic_dec_and_test(&bio->__bi_cnt))
699 return;
700 }
dac56212 701
be4d234d
JA
702 if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
703 struct bio_alloc_cache *cache;
704
705 bio_uninit(bio);
706 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
fcade2ce
JA
707 bio->bi_next = cache->free_list;
708 cache->free_list = bio;
be4d234d
JA
709 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
710 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
711 put_cpu();
712 } else {
713 bio_free(bio);
dac56212 714 }
1da177e4 715}
a112a71d 716EXPORT_SYMBOL(bio_put);
1da177e4 717
59d276fe
KO
718/**
719 * __bio_clone_fast - clone a bio that shares the original bio's biovec
720 * @bio: destination bio
721 * @bio_src: bio to clone
722 *
723 * Clone a &bio. Caller will own the returned bio, but not
724 * the actual data it points to. Reference count of returned
725 * bio will be one.
726 *
727 * Caller must ensure that @bio_src is not freed before @bio.
728 */
729void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
730{
7a800a20 731 WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
59d276fe
KO
732
733 /*
309dca30 734 * most users will be overriding ->bi_bdev with a new target,
59d276fe
KO
735 * so we don't set nor calculate new physical/hw segment counts here
736 */
309dca30 737 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 738 bio_set_flag(bio, BIO_CLONED);
111be883
SL
739 if (bio_flagged(bio_src, BIO_THROTTLED))
740 bio_set_flag(bio, BIO_THROTTLED);
46bbf653
CH
741 if (bio_flagged(bio_src, BIO_REMAPPED))
742 bio_set_flag(bio, BIO_REMAPPED);
1eff9d32 743 bio->bi_opf = bio_src->bi_opf;
ca474b73 744 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 745 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
746 bio->bi_iter = bio_src->bi_iter;
747 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 748
db6638d7 749 bio_clone_blkg_association(bio, bio_src);
e439bedf 750 blkcg_bio_issue_init(bio);
59d276fe
KO
751}
752EXPORT_SYMBOL(__bio_clone_fast);
753
754/**
755 * bio_clone_fast - clone a bio that shares the original bio's biovec
756 * @bio: bio to clone
757 * @gfp_mask: allocation priority
758 * @bs: bio_set to allocate from
759 *
760 * Like __bio_clone_fast, only also allocates the returned bio
761 */
762struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
763{
764 struct bio *b;
765
766 b = bio_alloc_bioset(gfp_mask, 0, bs);
767 if (!b)
768 return NULL;
769
770 __bio_clone_fast(b, bio);
771
07560151
EB
772 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
773 goto err_put;
a892c8d5 774
07560151
EB
775 if (bio_integrity(bio) &&
776 bio_integrity_clone(b, bio, gfp_mask) < 0)
777 goto err_put;
59d276fe
KO
778
779 return b;
07560151
EB
780
781err_put:
782 bio_put(b);
783 return NULL;
59d276fe
KO
784}
785EXPORT_SYMBOL(bio_clone_fast);
786
5cbd28e3
CH
787const char *bio_devname(struct bio *bio, char *buf)
788{
309dca30 789 return bdevname(bio->bi_bdev, buf);
5cbd28e3
CH
790}
791EXPORT_SYMBOL(bio_devname);
792
9a6083be
CH
793/**
794 * bio_full - check if the bio is full
795 * @bio: bio to check
796 * @len: length of one segment to be added
797 *
798 * Return true if @bio is full and one segment with @len bytes can't be
799 * added to the bio, otherwise return false
800 */
801static inline bool bio_full(struct bio *bio, unsigned len)
802{
803 if (bio->bi_vcnt >= bio->bi_max_vecs)
804 return true;
805 if (bio->bi_iter.bi_size > UINT_MAX - len)
806 return true;
807 return false;
808}
809
5919482e
ML
810static inline bool page_is_mergeable(const struct bio_vec *bv,
811 struct page *page, unsigned int len, unsigned int off,
ff896738 812 bool *same_page)
5919482e 813{
d8166519
MWO
814 size_t bv_end = bv->bv_offset + bv->bv_len;
815 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
816 phys_addr_t page_addr = page_to_phys(page);
817
818 if (vec_end_addr + 1 != page_addr + off)
819 return false;
820 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
821 return false;
52d52d1c 822
ff896738 823 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
d8166519
MWO
824 if (*same_page)
825 return true;
826 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
5919482e
ML
827}
828
9774b391
CH
829/**
830 * __bio_try_merge_page - try appending data to an existing bvec.
831 * @bio: destination bio
832 * @page: start page to add
833 * @len: length of the data to add
834 * @off: offset of the data relative to @page
835 * @same_page: return if the segment has been merged inside the same page
836 *
837 * Try to add the data at @page + @off to the last bvec of @bio. This is a
838 * useful optimisation for file systems with a block size smaller than the
839 * page size.
840 *
841 * Warn if (@len, @off) crosses pages in case that @same_page is true.
842 *
843 * Return %true on success or %false on failure.
844 */
845static bool __bio_try_merge_page(struct bio *bio, struct page *page,
846 unsigned int len, unsigned int off, bool *same_page)
847{
848 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
849 return false;
850
851 if (bio->bi_vcnt > 0) {
852 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
853
854 if (page_is_mergeable(bv, page, len, off, same_page)) {
855 if (bio->bi_iter.bi_size > UINT_MAX - len) {
856 *same_page = false;
857 return false;
858 }
859 bv->bv_len += len;
860 bio->bi_iter.bi_size += len;
861 return true;
862 }
863 }
864 return false;
865}
866
e4581105
CH
867/*
868 * Try to merge a page into a segment, while obeying the hardware segment
869 * size limit. This is not for normal read/write bios, but for passthrough
870 * or Zone Append operations that we can't split.
871 */
872static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
873 struct page *page, unsigned len,
874 unsigned offset, bool *same_page)
489fbbcb 875{
384209cd 876 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
877 unsigned long mask = queue_segment_boundary(q);
878 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
879 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
880
881 if ((addr1 | mask) != (addr2 | mask))
882 return false;
489fbbcb
ML
883 if (bv->bv_len + len > queue_max_segment_size(q))
884 return false;
384209cd 885 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
886}
887
1da177e4 888/**
e4581105
CH
889 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
890 * @q: the target queue
891 * @bio: destination bio
892 * @page: page to add
893 * @len: vec entry length
894 * @offset: vec entry offset
895 * @max_sectors: maximum number of sectors that can be added
896 * @same_page: return if the segment has been merged inside the same page
c66a14d0 897 *
e4581105
CH
898 * Add a page to a bio while respecting the hardware max_sectors, max_segment
899 * and gap limitations.
1da177e4 900 */
e4581105 901int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 902 struct page *page, unsigned int len, unsigned int offset,
e4581105 903 unsigned int max_sectors, bool *same_page)
1da177e4 904{
1da177e4
LT
905 struct bio_vec *bvec;
906
e4581105 907 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
908 return 0;
909
e4581105 910 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
911 return 0;
912
80cfd548 913 if (bio->bi_vcnt > 0) {
e4581105 914 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 915 return len;
320ea869
CH
916
917 /*
918 * If the queue doesn't support SG gaps and adding this segment
919 * would create a gap, disallow it.
920 */
384209cd 921 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
922 if (bvec_gap_to_prev(q, bvec, offset))
923 return 0;
80cfd548
JA
924 }
925
79d08f89 926 if (bio_full(bio, len))
1da177e4
LT
927 return 0;
928
14ccb66b 929 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
930 return 0;
931
fcbf6a08
ML
932 bvec = &bio->bi_io_vec[bio->bi_vcnt];
933 bvec->bv_page = page;
934 bvec->bv_len = len;
935 bvec->bv_offset = offset;
936 bio->bi_vcnt++;
dcdca753 937 bio->bi_iter.bi_size += len;
1da177e4
LT
938 return len;
939}
19047087 940
e4581105
CH
941/**
942 * bio_add_pc_page - attempt to add page to passthrough bio
943 * @q: the target queue
944 * @bio: destination bio
945 * @page: page to add
946 * @len: vec entry length
947 * @offset: vec entry offset
948 *
949 * Attempt to add a page to the bio_vec maplist. This can fail for a
950 * number of reasons, such as the bio being full or target block device
951 * limitations. The target block device must allow bio's up to PAGE_SIZE,
952 * so it is always possible to add a single page to an empty bio.
953 *
954 * This should only be used by passthrough bios.
955 */
19047087
ML
956int bio_add_pc_page(struct request_queue *q, struct bio *bio,
957 struct page *page, unsigned int len, unsigned int offset)
958{
d1916c86 959 bool same_page = false;
e4581105
CH
960 return bio_add_hw_page(q, bio, page, len, offset,
961 queue_max_hw_sectors(q), &same_page);
19047087 962}
a112a71d 963EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 964
ae29333f
JT
965/**
966 * bio_add_zone_append_page - attempt to add page to zone-append bio
967 * @bio: destination bio
968 * @page: page to add
969 * @len: vec entry length
970 * @offset: vec entry offset
971 *
972 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
973 * for a zone-append request. This can fail for a number of reasons, such as the
974 * bio being full or the target block device is not a zoned block device or
975 * other limitations of the target block device. The target block device must
976 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
977 * to an empty bio.
978 *
979 * Returns: number of bytes added to the bio, or 0 in case of a failure.
980 */
981int bio_add_zone_append_page(struct bio *bio, struct page *page,
982 unsigned int len, unsigned int offset)
983{
3caee463 984 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae29333f
JT
985 bool same_page = false;
986
987 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
988 return 0;
989
990 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
991 return 0;
992
993 return bio_add_hw_page(q, bio, page, len, offset,
994 queue_max_zone_append_sectors(q), &same_page);
995}
996EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
997
0aa69fd3 998/**
551879a4 999 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 1000 * @bio: destination bio
551879a4
ML
1001 * @page: start page to add
1002 * @len: length of the data to add, may cross pages
1003 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
1004 *
1005 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
1006 * that @bio has space for another bvec.
1007 */
1008void __bio_add_page(struct bio *bio, struct page *page,
1009 unsigned int len, unsigned int off)
1010{
1011 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 1012
0aa69fd3 1013 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 1014 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
1015
1016 bv->bv_page = page;
1017 bv->bv_offset = off;
1018 bv->bv_len = len;
c66a14d0 1019
c66a14d0 1020 bio->bi_iter.bi_size += len;
0aa69fd3 1021 bio->bi_vcnt++;
b8e24a93
JW
1022
1023 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
1024 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
1025}
1026EXPORT_SYMBOL_GPL(__bio_add_page);
1027
1028/**
551879a4 1029 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 1030 * @bio: destination bio
551879a4
ML
1031 * @page: start page to add
1032 * @len: vec entry length, may cross pages
1033 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 1034 *
551879a4 1035 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
1036 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1037 */
1038int bio_add_page(struct bio *bio, struct page *page,
1039 unsigned int len, unsigned int offset)
1040{
ff896738
CH
1041 bool same_page = false;
1042
1043 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 1044 if (bio_full(bio, len))
0aa69fd3
CH
1045 return 0;
1046 __bio_add_page(bio, page, len, offset);
1047 }
c66a14d0 1048 return len;
1da177e4 1049}
a112a71d 1050EXPORT_SYMBOL(bio_add_page);
1da177e4 1051
85f5a74c
MWO
1052/**
1053 * bio_add_folio - Attempt to add part of a folio to a bio.
1054 * @bio: BIO to add to.
1055 * @folio: Folio to add.
1056 * @len: How many bytes from the folio to add.
1057 * @off: First byte in this folio to add.
1058 *
1059 * Filesystems that use folios can call this function instead of calling
1060 * bio_add_page() for each page in the folio. If @off is bigger than
1061 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1062 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1063 *
1064 * Return: Whether the addition was successful.
1065 */
1066bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1067 size_t off)
1068{
1069 if (len > UINT_MAX || off > UINT_MAX)
1070 return 0;
1071 return bio_add_page(bio, &folio->page, len, off) > 0;
1072}
1073
c809084a 1074void __bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
1075{
1076 struct bvec_iter_all iter_all;
1077 struct bio_vec *bvec;
7321ecbf 1078
d241a95f
CH
1079 bio_for_each_segment_all(bvec, bio, iter_all) {
1080 if (mark_dirty && !PageCompound(bvec->bv_page))
1081 set_page_dirty_lock(bvec->bv_page);
7321ecbf 1082 put_page(bvec->bv_page);
d241a95f 1083 }
7321ecbf 1084}
c809084a 1085EXPORT_SYMBOL_GPL(__bio_release_pages);
7321ecbf 1086
1bb6b810 1087void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
6d0c48ae 1088{
fa5fa8ec
PB
1089 size_t size = iov_iter_count(iter);
1090
7a800a20 1091 WARN_ON_ONCE(bio->bi_max_vecs);
c42bca92 1092
fa5fa8ec
PB
1093 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1094 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1095 size_t max_sectors = queue_max_zone_append_sectors(q);
1096
1097 size = min(size, max_sectors << SECTOR_SHIFT);
1098 }
1099
c42bca92 1100 bio->bi_vcnt = iter->nr_segs;
c42bca92
PB
1101 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1102 bio->bi_iter.bi_bvec_done = iter->iov_offset;
fa5fa8ec 1103 bio->bi_iter.bi_size = size;
ed97ce5e 1104 bio_set_flag(bio, BIO_NO_PAGE_REF);
977be012 1105 bio_set_flag(bio, BIO_CLONED);
7de55b7d 1106}
c42bca92 1107
d9cf3bd5
PB
1108static void bio_put_pages(struct page **pages, size_t size, size_t off)
1109{
1110 size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1111
1112 for (i = 0; i < nr; i++)
1113 put_page(pages[i]);
1114}
1115
576ed913
CH
1116#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1117
2cefe4db 1118/**
17d51b10 1119 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
1120 * @bio: bio to add pages to
1121 * @iter: iov iterator describing the region to be mapped
1122 *
17d51b10 1123 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 1124 * pages will have to be released using put_page() when done.
17d51b10 1125 * For multi-segment *iter, this function only adds pages from the
3cf14889 1126 * next non-empty segment of the iov iterator.
2cefe4db 1127 */
17d51b10 1128static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 1129{
576ed913
CH
1130 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1131 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
1132 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1133 struct page **pages = (struct page **)bv;
45691804 1134 bool same_page = false;
576ed913
CH
1135 ssize_t size, left;
1136 unsigned len, i;
b403ea24 1137 size_t offset;
576ed913
CH
1138
1139 /*
1140 * Move page array up in the allocated memory for the bio vecs as far as
1141 * possible so that we can start filling biovecs from the beginning
1142 * without overwriting the temporary page array.
1143 */
1144 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1145 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db 1146
35c820e7 1147 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
2cefe4db
KO
1148 if (unlikely(size <= 0))
1149 return size ? size : -EFAULT;
2cefe4db 1150
576ed913
CH
1151 for (left = size, i = 0; left > 0; left -= len, i++) {
1152 struct page *page = pages[i];
2cefe4db 1153
576ed913 1154 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
1155
1156 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1157 if (same_page)
1158 put_page(page);
1159 } else {
d9cf3bd5
PB
1160 if (WARN_ON_ONCE(bio_full(bio, len))) {
1161 bio_put_pages(pages + i, left, offset);
1162 return -EINVAL;
1163 }
45691804
CH
1164 __bio_add_page(bio, page, len, offset);
1165 }
576ed913 1166 offset = 0;
2cefe4db
KO
1167 }
1168
2cefe4db
KO
1169 iov_iter_advance(iter, size);
1170 return 0;
1171}
17d51b10 1172
0512a75b
KB
1173static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1174{
1175 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1176 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
3caee463 1177 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
0512a75b
KB
1178 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1179 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1180 struct page **pages = (struct page **)bv;
1181 ssize_t size, left;
1182 unsigned len, i;
1183 size_t offset;
4977d121 1184 int ret = 0;
0512a75b
KB
1185
1186 if (WARN_ON_ONCE(!max_append_sectors))
1187 return 0;
1188
1189 /*
1190 * Move page array up in the allocated memory for the bio vecs as far as
1191 * possible so that we can start filling biovecs from the beginning
1192 * without overwriting the temporary page array.
1193 */
1194 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1195 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1196
1197 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1198 if (unlikely(size <= 0))
1199 return size ? size : -EFAULT;
1200
1201 for (left = size, i = 0; left > 0; left -= len, i++) {
1202 struct page *page = pages[i];
1203 bool same_page = false;
1204
1205 len = min_t(size_t, PAGE_SIZE - offset, left);
1206 if (bio_add_hw_page(q, bio, page, len, offset,
4977d121 1207 max_append_sectors, &same_page) != len) {
d9cf3bd5 1208 bio_put_pages(pages + i, left, offset);
4977d121
NA
1209 ret = -EINVAL;
1210 break;
1211 }
0512a75b
KB
1212 if (same_page)
1213 put_page(page);
1214 offset = 0;
1215 }
1216
4977d121
NA
1217 iov_iter_advance(iter, size - left);
1218 return ret;
0512a75b
KB
1219}
1220
17d51b10 1221/**
6d0c48ae 1222 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1223 * @bio: bio to add pages to
6d0c48ae
JA
1224 * @iter: iov iterator describing the region to be added
1225 *
1226 * This takes either an iterator pointing to user memory, or one pointing to
1227 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1228 * map them into the kernel. On IO completion, the caller should put those
c42bca92
PB
1229 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1230 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1231 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1232 * completed by a call to ->ki_complete() or returns with an error other than
1233 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1234 * on IO completion. If it isn't, then pages should be released.
17d51b10 1235 *
17d51b10 1236 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1237 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1238 * MM encounters an error pinning the requested pages, it stops. Error
1239 * is returned only if 0 pages could be pinned.
0cf41e5e
PB
1240 *
1241 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1242 * responsible for setting BIO_WORKINGSET if necessary.
17d51b10
MW
1243 */
1244int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1245{
c42bca92 1246 int ret = 0;
14eacf12 1247
c42bca92 1248 if (iov_iter_is_bvec(iter)) {
fa5fa8ec
PB
1249 bio_iov_bvec_set(bio, iter);
1250 iov_iter_advance(iter, bio->bi_iter.bi_size);
1251 return 0;
c42bca92 1252 }
17d51b10
MW
1253
1254 do {
86004515 1255 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
0512a75b 1256 ret = __bio_iov_append_get_pages(bio, iter);
86004515
CH
1257 else
1258 ret = __bio_iov_iter_get_pages(bio, iter);
79d08f89 1259 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 1260
0cf41e5e
PB
1261 /* don't account direct I/O as memory stall */
1262 bio_clear_flag(bio, BIO_WORKINGSET);
14eacf12 1263 return bio->bi_vcnt ? 0 : ret;
17d51b10 1264}
29b2a3aa 1265EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1266
4246a0b6 1267static void submit_bio_wait_endio(struct bio *bio)
9e882242 1268{
65e53aab 1269 complete(bio->bi_private);
9e882242
KO
1270}
1271
1272/**
1273 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1274 * @bio: The &struct bio which describes the I/O
1275 *
1276 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1277 * bio_endio() on failure.
3d289d68
JK
1278 *
1279 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1280 * result in bio reference to be consumed. The caller must drop the reference
1281 * on his own.
9e882242 1282 */
4e49ea4a 1283int submit_bio_wait(struct bio *bio)
9e882242 1284{
309dca30
CH
1285 DECLARE_COMPLETION_ONSTACK_MAP(done,
1286 bio->bi_bdev->bd_disk->lockdep_map);
de6a78b6 1287 unsigned long hang_check;
9e882242 1288
65e53aab 1289 bio->bi_private = &done;
9e882242 1290 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1291 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1292 submit_bio(bio);
de6a78b6
ML
1293
1294 /* Prevent hang_check timer from firing at us during very long I/O */
1295 hang_check = sysctl_hung_task_timeout_secs;
1296 if (hang_check)
1297 while (!wait_for_completion_io_timeout(&done,
1298 hang_check * (HZ/2)))
1299 ;
1300 else
1301 wait_for_completion_io(&done);
9e882242 1302
65e53aab 1303 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1304}
1305EXPORT_SYMBOL(submit_bio_wait);
1306
d4aa57a1 1307void __bio_advance(struct bio *bio, unsigned bytes)
054bdf64
KO
1308{
1309 if (bio_integrity(bio))
1310 bio_integrity_advance(bio, bytes);
1311
a892c8d5 1312 bio_crypt_advance(bio, bytes);
4550dd6c 1313 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64 1314}
d4aa57a1 1315EXPORT_SYMBOL(__bio_advance);
054bdf64 1316
45db54d5
KO
1317void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1318 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1319{
45db54d5 1320 while (src_iter->bi_size && dst_iter->bi_size) {
f8b679a0
CH
1321 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1322 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1323 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1324 void *src_buf;
1325
1326 src_buf = bvec_kmap_local(&src_bv);
1327 memcpy_to_bvec(&dst_bv, src_buf);
1328 kunmap_local(src_buf);
6e6e811d 1329
22b56c29
PB
1330 bio_advance_iter_single(src, src_iter, bytes);
1331 bio_advance_iter_single(dst, dst_iter, bytes);
16ac3d63
KO
1332 }
1333}
38a72dac
KO
1334EXPORT_SYMBOL(bio_copy_data_iter);
1335
1336/**
45db54d5
KO
1337 * bio_copy_data - copy contents of data buffers from one bio to another
1338 * @src: source bio
1339 * @dst: destination bio
38a72dac
KO
1340 *
1341 * Stops when it reaches the end of either @src or @dst - that is, copies
1342 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1343 */
1344void bio_copy_data(struct bio *dst, struct bio *src)
1345{
45db54d5
KO
1346 struct bvec_iter src_iter = src->bi_iter;
1347 struct bvec_iter dst_iter = dst->bi_iter;
1348
1349 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1350}
16ac3d63
KO
1351EXPORT_SYMBOL(bio_copy_data);
1352
491221f8 1353void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1354{
1355 struct bio_vec *bvec;
6dc4f100 1356 struct bvec_iter_all iter_all;
1dfa0f68 1357
2b070cfe 1358 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1359 __free_page(bvec->bv_page);
1360}
491221f8 1361EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1362
1da177e4
LT
1363/*
1364 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1365 * for performing direct-IO in BIOs.
1366 *
1367 * The problem is that we cannot run set_page_dirty() from interrupt context
1368 * because the required locks are not interrupt-safe. So what we can do is to
1369 * mark the pages dirty _before_ performing IO. And in interrupt context,
1370 * check that the pages are still dirty. If so, fine. If not, redirty them
1371 * in process context.
1372 *
1373 * We special-case compound pages here: normally this means reads into hugetlb
1374 * pages. The logic in here doesn't really work right for compound pages
1375 * because the VM does not uniformly chase down the head page in all cases.
1376 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1377 * handle them at all. So we skip compound pages here at an early stage.
1378 *
1379 * Note that this code is very hard to test under normal circumstances because
1380 * direct-io pins the pages with get_user_pages(). This makes
1381 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1382 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1383 * pagecache.
1384 *
1385 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1386 * deferred bio dirtying paths.
1387 */
1388
1389/*
1390 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1391 */
1392void bio_set_pages_dirty(struct bio *bio)
1393{
cb34e057 1394 struct bio_vec *bvec;
6dc4f100 1395 struct bvec_iter_all iter_all;
1da177e4 1396
2b070cfe 1397 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1398 if (!PageCompound(bvec->bv_page))
1399 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1400 }
1401}
1402
1da177e4
LT
1403/*
1404 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1405 * If they are, then fine. If, however, some pages are clean then they must
1406 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1407 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1408 *
1409 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1410 * here on. It will run one put_page() against each page and will run one
1411 * bio_put() against the BIO.
1da177e4
LT
1412 */
1413
65f27f38 1414static void bio_dirty_fn(struct work_struct *work);
1da177e4 1415
65f27f38 1416static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1417static DEFINE_SPINLOCK(bio_dirty_lock);
1418static struct bio *bio_dirty_list;
1419
1420/*
1421 * This runs in process context
1422 */
65f27f38 1423static void bio_dirty_fn(struct work_struct *work)
1da177e4 1424{
24d5493f 1425 struct bio *bio, *next;
1da177e4 1426
24d5493f
CH
1427 spin_lock_irq(&bio_dirty_lock);
1428 next = bio_dirty_list;
1da177e4 1429 bio_dirty_list = NULL;
24d5493f 1430 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1431
24d5493f
CH
1432 while ((bio = next) != NULL) {
1433 next = bio->bi_private;
1da177e4 1434
d241a95f 1435 bio_release_pages(bio, true);
1da177e4 1436 bio_put(bio);
1da177e4
LT
1437 }
1438}
1439
1440void bio_check_pages_dirty(struct bio *bio)
1441{
cb34e057 1442 struct bio_vec *bvec;
24d5493f 1443 unsigned long flags;
6dc4f100 1444 struct bvec_iter_all iter_all;
1da177e4 1445
2b070cfe 1446 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1447 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1448 goto defer;
1da177e4
LT
1449 }
1450
d241a95f 1451 bio_release_pages(bio, false);
24d5493f
CH
1452 bio_put(bio);
1453 return;
1454defer:
1455 spin_lock_irqsave(&bio_dirty_lock, flags);
1456 bio->bi_private = bio_dirty_list;
1457 bio_dirty_list = bio;
1458 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1459 schedule_work(&bio_dirty_work);
1da177e4
LT
1460}
1461
c4cf5261
JA
1462static inline bool bio_remaining_done(struct bio *bio)
1463{
1464 /*
1465 * If we're not chaining, then ->__bi_remaining is always 1 and
1466 * we always end io on the first invocation.
1467 */
1468 if (!bio_flagged(bio, BIO_CHAIN))
1469 return true;
1470
1471 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1472
326e1dbb 1473 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1474 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1475 return true;
326e1dbb 1476 }
c4cf5261
JA
1477
1478 return false;
1479}
1480
1da177e4
LT
1481/**
1482 * bio_endio - end I/O on a bio
1483 * @bio: bio
1da177e4
LT
1484 *
1485 * Description:
4246a0b6
CH
1486 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1487 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1488 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1489 *
1490 * bio_endio() can be called several times on a bio that has been chained
1491 * using bio_chain(). The ->bi_end_io() function will only be called the
60b6a7e6 1492 * last time.
1da177e4 1493 **/
4246a0b6 1494void bio_endio(struct bio *bio)
1da177e4 1495{
ba8c6967 1496again:
2b885517 1497 if (!bio_remaining_done(bio))
ba8c6967 1498 return;
7c20f116
CH
1499 if (!bio_integrity_endio(bio))
1500 return;
1da177e4 1501
a647a524 1502 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED))
3caee463 1503 rq_qos_done_bio(bdev_get_queue(bio->bi_bdev), bio);
67b42d0b 1504
60b6a7e6 1505 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
3caee463 1506 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
60b6a7e6
EH
1507 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1508 }
1509
ba8c6967
CH
1510 /*
1511 * Need to have a real endio function for chained bios, otherwise
1512 * various corner cases will break (like stacking block devices that
1513 * save/restore bi_end_io) - however, we want to avoid unbounded
1514 * recursion and blowing the stack. Tail call optimization would
1515 * handle this, but compiling with frame pointers also disables
1516 * gcc's sibling call optimization.
1517 */
1518 if (bio->bi_end_io == bio_chain_endio) {
1519 bio = __bio_chain_endio(bio);
1520 goto again;
196d38bc 1521 }
ba8c6967 1522
9e234eea 1523 blk_throtl_bio_endio(bio);
b222dd2f
SL
1524 /* release cgroup info */
1525 bio_uninit(bio);
ba8c6967
CH
1526 if (bio->bi_end_io)
1527 bio->bi_end_io(bio);
1da177e4 1528}
a112a71d 1529EXPORT_SYMBOL(bio_endio);
1da177e4 1530
20d0189b
KO
1531/**
1532 * bio_split - split a bio
1533 * @bio: bio to split
1534 * @sectors: number of sectors to split from the front of @bio
1535 * @gfp: gfp mask
1536 * @bs: bio set to allocate from
1537 *
1538 * Allocates and returns a new bio which represents @sectors from the start of
1539 * @bio, and updates @bio to represent the remaining sectors.
1540 *
f3f5da62 1541 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1542 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1543 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1544 */
1545struct bio *bio_split(struct bio *bio, int sectors,
1546 gfp_t gfp, struct bio_set *bs)
1547{
f341a4d3 1548 struct bio *split;
20d0189b
KO
1549
1550 BUG_ON(sectors <= 0);
1551 BUG_ON(sectors >= bio_sectors(bio));
1552
0512a75b
KB
1553 /* Zone append commands cannot be split */
1554 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1555 return NULL;
1556
f9d03f96 1557 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1558 if (!split)
1559 return NULL;
1560
1561 split->bi_iter.bi_size = sectors << 9;
1562
1563 if (bio_integrity(split))
fbd08e76 1564 bio_integrity_trim(split);
20d0189b
KO
1565
1566 bio_advance(bio, split->bi_iter.bi_size);
1567
fbbaf700 1568 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1569 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1570
20d0189b
KO
1571 return split;
1572}
1573EXPORT_SYMBOL(bio_split);
1574
6678d83f
KO
1575/**
1576 * bio_trim - trim a bio
1577 * @bio: bio to trim
1578 * @offset: number of sectors to trim from the front of @bio
1579 * @size: size we want to trim @bio to, in sectors
e83502ca
CK
1580 *
1581 * This function is typically used for bios that are cloned and submitted
1582 * to the underlying device in parts.
6678d83f 1583 */
e83502ca 1584void bio_trim(struct bio *bio, sector_t offset, sector_t size)
6678d83f 1585{
e83502ca
CK
1586 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1587 offset + size > bio->bi_iter.bi_size))
1588 return;
6678d83f
KO
1589
1590 size <<= 9;
4f024f37 1591 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1592 return;
1593
6678d83f 1594 bio_advance(bio, offset << 9);
4f024f37 1595 bio->bi_iter.bi_size = size;
376a78ab
DM
1596
1597 if (bio_integrity(bio))
fbd08e76 1598 bio_integrity_trim(bio);
6678d83f
KO
1599}
1600EXPORT_SYMBOL_GPL(bio_trim);
1601
1da177e4
LT
1602/*
1603 * create memory pools for biovec's in a bio_set.
1604 * use the global biovec slabs created for general use.
1605 */
8aa6ba2f 1606int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1607{
7a800a20 1608 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1da177e4 1609
8aa6ba2f 1610 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1611}
1612
917a38c7
KO
1613/*
1614 * bioset_exit - exit a bioset initialized with bioset_init()
1615 *
1616 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1617 * kzalloc()).
1618 */
1619void bioset_exit(struct bio_set *bs)
1da177e4 1620{
be4d234d 1621 bio_alloc_cache_destroy(bs);
df2cb6da
KO
1622 if (bs->rescue_workqueue)
1623 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1624 bs->rescue_workqueue = NULL;
df2cb6da 1625
8aa6ba2f
KO
1626 mempool_exit(&bs->bio_pool);
1627 mempool_exit(&bs->bvec_pool);
9f060e22 1628
7878cba9 1629 bioset_integrity_free(bs);
917a38c7
KO
1630 if (bs->bio_slab)
1631 bio_put_slab(bs);
1632 bs->bio_slab = NULL;
1633}
1634EXPORT_SYMBOL(bioset_exit);
1da177e4 1635
917a38c7
KO
1636/**
1637 * bioset_init - Initialize a bio_set
dad08527 1638 * @bs: pool to initialize
917a38c7
KO
1639 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1640 * @front_pad: Number of bytes to allocate in front of the returned bio
1641 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1642 * and %BIOSET_NEED_RESCUER
1643 *
dad08527
KO
1644 * Description:
1645 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1646 * to ask for a number of bytes to be allocated in front of the bio.
1647 * Front pad allocation is useful for embedding the bio inside
1648 * another structure, to avoid allocating extra data to go with the bio.
1649 * Note that the bio must be embedded at the END of that structure always,
1650 * or things will break badly.
1651 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1652 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1653 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1654 * dispatch queued requests when the mempool runs out of space.
1655 *
917a38c7
KO
1656 */
1657int bioset_init(struct bio_set *bs,
1658 unsigned int pool_size,
1659 unsigned int front_pad,
1660 int flags)
1661{
917a38c7 1662 bs->front_pad = front_pad;
9f180e31
ML
1663 if (flags & BIOSET_NEED_BVECS)
1664 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1665 else
1666 bs->back_pad = 0;
917a38c7
KO
1667
1668 spin_lock_init(&bs->rescue_lock);
1669 bio_list_init(&bs->rescue_list);
1670 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1671
49d1ec85 1672 bs->bio_slab = bio_find_or_create_slab(bs);
917a38c7
KO
1673 if (!bs->bio_slab)
1674 return -ENOMEM;
1675
1676 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1677 goto bad;
1678
1679 if ((flags & BIOSET_NEED_BVECS) &&
1680 biovec_init_pool(&bs->bvec_pool, pool_size))
1681 goto bad;
1682
be4d234d
JA
1683 if (flags & BIOSET_NEED_RESCUER) {
1684 bs->rescue_workqueue = alloc_workqueue("bioset",
1685 WQ_MEM_RECLAIM, 0);
1686 if (!bs->rescue_workqueue)
1687 goto bad;
1688 }
1689 if (flags & BIOSET_PERCPU_CACHE) {
1690 bs->cache = alloc_percpu(struct bio_alloc_cache);
1691 if (!bs->cache)
1692 goto bad;
1693 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1694 }
917a38c7
KO
1695
1696 return 0;
1697bad:
1698 bioset_exit(bs);
1699 return -ENOMEM;
1700}
1701EXPORT_SYMBOL(bioset_init);
1702
28e89fd9
JA
1703/*
1704 * Initialize and setup a new bio_set, based on the settings from
1705 * another bio_set.
1706 */
1707int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1708{
1709 int flags;
1710
1711 flags = 0;
1712 if (src->bvec_pool.min_nr)
1713 flags |= BIOSET_NEED_BVECS;
1714 if (src->rescue_workqueue)
1715 flags |= BIOSET_NEED_RESCUER;
1716
1717 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1718}
1719EXPORT_SYMBOL(bioset_init_from_src);
1720
be4d234d
JA
1721/**
1722 * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1723 * @kiocb: kiocb describing the IO
0ef47db1 1724 * @nr_vecs: number of iovecs to pre-allocate
be4d234d
JA
1725 * @bs: bio_set to allocate from
1726 *
1727 * Description:
1728 * Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1729 * used to check if we should dip into the per-cpu bio_set allocation
3d5b3fbe
JA
1730 * cache. The allocation uses GFP_KERNEL internally. On return, the
1731 * bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1732 * MUST be done from process context, not hard/soft IRQ.
be4d234d
JA
1733 *
1734 */
1735struct bio *bio_alloc_kiocb(struct kiocb *kiocb, unsigned short nr_vecs,
1736 struct bio_set *bs)
1737{
1738 struct bio_alloc_cache *cache;
1739 struct bio *bio;
1740
1741 if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1742 return bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1743
1744 cache = per_cpu_ptr(bs->cache, get_cpu());
fcade2ce
JA
1745 if (cache->free_list) {
1746 bio = cache->free_list;
1747 cache->free_list = bio->bi_next;
be4d234d
JA
1748 cache->nr--;
1749 put_cpu();
1750 bio_init(bio, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs);
1751 bio->bi_pool = bs;
1752 bio_set_flag(bio, BIO_PERCPU_CACHE);
1753 return bio;
1754 }
1755 put_cpu();
1756 bio = bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1757 bio_set_flag(bio, BIO_PERCPU_CACHE);
1758 return bio;
1759}
1760EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1761
de76fd89 1762static int __init init_bio(void)
1da177e4
LT
1763{
1764 int i;
1765
7878cba9 1766 bio_integrity_init();
1da177e4 1767
de76fd89
CH
1768 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1769 struct biovec_slab *bvs = bvec_slabs + i;
a7fcd37c 1770
de76fd89
CH
1771 bvs->slab = kmem_cache_create(bvs->name,
1772 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1773 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 1774 }
1da177e4 1775
be4d234d
JA
1776 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1777 bio_cpu_dead);
1778
f4f8154a 1779 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1780 panic("bio: can't allocate bios\n");
1781
f4f8154a 1782 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1783 panic("bio: can't create integrity pool\n");
1784
1da177e4
LT
1785 return 0;
1786}
1da177e4 1787subsys_initcall(init_bio);