nbd: use the atomic queue limits API in nbd_set_size
[linux-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
b4c5875d 18#include <linux/highmem.h>
a892c8d5 19#include <linux/blk-crypto.h>
49d1ec85 20#include <linux/xarray.h>
1da177e4 21
55782138 22#include <trace/events/block.h>
9e234eea 23#include "blk.h"
67b42d0b 24#include "blk-rq-qos.h"
672fdcf0 25#include "blk-cgroup.h"
0bfc2455 26
b99182c5 27#define ALLOC_CACHE_THRESHOLD 16
42b2b2fb 28#define ALLOC_CACHE_MAX 256
b99182c5 29
be4d234d 30struct bio_alloc_cache {
fcade2ce 31 struct bio *free_list;
b99182c5 32 struct bio *free_list_irq;
be4d234d 33 unsigned int nr;
b99182c5 34 unsigned int nr_irq;
be4d234d
JA
35};
36
de76fd89 37static struct biovec_slab {
6ac0b715
CH
38 int nr_vecs;
39 char *name;
40 struct kmem_cache *slab;
de76fd89
CH
41} bvec_slabs[] __read_mostly = {
42 { .nr_vecs = 16, .name = "biovec-16" },
43 { .nr_vecs = 64, .name = "biovec-64" },
44 { .nr_vecs = 128, .name = "biovec-128" },
a8affc03 45 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
1da177e4 46};
6ac0b715 47
7a800a20
CH
48static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
49{
50 switch (nr_vecs) {
51 /* smaller bios use inline vecs */
52 case 5 ... 16:
53 return &bvec_slabs[0];
54 case 17 ... 64:
55 return &bvec_slabs[1];
56 case 65 ... 128:
57 return &bvec_slabs[2];
a8affc03 58 case 129 ... BIO_MAX_VECS:
7a800a20
CH
59 return &bvec_slabs[3];
60 default:
61 BUG();
62 return NULL;
63 }
64}
1da177e4 65
1da177e4
LT
66/*
67 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
68 * IO code that does not need private memory pools.
69 */
f4f8154a 70struct bio_set fs_bio_set;
3f86a82a 71EXPORT_SYMBOL(fs_bio_set);
1da177e4 72
bb799ca0
JA
73/*
74 * Our slab pool management
75 */
76struct bio_slab {
77 struct kmem_cache *slab;
78 unsigned int slab_ref;
79 unsigned int slab_size;
80 char name[8];
81};
82static DEFINE_MUTEX(bio_slab_lock);
49d1ec85 83static DEFINE_XARRAY(bio_slabs);
bb799ca0 84
49d1ec85 85static struct bio_slab *create_bio_slab(unsigned int size)
bb799ca0 86{
49d1ec85 87 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
bb799ca0 88
49d1ec85
ML
89 if (!bslab)
90 return NULL;
bb799ca0 91
49d1ec85
ML
92 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
93 bslab->slab = kmem_cache_create(bslab->name, size,
1a7e76e4
CH
94 ARCH_KMALLOC_MINALIGN,
95 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
49d1ec85
ML
96 if (!bslab->slab)
97 goto fail_alloc_slab;
bb799ca0 98
49d1ec85
ML
99 bslab->slab_ref = 1;
100 bslab->slab_size = size;
bb799ca0 101
49d1ec85
ML
102 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
103 return bslab;
bb799ca0 104
49d1ec85 105 kmem_cache_destroy(bslab->slab);
bb799ca0 106
49d1ec85
ML
107fail_alloc_slab:
108 kfree(bslab);
109 return NULL;
110}
bb799ca0 111
49d1ec85
ML
112static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
113{
9f180e31 114 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
49d1ec85 115}
bb799ca0 116
49d1ec85
ML
117static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
118{
119 unsigned int size = bs_bio_slab_size(bs);
120 struct bio_slab *bslab;
bb799ca0 121
49d1ec85
ML
122 mutex_lock(&bio_slab_lock);
123 bslab = xa_load(&bio_slabs, size);
124 if (bslab)
125 bslab->slab_ref++;
126 else
127 bslab = create_bio_slab(size);
bb799ca0 128 mutex_unlock(&bio_slab_lock);
49d1ec85
ML
129
130 if (bslab)
131 return bslab->slab;
132 return NULL;
bb799ca0
JA
133}
134
135static void bio_put_slab(struct bio_set *bs)
136{
137 struct bio_slab *bslab = NULL;
49d1ec85 138 unsigned int slab_size = bs_bio_slab_size(bs);
bb799ca0
JA
139
140 mutex_lock(&bio_slab_lock);
141
49d1ec85 142 bslab = xa_load(&bio_slabs, slab_size);
bb799ca0
JA
143 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144 goto out;
145
49d1ec85
ML
146 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
147
bb799ca0
JA
148 WARN_ON(!bslab->slab_ref);
149
150 if (--bslab->slab_ref)
151 goto out;
152
49d1ec85
ML
153 xa_erase(&bio_slabs, slab_size);
154
bb799ca0 155 kmem_cache_destroy(bslab->slab);
49d1ec85 156 kfree(bslab);
bb799ca0
JA
157
158out:
159 mutex_unlock(&bio_slab_lock);
160}
161
7a800a20 162void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
7ba1ba12 163{
9e8c0d0d 164 BUG_ON(nr_vecs > BIO_MAX_VECS);
ed996a52 165
a8affc03 166 if (nr_vecs == BIO_MAX_VECS)
9f060e22 167 mempool_free(bv, pool);
7a800a20
CH
168 else if (nr_vecs > BIO_INLINE_VECS)
169 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
bb799ca0 170}
bb799ca0 171
f2c3eb9b
CH
172/*
173 * Make the first allocation restricted and don't dump info on allocation
174 * failures, since we'll fall back to the mempool in case of failure.
175 */
176static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
177{
178 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
179 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
bb799ca0
JA
180}
181
7a800a20
CH
182struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
183 gfp_t gfp_mask)
1da177e4 184{
7a800a20 185 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
1da177e4 186
7a800a20 187 if (WARN_ON_ONCE(!bvs))
7ff9345f 188 return NULL;
7ff9345f
JA
189
190 /*
7a800a20
CH
191 * Upgrade the nr_vecs request to take full advantage of the allocation.
192 * We also rely on this in the bvec_free path.
7ff9345f 193 */
7a800a20 194 *nr_vecs = bvs->nr_vecs;
7ff9345f 195
7ff9345f 196 /*
f007a3d6
CH
197 * Try a slab allocation first for all smaller allocations. If that
198 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
a8affc03 199 * The mempool is sized to handle up to BIO_MAX_VECS entries.
7ff9345f 200 */
a8affc03 201 if (*nr_vecs < BIO_MAX_VECS) {
f007a3d6 202 struct bio_vec *bvl;
1da177e4 203
f2c3eb9b 204 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
7a800a20 205 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
f007a3d6 206 return bvl;
a8affc03 207 *nr_vecs = BIO_MAX_VECS;
7ff9345f
JA
208 }
209
f007a3d6 210 return mempool_alloc(pool, gfp_mask);
1da177e4
LT
211}
212
9ae3b3f5 213void bio_uninit(struct bio *bio)
1da177e4 214{
db9819c7
CH
215#ifdef CONFIG_BLK_CGROUP
216 if (bio->bi_blkg) {
217 blkg_put(bio->bi_blkg);
218 bio->bi_blkg = NULL;
219 }
220#endif
ece841ab
JT
221 if (bio_integrity(bio))
222 bio_integrity_free(bio);
a892c8d5
ST
223
224 bio_crypt_free_ctx(bio);
4254bba1 225}
9ae3b3f5 226EXPORT_SYMBOL(bio_uninit);
7ba1ba12 227
4254bba1
KO
228static void bio_free(struct bio *bio)
229{
230 struct bio_set *bs = bio->bi_pool;
066ff571 231 void *p = bio;
4254bba1 232
066ff571 233 WARN_ON_ONCE(!bs);
4254bba1 234
066ff571
CH
235 bio_uninit(bio);
236 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
237 mempool_free(p - bs->front_pad, &bs->bio_pool);
3676347a
PO
238}
239
9ae3b3f5
JA
240/*
241 * Users of this function have their own bio allocation. Subsequently,
242 * they must remember to pair any call to bio_init() with bio_uninit()
243 * when IO has completed, or when the bio is released.
244 */
49add496 245void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
16458cf3 246 unsigned short max_vecs, blk_opf_t opf)
1da177e4 247{
da521626 248 bio->bi_next = NULL;
49add496
CH
249 bio->bi_bdev = bdev;
250 bio->bi_opf = opf;
da521626
JA
251 bio->bi_flags = 0;
252 bio->bi_ioprio = 0;
da521626
JA
253 bio->bi_status = 0;
254 bio->bi_iter.bi_sector = 0;
255 bio->bi_iter.bi_size = 0;
256 bio->bi_iter.bi_idx = 0;
257 bio->bi_iter.bi_bvec_done = 0;
258 bio->bi_end_io = NULL;
259 bio->bi_private = NULL;
260#ifdef CONFIG_BLK_CGROUP
261 bio->bi_blkg = NULL;
262 bio->bi_issue.value = 0;
49add496
CH
263 if (bdev)
264 bio_associate_blkg(bio);
da521626
JA
265#ifdef CONFIG_BLK_CGROUP_IOCOST
266 bio->bi_iocost_cost = 0;
267#endif
268#endif
269#ifdef CONFIG_BLK_INLINE_ENCRYPTION
270 bio->bi_crypt_context = NULL;
271#endif
272#ifdef CONFIG_BLK_DEV_INTEGRITY
273 bio->bi_integrity = NULL;
274#endif
275 bio->bi_vcnt = 0;
276
c4cf5261 277 atomic_set(&bio->__bi_remaining, 1);
dac56212 278 atomic_set(&bio->__bi_cnt, 1);
3e08773c 279 bio->bi_cookie = BLK_QC_T_NONE;
3a83f467 280
3a83f467 281 bio->bi_max_vecs = max_vecs;
da521626
JA
282 bio->bi_io_vec = table;
283 bio->bi_pool = NULL;
1da177e4 284}
a112a71d 285EXPORT_SYMBOL(bio_init);
1da177e4 286
f44b48c7
KO
287/**
288 * bio_reset - reinitialize a bio
289 * @bio: bio to reset
a7c50c94
CH
290 * @bdev: block device to use the bio for
291 * @opf: operation and flags for bio
f44b48c7
KO
292 *
293 * Description:
294 * After calling bio_reset(), @bio will be in the same state as a freshly
295 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
296 * preserved are the ones that are initialized by bio_alloc_bioset(). See
297 * comment in struct bio.
298 */
16458cf3 299void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
f44b48c7 300{
9ae3b3f5 301 bio_uninit(bio);
f44b48c7 302 memset(bio, 0, BIO_RESET_BYTES);
c4cf5261 303 atomic_set(&bio->__bi_remaining, 1);
a7c50c94 304 bio->bi_bdev = bdev;
78e34374
CH
305 if (bio->bi_bdev)
306 bio_associate_blkg(bio);
a7c50c94 307 bio->bi_opf = opf;
f44b48c7
KO
308}
309EXPORT_SYMBOL(bio_reset);
310
38f8baae 311static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 312{
4246a0b6
CH
313 struct bio *parent = bio->bi_private;
314
3edf5346 315 if (bio->bi_status && !parent->bi_status)
4e4cbee9 316 parent->bi_status = bio->bi_status;
196d38bc 317 bio_put(bio);
38f8baae
CH
318 return parent;
319}
320
321static void bio_chain_endio(struct bio *bio)
322{
323 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
324}
325
326/**
327 * bio_chain - chain bio completions
1051a902 328 * @bio: the target bio
5b874af6 329 * @parent: the parent bio of @bio
196d38bc
KO
330 *
331 * The caller won't have a bi_end_io called when @bio completes - instead,
332 * @parent's bi_end_io won't be called until both @parent and @bio have
333 * completed; the chained bio will also be freed when it completes.
334 *
335 * The caller must not set bi_private or bi_end_io in @bio.
336 */
337void bio_chain(struct bio *bio, struct bio *parent)
338{
339 BUG_ON(bio->bi_private || bio->bi_end_io);
340
341 bio->bi_private = parent;
342 bio->bi_end_io = bio_chain_endio;
c4cf5261 343 bio_inc_remaining(parent);
196d38bc
KO
344}
345EXPORT_SYMBOL(bio_chain);
346
0a3140ea 347struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
16458cf3 348 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
3b005bf6 349{
07888c66 350 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
0a3140ea 351
3b005bf6
CH
352 if (bio) {
353 bio_chain(bio, new);
354 submit_bio(bio);
355 }
356
357 return new;
358}
359EXPORT_SYMBOL_GPL(blk_next_bio);
360
df2cb6da
KO
361static void bio_alloc_rescue(struct work_struct *work)
362{
363 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
364 struct bio *bio;
365
366 while (1) {
367 spin_lock(&bs->rescue_lock);
368 bio = bio_list_pop(&bs->rescue_list);
369 spin_unlock(&bs->rescue_lock);
370
371 if (!bio)
372 break;
373
ed00aabd 374 submit_bio_noacct(bio);
df2cb6da
KO
375 }
376}
377
378static void punt_bios_to_rescuer(struct bio_set *bs)
379{
380 struct bio_list punt, nopunt;
381 struct bio *bio;
382
47e0fb46
N
383 if (WARN_ON_ONCE(!bs->rescue_workqueue))
384 return;
df2cb6da
KO
385 /*
386 * In order to guarantee forward progress we must punt only bios that
387 * were allocated from this bio_set; otherwise, if there was a bio on
388 * there for a stacking driver higher up in the stack, processing it
389 * could require allocating bios from this bio_set, and doing that from
390 * our own rescuer would be bad.
391 *
392 * Since bio lists are singly linked, pop them all instead of trying to
393 * remove from the middle of the list:
394 */
395
396 bio_list_init(&punt);
397 bio_list_init(&nopunt);
398
f5fe1b51 399 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 400 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 401 current->bio_list[0] = nopunt;
df2cb6da 402
f5fe1b51
N
403 bio_list_init(&nopunt);
404 while ((bio = bio_list_pop(&current->bio_list[1])))
405 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
406 current->bio_list[1] = nopunt;
df2cb6da
KO
407
408 spin_lock(&bs->rescue_lock);
409 bio_list_merge(&bs->rescue_list, &punt);
410 spin_unlock(&bs->rescue_lock);
411
412 queue_work(bs->rescue_workqueue, &bs->rescue_work);
413}
414
b99182c5
PB
415static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
416{
417 unsigned long flags;
418
419 /* cache->free_list must be empty */
420 if (WARN_ON_ONCE(cache->free_list))
421 return;
422
423 local_irq_save(flags);
424 cache->free_list = cache->free_list_irq;
425 cache->free_list_irq = NULL;
426 cache->nr += cache->nr_irq;
427 cache->nr_irq = 0;
428 local_irq_restore(flags);
429}
430
0df71650 431static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
16458cf3 432 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
0df71650
MS
433 struct bio_set *bs)
434{
435 struct bio_alloc_cache *cache;
436 struct bio *bio;
437
438 cache = per_cpu_ptr(bs->cache, get_cpu());
439 if (!cache->free_list) {
b99182c5
PB
440 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
441 bio_alloc_irq_cache_splice(cache);
442 if (!cache->free_list) {
443 put_cpu();
444 return NULL;
445 }
0df71650
MS
446 }
447 bio = cache->free_list;
448 cache->free_list = bio->bi_next;
449 cache->nr--;
450 put_cpu();
451
452 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
453 bio->bi_pool = bs;
454 return bio;
455}
456
1da177e4
LT
457/**
458 * bio_alloc_bioset - allocate a bio for I/O
609be106
CH
459 * @bdev: block device to allocate the bio for (can be %NULL)
460 * @nr_vecs: number of bvecs to pre-allocate
461 * @opf: operation and flags for bio
519c8e9f 462 * @gfp_mask: the GFP_* mask given to the slab allocator
db18efac 463 * @bs: the bio_set to allocate from.
1da177e4 464 *
3175199a 465 * Allocate a bio from the mempools in @bs.
3f86a82a 466 *
3175199a
CH
467 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
468 * allocate a bio. This is due to the mempool guarantees. To make this work,
469 * callers must never allocate more than 1 bio at a time from the general pool.
470 * Callers that need to allocate more than 1 bio must always submit the
471 * previously allocated bio for IO before attempting to allocate a new one.
472 * Failure to do so can cause deadlocks under memory pressure.
3f86a82a 473 *
3175199a
CH
474 * Note that when running under submit_bio_noacct() (i.e. any block driver),
475 * bios are not submitted until after you return - see the code in
476 * submit_bio_noacct() that converts recursion into iteration, to prevent
477 * stack overflows.
df2cb6da 478 *
3175199a
CH
479 * This would normally mean allocating multiple bios under submit_bio_noacct()
480 * would be susceptible to deadlocks, but we have
481 * deadlock avoidance code that resubmits any blocked bios from a rescuer
482 * thread.
df2cb6da 483 *
3175199a
CH
484 * However, we do not guarantee forward progress for allocations from other
485 * mempools. Doing multiple allocations from the same mempool under
486 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
487 * for per bio allocations.
df2cb6da 488 *
3175199a 489 * Returns: Pointer to new bio on success, NULL on failure.
3f86a82a 490 */
609be106 491struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
16458cf3 492 blk_opf_t opf, gfp_t gfp_mask,
7a88fa19 493 struct bio_set *bs)
1da177e4 494{
df2cb6da 495 gfp_t saved_gfp = gfp_mask;
451a9ebf
TH
496 struct bio *bio;
497 void *p;
498
609be106
CH
499 /* should not use nobvec bioset for nr_vecs > 0 */
500 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
3175199a 501 return NULL;
df2cb6da 502
0df71650
MS
503 if (opf & REQ_ALLOC_CACHE) {
504 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
505 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
506 gfp_mask, bs);
507 if (bio)
508 return bio;
509 /*
510 * No cached bio available, bio returned below marked with
511 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
512 */
513 } else {
514 opf &= ~REQ_ALLOC_CACHE;
515 }
516 }
517
3175199a
CH
518 /*
519 * submit_bio_noacct() converts recursion to iteration; this means if
520 * we're running beneath it, any bios we allocate and submit will not be
521 * submitted (and thus freed) until after we return.
522 *
523 * This exposes us to a potential deadlock if we allocate multiple bios
524 * from the same bio_set() while running underneath submit_bio_noacct().
525 * If we were to allocate multiple bios (say a stacking block driver
526 * that was splitting bios), we would deadlock if we exhausted the
527 * mempool's reserve.
528 *
529 * We solve this, and guarantee forward progress, with a rescuer
530 * workqueue per bio_set. If we go to allocate and there are bios on
531 * current->bio_list, we first try the allocation without
532 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
533 * blocking to the rescuer workqueue before we retry with the original
534 * gfp_flags.
535 */
536 if (current->bio_list &&
537 (!bio_list_empty(&current->bio_list[0]) ||
538 !bio_list_empty(&current->bio_list[1])) &&
539 bs->rescue_workqueue)
540 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
541
542 p = mempool_alloc(&bs->bio_pool, gfp_mask);
543 if (!p && gfp_mask != saved_gfp) {
544 punt_bios_to_rescuer(bs);
545 gfp_mask = saved_gfp;
8aa6ba2f 546 p = mempool_alloc(&bs->bio_pool, gfp_mask);
3f86a82a 547 }
451a9ebf
TH
548 if (unlikely(!p))
549 return NULL;
759aa12f
PB
550 if (!mempool_is_saturated(&bs->bio_pool))
551 opf &= ~REQ_ALLOC_CACHE;
1da177e4 552
3175199a 553 bio = p + bs->front_pad;
609be106 554 if (nr_vecs > BIO_INLINE_VECS) {
3175199a 555 struct bio_vec *bvl = NULL;
34053979 556
609be106 557 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
df2cb6da
KO
558 if (!bvl && gfp_mask != saved_gfp) {
559 punt_bios_to_rescuer(bs);
560 gfp_mask = saved_gfp;
609be106 561 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
df2cb6da 562 }
34053979
IM
563 if (unlikely(!bvl))
564 goto err_free;
a38352e0 565
49add496 566 bio_init(bio, bdev, bvl, nr_vecs, opf);
609be106 567 } else if (nr_vecs) {
49add496 568 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
3175199a 569 } else {
49add496 570 bio_init(bio, bdev, NULL, 0, opf);
1da177e4 571 }
3f86a82a
KO
572
573 bio->bi_pool = bs;
1da177e4 574 return bio;
34053979
IM
575
576err_free:
8aa6ba2f 577 mempool_free(p, &bs->bio_pool);
34053979 578 return NULL;
1da177e4 579}
a112a71d 580EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 581
3175199a 582/**
066ff571
CH
583 * bio_kmalloc - kmalloc a bio
584 * @nr_vecs: number of bio_vecs to allocate
3175199a 585 * @gfp_mask: the GFP_* mask given to the slab allocator
3175199a 586 *
066ff571
CH
587 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized
588 * using bio_init() before use. To free a bio returned from this function use
589 * kfree() after calling bio_uninit(). A bio returned from this function can
590 * be reused by calling bio_uninit() before calling bio_init() again.
591 *
592 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
340e1347 593 * function are not backed by a mempool can fail. Do not use this function
066ff571 594 * for allocations in the file system I/O path.
3175199a
CH
595 *
596 * Returns: Pointer to new bio on success, NULL on failure.
597 */
066ff571 598struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
3175199a
CH
599{
600 struct bio *bio;
601
066ff571 602 if (nr_vecs > UIO_MAXIOV)
3175199a 603 return NULL;
066ff571 604 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
3175199a
CH
605}
606EXPORT_SYMBOL(bio_kmalloc);
607
649f070e 608void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4 609{
7988613b
KO
610 struct bio_vec bv;
611 struct bvec_iter iter;
1da177e4 612
649f070e 613 __bio_for_each_segment(bv, bio, iter, start)
ab6c340e 614 memzero_bvec(&bv);
1da177e4 615}
649f070e 616EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4 617
83c9c547
ML
618/**
619 * bio_truncate - truncate the bio to small size of @new_size
620 * @bio: the bio to be truncated
621 * @new_size: new size for truncating the bio
622 *
623 * Description:
624 * Truncate the bio to new size of @new_size. If bio_op(bio) is
625 * REQ_OP_READ, zero the truncated part. This function should only
626 * be used for handling corner cases, such as bio eod.
627 */
4f7ab09a 628static void bio_truncate(struct bio *bio, unsigned new_size)
85a8ce62
ML
629{
630 struct bio_vec bv;
631 struct bvec_iter iter;
632 unsigned int done = 0;
633 bool truncated = false;
634
635 if (new_size >= bio->bi_iter.bi_size)
636 return;
637
83c9c547 638 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
639 goto exit;
640
641 bio_for_each_segment(bv, bio, iter) {
642 if (done + bv.bv_len > new_size) {
643 unsigned offset;
644
645 if (!truncated)
646 offset = new_size - done;
647 else
648 offset = 0;
3ee859e3
OH
649 zero_user(bv.bv_page, bv.bv_offset + offset,
650 bv.bv_len - offset);
85a8ce62
ML
651 truncated = true;
652 }
653 done += bv.bv_len;
654 }
655
656 exit:
657 /*
658 * Don't touch bvec table here and make it really immutable, since
659 * fs bio user has to retrieve all pages via bio_for_each_segment_all
660 * in its .end_bio() callback.
661 *
662 * It is enough to truncate bio by updating .bi_size since we can make
663 * correct bvec with the updated .bi_size for drivers.
664 */
665 bio->bi_iter.bi_size = new_size;
666}
667
29125ed6
CH
668/**
669 * guard_bio_eod - truncate a BIO to fit the block device
670 * @bio: bio to truncate
671 *
672 * This allows us to do IO even on the odd last sectors of a device, even if the
673 * block size is some multiple of the physical sector size.
674 *
675 * We'll just truncate the bio to the size of the device, and clear the end of
676 * the buffer head manually. Truly out-of-range accesses will turn into actual
677 * I/O errors, this only handles the "we need to be able to do I/O at the final
678 * sector" case.
679 */
680void guard_bio_eod(struct bio *bio)
681{
309dca30 682 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
683
684 if (!maxsector)
685 return;
686
687 /*
688 * If the *whole* IO is past the end of the device,
689 * let it through, and the IO layer will turn it into
690 * an EIO.
691 */
692 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
693 return;
694
695 maxsector -= bio->bi_iter.bi_sector;
696 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
697 return;
698
699 bio_truncate(bio, maxsector << 9);
700}
701
b99182c5
PB
702static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
703 unsigned int nr)
be4d234d
JA
704{
705 unsigned int i = 0;
706 struct bio *bio;
707
fcade2ce
JA
708 while ((bio = cache->free_list) != NULL) {
709 cache->free_list = bio->bi_next;
be4d234d
JA
710 cache->nr--;
711 bio_free(bio);
712 if (++i == nr)
713 break;
714 }
b99182c5
PB
715 return i;
716}
717
718static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
719 unsigned int nr)
720{
721 nr -= __bio_alloc_cache_prune(cache, nr);
722 if (!READ_ONCE(cache->free_list)) {
723 bio_alloc_irq_cache_splice(cache);
724 __bio_alloc_cache_prune(cache, nr);
725 }
be4d234d
JA
726}
727
728static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
729{
730 struct bio_set *bs;
731
732 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
733 if (bs->cache) {
734 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
735
736 bio_alloc_cache_prune(cache, -1U);
737 }
738 return 0;
739}
740
741static void bio_alloc_cache_destroy(struct bio_set *bs)
742{
743 int cpu;
744
745 if (!bs->cache)
746 return;
747
748 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
749 for_each_possible_cpu(cpu) {
750 struct bio_alloc_cache *cache;
751
752 cache = per_cpu_ptr(bs->cache, cpu);
753 bio_alloc_cache_prune(cache, -1U);
754 }
755 free_percpu(bs->cache);
605f7415 756 bs->cache = NULL;
be4d234d
JA
757}
758
f25cf75a
PB
759static inline void bio_put_percpu_cache(struct bio *bio)
760{
761 struct bio_alloc_cache *cache;
762
763 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
e516c3fc
PB
764 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
765 goto out_free;
f25cf75a 766
c9f5f3aa 767 if (in_task()) {
e516c3fc 768 bio_uninit(bio);
f25cf75a 769 bio->bi_next = cache->free_list;
c9f5f3aa 770 /* Not necessary but helps not to iopoll already freed bios */
11eb695f 771 bio->bi_bdev = NULL;
f25cf75a
PB
772 cache->free_list = bio;
773 cache->nr++;
e516c3fc
PB
774 } else if (in_hardirq()) {
775 lockdep_assert_irqs_disabled();
f25cf75a 776
e516c3fc 777 bio_uninit(bio);
b99182c5
PB
778 bio->bi_next = cache->free_list_irq;
779 cache->free_list_irq = bio;
780 cache->nr_irq++;
e516c3fc
PB
781 } else {
782 goto out_free;
b99182c5 783 }
f25cf75a 784 put_cpu();
e516c3fc
PB
785 return;
786out_free:
787 put_cpu();
788 bio_free(bio);
f25cf75a
PB
789}
790
1da177e4
LT
791/**
792 * bio_put - release a reference to a bio
793 * @bio: bio to release reference to
794 *
795 * Description:
796 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 797 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
798 **/
799void bio_put(struct bio *bio)
800{
be4d234d 801 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
9e8c0d0d 802 BUG_ON(!atomic_read(&bio->__bi_cnt));
be4d234d
JA
803 if (!atomic_dec_and_test(&bio->__bi_cnt))
804 return;
805 }
f25cf75a
PB
806 if (bio->bi_opf & REQ_ALLOC_CACHE)
807 bio_put_percpu_cache(bio);
808 else
be4d234d 809 bio_free(bio);
1da177e4 810}
a112a71d 811EXPORT_SYMBOL(bio_put);
1da177e4 812
a0e8de79 813static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
59d276fe 814{
b7c44ed9 815 bio_set_flag(bio, BIO_CLONED);
ca474b73 816 bio->bi_ioprio = bio_src->bi_ioprio;
59d276fe 817 bio->bi_iter = bio_src->bi_iter;
20bd723e 818
7ecc56c6
CH
819 if (bio->bi_bdev) {
820 if (bio->bi_bdev == bio_src->bi_bdev &&
821 bio_flagged(bio_src, BIO_REMAPPED))
822 bio_set_flag(bio, BIO_REMAPPED);
823 bio_clone_blkg_association(bio, bio_src);
824 }
56b4b5ab
CH
825
826 if (bio_crypt_clone(bio, bio_src, gfp) < 0)
827 return -ENOMEM;
828 if (bio_integrity(bio_src) &&
829 bio_integrity_clone(bio, bio_src, gfp) < 0)
830 return -ENOMEM;
831 return 0;
59d276fe 832}
59d276fe
KO
833
834/**
abfc426d
CH
835 * bio_alloc_clone - clone a bio that shares the original bio's biovec
836 * @bdev: block_device to clone onto
a0e8de79
CH
837 * @bio_src: bio to clone from
838 * @gfp: allocation priority
839 * @bs: bio_set to allocate from
59d276fe 840 *
a0e8de79
CH
841 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
842 * bio, but not the actual data it points to.
843 *
844 * The caller must ensure that the return bio is not freed before @bio_src.
59d276fe 845 */
abfc426d
CH
846struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
847 gfp_t gfp, struct bio_set *bs)
59d276fe 848{
a0e8de79 849 struct bio *bio;
59d276fe 850
abfc426d 851 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
a0e8de79 852 if (!bio)
59d276fe
KO
853 return NULL;
854
a0e8de79
CH
855 if (__bio_clone(bio, bio_src, gfp) < 0) {
856 bio_put(bio);
56b4b5ab
CH
857 return NULL;
858 }
a0e8de79 859 bio->bi_io_vec = bio_src->bi_io_vec;
59d276fe 860
a0e8de79 861 return bio;
59d276fe 862}
abfc426d 863EXPORT_SYMBOL(bio_alloc_clone);
59d276fe 864
a0e8de79 865/**
abfc426d
CH
866 * bio_init_clone - clone a bio that shares the original bio's biovec
867 * @bdev: block_device to clone onto
a0e8de79
CH
868 * @bio: bio to clone into
869 * @bio_src: bio to clone from
870 * @gfp: allocation priority
871 *
872 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
873 * The caller owns the returned bio, but not the actual data it points to.
874 *
875 * The caller must ensure that @bio_src is not freed before @bio.
876 */
abfc426d
CH
877int bio_init_clone(struct block_device *bdev, struct bio *bio,
878 struct bio *bio_src, gfp_t gfp)
a0e8de79
CH
879{
880 int ret;
881
abfc426d 882 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
a0e8de79
CH
883 ret = __bio_clone(bio, bio_src, gfp);
884 if (ret)
885 bio_uninit(bio);
886 return ret;
887}
abfc426d 888EXPORT_SYMBOL(bio_init_clone);
a0e8de79 889
9a6083be
CH
890/**
891 * bio_full - check if the bio is full
892 * @bio: bio to check
893 * @len: length of one segment to be added
894 *
895 * Return true if @bio is full and one segment with @len bytes can't be
896 * added to the bio, otherwise return false
897 */
898static inline bool bio_full(struct bio *bio, unsigned len)
899{
900 if (bio->bi_vcnt >= bio->bi_max_vecs)
901 return true;
902 if (bio->bi_iter.bi_size > UINT_MAX - len)
903 return true;
904 return false;
905}
906
858c708d
CH
907static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
908 unsigned int len, unsigned int off, bool *same_page)
5919482e 909{
d8166519
MWO
910 size_t bv_end = bv->bv_offset + bv->bv_len;
911 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
912 phys_addr_t page_addr = page_to_phys(page);
913
914 if (vec_end_addr + 1 != page_addr + off)
915 return false;
916 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
917 return false;
49580e69
LG
918 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
919 return false;
52d52d1c 920
ff896738 921 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
858c708d
CH
922 if (!*same_page) {
923 if (IS_ENABLED(CONFIG_KMSAN))
924 return false;
925 if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
926 return false;
927 }
0eca8b6f 928
0eca8b6f 929 bv->bv_len += len;
0eca8b6f 930 return true;
9774b391
CH
931}
932
e4581105
CH
933/*
934 * Try to merge a page into a segment, while obeying the hardware segment
935 * size limit. This is not for normal read/write bios, but for passthrough
936 * or Zone Append operations that we can't split.
937 */
7c8998f7 938bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
ae42f0b3
CH
939 struct page *page, unsigned len, unsigned offset,
940 bool *same_page)
489fbbcb
ML
941{
942 unsigned long mask = queue_segment_boundary(q);
943 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
944 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
945
946 if ((addr1 | mask) != (addr2 | mask))
947 return false;
3f034c37 948 if (len > queue_max_segment_size(q) - bv->bv_len)
489fbbcb 949 return false;
858c708d 950 return bvec_try_merge_page(bv, page, len, offset, same_page);
489fbbcb
ML
951}
952
1da177e4 953/**
e4581105
CH
954 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
955 * @q: the target queue
956 * @bio: destination bio
957 * @page: page to add
958 * @len: vec entry length
959 * @offset: vec entry offset
960 * @max_sectors: maximum number of sectors that can be added
961 * @same_page: return if the segment has been merged inside the same page
c66a14d0 962 *
e4581105
CH
963 * Add a page to a bio while respecting the hardware max_sectors, max_segment
964 * and gap limitations.
1da177e4 965 */
e4581105 966int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 967 struct page *page, unsigned int len, unsigned int offset,
e4581105 968 unsigned int max_sectors, bool *same_page)
1da177e4 969{
6ef02df1
CH
970 unsigned int max_size = max_sectors << SECTOR_SHIFT;
971
e4581105 972 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
973 return 0;
974
6ef02df1
CH
975 len = min3(len, max_size, queue_max_segment_size(q));
976 if (len > max_size - bio->bi_iter.bi_size)
1da177e4
LT
977 return 0;
978
80cfd548 979 if (bio->bi_vcnt > 0) {
ae42f0b3
CH
980 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
981
982 if (bvec_try_merge_hw_page(q, bv, page, len, offset,
858c708d
CH
983 same_page)) {
984 bio->bi_iter.bi_size += len;
384209cd 985 return len;
858c708d 986 }
320ea869 987
cd1d83e2
CH
988 if (bio->bi_vcnt >=
989 min(bio->bi_max_vecs, queue_max_segments(q)))
990 return 0;
991
320ea869
CH
992 /*
993 * If the queue doesn't support SG gaps and adding this segment
994 * would create a gap, disallow it.
995 */
ae42f0b3 996 if (bvec_gap_to_prev(&q->limits, bv, offset))
320ea869 997 return 0;
80cfd548
JA
998 }
999
d58cdfae 1000 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset);
fcbf6a08 1001 bio->bi_vcnt++;
dcdca753 1002 bio->bi_iter.bi_size += len;
1da177e4
LT
1003 return len;
1004}
19047087 1005
e4581105
CH
1006/**
1007 * bio_add_pc_page - attempt to add page to passthrough bio
1008 * @q: the target queue
1009 * @bio: destination bio
1010 * @page: page to add
1011 * @len: vec entry length
1012 * @offset: vec entry offset
1013 *
1014 * Attempt to add a page to the bio_vec maplist. This can fail for a
1015 * number of reasons, such as the bio being full or target block device
1016 * limitations. The target block device must allow bio's up to PAGE_SIZE,
1017 * so it is always possible to add a single page to an empty bio.
1018 *
1019 * This should only be used by passthrough bios.
1020 */
19047087
ML
1021int bio_add_pc_page(struct request_queue *q, struct bio *bio,
1022 struct page *page, unsigned int len, unsigned int offset)
1023{
d1916c86 1024 bool same_page = false;
e4581105
CH
1025 return bio_add_hw_page(q, bio, page, len, offset,
1026 queue_max_hw_sectors(q), &same_page);
19047087 1027}
a112a71d 1028EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 1029
ae29333f
JT
1030/**
1031 * bio_add_zone_append_page - attempt to add page to zone-append bio
1032 * @bio: destination bio
1033 * @page: page to add
1034 * @len: vec entry length
1035 * @offset: vec entry offset
1036 *
1037 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
1038 * for a zone-append request. This can fail for a number of reasons, such as the
1039 * bio being full or the target block device is not a zoned block device or
1040 * other limitations of the target block device. The target block device must
1041 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1042 * to an empty bio.
1043 *
1044 * Returns: number of bytes added to the bio, or 0 in case of a failure.
1045 */
1046int bio_add_zone_append_page(struct bio *bio, struct page *page,
1047 unsigned int len, unsigned int offset)
1048{
3caee463 1049 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae29333f
JT
1050 bool same_page = false;
1051
1052 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1053 return 0;
1054
edd1dbc8 1055 if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
ae29333f
JT
1056 return 0;
1057
1058 return bio_add_hw_page(q, bio, page, len, offset,
1059 queue_max_zone_append_sectors(q), &same_page);
1060}
1061EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1062
0aa69fd3 1063/**
551879a4 1064 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 1065 * @bio: destination bio
551879a4
ML
1066 * @page: start page to add
1067 * @len: length of the data to add, may cross pages
1068 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
1069 *
1070 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
1071 * that @bio has space for another bvec.
1072 */
1073void __bio_add_page(struct bio *bio, struct page *page,
1074 unsigned int len, unsigned int off)
1075{
0aa69fd3 1076 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 1077 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3 1078
d58cdfae 1079 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
c66a14d0 1080 bio->bi_iter.bi_size += len;
0aa69fd3
CH
1081 bio->bi_vcnt++;
1082}
1083EXPORT_SYMBOL_GPL(__bio_add_page);
1084
1085/**
551879a4 1086 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 1087 * @bio: destination bio
551879a4
ML
1088 * @page: start page to add
1089 * @len: vec entry length, may cross pages
1090 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 1091 *
551879a4 1092 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
1093 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1094 */
1095int bio_add_page(struct bio *bio, struct page *page,
1096 unsigned int len, unsigned int offset)
1097{
ff896738
CH
1098 bool same_page = false;
1099
939e1a37
CH
1100 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1101 return 0;
61369905
CH
1102 if (bio->bi_iter.bi_size > UINT_MAX - len)
1103 return 0;
939e1a37 1104
0eca8b6f 1105 if (bio->bi_vcnt > 0 &&
858c708d
CH
1106 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1107 page, len, offset, &same_page)) {
1108 bio->bi_iter.bi_size += len;
0eca8b6f 1109 return len;
858c708d 1110 }
0eca8b6f 1111
80232b52 1112 if (bio->bi_vcnt >= bio->bi_max_vecs)
0eca8b6f
CH
1113 return 0;
1114 __bio_add_page(bio, page, len, offset);
c66a14d0 1115 return len;
1da177e4 1116}
a112a71d 1117EXPORT_SYMBOL(bio_add_page);
1da177e4 1118
7a150f1e
JT
1119void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1120 size_t off)
1121{
1122 WARN_ON_ONCE(len > UINT_MAX);
1123 WARN_ON_ONCE(off > UINT_MAX);
1124 __bio_add_page(bio, &folio->page, len, off);
1125}
1126
85f5a74c
MWO
1127/**
1128 * bio_add_folio - Attempt to add part of a folio to a bio.
1129 * @bio: BIO to add to.
1130 * @folio: Folio to add.
1131 * @len: How many bytes from the folio to add.
1132 * @off: First byte in this folio to add.
1133 *
1134 * Filesystems that use folios can call this function instead of calling
1135 * bio_add_page() for each page in the folio. If @off is bigger than
1136 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1137 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1138 *
1139 * Return: Whether the addition was successful.
1140 */
1141bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1142 size_t off)
1143{
1144 if (len > UINT_MAX || off > UINT_MAX)
455a844d 1145 return false;
85f5a74c
MWO
1146 return bio_add_page(bio, &folio->page, len, off) > 0;
1147}
cd57b771 1148EXPORT_SYMBOL(bio_add_folio);
85f5a74c 1149
c809084a 1150void __bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf 1151{
1b151e24
MWO
1152 struct folio_iter fi;
1153
1154 bio_for_each_folio_all(fi, bio) {
1155 struct page *page;
1156 size_t done = 0;
7321ecbf 1157
1b151e24
MWO
1158 if (mark_dirty) {
1159 folio_lock(fi.folio);
1160 folio_mark_dirty(fi.folio);
1161 folio_unlock(fi.folio);
1162 }
1163 page = folio_page(fi.folio, fi.offset / PAGE_SIZE);
1164 do {
1165 bio_release_page(bio, page++);
1166 done += PAGE_SIZE;
1167 } while (done < fi.length);
d241a95f 1168 }
7321ecbf 1169}
c809084a 1170EXPORT_SYMBOL_GPL(__bio_release_pages);
7321ecbf 1171
1bb6b810 1172void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
6d0c48ae 1173{
fa5fa8ec
PB
1174 size_t size = iov_iter_count(iter);
1175
7a800a20 1176 WARN_ON_ONCE(bio->bi_max_vecs);
c42bca92 1177
fa5fa8ec
PB
1178 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1179 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1180 size_t max_sectors = queue_max_zone_append_sectors(q);
1181
1182 size = min(size, max_sectors << SECTOR_SHIFT);
1183 }
1184
c42bca92 1185 bio->bi_vcnt = iter->nr_segs;
c42bca92
PB
1186 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1187 bio->bi_iter.bi_bvec_done = iter->iov_offset;
fa5fa8ec 1188 bio->bi_iter.bi_size = size;
977be012 1189 bio_set_flag(bio, BIO_CLONED);
7de55b7d 1190}
c42bca92 1191
c58c0074
KB
1192static int bio_iov_add_page(struct bio *bio, struct page *page,
1193 unsigned int len, unsigned int offset)
1194{
1195 bool same_page = false;
1196
61369905
CH
1197 if (WARN_ON_ONCE(bio->bi_iter.bi_size > UINT_MAX - len))
1198 return -EIO;
1199
0eca8b6f 1200 if (bio->bi_vcnt > 0 &&
858c708d
CH
1201 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1202 page, len, offset, &same_page)) {
1203 bio->bi_iter.bi_size += len;
0eca8b6f
CH
1204 if (same_page)
1205 bio_release_page(bio, page);
c58c0074
KB
1206 return 0;
1207 }
0eca8b6f 1208 __bio_add_page(bio, page, len, offset);
c58c0074
KB
1209 return 0;
1210}
1211
1212static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
1213 unsigned int len, unsigned int offset)
1214{
1215 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1216 bool same_page = false;
1217
1218 if (bio_add_hw_page(q, bio, page, len, offset,
1219 queue_max_zone_append_sectors(q), &same_page) != len)
1220 return -EINVAL;
1221 if (same_page)
a7e689dd 1222 bio_release_page(bio, page);
c58c0074
KB
1223 return 0;
1224}
1225
576ed913
CH
1226#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1227
2cefe4db 1228/**
17d51b10 1229 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
1230 * @bio: bio to add pages to
1231 * @iter: iov iterator describing the region to be mapped
1232 *
a7e689dd
DH
1233 * Extracts pages from *iter and appends them to @bio's bvec array. The pages
1234 * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1235 * For a multi-segment *iter, this function only adds pages from the next
1236 * non-empty segment of the iov iterator.
2cefe4db 1237 */
17d51b10 1238static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 1239{
f62e52d1 1240 iov_iter_extraction_t extraction_flags = 0;
576ed913
CH
1241 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1242 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
1243 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1244 struct page **pages = (struct page **)bv;
576ed913 1245 ssize_t size, left;
e97424fd 1246 unsigned len, i = 0;
168145f6 1247 size_t offset;
325347d9 1248 int ret = 0;
576ed913
CH
1249
1250 /*
1251 * Move page array up in the allocated memory for the bio vecs as far as
1252 * possible so that we can start filling biovecs from the beginning
1253 * without overwriting the temporary page array.
c58c0074 1254 */
576ed913
CH
1255 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1256 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db 1257
5e3e3f2e 1258 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
f62e52d1 1259 extraction_flags |= ITER_ALLOW_P2PDMA;
5e3e3f2e 1260
b1a000d3
KB
1261 /*
1262 * Each segment in the iov is required to be a block size multiple.
1263 * However, we may not be able to get the entire segment if it spans
1264 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1265 * result to ensure the bio's total size is correct. The remainder of
1266 * the iov data will be picked up in the next bio iteration.
1267 */
a7e689dd
DH
1268 size = iov_iter_extract_pages(iter, &pages,
1269 UINT_MAX - bio->bi_iter.bi_size,
1270 nr_pages, extraction_flags, &offset);
480cb846
AV
1271 if (unlikely(size <= 0))
1272 return size ? size : -EFAULT;
1273
1274 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1275
168145f6
KO
1276 if (bio->bi_bdev) {
1277 size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1278 iov_iter_revert(iter, trim);
1279 size -= trim;
1280 }
480cb846 1281
480cb846
AV
1282 if (unlikely(!size)) {
1283 ret = -EFAULT;
e97424fd
KB
1284 goto out;
1285 }
2cefe4db 1286
576ed913
CH
1287 for (left = size, i = 0; left > 0; left -= len, i++) {
1288 struct page *page = pages[i];
2cefe4db 1289
576ed913 1290 len = min_t(size_t, PAGE_SIZE - offset, left);
34cdb8c8 1291 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
c58c0074
KB
1292 ret = bio_iov_add_zone_append_page(bio, page, len,
1293 offset);
e97424fd 1294 if (ret)
34cdb8c8 1295 break;
34cdb8c8
KB
1296 } else
1297 bio_iov_add_page(bio, page, len, offset);
45691804 1298
576ed913 1299 offset = 0;
2cefe4db
KO
1300 }
1301
480cb846 1302 iov_iter_revert(iter, left);
e97424fd
KB
1303out:
1304 while (i < nr_pages)
a7e689dd 1305 bio_release_page(bio, pages[i++]);
e97424fd 1306
325347d9 1307 return ret;
2cefe4db 1308}
17d51b10
MW
1309
1310/**
6d0c48ae 1311 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1312 * @bio: bio to add pages to
6d0c48ae
JA
1313 * @iter: iov iterator describing the region to be added
1314 *
1315 * This takes either an iterator pointing to user memory, or one pointing to
1316 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1317 * map them into the kernel. On IO completion, the caller should put those
c42bca92
PB
1318 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1319 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1320 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1321 * completed by a call to ->ki_complete() or returns with an error other than
1322 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1323 * on IO completion. If it isn't, then pages should be released.
17d51b10 1324 *
17d51b10 1325 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1326 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1327 * MM encounters an error pinning the requested pages, it stops. Error
1328 * is returned only if 0 pages could be pinned.
17d51b10
MW
1329 */
1330int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1331{
c42bca92 1332 int ret = 0;
14eacf12 1333
939e1a37
CH
1334 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1335 return -EIO;
1336
c42bca92 1337 if (iov_iter_is_bvec(iter)) {
fa5fa8ec
PB
1338 bio_iov_bvec_set(bio, iter);
1339 iov_iter_advance(iter, bio->bi_iter.bi_size);
1340 return 0;
c42bca92 1341 }
17d51b10 1342
a7e689dd
DH
1343 if (iov_iter_extract_will_pin(iter))
1344 bio_set_flag(bio, BIO_PAGE_PINNED);
17d51b10 1345 do {
c58c0074 1346 ret = __bio_iov_iter_get_pages(bio, iter);
79d08f89 1347 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 1348
14eacf12 1349 return bio->bi_vcnt ? 0 : ret;
17d51b10 1350}
29b2a3aa 1351EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1352
4246a0b6 1353static void submit_bio_wait_endio(struct bio *bio)
9e882242 1354{
65e53aab 1355 complete(bio->bi_private);
9e882242
KO
1356}
1357
1358/**
1359 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1360 * @bio: The &struct bio which describes the I/O
1361 *
1362 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1363 * bio_endio() on failure.
3d289d68
JK
1364 *
1365 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1366 * result in bio reference to be consumed. The caller must drop the reference
1367 * on his own.
9e882242 1368 */
4e49ea4a 1369int submit_bio_wait(struct bio *bio)
9e882242 1370{
309dca30
CH
1371 DECLARE_COMPLETION_ONSTACK_MAP(done,
1372 bio->bi_bdev->bd_disk->lockdep_map);
9e882242 1373
65e53aab 1374 bio->bi_private = &done;
9e882242 1375 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1376 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1377 submit_bio(bio);
0eb4db47 1378 blk_wait_io(&done);
9e882242 1379
65e53aab 1380 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1381}
1382EXPORT_SYMBOL(submit_bio_wait);
1383
d4aa57a1 1384void __bio_advance(struct bio *bio, unsigned bytes)
054bdf64
KO
1385{
1386 if (bio_integrity(bio))
1387 bio_integrity_advance(bio, bytes);
1388
a892c8d5 1389 bio_crypt_advance(bio, bytes);
4550dd6c 1390 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64 1391}
d4aa57a1 1392EXPORT_SYMBOL(__bio_advance);
054bdf64 1393
ee4b4e22
JA
1394void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1395 struct bio *src, struct bvec_iter *src_iter)
1396{
1397 while (src_iter->bi_size && dst_iter->bi_size) {
1398 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1399 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1400 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1401 void *src_buf = bvec_kmap_local(&src_bv);
1402 void *dst_buf = bvec_kmap_local(&dst_bv);
1403
1404 memcpy(dst_buf, src_buf, bytes);
1405
1406 kunmap_local(dst_buf);
1407 kunmap_local(src_buf);
1408
1409 bio_advance_iter_single(src, src_iter, bytes);
1410 bio_advance_iter_single(dst, dst_iter, bytes);
1411 }
1412}
1413EXPORT_SYMBOL(bio_copy_data_iter);
1414
38a72dac 1415/**
45db54d5
KO
1416 * bio_copy_data - copy contents of data buffers from one bio to another
1417 * @src: source bio
1418 * @dst: destination bio
38a72dac
KO
1419 *
1420 * Stops when it reaches the end of either @src or @dst - that is, copies
1421 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1422 */
1423void bio_copy_data(struct bio *dst, struct bio *src)
1424{
45db54d5
KO
1425 struct bvec_iter src_iter = src->bi_iter;
1426 struct bvec_iter dst_iter = dst->bi_iter;
1427
ee4b4e22 1428 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1429}
16ac3d63
KO
1430EXPORT_SYMBOL(bio_copy_data);
1431
491221f8 1432void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1433{
1434 struct bio_vec *bvec;
6dc4f100 1435 struct bvec_iter_all iter_all;
1dfa0f68 1436
2b070cfe 1437 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1438 __free_page(bvec->bv_page);
1439}
491221f8 1440EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1441
1da177e4
LT
1442/*
1443 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1444 * for performing direct-IO in BIOs.
1445 *
1b151e24 1446 * The problem is that we cannot run folio_mark_dirty() from interrupt context
1da177e4
LT
1447 * because the required locks are not interrupt-safe. So what we can do is to
1448 * mark the pages dirty _before_ performing IO. And in interrupt context,
1449 * check that the pages are still dirty. If so, fine. If not, redirty them
1450 * in process context.
1451 *
1da177e4
LT
1452 * Note that this code is very hard to test under normal circumstances because
1453 * direct-io pins the pages with get_user_pages(). This makes
1454 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1455 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1456 * pagecache.
1457 *
1458 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1459 * deferred bio dirtying paths.
1460 */
1461
1462/*
1463 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1464 */
1465void bio_set_pages_dirty(struct bio *bio)
1466{
1b151e24 1467 struct folio_iter fi;
1da177e4 1468
1b151e24
MWO
1469 bio_for_each_folio_all(fi, bio) {
1470 folio_lock(fi.folio);
1471 folio_mark_dirty(fi.folio);
1472 folio_unlock(fi.folio);
1da177e4
LT
1473 }
1474}
7ba37927 1475EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1da177e4 1476
1da177e4
LT
1477/*
1478 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1479 * If they are, then fine. If, however, some pages are clean then they must
1480 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1481 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1482 *
1483 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
fd363244
DH
1484 * here on. It will unpin each page and will run one bio_put() against the
1485 * BIO.
1da177e4
LT
1486 */
1487
65f27f38 1488static void bio_dirty_fn(struct work_struct *work);
1da177e4 1489
65f27f38 1490static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1491static DEFINE_SPINLOCK(bio_dirty_lock);
1492static struct bio *bio_dirty_list;
1493
1494/*
1495 * This runs in process context
1496 */
65f27f38 1497static void bio_dirty_fn(struct work_struct *work)
1da177e4 1498{
24d5493f 1499 struct bio *bio, *next;
1da177e4 1500
24d5493f
CH
1501 spin_lock_irq(&bio_dirty_lock);
1502 next = bio_dirty_list;
1da177e4 1503 bio_dirty_list = NULL;
24d5493f 1504 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1505
24d5493f
CH
1506 while ((bio = next) != NULL) {
1507 next = bio->bi_private;
1da177e4 1508
d241a95f 1509 bio_release_pages(bio, true);
1da177e4 1510 bio_put(bio);
1da177e4
LT
1511 }
1512}
1513
1514void bio_check_pages_dirty(struct bio *bio)
1515{
1b151e24 1516 struct folio_iter fi;
24d5493f 1517 unsigned long flags;
1da177e4 1518
1b151e24
MWO
1519 bio_for_each_folio_all(fi, bio) {
1520 if (!folio_test_dirty(fi.folio))
24d5493f 1521 goto defer;
1da177e4
LT
1522 }
1523
d241a95f 1524 bio_release_pages(bio, false);
24d5493f
CH
1525 bio_put(bio);
1526 return;
1527defer:
1528 spin_lock_irqsave(&bio_dirty_lock, flags);
1529 bio->bi_private = bio_dirty_list;
1530 bio_dirty_list = bio;
1531 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1532 schedule_work(&bio_dirty_work);
1da177e4 1533}
7ba37927 1534EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1da177e4 1535
c4cf5261
JA
1536static inline bool bio_remaining_done(struct bio *bio)
1537{
1538 /*
1539 * If we're not chaining, then ->__bi_remaining is always 1 and
1540 * we always end io on the first invocation.
1541 */
1542 if (!bio_flagged(bio, BIO_CHAIN))
1543 return true;
1544
1545 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1546
326e1dbb 1547 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1548 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1549 return true;
326e1dbb 1550 }
c4cf5261
JA
1551
1552 return false;
1553}
1554
1da177e4
LT
1555/**
1556 * bio_endio - end I/O on a bio
1557 * @bio: bio
1da177e4
LT
1558 *
1559 * Description:
4246a0b6
CH
1560 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1561 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1562 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1563 *
1564 * bio_endio() can be called several times on a bio that has been chained
1565 * using bio_chain(). The ->bi_end_io() function will only be called the
60b6a7e6 1566 * last time.
1da177e4 1567 **/
4246a0b6 1568void bio_endio(struct bio *bio)
1da177e4 1569{
ba8c6967 1570again:
2b885517 1571 if (!bio_remaining_done(bio))
ba8c6967 1572 return;
7c20f116
CH
1573 if (!bio_integrity_endio(bio))
1574 return;
1da177e4 1575
aa1b46dc 1576 rq_qos_done_bio(bio);
67b42d0b 1577
60b6a7e6 1578 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
3caee463 1579 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
60b6a7e6
EH
1580 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1581 }
1582
ba8c6967
CH
1583 /*
1584 * Need to have a real endio function for chained bios, otherwise
1585 * various corner cases will break (like stacking block devices that
1586 * save/restore bi_end_io) - however, we want to avoid unbounded
1587 * recursion and blowing the stack. Tail call optimization would
1588 * handle this, but compiling with frame pointers also disables
1589 * gcc's sibling call optimization.
1590 */
1591 if (bio->bi_end_io == bio_chain_endio) {
1592 bio = __bio_chain_endio(bio);
1593 goto again;
196d38bc 1594 }
ba8c6967 1595
9e234eea 1596 blk_throtl_bio_endio(bio);
b222dd2f
SL
1597 /* release cgroup info */
1598 bio_uninit(bio);
ba8c6967
CH
1599 if (bio->bi_end_io)
1600 bio->bi_end_io(bio);
1da177e4 1601}
a112a71d 1602EXPORT_SYMBOL(bio_endio);
1da177e4 1603
20d0189b
KO
1604/**
1605 * bio_split - split a bio
1606 * @bio: bio to split
1607 * @sectors: number of sectors to split from the front of @bio
1608 * @gfp: gfp mask
1609 * @bs: bio set to allocate from
1610 *
1611 * Allocates and returns a new bio which represents @sectors from the start of
1612 * @bio, and updates @bio to represent the remaining sectors.
1613 *
f3f5da62 1614 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1615 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1616 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1617 */
1618struct bio *bio_split(struct bio *bio, int sectors,
1619 gfp_t gfp, struct bio_set *bs)
1620{
f341a4d3 1621 struct bio *split;
20d0189b
KO
1622
1623 BUG_ON(sectors <= 0);
1624 BUG_ON(sectors >= bio_sectors(bio));
1625
0512a75b
KB
1626 /* Zone append commands cannot be split */
1627 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1628 return NULL;
1629
abfc426d 1630 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
20d0189b
KO
1631 if (!split)
1632 return NULL;
1633
1634 split->bi_iter.bi_size = sectors << 9;
1635
1636 if (bio_integrity(split))
fbd08e76 1637 bio_integrity_trim(split);
20d0189b
KO
1638
1639 bio_advance(bio, split->bi_iter.bi_size);
1640
fbbaf700 1641 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1642 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1643
20d0189b
KO
1644 return split;
1645}
1646EXPORT_SYMBOL(bio_split);
1647
6678d83f
KO
1648/**
1649 * bio_trim - trim a bio
1650 * @bio: bio to trim
1651 * @offset: number of sectors to trim from the front of @bio
1652 * @size: size we want to trim @bio to, in sectors
e83502ca
CK
1653 *
1654 * This function is typically used for bios that are cloned and submitted
1655 * to the underlying device in parts.
6678d83f 1656 */
e83502ca 1657void bio_trim(struct bio *bio, sector_t offset, sector_t size)
6678d83f 1658{
e83502ca 1659 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
8535c018 1660 offset + size > bio_sectors(bio)))
e83502ca 1661 return;
6678d83f
KO
1662
1663 size <<= 9;
4f024f37 1664 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1665 return;
1666
6678d83f 1667 bio_advance(bio, offset << 9);
4f024f37 1668 bio->bi_iter.bi_size = size;
376a78ab
DM
1669
1670 if (bio_integrity(bio))
fbd08e76 1671 bio_integrity_trim(bio);
6678d83f
KO
1672}
1673EXPORT_SYMBOL_GPL(bio_trim);
1674
1da177e4
LT
1675/*
1676 * create memory pools for biovec's in a bio_set.
1677 * use the global biovec slabs created for general use.
1678 */
8aa6ba2f 1679int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1680{
7a800a20 1681 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1da177e4 1682
8aa6ba2f 1683 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1684}
1685
917a38c7
KO
1686/*
1687 * bioset_exit - exit a bioset initialized with bioset_init()
1688 *
1689 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1690 * kzalloc()).
1691 */
1692void bioset_exit(struct bio_set *bs)
1da177e4 1693{
be4d234d 1694 bio_alloc_cache_destroy(bs);
df2cb6da
KO
1695 if (bs->rescue_workqueue)
1696 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1697 bs->rescue_workqueue = NULL;
df2cb6da 1698
8aa6ba2f
KO
1699 mempool_exit(&bs->bio_pool);
1700 mempool_exit(&bs->bvec_pool);
9f060e22 1701
7878cba9 1702 bioset_integrity_free(bs);
917a38c7
KO
1703 if (bs->bio_slab)
1704 bio_put_slab(bs);
1705 bs->bio_slab = NULL;
1706}
1707EXPORT_SYMBOL(bioset_exit);
1da177e4 1708
917a38c7
KO
1709/**
1710 * bioset_init - Initialize a bio_set
dad08527 1711 * @bs: pool to initialize
917a38c7
KO
1712 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1713 * @front_pad: Number of bytes to allocate in front of the returned bio
1714 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1715 * and %BIOSET_NEED_RESCUER
1716 *
dad08527
KO
1717 * Description:
1718 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1719 * to ask for a number of bytes to be allocated in front of the bio.
1720 * Front pad allocation is useful for embedding the bio inside
1721 * another structure, to avoid allocating extra data to go with the bio.
1722 * Note that the bio must be embedded at the END of that structure always,
1723 * or things will break badly.
1724 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
abfc426d
CH
1725 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1726 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1727 * to dispatch queued requests when the mempool runs out of space.
dad08527 1728 *
917a38c7
KO
1729 */
1730int bioset_init(struct bio_set *bs,
1731 unsigned int pool_size,
1732 unsigned int front_pad,
1733 int flags)
1734{
917a38c7 1735 bs->front_pad = front_pad;
9f180e31
ML
1736 if (flags & BIOSET_NEED_BVECS)
1737 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1738 else
1739 bs->back_pad = 0;
917a38c7
KO
1740
1741 spin_lock_init(&bs->rescue_lock);
1742 bio_list_init(&bs->rescue_list);
1743 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1744
49d1ec85 1745 bs->bio_slab = bio_find_or_create_slab(bs);
917a38c7
KO
1746 if (!bs->bio_slab)
1747 return -ENOMEM;
1748
1749 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1750 goto bad;
1751
1752 if ((flags & BIOSET_NEED_BVECS) &&
1753 biovec_init_pool(&bs->bvec_pool, pool_size))
1754 goto bad;
1755
be4d234d
JA
1756 if (flags & BIOSET_NEED_RESCUER) {
1757 bs->rescue_workqueue = alloc_workqueue("bioset",
1758 WQ_MEM_RECLAIM, 0);
1759 if (!bs->rescue_workqueue)
1760 goto bad;
1761 }
1762 if (flags & BIOSET_PERCPU_CACHE) {
1763 bs->cache = alloc_percpu(struct bio_alloc_cache);
1764 if (!bs->cache)
1765 goto bad;
1766 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1767 }
917a38c7
KO
1768
1769 return 0;
1770bad:
1771 bioset_exit(bs);
1772 return -ENOMEM;
1773}
1774EXPORT_SYMBOL(bioset_init);
1775
de76fd89 1776static int __init init_bio(void)
1da177e4
LT
1777{
1778 int i;
1779
a3df2e45
JA
1780 BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1781
7878cba9 1782 bio_integrity_init();
1da177e4 1783
de76fd89
CH
1784 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1785 struct biovec_slab *bvs = bvec_slabs + i;
a7fcd37c 1786
de76fd89
CH
1787 bvs->slab = kmem_cache_create(bvs->name,
1788 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1789 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 1790 }
1da177e4 1791
be4d234d
JA
1792 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1793 bio_cpu_dead);
1794
12c5b70c
JA
1795 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1796 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1da177e4
LT
1797 panic("bio: can't allocate bios\n");
1798
f4f8154a 1799 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1800 panic("bio: can't create integrity pool\n");
1801
1da177e4
LT
1802 return 0;
1803}
1da177e4 1804subsys_initcall(init_bio);