block: Add bio_copy_data_iter(), zero_fill_bio_iter()
[linux-block.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
1da177e4 31
55782138 32#include <trace/events/block.h>
9e234eea 33#include "blk.h"
0bfc2455 34
392ddc32
JA
35/*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39#define BIO_INLINE_VECS 4
40
1da177e4
LT
41/*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
bd5c4fac 46#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 47static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 48 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
49};
50#undef BV
51
1da177e4
LT
52/*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
f4f8154a 56struct bio_set fs_bio_set;
3f86a82a 57EXPORT_SYMBOL(fs_bio_set);
1da177e4 58
bb799ca0
JA
59/*
60 * Our slab pool management
61 */
62struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67};
68static DEFINE_MUTEX(bio_slab_lock);
69static struct bio_slab *bio_slabs;
70static unsigned int bio_slab_nr, bio_slab_max;
71
72static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73{
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
389d7b26 76 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 77 unsigned int new_bio_slab_max;
bb799ca0
JA
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
f06f135d 84 bslab = &bio_slabs[i];
bb799ca0
JA
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 100 new_bio_slab_max = bio_slab_max << 1;
389d7b26 101 new_bio_slabs = krealloc(bio_slabs,
386bc35a 102 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
103 GFP_KERNEL);
104 if (!new_bio_slabs)
bb799ca0 105 goto out_unlock;
386bc35a 106 bio_slab_max = new_bio_slab_max;
389d7b26 107 bio_slabs = new_bio_slabs;
bb799ca0
JA
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
117 if (!slab)
118 goto out_unlock;
119
bb799ca0
JA
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
126}
127
128static void bio_put_slab(struct bio_set *bs)
129{
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
132
133 mutex_lock(&bio_slab_lock);
134
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
139 }
140 }
141
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
144
145 WARN_ON(!bslab->slab_ref);
146
147 if (--bslab->slab_ref)
148 goto out;
149
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
152
153out:
154 mutex_unlock(&bio_slab_lock);
155}
156
7ba1ba12
MP
157unsigned int bvec_nr_vecs(unsigned short idx)
158{
159 return bvec_slabs[idx].nr_vecs;
160}
161
9f060e22 162void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 163{
ed996a52
CH
164 if (!idx)
165 return;
166 idx--;
167
168 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 169
ed996a52 170 if (idx == BVEC_POOL_MAX) {
9f060e22 171 mempool_free(bv, pool);
ed996a52 172 } else {
bb799ca0
JA
173 struct biovec_slab *bvs = bvec_slabs + idx;
174
175 kmem_cache_free(bvs->slab, bv);
176 }
177}
178
9f060e22
KO
179struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 mempool_t *pool)
1da177e4
LT
181{
182 struct bio_vec *bvl;
1da177e4 183
7ff9345f
JA
184 /*
185 * see comment near bvec_array define!
186 */
187 switch (nr) {
188 case 1:
189 *idx = 0;
190 break;
191 case 2 ... 4:
192 *idx = 1;
193 break;
194 case 5 ... 16:
195 *idx = 2;
196 break;
197 case 17 ... 64:
198 *idx = 3;
199 break;
200 case 65 ... 128:
201 *idx = 4;
202 break;
203 case 129 ... BIO_MAX_PAGES:
204 *idx = 5;
205 break;
206 default:
207 return NULL;
208 }
209
210 /*
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
213 */
ed996a52 214 if (*idx == BVEC_POOL_MAX) {
7ff9345f 215fallback:
9f060e22 216 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
217 } else {
218 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 220
0a0d96b0 221 /*
7ff9345f
JA
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
0a0d96b0 225 */
7ff9345f 226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 227
0a0d96b0 228 /*
d0164adc 229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 230 * is set, retry with the 1-entry mempool
0a0d96b0 231 */
7ff9345f 232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 234 *idx = BVEC_POOL_MAX;
7ff9345f
JA
235 goto fallback;
236 }
237 }
238
ed996a52 239 (*idx)++;
1da177e4
LT
240 return bvl;
241}
242
9ae3b3f5 243void bio_uninit(struct bio *bio)
1da177e4 244{
4254bba1 245 bio_disassociate_task(bio);
4254bba1 246}
9ae3b3f5 247EXPORT_SYMBOL(bio_uninit);
7ba1ba12 248
4254bba1
KO
249static void bio_free(struct bio *bio)
250{
251 struct bio_set *bs = bio->bi_pool;
252 void *p;
253
9ae3b3f5 254 bio_uninit(bio);
4254bba1
KO
255
256 if (bs) {
8aa6ba2f 257 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
bb799ca0
JA
263 p -= bs->front_pad;
264
8aa6ba2f 265 mempool_free(p, &bs->bio_pool);
4254bba1
KO
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
3676347a
PO
270}
271
9ae3b3f5
JA
272/*
273 * Users of this function have their own bio allocation. Subsequently,
274 * they must remember to pair any call to bio_init() with bio_uninit()
275 * when IO has completed, or when the bio is released.
276 */
3a83f467
ML
277void bio_init(struct bio *bio, struct bio_vec *table,
278 unsigned short max_vecs)
1da177e4 279{
2b94de55 280 memset(bio, 0, sizeof(*bio));
c4cf5261 281 atomic_set(&bio->__bi_remaining, 1);
dac56212 282 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
283
284 bio->bi_io_vec = table;
285 bio->bi_max_vecs = max_vecs;
1da177e4 286}
a112a71d 287EXPORT_SYMBOL(bio_init);
1da177e4 288
f44b48c7
KO
289/**
290 * bio_reset - reinitialize a bio
291 * @bio: bio to reset
292 *
293 * Description:
294 * After calling bio_reset(), @bio will be in the same state as a freshly
295 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
296 * preserved are the ones that are initialized by bio_alloc_bioset(). See
297 * comment in struct bio.
298 */
299void bio_reset(struct bio *bio)
300{
301 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
302
9ae3b3f5 303 bio_uninit(bio);
f44b48c7
KO
304
305 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 306 bio->bi_flags = flags;
c4cf5261 307 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
308}
309EXPORT_SYMBOL(bio_reset);
310
38f8baae 311static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 312{
4246a0b6
CH
313 struct bio *parent = bio->bi_private;
314
4e4cbee9
CH
315 if (!parent->bi_status)
316 parent->bi_status = bio->bi_status;
196d38bc 317 bio_put(bio);
38f8baae
CH
318 return parent;
319}
320
321static void bio_chain_endio(struct bio *bio)
322{
323 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
324}
325
326/**
327 * bio_chain - chain bio completions
1051a902
RD
328 * @bio: the target bio
329 * @parent: the @bio's parent bio
196d38bc
KO
330 *
331 * The caller won't have a bi_end_io called when @bio completes - instead,
332 * @parent's bi_end_io won't be called until both @parent and @bio have
333 * completed; the chained bio will also be freed when it completes.
334 *
335 * The caller must not set bi_private or bi_end_io in @bio.
336 */
337void bio_chain(struct bio *bio, struct bio *parent)
338{
339 BUG_ON(bio->bi_private || bio->bi_end_io);
340
341 bio->bi_private = parent;
342 bio->bi_end_io = bio_chain_endio;
c4cf5261 343 bio_inc_remaining(parent);
196d38bc
KO
344}
345EXPORT_SYMBOL(bio_chain);
346
df2cb6da
KO
347static void bio_alloc_rescue(struct work_struct *work)
348{
349 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 struct bio *bio;
351
352 while (1) {
353 spin_lock(&bs->rescue_lock);
354 bio = bio_list_pop(&bs->rescue_list);
355 spin_unlock(&bs->rescue_lock);
356
357 if (!bio)
358 break;
359
360 generic_make_request(bio);
361 }
362}
363
364static void punt_bios_to_rescuer(struct bio_set *bs)
365{
366 struct bio_list punt, nopunt;
367 struct bio *bio;
368
47e0fb46
N
369 if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 return;
df2cb6da
KO
371 /*
372 * In order to guarantee forward progress we must punt only bios that
373 * were allocated from this bio_set; otherwise, if there was a bio on
374 * there for a stacking driver higher up in the stack, processing it
375 * could require allocating bios from this bio_set, and doing that from
376 * our own rescuer would be bad.
377 *
378 * Since bio lists are singly linked, pop them all instead of trying to
379 * remove from the middle of the list:
380 */
381
382 bio_list_init(&punt);
383 bio_list_init(&nopunt);
384
f5fe1b51 385 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 387 current->bio_list[0] = nopunt;
df2cb6da 388
f5fe1b51
N
389 bio_list_init(&nopunt);
390 while ((bio = bio_list_pop(&current->bio_list[1])))
391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 current->bio_list[1] = nopunt;
df2cb6da
KO
393
394 spin_lock(&bs->rescue_lock);
395 bio_list_merge(&bs->rescue_list, &punt);
396 spin_unlock(&bs->rescue_lock);
397
398 queue_work(bs->rescue_workqueue, &bs->rescue_work);
399}
400
1da177e4
LT
401/**
402 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 403 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 404 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 405 * @bs: the bio_set to allocate from.
1da177e4
LT
406 *
407 * Description:
3f86a82a
KO
408 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409 * backed by the @bs's mempool.
410 *
d0164adc
MG
411 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412 * always be able to allocate a bio. This is due to the mempool guarantees.
413 * To make this work, callers must never allocate more than 1 bio at a time
414 * from this pool. Callers that need to allocate more than 1 bio must always
415 * submit the previously allocated bio for IO before attempting to allocate
416 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 417 *
df2cb6da
KO
418 * Note that when running under generic_make_request() (i.e. any block
419 * driver), bios are not submitted until after you return - see the code in
420 * generic_make_request() that converts recursion into iteration, to prevent
421 * stack overflows.
422 *
423 * This would normally mean allocating multiple bios under
424 * generic_make_request() would be susceptible to deadlocks, but we have
425 * deadlock avoidance code that resubmits any blocked bios from a rescuer
426 * thread.
427 *
428 * However, we do not guarantee forward progress for allocations from other
429 * mempools. Doing multiple allocations from the same mempool under
430 * generic_make_request() should be avoided - instead, use bio_set's front_pad
431 * for per bio allocations.
432 *
3f86a82a
KO
433 * RETURNS:
434 * Pointer to new bio on success, NULL on failure.
435 */
7a88fa19
DC
436struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 struct bio_set *bs)
1da177e4 438{
df2cb6da 439 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
440 unsigned front_pad;
441 unsigned inline_vecs;
34053979 442 struct bio_vec *bvl = NULL;
451a9ebf
TH
443 struct bio *bio;
444 void *p;
445
3f86a82a
KO
446 if (!bs) {
447 if (nr_iovecs > UIO_MAXIOV)
448 return NULL;
449
450 p = kmalloc(sizeof(struct bio) +
451 nr_iovecs * sizeof(struct bio_vec),
452 gfp_mask);
453 front_pad = 0;
454 inline_vecs = nr_iovecs;
455 } else {
d8f429e1 456 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
457 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
458 nr_iovecs > 0))
d8f429e1 459 return NULL;
df2cb6da
KO
460 /*
461 * generic_make_request() converts recursion to iteration; this
462 * means if we're running beneath it, any bios we allocate and
463 * submit will not be submitted (and thus freed) until after we
464 * return.
465 *
466 * This exposes us to a potential deadlock if we allocate
467 * multiple bios from the same bio_set() while running
468 * underneath generic_make_request(). If we were to allocate
469 * multiple bios (say a stacking block driver that was splitting
470 * bios), we would deadlock if we exhausted the mempool's
471 * reserve.
472 *
473 * We solve this, and guarantee forward progress, with a rescuer
474 * workqueue per bio_set. If we go to allocate and there are
475 * bios on current->bio_list, we first try the allocation
d0164adc
MG
476 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
477 * bios we would be blocking to the rescuer workqueue before
478 * we retry with the original gfp_flags.
df2cb6da
KO
479 */
480
f5fe1b51
N
481 if (current->bio_list &&
482 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
483 !bio_list_empty(&current->bio_list[1])) &&
484 bs->rescue_workqueue)
d0164adc 485 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 486
8aa6ba2f 487 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
488 if (!p && gfp_mask != saved_gfp) {
489 punt_bios_to_rescuer(bs);
490 gfp_mask = saved_gfp;
8aa6ba2f 491 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
492 }
493
3f86a82a
KO
494 front_pad = bs->front_pad;
495 inline_vecs = BIO_INLINE_VECS;
496 }
497
451a9ebf
TH
498 if (unlikely(!p))
499 return NULL;
1da177e4 500
3f86a82a 501 bio = p + front_pad;
3a83f467 502 bio_init(bio, NULL, 0);
34053979 503
3f86a82a 504 if (nr_iovecs > inline_vecs) {
ed996a52
CH
505 unsigned long idx = 0;
506
8aa6ba2f 507 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
508 if (!bvl && gfp_mask != saved_gfp) {
509 punt_bios_to_rescuer(bs);
510 gfp_mask = saved_gfp;
8aa6ba2f 511 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
512 }
513
34053979
IM
514 if (unlikely(!bvl))
515 goto err_free;
a38352e0 516
ed996a52 517 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
518 } else if (nr_iovecs) {
519 bvl = bio->bi_inline_vecs;
1da177e4 520 }
3f86a82a
KO
521
522 bio->bi_pool = bs;
34053979 523 bio->bi_max_vecs = nr_iovecs;
34053979 524 bio->bi_io_vec = bvl;
1da177e4 525 return bio;
34053979
IM
526
527err_free:
8aa6ba2f 528 mempool_free(p, &bs->bio_pool);
34053979 529 return NULL;
1da177e4 530}
a112a71d 531EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 532
38a72dac 533void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
534{
535 unsigned long flags;
7988613b
KO
536 struct bio_vec bv;
537 struct bvec_iter iter;
1da177e4 538
38a72dac 539 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
540 char *data = bvec_kmap_irq(&bv, &flags);
541 memset(data, 0, bv.bv_len);
542 flush_dcache_page(bv.bv_page);
1da177e4
LT
543 bvec_kunmap_irq(data, &flags);
544 }
545}
38a72dac 546EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4
LT
547
548/**
549 * bio_put - release a reference to a bio
550 * @bio: bio to release reference to
551 *
552 * Description:
553 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 554 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
555 **/
556void bio_put(struct bio *bio)
557{
dac56212 558 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 559 bio_free(bio);
dac56212
JA
560 else {
561 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
562
563 /*
564 * last put frees it
565 */
566 if (atomic_dec_and_test(&bio->__bi_cnt))
567 bio_free(bio);
568 }
1da177e4 569}
a112a71d 570EXPORT_SYMBOL(bio_put);
1da177e4 571
165125e1 572inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
573{
574 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
575 blk_recount_segments(q, bio);
576
577 return bio->bi_phys_segments;
578}
a112a71d 579EXPORT_SYMBOL(bio_phys_segments);
1da177e4 580
59d276fe
KO
581/**
582 * __bio_clone_fast - clone a bio that shares the original bio's biovec
583 * @bio: destination bio
584 * @bio_src: bio to clone
585 *
586 * Clone a &bio. Caller will own the returned bio, but not
587 * the actual data it points to. Reference count of returned
588 * bio will be one.
589 *
590 * Caller must ensure that @bio_src is not freed before @bio.
591 */
592void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
593{
ed996a52 594 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
595
596 /*
74d46992 597 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
598 * so we don't set nor calculate new physical/hw segment counts here
599 */
74d46992 600 bio->bi_disk = bio_src->bi_disk;
62530ed8 601 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 602 bio_set_flag(bio, BIO_CLONED);
111be883
SL
603 if (bio_flagged(bio_src, BIO_THROTTLED))
604 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 605 bio->bi_opf = bio_src->bi_opf;
cb6934f8 606 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
607 bio->bi_iter = bio_src->bi_iter;
608 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e
PV
609
610 bio_clone_blkcg_association(bio, bio_src);
59d276fe
KO
611}
612EXPORT_SYMBOL(__bio_clone_fast);
613
614/**
615 * bio_clone_fast - clone a bio that shares the original bio's biovec
616 * @bio: bio to clone
617 * @gfp_mask: allocation priority
618 * @bs: bio_set to allocate from
619 *
620 * Like __bio_clone_fast, only also allocates the returned bio
621 */
622struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
623{
624 struct bio *b;
625
626 b = bio_alloc_bioset(gfp_mask, 0, bs);
627 if (!b)
628 return NULL;
629
630 __bio_clone_fast(b, bio);
631
632 if (bio_integrity(bio)) {
633 int ret;
634
635 ret = bio_integrity_clone(b, bio, gfp_mask);
636
637 if (ret < 0) {
638 bio_put(b);
639 return NULL;
640 }
641 }
642
643 return b;
644}
645EXPORT_SYMBOL(bio_clone_fast);
646
f4595875
SL
647/**
648 * bio_clone_bioset - clone a bio
649 * @bio_src: bio to clone
650 * @gfp_mask: allocation priority
651 * @bs: bio_set to allocate from
652 *
653 * Clone bio. Caller will own the returned bio, but not the actual data it
654 * points to. Reference count of returned bio will be one.
655 */
656struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
657 struct bio_set *bs)
1da177e4 658{
bdb53207
KO
659 struct bvec_iter iter;
660 struct bio_vec bv;
661 struct bio *bio;
1da177e4 662
bdb53207
KO
663 /*
664 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
665 * bio_src->bi_io_vec to bio->bi_io_vec.
666 *
667 * We can't do that anymore, because:
668 *
669 * - The point of cloning the biovec is to produce a bio with a biovec
670 * the caller can modify: bi_idx and bi_bvec_done should be 0.
671 *
672 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
673 * we tried to clone the whole thing bio_alloc_bioset() would fail.
674 * But the clone should succeed as long as the number of biovecs we
675 * actually need to allocate is fewer than BIO_MAX_PAGES.
676 *
677 * - Lastly, bi_vcnt should not be looked at or relied upon by code
678 * that does not own the bio - reason being drivers don't use it for
679 * iterating over the biovec anymore, so expecting it to be kept up
680 * to date (i.e. for clones that share the parent biovec) is just
681 * asking for trouble and would force extra work on
682 * __bio_clone_fast() anyways.
683 */
684
f4595875 685 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
bdb53207 686 if (!bio)
7ba1ba12 687 return NULL;
74d46992 688 bio->bi_disk = bio_src->bi_disk;
1eff9d32 689 bio->bi_opf = bio_src->bi_opf;
cb6934f8 690 bio->bi_write_hint = bio_src->bi_write_hint;
bdb53207
KO
691 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
692 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
7ba1ba12 693
7afafc8a
AH
694 switch (bio_op(bio)) {
695 case REQ_OP_DISCARD:
696 case REQ_OP_SECURE_ERASE:
a6f0788e 697 case REQ_OP_WRITE_ZEROES:
7afafc8a
AH
698 break;
699 case REQ_OP_WRITE_SAME:
8423ae3d 700 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
7afafc8a
AH
701 break;
702 default:
f4595875 703 bio_for_each_segment(bv, bio_src, iter)
7afafc8a
AH
704 bio->bi_io_vec[bio->bi_vcnt++] = bv;
705 break;
8423ae3d
KO
706 }
707
bdb53207
KO
708 if (bio_integrity(bio_src)) {
709 int ret;
7ba1ba12 710
bdb53207 711 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
059ea331 712 if (ret < 0) {
bdb53207 713 bio_put(bio);
7ba1ba12 714 return NULL;
059ea331 715 }
3676347a 716 }
1da177e4 717
20bd723e
PV
718 bio_clone_blkcg_association(bio, bio_src);
719
bdb53207 720 return bio;
1da177e4 721}
bf800ef1 722EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
723
724/**
c66a14d0
KO
725 * bio_add_pc_page - attempt to add page to bio
726 * @q: the target queue
727 * @bio: destination bio
728 * @page: page to add
729 * @len: vec entry length
730 * @offset: vec entry offset
1da177e4 731 *
c66a14d0
KO
732 * Attempt to add a page to the bio_vec maplist. This can fail for a
733 * number of reasons, such as the bio being full or target block device
734 * limitations. The target block device must allow bio's up to PAGE_SIZE,
735 * so it is always possible to add a single page to an empty bio.
736 *
737 * This should only be used by REQ_PC bios.
1da177e4 738 */
c66a14d0
KO
739int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
740 *page, unsigned int len, unsigned int offset)
1da177e4
LT
741{
742 int retried_segments = 0;
743 struct bio_vec *bvec;
744
745 /*
746 * cloned bio must not modify vec list
747 */
748 if (unlikely(bio_flagged(bio, BIO_CLONED)))
749 return 0;
750
c66a14d0 751 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
752 return 0;
753
80cfd548
JA
754 /*
755 * For filesystems with a blocksize smaller than the pagesize
756 * we will often be called with the same page as last time and
757 * a consecutive offset. Optimize this special case.
758 */
759 if (bio->bi_vcnt > 0) {
760 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
761
762 if (page == prev->bv_page &&
763 offset == prev->bv_offset + prev->bv_len) {
764 prev->bv_len += len;
fcbf6a08 765 bio->bi_iter.bi_size += len;
80cfd548
JA
766 goto done;
767 }
66cb45aa
JA
768
769 /*
770 * If the queue doesn't support SG gaps and adding this
771 * offset would create a gap, disallow it.
772 */
03100aad 773 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 774 return 0;
80cfd548
JA
775 }
776
777 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
778 return 0;
779
780 /*
fcbf6a08
ML
781 * setup the new entry, we might clear it again later if we
782 * cannot add the page
783 */
784 bvec = &bio->bi_io_vec[bio->bi_vcnt];
785 bvec->bv_page = page;
786 bvec->bv_len = len;
787 bvec->bv_offset = offset;
788 bio->bi_vcnt++;
789 bio->bi_phys_segments++;
790 bio->bi_iter.bi_size += len;
791
792 /*
793 * Perform a recount if the number of segments is greater
794 * than queue_max_segments(q).
1da177e4
LT
795 */
796
fcbf6a08 797 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
798
799 if (retried_segments)
fcbf6a08 800 goto failed;
1da177e4
LT
801
802 retried_segments = 1;
803 blk_recount_segments(q, bio);
804 }
805
1da177e4 806 /* If we may be able to merge these biovecs, force a recount */
fcbf6a08 807 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
b7c44ed9 808 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 809
80cfd548 810 done:
1da177e4 811 return len;
fcbf6a08
ML
812
813 failed:
814 bvec->bv_page = NULL;
815 bvec->bv_len = 0;
816 bvec->bv_offset = 0;
817 bio->bi_vcnt--;
818 bio->bi_iter.bi_size -= len;
819 blk_recount_segments(q, bio);
820 return 0;
1da177e4 821}
a112a71d 822EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 823
1da177e4
LT
824/**
825 * bio_add_page - attempt to add page to bio
826 * @bio: destination bio
827 * @page: page to add
828 * @len: vec entry length
829 * @offset: vec entry offset
830 *
c66a14d0
KO
831 * Attempt to add a page to the bio_vec maplist. This will only fail
832 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1da177e4 833 */
c66a14d0
KO
834int bio_add_page(struct bio *bio, struct page *page,
835 unsigned int len, unsigned int offset)
1da177e4 836{
c66a14d0
KO
837 struct bio_vec *bv;
838
839 /*
840 * cloned bio must not modify vec list
841 */
842 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
843 return 0;
762380ad 844
c66a14d0
KO
845 /*
846 * For filesystems with a blocksize smaller than the pagesize
847 * we will often be called with the same page as last time and
848 * a consecutive offset. Optimize this special case.
849 */
850 if (bio->bi_vcnt > 0) {
851 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
58a4915a 852
c66a14d0
KO
853 if (page == bv->bv_page &&
854 offset == bv->bv_offset + bv->bv_len) {
855 bv->bv_len += len;
856 goto done;
857 }
858 }
859
860 if (bio->bi_vcnt >= bio->bi_max_vecs)
861 return 0;
862
863 bv = &bio->bi_io_vec[bio->bi_vcnt];
864 bv->bv_page = page;
865 bv->bv_len = len;
866 bv->bv_offset = offset;
867
868 bio->bi_vcnt++;
869done:
870 bio->bi_iter.bi_size += len;
871 return len;
1da177e4 872}
a112a71d 873EXPORT_SYMBOL(bio_add_page);
1da177e4 874
2cefe4db
KO
875/**
876 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
877 * @bio: bio to add pages to
878 * @iter: iov iterator describing the region to be mapped
879 *
880 * Pins as many pages from *iter and appends them to @bio's bvec array. The
881 * pages will have to be released using put_page() when done.
882 */
883int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
884{
885 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
886 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
887 struct page **pages = (struct page **)bv;
888 size_t offset, diff;
889 ssize_t size;
890
891 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
892 if (unlikely(size <= 0))
893 return size ? size : -EFAULT;
894 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
895
896 /*
897 * Deep magic below: We need to walk the pinned pages backwards
898 * because we are abusing the space allocated for the bio_vecs
899 * for the page array. Because the bio_vecs are larger than the
900 * page pointers by definition this will always work. But it also
901 * means we can't use bio_add_page, so any changes to it's semantics
902 * need to be reflected here as well.
903 */
904 bio->bi_iter.bi_size += size;
905 bio->bi_vcnt += nr_pages;
906
907 diff = (nr_pages * PAGE_SIZE - offset) - size;
908 while (nr_pages--) {
909 bv[nr_pages].bv_page = pages[nr_pages];
910 bv[nr_pages].bv_len = PAGE_SIZE;
911 bv[nr_pages].bv_offset = 0;
912 }
913
914 bv[0].bv_offset += offset;
915 bv[0].bv_len -= offset;
916 if (diff)
917 bv[bio->bi_vcnt - 1].bv_len -= diff;
918
919 iov_iter_advance(iter, size);
920 return 0;
921}
922EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
923
4246a0b6 924static void submit_bio_wait_endio(struct bio *bio)
9e882242 925{
65e53aab 926 complete(bio->bi_private);
9e882242
KO
927}
928
929/**
930 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
931 * @bio: The &struct bio which describes the I/O
932 *
933 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
934 * bio_endio() on failure.
3d289d68
JK
935 *
936 * WARNING: Unlike to how submit_bio() is usually used, this function does not
937 * result in bio reference to be consumed. The caller must drop the reference
938 * on his own.
9e882242 939 */
4e49ea4a 940int submit_bio_wait(struct bio *bio)
9e882242 941{
e319e1fb 942 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
9e882242 943
65e53aab 944 bio->bi_private = &done;
9e882242 945 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 946 bio->bi_opf |= REQ_SYNC;
4e49ea4a 947 submit_bio(bio);
65e53aab 948 wait_for_completion_io(&done);
9e882242 949
65e53aab 950 return blk_status_to_errno(bio->bi_status);
9e882242
KO
951}
952EXPORT_SYMBOL(submit_bio_wait);
953
054bdf64
KO
954/**
955 * bio_advance - increment/complete a bio by some number of bytes
956 * @bio: bio to advance
957 * @bytes: number of bytes to complete
958 *
959 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
960 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
961 * be updated on the last bvec as well.
962 *
963 * @bio will then represent the remaining, uncompleted portion of the io.
964 */
965void bio_advance(struct bio *bio, unsigned bytes)
966{
967 if (bio_integrity(bio))
968 bio_integrity_advance(bio, bytes);
969
4550dd6c 970 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
971}
972EXPORT_SYMBOL(bio_advance);
973
38a72dac
KO
974void bio_copy_data_iter(struct bio *dst, struct bvec_iter dst_iter,
975 struct bio *src, struct bvec_iter src_iter)
16ac3d63 976{
1cb9dda4 977 struct bio_vec src_bv, dst_bv;
16ac3d63 978 void *src_p, *dst_p;
1cb9dda4 979 unsigned bytes;
16ac3d63 980
16ac3d63 981 while (1) {
1cb9dda4
KO
982 if (!src_iter.bi_size) {
983 src = src->bi_next;
984 if (!src)
985 break;
16ac3d63 986
1cb9dda4 987 src_iter = src->bi_iter;
16ac3d63
KO
988 }
989
1cb9dda4
KO
990 if (!dst_iter.bi_size) {
991 dst = dst->bi_next;
992 if (!dst)
993 break;
16ac3d63 994
1cb9dda4 995 dst_iter = dst->bi_iter;
16ac3d63
KO
996 }
997
1cb9dda4
KO
998 src_bv = bio_iter_iovec(src, src_iter);
999 dst_bv = bio_iter_iovec(dst, dst_iter);
1000
1001 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1002
1cb9dda4
KO
1003 src_p = kmap_atomic(src_bv.bv_page);
1004 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1005
1cb9dda4
KO
1006 memcpy(dst_p + dst_bv.bv_offset,
1007 src_p + src_bv.bv_offset,
16ac3d63
KO
1008 bytes);
1009
1010 kunmap_atomic(dst_p);
1011 kunmap_atomic(src_p);
1012
1cb9dda4
KO
1013 bio_advance_iter(src, &src_iter, bytes);
1014 bio_advance_iter(dst, &dst_iter, bytes);
16ac3d63
KO
1015 }
1016}
38a72dac
KO
1017EXPORT_SYMBOL(bio_copy_data_iter);
1018
1019/**
1020 * bio_copy_data - copy contents of data buffers from one chain of bios to
1021 * another
1022 * @src: source bio list
1023 * @dst: destination bio list
1024 *
1025 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1026 * @src and @dst as linked lists of bios.
1027 *
1028 * Stops when it reaches the end of either @src or @dst - that is, copies
1029 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1030 */
1031void bio_copy_data(struct bio *dst, struct bio *src)
1032{
1033 bio_copy_data_iter(dst, dst->bi_iter,
1034 src, src->bi_iter);
1035}
16ac3d63
KO
1036EXPORT_SYMBOL(bio_copy_data);
1037
1da177e4 1038struct bio_map_data {
152e283f 1039 int is_our_pages;
26e49cfc
KO
1040 struct iov_iter iter;
1041 struct iovec iov[];
1da177e4
LT
1042};
1043
0e5b935d 1044static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
76029ff3 1045 gfp_t gfp_mask)
1da177e4 1046{
0e5b935d
AV
1047 struct bio_map_data *bmd;
1048 if (data->nr_segs > UIO_MAXIOV)
f3f63c1c 1049 return NULL;
1da177e4 1050
0e5b935d
AV
1051 bmd = kmalloc(sizeof(struct bio_map_data) +
1052 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1053 if (!bmd)
1054 return NULL;
1055 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1056 bmd->iter = *data;
1057 bmd->iter.iov = bmd->iov;
1058 return bmd;
1da177e4
LT
1059}
1060
9124d3fe
DP
1061/**
1062 * bio_copy_from_iter - copy all pages from iov_iter to bio
1063 * @bio: The &struct bio which describes the I/O as destination
1064 * @iter: iov_iter as source
1065 *
1066 * Copy all pages from iov_iter to bio.
1067 * Returns 0 on success, or error on failure.
1068 */
98a09d61 1069static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
c5dec1c3 1070{
9124d3fe 1071 int i;
c5dec1c3 1072 struct bio_vec *bvec;
c5dec1c3 1073
d74c6d51 1074 bio_for_each_segment_all(bvec, bio, i) {
9124d3fe 1075 ssize_t ret;
c5dec1c3 1076
9124d3fe
DP
1077 ret = copy_page_from_iter(bvec->bv_page,
1078 bvec->bv_offset,
1079 bvec->bv_len,
98a09d61 1080 iter);
9124d3fe 1081
98a09d61 1082 if (!iov_iter_count(iter))
9124d3fe
DP
1083 break;
1084
1085 if (ret < bvec->bv_len)
1086 return -EFAULT;
c5dec1c3
FT
1087 }
1088
9124d3fe
DP
1089 return 0;
1090}
1091
1092/**
1093 * bio_copy_to_iter - copy all pages from bio to iov_iter
1094 * @bio: The &struct bio which describes the I/O as source
1095 * @iter: iov_iter as destination
1096 *
1097 * Copy all pages from bio to iov_iter.
1098 * Returns 0 on success, or error on failure.
1099 */
1100static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1101{
1102 int i;
1103 struct bio_vec *bvec;
1104
1105 bio_for_each_segment_all(bvec, bio, i) {
1106 ssize_t ret;
1107
1108 ret = copy_page_to_iter(bvec->bv_page,
1109 bvec->bv_offset,
1110 bvec->bv_len,
1111 &iter);
1112
1113 if (!iov_iter_count(&iter))
1114 break;
1115
1116 if (ret < bvec->bv_len)
1117 return -EFAULT;
1118 }
1119
1120 return 0;
c5dec1c3
FT
1121}
1122
491221f8 1123void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1124{
1125 struct bio_vec *bvec;
1126 int i;
1127
1128 bio_for_each_segment_all(bvec, bio, i)
1129 __free_page(bvec->bv_page);
1130}
491221f8 1131EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1132
1da177e4
LT
1133/**
1134 * bio_uncopy_user - finish previously mapped bio
1135 * @bio: bio being terminated
1136 *
ddad8dd0 1137 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1138 * to user space in case of a read.
1139 */
1140int bio_uncopy_user(struct bio *bio)
1141{
1142 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1143 int ret = 0;
1da177e4 1144
35dc2483
RD
1145 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1146 /*
1147 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1148 * don't copy into a random user address space, just free
1149 * and return -EINTR so user space doesn't expect any data.
35dc2483 1150 */
2d99b55d
HR
1151 if (!current->mm)
1152 ret = -EINTR;
1153 else if (bio_data_dir(bio) == READ)
9124d3fe 1154 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1155 if (bmd->is_our_pages)
1156 bio_free_pages(bio);
35dc2483 1157 }
c8db4448 1158 kfree(bmd);
1da177e4
LT
1159 bio_put(bio);
1160 return ret;
1161}
1162
1163/**
c5dec1c3 1164 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1165 * @q: destination block queue
1166 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1167 * @iter: iovec iterator
1168 * @gfp_mask: memory allocation flags
1da177e4
LT
1169 *
1170 * Prepares and returns a bio for indirect user io, bouncing data
1171 * to/from kernel pages as necessary. Must be paired with
1172 * call bio_uncopy_user() on io completion.
1173 */
152e283f
FT
1174struct bio *bio_copy_user_iov(struct request_queue *q,
1175 struct rq_map_data *map_data,
e81cef5d 1176 struct iov_iter *iter,
26e49cfc 1177 gfp_t gfp_mask)
1da177e4 1178{
1da177e4 1179 struct bio_map_data *bmd;
1da177e4
LT
1180 struct page *page;
1181 struct bio *bio;
d16d44eb
AV
1182 int i = 0, ret;
1183 int nr_pages;
26e49cfc 1184 unsigned int len = iter->count;
bd5cecea 1185 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1186
0e5b935d 1187 bmd = bio_alloc_map_data(iter, gfp_mask);
1da177e4
LT
1188 if (!bmd)
1189 return ERR_PTR(-ENOMEM);
1190
26e49cfc
KO
1191 /*
1192 * We need to do a deep copy of the iov_iter including the iovecs.
1193 * The caller provided iov might point to an on-stack or otherwise
1194 * shortlived one.
1195 */
1196 bmd->is_our_pages = map_data ? 0 : 1;
26e49cfc 1197
d16d44eb
AV
1198 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1199 if (nr_pages > BIO_MAX_PAGES)
1200 nr_pages = BIO_MAX_PAGES;
26e49cfc 1201
1da177e4 1202 ret = -ENOMEM;
a9e9dc24 1203 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1204 if (!bio)
1205 goto out_bmd;
1206
1da177e4 1207 ret = 0;
56c451f4
FT
1208
1209 if (map_data) {
e623ddb4 1210 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1211 i = map_data->offset / PAGE_SIZE;
1212 }
1da177e4 1213 while (len) {
e623ddb4 1214 unsigned int bytes = PAGE_SIZE;
1da177e4 1215
56c451f4
FT
1216 bytes -= offset;
1217
1da177e4
LT
1218 if (bytes > len)
1219 bytes = len;
1220
152e283f 1221 if (map_data) {
e623ddb4 1222 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1223 ret = -ENOMEM;
1224 break;
1225 }
e623ddb4
FT
1226
1227 page = map_data->pages[i / nr_pages];
1228 page += (i % nr_pages);
1229
1230 i++;
1231 } else {
152e283f 1232 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1233 if (!page) {
1234 ret = -ENOMEM;
1235 break;
1236 }
1da177e4
LT
1237 }
1238
56c451f4 1239 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1240 break;
1da177e4
LT
1241
1242 len -= bytes;
56c451f4 1243 offset = 0;
1da177e4
LT
1244 }
1245
1246 if (ret)
1247 goto cleanup;
1248
2884d0be
AV
1249 if (map_data)
1250 map_data->offset += bio->bi_iter.bi_size;
1251
1da177e4
LT
1252 /*
1253 * success
1254 */
26e49cfc 1255 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1256 (map_data && map_data->from_user)) {
98a09d61 1257 ret = bio_copy_from_iter(bio, iter);
c5dec1c3
FT
1258 if (ret)
1259 goto cleanup;
98a09d61
AV
1260 } else {
1261 iov_iter_advance(iter, bio->bi_iter.bi_size);
1da177e4
LT
1262 }
1263
26e49cfc 1264 bio->bi_private = bmd;
2884d0be
AV
1265 if (map_data && map_data->null_mapped)
1266 bio_set_flag(bio, BIO_NULL_MAPPED);
1da177e4
LT
1267 return bio;
1268cleanup:
152e283f 1269 if (!map_data)
1dfa0f68 1270 bio_free_pages(bio);
1da177e4
LT
1271 bio_put(bio);
1272out_bmd:
c8db4448 1273 kfree(bmd);
1da177e4
LT
1274 return ERR_PTR(ret);
1275}
1276
37f19e57
CH
1277/**
1278 * bio_map_user_iov - map user iovec into bio
1279 * @q: the struct request_queue for the bio
1280 * @iter: iovec iterator
1281 * @gfp_mask: memory allocation flags
1282 *
1283 * Map the user space address into a bio suitable for io to a block
1284 * device. Returns an error pointer in case of error.
1285 */
1286struct bio *bio_map_user_iov(struct request_queue *q,
e81cef5d 1287 struct iov_iter *iter,
37f19e57 1288 gfp_t gfp_mask)
1da177e4 1289{
26e49cfc 1290 int j;
1da177e4 1291 struct bio *bio;
076098e5 1292 int ret;
2b04e8f6 1293 struct bio_vec *bvec;
1da177e4 1294
b282cc76 1295 if (!iov_iter_count(iter))
1da177e4
LT
1296 return ERR_PTR(-EINVAL);
1297
b282cc76 1298 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1da177e4
LT
1299 if (!bio)
1300 return ERR_PTR(-ENOMEM);
1301
0a0f1513 1302 while (iov_iter_count(iter)) {
629e42bc 1303 struct page **pages;
076098e5
AV
1304 ssize_t bytes;
1305 size_t offs, added = 0;
1306 int npages;
1da177e4 1307
0a0f1513 1308 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
076098e5
AV
1309 if (unlikely(bytes <= 0)) {
1310 ret = bytes ? bytes : -EFAULT;
f1970baf 1311 goto out_unmap;
99172157 1312 }
f1970baf 1313
076098e5 1314 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
f1970baf 1315
98f0bc99
AV
1316 if (unlikely(offs & queue_dma_alignment(q))) {
1317 ret = -EINVAL;
1318 j = 0;
1319 } else {
1320 for (j = 0; j < npages; j++) {
1321 struct page *page = pages[j];
1322 unsigned int n = PAGE_SIZE - offs;
1323 unsigned short prev_bi_vcnt = bio->bi_vcnt;
f1970baf 1324
98f0bc99
AV
1325 if (n > bytes)
1326 n = bytes;
95d78c28 1327
98f0bc99
AV
1328 if (!bio_add_pc_page(q, bio, page, n, offs))
1329 break;
1da177e4 1330
98f0bc99
AV
1331 /*
1332 * check if vector was merged with previous
1333 * drop page reference if needed
1334 */
1335 if (bio->bi_vcnt == prev_bi_vcnt)
1336 put_page(page);
1337
1338 added += n;
1339 bytes -= n;
1340 offs = 0;
1341 }
0a0f1513 1342 iov_iter_advance(iter, added);
f1970baf 1343 }
1da177e4 1344 /*
f1970baf 1345 * release the pages we didn't map into the bio, if any
1da177e4 1346 */
629e42bc 1347 while (j < npages)
09cbfeaf 1348 put_page(pages[j++]);
629e42bc 1349 kvfree(pages);
e2e115d1
AV
1350 /* couldn't stuff something into bio? */
1351 if (bytes)
1352 break;
1da177e4
LT
1353 }
1354
b7c44ed9 1355 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1356
1357 /*
5fad1b64 1358 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1359 * it would normally disappear when its bi_end_io is run.
1360 * however, we need it for the unmap, so grab an extra
1361 * reference to it
1362 */
1363 bio_get(bio);
1da177e4 1364 return bio;
f1970baf
JB
1365
1366 out_unmap:
2b04e8f6
AV
1367 bio_for_each_segment_all(bvec, bio, j) {
1368 put_page(bvec->bv_page);
f1970baf 1369 }
1da177e4
LT
1370 bio_put(bio);
1371 return ERR_PTR(ret);
1372}
1373
1da177e4
LT
1374static void __bio_unmap_user(struct bio *bio)
1375{
1376 struct bio_vec *bvec;
1377 int i;
1378
1379 /*
1380 * make sure we dirty pages we wrote to
1381 */
d74c6d51 1382 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1383 if (bio_data_dir(bio) == READ)
1384 set_page_dirty_lock(bvec->bv_page);
1385
09cbfeaf 1386 put_page(bvec->bv_page);
1da177e4
LT
1387 }
1388
1389 bio_put(bio);
1390}
1391
1392/**
1393 * bio_unmap_user - unmap a bio
1394 * @bio: the bio being unmapped
1395 *
5fad1b64
BVA
1396 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1397 * process context.
1da177e4
LT
1398 *
1399 * bio_unmap_user() may sleep.
1400 */
1401void bio_unmap_user(struct bio *bio)
1402{
1403 __bio_unmap_user(bio);
1404 bio_put(bio);
1405}
1406
4246a0b6 1407static void bio_map_kern_endio(struct bio *bio)
b823825e 1408{
b823825e 1409 bio_put(bio);
b823825e
JA
1410}
1411
75c72b83
CH
1412/**
1413 * bio_map_kern - map kernel address into bio
1414 * @q: the struct request_queue for the bio
1415 * @data: pointer to buffer to map
1416 * @len: length in bytes
1417 * @gfp_mask: allocation flags for bio allocation
1418 *
1419 * Map the kernel address into a bio suitable for io to a block
1420 * device. Returns an error pointer in case of error.
1421 */
1422struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1423 gfp_t gfp_mask)
df46b9a4
MC
1424{
1425 unsigned long kaddr = (unsigned long)data;
1426 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1427 unsigned long start = kaddr >> PAGE_SHIFT;
1428 const int nr_pages = end - start;
1429 int offset, i;
1430 struct bio *bio;
1431
a9e9dc24 1432 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1433 if (!bio)
1434 return ERR_PTR(-ENOMEM);
1435
1436 offset = offset_in_page(kaddr);
1437 for (i = 0; i < nr_pages; i++) {
1438 unsigned int bytes = PAGE_SIZE - offset;
1439
1440 if (len <= 0)
1441 break;
1442
1443 if (bytes > len)
1444 bytes = len;
1445
defd94b7 1446 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1447 offset) < bytes) {
1448 /* we don't support partial mappings */
1449 bio_put(bio);
1450 return ERR_PTR(-EINVAL);
1451 }
df46b9a4
MC
1452
1453 data += bytes;
1454 len -= bytes;
1455 offset = 0;
1456 }
1457
b823825e 1458 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1459 return bio;
1460}
a112a71d 1461EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1462
4246a0b6 1463static void bio_copy_kern_endio(struct bio *bio)
68154e90 1464{
1dfa0f68
CH
1465 bio_free_pages(bio);
1466 bio_put(bio);
1467}
1468
4246a0b6 1469static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1470{
42d2683a 1471 char *p = bio->bi_private;
1dfa0f68 1472 struct bio_vec *bvec;
68154e90
FT
1473 int i;
1474
d74c6d51 1475 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1476 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1477 p += bvec->bv_len;
68154e90
FT
1478 }
1479
4246a0b6 1480 bio_copy_kern_endio(bio);
68154e90
FT
1481}
1482
1483/**
1484 * bio_copy_kern - copy kernel address into bio
1485 * @q: the struct request_queue for the bio
1486 * @data: pointer to buffer to copy
1487 * @len: length in bytes
1488 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1489 * @reading: data direction is READ
68154e90
FT
1490 *
1491 * copy the kernel address into a bio suitable for io to a block
1492 * device. Returns an error pointer in case of error.
1493 */
1494struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1495 gfp_t gfp_mask, int reading)
1496{
42d2683a
CH
1497 unsigned long kaddr = (unsigned long)data;
1498 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1499 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1500 struct bio *bio;
1501 void *p = data;
1dfa0f68 1502 int nr_pages = 0;
68154e90 1503
42d2683a
CH
1504 /*
1505 * Overflow, abort
1506 */
1507 if (end < start)
1508 return ERR_PTR(-EINVAL);
68154e90 1509
42d2683a
CH
1510 nr_pages = end - start;
1511 bio = bio_kmalloc(gfp_mask, nr_pages);
1512 if (!bio)
1513 return ERR_PTR(-ENOMEM);
68154e90 1514
42d2683a
CH
1515 while (len) {
1516 struct page *page;
1517 unsigned int bytes = PAGE_SIZE;
68154e90 1518
42d2683a
CH
1519 if (bytes > len)
1520 bytes = len;
1521
1522 page = alloc_page(q->bounce_gfp | gfp_mask);
1523 if (!page)
1524 goto cleanup;
1525
1526 if (!reading)
1527 memcpy(page_address(page), p, bytes);
1528
1529 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1530 break;
1531
1532 len -= bytes;
1533 p += bytes;
68154e90
FT
1534 }
1535
1dfa0f68
CH
1536 if (reading) {
1537 bio->bi_end_io = bio_copy_kern_endio_read;
1538 bio->bi_private = data;
1539 } else {
1540 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1541 }
76029ff3 1542
68154e90 1543 return bio;
42d2683a
CH
1544
1545cleanup:
1dfa0f68 1546 bio_free_pages(bio);
42d2683a
CH
1547 bio_put(bio);
1548 return ERR_PTR(-ENOMEM);
68154e90
FT
1549}
1550
1da177e4
LT
1551/*
1552 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1553 * for performing direct-IO in BIOs.
1554 *
1555 * The problem is that we cannot run set_page_dirty() from interrupt context
1556 * because the required locks are not interrupt-safe. So what we can do is to
1557 * mark the pages dirty _before_ performing IO. And in interrupt context,
1558 * check that the pages are still dirty. If so, fine. If not, redirty them
1559 * in process context.
1560 *
1561 * We special-case compound pages here: normally this means reads into hugetlb
1562 * pages. The logic in here doesn't really work right for compound pages
1563 * because the VM does not uniformly chase down the head page in all cases.
1564 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1565 * handle them at all. So we skip compound pages here at an early stage.
1566 *
1567 * Note that this code is very hard to test under normal circumstances because
1568 * direct-io pins the pages with get_user_pages(). This makes
1569 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1570 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1571 * pagecache.
1572 *
1573 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1574 * deferred bio dirtying paths.
1575 */
1576
1577/*
1578 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1579 */
1580void bio_set_pages_dirty(struct bio *bio)
1581{
cb34e057 1582 struct bio_vec *bvec;
1da177e4
LT
1583 int i;
1584
cb34e057
KO
1585 bio_for_each_segment_all(bvec, bio, i) {
1586 struct page *page = bvec->bv_page;
1da177e4
LT
1587
1588 if (page && !PageCompound(page))
1589 set_page_dirty_lock(page);
1590 }
1591}
1592
86b6c7a7 1593static void bio_release_pages(struct bio *bio)
1da177e4 1594{
cb34e057 1595 struct bio_vec *bvec;
1da177e4
LT
1596 int i;
1597
cb34e057
KO
1598 bio_for_each_segment_all(bvec, bio, i) {
1599 struct page *page = bvec->bv_page;
1da177e4
LT
1600
1601 if (page)
1602 put_page(page);
1603 }
1604}
1605
1606/*
1607 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1608 * If they are, then fine. If, however, some pages are clean then they must
1609 * have been written out during the direct-IO read. So we take another ref on
1610 * the BIO and the offending pages and re-dirty the pages in process context.
1611 *
1612 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1613 * here on. It will run one put_page() against each page and will run one
1614 * bio_put() against the BIO.
1da177e4
LT
1615 */
1616
65f27f38 1617static void bio_dirty_fn(struct work_struct *work);
1da177e4 1618
65f27f38 1619static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1620static DEFINE_SPINLOCK(bio_dirty_lock);
1621static struct bio *bio_dirty_list;
1622
1623/*
1624 * This runs in process context
1625 */
65f27f38 1626static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1627{
1628 unsigned long flags;
1629 struct bio *bio;
1630
1631 spin_lock_irqsave(&bio_dirty_lock, flags);
1632 bio = bio_dirty_list;
1633 bio_dirty_list = NULL;
1634 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1635
1636 while (bio) {
1637 struct bio *next = bio->bi_private;
1638
1639 bio_set_pages_dirty(bio);
1640 bio_release_pages(bio);
1641 bio_put(bio);
1642 bio = next;
1643 }
1644}
1645
1646void bio_check_pages_dirty(struct bio *bio)
1647{
cb34e057 1648 struct bio_vec *bvec;
1da177e4
LT
1649 int nr_clean_pages = 0;
1650 int i;
1651
cb34e057
KO
1652 bio_for_each_segment_all(bvec, bio, i) {
1653 struct page *page = bvec->bv_page;
1da177e4
LT
1654
1655 if (PageDirty(page) || PageCompound(page)) {
09cbfeaf 1656 put_page(page);
cb34e057 1657 bvec->bv_page = NULL;
1da177e4
LT
1658 } else {
1659 nr_clean_pages++;
1660 }
1661 }
1662
1663 if (nr_clean_pages) {
1664 unsigned long flags;
1665
1666 spin_lock_irqsave(&bio_dirty_lock, flags);
1667 bio->bi_private = bio_dirty_list;
1668 bio_dirty_list = bio;
1669 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1670 schedule_work(&bio_dirty_work);
1671 } else {
1672 bio_put(bio);
1673 }
1674}
1675
d62e26b3
JA
1676void generic_start_io_acct(struct request_queue *q, int rw,
1677 unsigned long sectors, struct hd_struct *part)
394ffa50
GZ
1678{
1679 int cpu = part_stat_lock();
1680
d62e26b3 1681 part_round_stats(q, cpu, part);
394ffa50
GZ
1682 part_stat_inc(cpu, part, ios[rw]);
1683 part_stat_add(cpu, part, sectors[rw], sectors);
d62e26b3 1684 part_inc_in_flight(q, part, rw);
394ffa50
GZ
1685
1686 part_stat_unlock();
1687}
1688EXPORT_SYMBOL(generic_start_io_acct);
1689
d62e26b3
JA
1690void generic_end_io_acct(struct request_queue *q, int rw,
1691 struct hd_struct *part, unsigned long start_time)
394ffa50
GZ
1692{
1693 unsigned long duration = jiffies - start_time;
1694 int cpu = part_stat_lock();
1695
1696 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
1697 part_round_stats(q, cpu, part);
1698 part_dec_in_flight(q, part, rw);
394ffa50
GZ
1699
1700 part_stat_unlock();
1701}
1702EXPORT_SYMBOL(generic_end_io_acct);
1703
2d4dc890
IL
1704#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1705void bio_flush_dcache_pages(struct bio *bi)
1706{
7988613b
KO
1707 struct bio_vec bvec;
1708 struct bvec_iter iter;
2d4dc890 1709
7988613b
KO
1710 bio_for_each_segment(bvec, bi, iter)
1711 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1712}
1713EXPORT_SYMBOL(bio_flush_dcache_pages);
1714#endif
1715
c4cf5261
JA
1716static inline bool bio_remaining_done(struct bio *bio)
1717{
1718 /*
1719 * If we're not chaining, then ->__bi_remaining is always 1 and
1720 * we always end io on the first invocation.
1721 */
1722 if (!bio_flagged(bio, BIO_CHAIN))
1723 return true;
1724
1725 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1726
326e1dbb 1727 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1728 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1729 return true;
326e1dbb 1730 }
c4cf5261
JA
1731
1732 return false;
1733}
1734
1da177e4
LT
1735/**
1736 * bio_endio - end I/O on a bio
1737 * @bio: bio
1da177e4
LT
1738 *
1739 * Description:
4246a0b6
CH
1740 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1741 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1742 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1743 *
1744 * bio_endio() can be called several times on a bio that has been chained
1745 * using bio_chain(). The ->bi_end_io() function will only be called the
1746 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1747 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1748 **/
4246a0b6 1749void bio_endio(struct bio *bio)
1da177e4 1750{
ba8c6967 1751again:
2b885517 1752 if (!bio_remaining_done(bio))
ba8c6967 1753 return;
7c20f116
CH
1754 if (!bio_integrity_endio(bio))
1755 return;
1da177e4 1756
ba8c6967
CH
1757 /*
1758 * Need to have a real endio function for chained bios, otherwise
1759 * various corner cases will break (like stacking block devices that
1760 * save/restore bi_end_io) - however, we want to avoid unbounded
1761 * recursion and blowing the stack. Tail call optimization would
1762 * handle this, but compiling with frame pointers also disables
1763 * gcc's sibling call optimization.
1764 */
1765 if (bio->bi_end_io == bio_chain_endio) {
1766 bio = __bio_chain_endio(bio);
1767 goto again;
196d38bc 1768 }
ba8c6967 1769
74d46992
CH
1770 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1771 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1772 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1773 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1774 }
1775
9e234eea 1776 blk_throtl_bio_endio(bio);
b222dd2f
SL
1777 /* release cgroup info */
1778 bio_uninit(bio);
ba8c6967
CH
1779 if (bio->bi_end_io)
1780 bio->bi_end_io(bio);
1da177e4 1781}
a112a71d 1782EXPORT_SYMBOL(bio_endio);
1da177e4 1783
20d0189b
KO
1784/**
1785 * bio_split - split a bio
1786 * @bio: bio to split
1787 * @sectors: number of sectors to split from the front of @bio
1788 * @gfp: gfp mask
1789 * @bs: bio set to allocate from
1790 *
1791 * Allocates and returns a new bio which represents @sectors from the start of
1792 * @bio, and updates @bio to represent the remaining sectors.
1793 *
f3f5da62
MP
1794 * Unless this is a discard request the newly allocated bio will point
1795 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1796 * @bio is not freed before the split.
20d0189b
KO
1797 */
1798struct bio *bio_split(struct bio *bio, int sectors,
1799 gfp_t gfp, struct bio_set *bs)
1800{
f341a4d3 1801 struct bio *split;
20d0189b
KO
1802
1803 BUG_ON(sectors <= 0);
1804 BUG_ON(sectors >= bio_sectors(bio));
1805
f9d03f96 1806 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1807 if (!split)
1808 return NULL;
1809
1810 split->bi_iter.bi_size = sectors << 9;
1811
1812 if (bio_integrity(split))
fbd08e76 1813 bio_integrity_trim(split);
20d0189b
KO
1814
1815 bio_advance(bio, split->bi_iter.bi_size);
1816
fbbaf700 1817 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1818 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1819
20d0189b
KO
1820 return split;
1821}
1822EXPORT_SYMBOL(bio_split);
1823
6678d83f
KO
1824/**
1825 * bio_trim - trim a bio
1826 * @bio: bio to trim
1827 * @offset: number of sectors to trim from the front of @bio
1828 * @size: size we want to trim @bio to, in sectors
1829 */
1830void bio_trim(struct bio *bio, int offset, int size)
1831{
1832 /* 'bio' is a cloned bio which we need to trim to match
1833 * the given offset and size.
6678d83f 1834 */
6678d83f
KO
1835
1836 size <<= 9;
4f024f37 1837 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1838 return;
1839
b7c44ed9 1840 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1841
1842 bio_advance(bio, offset << 9);
1843
4f024f37 1844 bio->bi_iter.bi_size = size;
376a78ab
DM
1845
1846 if (bio_integrity(bio))
fbd08e76 1847 bio_integrity_trim(bio);
376a78ab 1848
6678d83f
KO
1849}
1850EXPORT_SYMBOL_GPL(bio_trim);
1851
1da177e4
LT
1852/*
1853 * create memory pools for biovec's in a bio_set.
1854 * use the global biovec slabs created for general use.
1855 */
8aa6ba2f 1856int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1857{
ed996a52 1858 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1859
8aa6ba2f 1860 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1861}
1862
917a38c7
KO
1863/*
1864 * bioset_exit - exit a bioset initialized with bioset_init()
1865 *
1866 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1867 * kzalloc()).
1868 */
1869void bioset_exit(struct bio_set *bs)
1da177e4 1870{
df2cb6da
KO
1871 if (bs->rescue_workqueue)
1872 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1873 bs->rescue_workqueue = NULL;
df2cb6da 1874
8aa6ba2f
KO
1875 mempool_exit(&bs->bio_pool);
1876 mempool_exit(&bs->bvec_pool);
9f060e22 1877
7878cba9 1878 bioset_integrity_free(bs);
917a38c7
KO
1879 if (bs->bio_slab)
1880 bio_put_slab(bs);
1881 bs->bio_slab = NULL;
1882}
1883EXPORT_SYMBOL(bioset_exit);
1da177e4 1884
917a38c7
KO
1885void bioset_free(struct bio_set *bs)
1886{
1887 bioset_exit(bs);
1da177e4
LT
1888 kfree(bs);
1889}
a112a71d 1890EXPORT_SYMBOL(bioset_free);
1da177e4 1891
917a38c7
KO
1892/**
1893 * bioset_init - Initialize a bio_set
1894 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1895 * @front_pad: Number of bytes to allocate in front of the returned bio
1896 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1897 * and %BIOSET_NEED_RESCUER
1898 *
1899 * Similar to bioset_create(), but initializes a passed-in bioset instead of
1900 * separately allocating it.
1901 */
1902int bioset_init(struct bio_set *bs,
1903 unsigned int pool_size,
1904 unsigned int front_pad,
1905 int flags)
1906{
1907 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1908
1909 bs->front_pad = front_pad;
1910
1911 spin_lock_init(&bs->rescue_lock);
1912 bio_list_init(&bs->rescue_list);
1913 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1914
1915 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1916 if (!bs->bio_slab)
1917 return -ENOMEM;
1918
1919 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1920 goto bad;
1921
1922 if ((flags & BIOSET_NEED_BVECS) &&
1923 biovec_init_pool(&bs->bvec_pool, pool_size))
1924 goto bad;
1925
1926 if (!(flags & BIOSET_NEED_RESCUER))
1927 return 0;
1928
1929 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1930 if (!bs->rescue_workqueue)
1931 goto bad;
1932
1933 return 0;
1934bad:
1935 bioset_exit(bs);
1936 return -ENOMEM;
1937}
1938EXPORT_SYMBOL(bioset_init);
1939
011067b0
N
1940/**
1941 * bioset_create - Create a bio_set
1942 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1943 * @front_pad: Number of bytes to allocate in front of the returned bio
47e0fb46
N
1944 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1945 * and %BIOSET_NEED_RESCUER
011067b0
N
1946 *
1947 * Description:
1948 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1949 * to ask for a number of bytes to be allocated in front of the bio.
1950 * Front pad allocation is useful for embedding the bio inside
1951 * another structure, to avoid allocating extra data to go with the bio.
1952 * Note that the bio must be embedded at the END of that structure always,
1953 * or things will break badly.
1954 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1955 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
47e0fb46
N
1956 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1957 * dispatch queued requests when the mempool runs out of space.
011067b0
N
1958 *
1959 */
1960struct bio_set *bioset_create(unsigned int pool_size,
1961 unsigned int front_pad,
1962 int flags)
1da177e4 1963{
1b434498 1964 struct bio_set *bs;
1da177e4 1965
1b434498 1966 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1967 if (!bs)
1968 return NULL;
1969
917a38c7 1970 if (bioset_init(bs, pool_size, front_pad, flags)) {
bb799ca0
JA
1971 kfree(bs);
1972 return NULL;
1973 }
1974
df2cb6da 1975 return bs;
1da177e4 1976}
a112a71d 1977EXPORT_SYMBOL(bioset_create);
1da177e4 1978
852c788f 1979#ifdef CONFIG_BLK_CGROUP
1d933cf0
TH
1980
1981/**
1982 * bio_associate_blkcg - associate a bio with the specified blkcg
1983 * @bio: target bio
1984 * @blkcg_css: css of the blkcg to associate
1985 *
1986 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1987 * treat @bio as if it were issued by a task which belongs to the blkcg.
1988 *
1989 * This function takes an extra reference of @blkcg_css which will be put
1990 * when @bio is released. The caller must own @bio and is responsible for
1991 * synchronizing calls to this function.
1992 */
1993int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1994{
1995 if (unlikely(bio->bi_css))
1996 return -EBUSY;
1997 css_get(blkcg_css);
1998 bio->bi_css = blkcg_css;
1999 return 0;
2000}
5aa2a96b 2001EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1d933cf0 2002
852c788f
TH
2003/**
2004 * bio_disassociate_task - undo bio_associate_current()
2005 * @bio: target bio
2006 */
2007void bio_disassociate_task(struct bio *bio)
2008{
2009 if (bio->bi_ioc) {
2010 put_io_context(bio->bi_ioc);
2011 bio->bi_ioc = NULL;
2012 }
2013 if (bio->bi_css) {
2014 css_put(bio->bi_css);
2015 bio->bi_css = NULL;
2016 }
2017}
2018
20bd723e
PV
2019/**
2020 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2021 * @dst: destination bio
2022 * @src: source bio
2023 */
2024void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2025{
2026 if (src->bi_css)
2027 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2028}
8a8e6f84 2029EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
852c788f
TH
2030#endif /* CONFIG_BLK_CGROUP */
2031
1da177e4
LT
2032static void __init biovec_init_slabs(void)
2033{
2034 int i;
2035
ed996a52 2036 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2037 int size;
2038 struct biovec_slab *bvs = bvec_slabs + i;
2039
a7fcd37c
JA
2040 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2041 bvs->slab = NULL;
2042 continue;
2043 }
a7fcd37c 2044
1da177e4
LT
2045 size = bvs->nr_vecs * sizeof(struct bio_vec);
2046 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2047 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2048 }
2049}
2050
2051static int __init init_bio(void)
2052{
bb799ca0
JA
2053 bio_slab_max = 2;
2054 bio_slab_nr = 0;
2055 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2056 if (!bio_slabs)
2057 panic("bio: can't allocate bios\n");
1da177e4 2058
7878cba9 2059 bio_integrity_init();
1da177e4
LT
2060 biovec_init_slabs();
2061
f4f8154a 2062 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
2063 panic("bio: can't allocate bios\n");
2064
f4f8154a 2065 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
2066 panic("bio: can't create integrity pool\n");
2067
1da177e4
LT
2068 return 0;
2069}
1da177e4 2070subsys_initcall(init_bio);