block: unexport get_gendisk
[linux-2.6-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
de6a78b6 20#include <linux/sched/sysctl.h>
1da177e4 21
55782138 22#include <trace/events/block.h>
9e234eea 23#include "blk.h"
67b42d0b 24#include "blk-rq-qos.h"
0bfc2455 25
392ddc32
JA
26/*
27 * Test patch to inline a certain number of bi_io_vec's inside the bio
28 * itself, to shrink a bio data allocation from two mempool calls to one
29 */
30#define BIO_INLINE_VECS 4
31
1da177e4
LT
32/*
33 * if you change this list, also change bvec_alloc or things will
34 * break badly! cannot be bigger than what you can fit into an
35 * unsigned short
36 */
bd5c4fac 37#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 38static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 39 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
40};
41#undef BV
42
1da177e4
LT
43/*
44 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
45 * IO code that does not need private memory pools.
46 */
f4f8154a 47struct bio_set fs_bio_set;
3f86a82a 48EXPORT_SYMBOL(fs_bio_set);
1da177e4 49
bb799ca0
JA
50/*
51 * Our slab pool management
52 */
53struct bio_slab {
54 struct kmem_cache *slab;
55 unsigned int slab_ref;
56 unsigned int slab_size;
57 char name[8];
58};
59static DEFINE_MUTEX(bio_slab_lock);
60static struct bio_slab *bio_slabs;
61static unsigned int bio_slab_nr, bio_slab_max;
62
63static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
64{
65 unsigned int sz = sizeof(struct bio) + extra_size;
66 struct kmem_cache *slab = NULL;
389d7b26 67 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 68 unsigned int new_bio_slab_max;
bb799ca0
JA
69 unsigned int i, entry = -1;
70
71 mutex_lock(&bio_slab_lock);
72
73 i = 0;
74 while (i < bio_slab_nr) {
f06f135d 75 bslab = &bio_slabs[i];
bb799ca0
JA
76
77 if (!bslab->slab && entry == -1)
78 entry = i;
79 else if (bslab->slab_size == sz) {
80 slab = bslab->slab;
81 bslab->slab_ref++;
82 break;
83 }
84 i++;
85 }
86
87 if (slab)
88 goto out_unlock;
89
90 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 91 new_bio_slab_max = bio_slab_max << 1;
389d7b26 92 new_bio_slabs = krealloc(bio_slabs,
386bc35a 93 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
94 GFP_KERNEL);
95 if (!new_bio_slabs)
bb799ca0 96 goto out_unlock;
386bc35a 97 bio_slab_max = new_bio_slab_max;
389d7b26 98 bio_slabs = new_bio_slabs;
bb799ca0
JA
99 }
100 if (entry == -1)
101 entry = bio_slab_nr++;
102
103 bslab = &bio_slabs[entry];
104
105 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
106 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
107 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
108 if (!slab)
109 goto out_unlock;
110
bb799ca0
JA
111 bslab->slab = slab;
112 bslab->slab_ref = 1;
113 bslab->slab_size = sz;
114out_unlock:
115 mutex_unlock(&bio_slab_lock);
116 return slab;
117}
118
119static void bio_put_slab(struct bio_set *bs)
120{
121 struct bio_slab *bslab = NULL;
122 unsigned int i;
123
124 mutex_lock(&bio_slab_lock);
125
126 for (i = 0; i < bio_slab_nr; i++) {
127 if (bs->bio_slab == bio_slabs[i].slab) {
128 bslab = &bio_slabs[i];
129 break;
130 }
131 }
132
133 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
134 goto out;
135
136 WARN_ON(!bslab->slab_ref);
137
138 if (--bslab->slab_ref)
139 goto out;
140
141 kmem_cache_destroy(bslab->slab);
142 bslab->slab = NULL;
143
144out:
145 mutex_unlock(&bio_slab_lock);
146}
147
7ba1ba12
MP
148unsigned int bvec_nr_vecs(unsigned short idx)
149{
d6c02a9b 150 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
151}
152
9f060e22 153void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 154{
ed996a52
CH
155 if (!idx)
156 return;
157 idx--;
158
159 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 160
ed996a52 161 if (idx == BVEC_POOL_MAX) {
9f060e22 162 mempool_free(bv, pool);
ed996a52 163 } else {
bb799ca0
JA
164 struct biovec_slab *bvs = bvec_slabs + idx;
165
166 kmem_cache_free(bvs->slab, bv);
167 }
168}
169
9f060e22
KO
170struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
171 mempool_t *pool)
1da177e4
LT
172{
173 struct bio_vec *bvl;
1da177e4 174
7ff9345f
JA
175 /*
176 * see comment near bvec_array define!
177 */
178 switch (nr) {
179 case 1:
180 *idx = 0;
181 break;
182 case 2 ... 4:
183 *idx = 1;
184 break;
185 case 5 ... 16:
186 *idx = 2;
187 break;
188 case 17 ... 64:
189 *idx = 3;
190 break;
191 case 65 ... 128:
192 *idx = 4;
193 break;
194 case 129 ... BIO_MAX_PAGES:
195 *idx = 5;
196 break;
197 default:
198 return NULL;
199 }
200
201 /*
202 * idx now points to the pool we want to allocate from. only the
203 * 1-vec entry pool is mempool backed.
204 */
ed996a52 205 if (*idx == BVEC_POOL_MAX) {
7ff9345f 206fallback:
9f060e22 207 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
208 } else {
209 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 210 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 211
0a0d96b0 212 /*
7ff9345f
JA
213 * Make this allocation restricted and don't dump info on
214 * allocation failures, since we'll fallback to the mempool
215 * in case of failure.
0a0d96b0 216 */
7ff9345f 217 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 218
0a0d96b0 219 /*
d0164adc 220 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 221 * is set, retry with the 1-entry mempool
0a0d96b0 222 */
7ff9345f 223 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 224 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 225 *idx = BVEC_POOL_MAX;
7ff9345f
JA
226 goto fallback;
227 }
228 }
229
ed996a52 230 (*idx)++;
1da177e4
LT
231 return bvl;
232}
233
9ae3b3f5 234void bio_uninit(struct bio *bio)
1da177e4 235{
6f70fb66 236 bio_disassociate_blkg(bio);
ece841ab
JT
237
238 if (bio_integrity(bio))
239 bio_integrity_free(bio);
4254bba1 240}
9ae3b3f5 241EXPORT_SYMBOL(bio_uninit);
7ba1ba12 242
4254bba1
KO
243static void bio_free(struct bio *bio)
244{
245 struct bio_set *bs = bio->bi_pool;
246 void *p;
247
9ae3b3f5 248 bio_uninit(bio);
4254bba1
KO
249
250 if (bs) {
8aa6ba2f 251 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
252
253 /*
254 * If we have front padding, adjust the bio pointer before freeing
255 */
256 p = bio;
bb799ca0
JA
257 p -= bs->front_pad;
258
8aa6ba2f 259 mempool_free(p, &bs->bio_pool);
4254bba1
KO
260 } else {
261 /* Bio was allocated by bio_kmalloc() */
262 kfree(bio);
263 }
3676347a
PO
264}
265
9ae3b3f5
JA
266/*
267 * Users of this function have their own bio allocation. Subsequently,
268 * they must remember to pair any call to bio_init() with bio_uninit()
269 * when IO has completed, or when the bio is released.
270 */
3a83f467
ML
271void bio_init(struct bio *bio, struct bio_vec *table,
272 unsigned short max_vecs)
1da177e4 273{
2b94de55 274 memset(bio, 0, sizeof(*bio));
c4cf5261 275 atomic_set(&bio->__bi_remaining, 1);
dac56212 276 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
277
278 bio->bi_io_vec = table;
279 bio->bi_max_vecs = max_vecs;
1da177e4 280}
a112a71d 281EXPORT_SYMBOL(bio_init);
1da177e4 282
f44b48c7
KO
283/**
284 * bio_reset - reinitialize a bio
285 * @bio: bio to reset
286 *
287 * Description:
288 * After calling bio_reset(), @bio will be in the same state as a freshly
289 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
290 * preserved are the ones that are initialized by bio_alloc_bioset(). See
291 * comment in struct bio.
292 */
293void bio_reset(struct bio *bio)
294{
295 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
296
9ae3b3f5 297 bio_uninit(bio);
f44b48c7
KO
298
299 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 300 bio->bi_flags = flags;
c4cf5261 301 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
302}
303EXPORT_SYMBOL(bio_reset);
304
38f8baae 305static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 306{
4246a0b6
CH
307 struct bio *parent = bio->bi_private;
308
4e4cbee9
CH
309 if (!parent->bi_status)
310 parent->bi_status = bio->bi_status;
196d38bc 311 bio_put(bio);
38f8baae
CH
312 return parent;
313}
314
315static void bio_chain_endio(struct bio *bio)
316{
317 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
318}
319
320/**
321 * bio_chain - chain bio completions
1051a902
RD
322 * @bio: the target bio
323 * @parent: the @bio's parent bio
196d38bc
KO
324 *
325 * The caller won't have a bi_end_io called when @bio completes - instead,
326 * @parent's bi_end_io won't be called until both @parent and @bio have
327 * completed; the chained bio will also be freed when it completes.
328 *
329 * The caller must not set bi_private or bi_end_io in @bio.
330 */
331void bio_chain(struct bio *bio, struct bio *parent)
332{
333 BUG_ON(bio->bi_private || bio->bi_end_io);
334
335 bio->bi_private = parent;
336 bio->bi_end_io = bio_chain_endio;
c4cf5261 337 bio_inc_remaining(parent);
196d38bc
KO
338}
339EXPORT_SYMBOL(bio_chain);
340
df2cb6da
KO
341static void bio_alloc_rescue(struct work_struct *work)
342{
343 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
344 struct bio *bio;
345
346 while (1) {
347 spin_lock(&bs->rescue_lock);
348 bio = bio_list_pop(&bs->rescue_list);
349 spin_unlock(&bs->rescue_lock);
350
351 if (!bio)
352 break;
353
354 generic_make_request(bio);
355 }
356}
357
358static void punt_bios_to_rescuer(struct bio_set *bs)
359{
360 struct bio_list punt, nopunt;
361 struct bio *bio;
362
47e0fb46
N
363 if (WARN_ON_ONCE(!bs->rescue_workqueue))
364 return;
df2cb6da
KO
365 /*
366 * In order to guarantee forward progress we must punt only bios that
367 * were allocated from this bio_set; otherwise, if there was a bio on
368 * there for a stacking driver higher up in the stack, processing it
369 * could require allocating bios from this bio_set, and doing that from
370 * our own rescuer would be bad.
371 *
372 * Since bio lists are singly linked, pop them all instead of trying to
373 * remove from the middle of the list:
374 */
375
376 bio_list_init(&punt);
377 bio_list_init(&nopunt);
378
f5fe1b51 379 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 380 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 381 current->bio_list[0] = nopunt;
df2cb6da 382
f5fe1b51
N
383 bio_list_init(&nopunt);
384 while ((bio = bio_list_pop(&current->bio_list[1])))
385 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
386 current->bio_list[1] = nopunt;
df2cb6da
KO
387
388 spin_lock(&bs->rescue_lock);
389 bio_list_merge(&bs->rescue_list, &punt);
390 spin_unlock(&bs->rescue_lock);
391
392 queue_work(bs->rescue_workqueue, &bs->rescue_work);
393}
394
1da177e4
LT
395/**
396 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 397 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 398 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 399 * @bs: the bio_set to allocate from.
1da177e4
LT
400 *
401 * Description:
3f86a82a
KO
402 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
403 * backed by the @bs's mempool.
404 *
d0164adc
MG
405 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
406 * always be able to allocate a bio. This is due to the mempool guarantees.
407 * To make this work, callers must never allocate more than 1 bio at a time
408 * from this pool. Callers that need to allocate more than 1 bio must always
409 * submit the previously allocated bio for IO before attempting to allocate
410 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 411 *
df2cb6da
KO
412 * Note that when running under generic_make_request() (i.e. any block
413 * driver), bios are not submitted until after you return - see the code in
414 * generic_make_request() that converts recursion into iteration, to prevent
415 * stack overflows.
416 *
417 * This would normally mean allocating multiple bios under
418 * generic_make_request() would be susceptible to deadlocks, but we have
419 * deadlock avoidance code that resubmits any blocked bios from a rescuer
420 * thread.
421 *
422 * However, we do not guarantee forward progress for allocations from other
423 * mempools. Doing multiple allocations from the same mempool under
424 * generic_make_request() should be avoided - instead, use bio_set's front_pad
425 * for per bio allocations.
426 *
3f86a82a
KO
427 * RETURNS:
428 * Pointer to new bio on success, NULL on failure.
429 */
7a88fa19
DC
430struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
431 struct bio_set *bs)
1da177e4 432{
df2cb6da 433 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
434 unsigned front_pad;
435 unsigned inline_vecs;
34053979 436 struct bio_vec *bvl = NULL;
451a9ebf
TH
437 struct bio *bio;
438 void *p;
439
3f86a82a
KO
440 if (!bs) {
441 if (nr_iovecs > UIO_MAXIOV)
442 return NULL;
443
444 p = kmalloc(sizeof(struct bio) +
445 nr_iovecs * sizeof(struct bio_vec),
446 gfp_mask);
447 front_pad = 0;
448 inline_vecs = nr_iovecs;
449 } else {
d8f429e1 450 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
451 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
452 nr_iovecs > 0))
d8f429e1 453 return NULL;
df2cb6da
KO
454 /*
455 * generic_make_request() converts recursion to iteration; this
456 * means if we're running beneath it, any bios we allocate and
457 * submit will not be submitted (and thus freed) until after we
458 * return.
459 *
460 * This exposes us to a potential deadlock if we allocate
461 * multiple bios from the same bio_set() while running
462 * underneath generic_make_request(). If we were to allocate
463 * multiple bios (say a stacking block driver that was splitting
464 * bios), we would deadlock if we exhausted the mempool's
465 * reserve.
466 *
467 * We solve this, and guarantee forward progress, with a rescuer
468 * workqueue per bio_set. If we go to allocate and there are
469 * bios on current->bio_list, we first try the allocation
d0164adc
MG
470 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
471 * bios we would be blocking to the rescuer workqueue before
472 * we retry with the original gfp_flags.
df2cb6da
KO
473 */
474
f5fe1b51
N
475 if (current->bio_list &&
476 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
477 !bio_list_empty(&current->bio_list[1])) &&
478 bs->rescue_workqueue)
d0164adc 479 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 480
8aa6ba2f 481 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
482 if (!p && gfp_mask != saved_gfp) {
483 punt_bios_to_rescuer(bs);
484 gfp_mask = saved_gfp;
8aa6ba2f 485 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
486 }
487
3f86a82a
KO
488 front_pad = bs->front_pad;
489 inline_vecs = BIO_INLINE_VECS;
490 }
491
451a9ebf
TH
492 if (unlikely(!p))
493 return NULL;
1da177e4 494
3f86a82a 495 bio = p + front_pad;
3a83f467 496 bio_init(bio, NULL, 0);
34053979 497
3f86a82a 498 if (nr_iovecs > inline_vecs) {
ed996a52
CH
499 unsigned long idx = 0;
500
8aa6ba2f 501 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
502 if (!bvl && gfp_mask != saved_gfp) {
503 punt_bios_to_rescuer(bs);
504 gfp_mask = saved_gfp;
8aa6ba2f 505 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
506 }
507
34053979
IM
508 if (unlikely(!bvl))
509 goto err_free;
a38352e0 510
ed996a52 511 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
512 } else if (nr_iovecs) {
513 bvl = bio->bi_inline_vecs;
1da177e4 514 }
3f86a82a
KO
515
516 bio->bi_pool = bs;
34053979 517 bio->bi_max_vecs = nr_iovecs;
34053979 518 bio->bi_io_vec = bvl;
1da177e4 519 return bio;
34053979
IM
520
521err_free:
8aa6ba2f 522 mempool_free(p, &bs->bio_pool);
34053979 523 return NULL;
1da177e4 524}
a112a71d 525EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 526
38a72dac 527void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
528{
529 unsigned long flags;
7988613b
KO
530 struct bio_vec bv;
531 struct bvec_iter iter;
1da177e4 532
38a72dac 533 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
534 char *data = bvec_kmap_irq(&bv, &flags);
535 memset(data, 0, bv.bv_len);
536 flush_dcache_page(bv.bv_page);
1da177e4
LT
537 bvec_kunmap_irq(data, &flags);
538 }
539}
38a72dac 540EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4 541
83c9c547
ML
542/**
543 * bio_truncate - truncate the bio to small size of @new_size
544 * @bio: the bio to be truncated
545 * @new_size: new size for truncating the bio
546 *
547 * Description:
548 * Truncate the bio to new size of @new_size. If bio_op(bio) is
549 * REQ_OP_READ, zero the truncated part. This function should only
550 * be used for handling corner cases, such as bio eod.
551 */
85a8ce62
ML
552void bio_truncate(struct bio *bio, unsigned new_size)
553{
554 struct bio_vec bv;
555 struct bvec_iter iter;
556 unsigned int done = 0;
557 bool truncated = false;
558
559 if (new_size >= bio->bi_iter.bi_size)
560 return;
561
83c9c547 562 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
563 goto exit;
564
565 bio_for_each_segment(bv, bio, iter) {
566 if (done + bv.bv_len > new_size) {
567 unsigned offset;
568
569 if (!truncated)
570 offset = new_size - done;
571 else
572 offset = 0;
573 zero_user(bv.bv_page, offset, bv.bv_len - offset);
574 truncated = true;
575 }
576 done += bv.bv_len;
577 }
578
579 exit:
580 /*
581 * Don't touch bvec table here and make it really immutable, since
582 * fs bio user has to retrieve all pages via bio_for_each_segment_all
583 * in its .end_bio() callback.
584 *
585 * It is enough to truncate bio by updating .bi_size since we can make
586 * correct bvec with the updated .bi_size for drivers.
587 */
588 bio->bi_iter.bi_size = new_size;
589}
590
1da177e4
LT
591/**
592 * bio_put - release a reference to a bio
593 * @bio: bio to release reference to
594 *
595 * Description:
596 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 597 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
598 **/
599void bio_put(struct bio *bio)
600{
dac56212 601 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 602 bio_free(bio);
dac56212
JA
603 else {
604 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
605
606 /*
607 * last put frees it
608 */
609 if (atomic_dec_and_test(&bio->__bi_cnt))
610 bio_free(bio);
611 }
1da177e4 612}
a112a71d 613EXPORT_SYMBOL(bio_put);
1da177e4 614
59d276fe
KO
615/**
616 * __bio_clone_fast - clone a bio that shares the original bio's biovec
617 * @bio: destination bio
618 * @bio_src: bio to clone
619 *
620 * Clone a &bio. Caller will own the returned bio, but not
621 * the actual data it points to. Reference count of returned
622 * bio will be one.
623 *
624 * Caller must ensure that @bio_src is not freed before @bio.
625 */
626void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
627{
ed996a52 628 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
629
630 /*
74d46992 631 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
632 * so we don't set nor calculate new physical/hw segment counts here
633 */
74d46992 634 bio->bi_disk = bio_src->bi_disk;
62530ed8 635 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 636 bio_set_flag(bio, BIO_CLONED);
111be883
SL
637 if (bio_flagged(bio_src, BIO_THROTTLED))
638 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 639 bio->bi_opf = bio_src->bi_opf;
ca474b73 640 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 641 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
642 bio->bi_iter = bio_src->bi_iter;
643 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 644
db6638d7 645 bio_clone_blkg_association(bio, bio_src);
e439bedf 646 blkcg_bio_issue_init(bio);
59d276fe
KO
647}
648EXPORT_SYMBOL(__bio_clone_fast);
649
650/**
651 * bio_clone_fast - clone a bio that shares the original bio's biovec
652 * @bio: bio to clone
653 * @gfp_mask: allocation priority
654 * @bs: bio_set to allocate from
655 *
656 * Like __bio_clone_fast, only also allocates the returned bio
657 */
658struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
659{
660 struct bio *b;
661
662 b = bio_alloc_bioset(gfp_mask, 0, bs);
663 if (!b)
664 return NULL;
665
666 __bio_clone_fast(b, bio);
667
668 if (bio_integrity(bio)) {
669 int ret;
670
671 ret = bio_integrity_clone(b, bio, gfp_mask);
672
673 if (ret < 0) {
674 bio_put(b);
675 return NULL;
676 }
677 }
678
679 return b;
680}
681EXPORT_SYMBOL(bio_clone_fast);
682
5cbd28e3
CH
683const char *bio_devname(struct bio *bio, char *buf)
684{
685 return disk_name(bio->bi_disk, bio->bi_partno, buf);
686}
687EXPORT_SYMBOL(bio_devname);
688
5919482e
ML
689static inline bool page_is_mergeable(const struct bio_vec *bv,
690 struct page *page, unsigned int len, unsigned int off,
ff896738 691 bool *same_page)
5919482e
ML
692{
693 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
694 bv->bv_offset + bv->bv_len - 1;
695 phys_addr_t page_addr = page_to_phys(page);
696
697 if (vec_end_addr + 1 != page_addr + off)
698 return false;
699 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
700 return false;
52d52d1c 701
ff896738
CH
702 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
703 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
704 return false;
5919482e
ML
705 return true;
706}
707
384209cd
CH
708static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio,
709 struct page *page, unsigned len, unsigned offset,
710 bool *same_page)
489fbbcb 711{
384209cd 712 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
713 unsigned long mask = queue_segment_boundary(q);
714 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
715 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
716
717 if ((addr1 | mask) != (addr2 | mask))
718 return false;
489fbbcb
ML
719 if (bv->bv_len + len > queue_max_segment_size(q))
720 return false;
384209cd 721 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
722}
723
1da177e4 724/**
19047087 725 * __bio_add_pc_page - attempt to add page to passthrough bio
c66a14d0
KO
726 * @q: the target queue
727 * @bio: destination bio
728 * @page: page to add
729 * @len: vec entry length
730 * @offset: vec entry offset
d1916c86 731 * @same_page: return if the merge happen inside the same page
1da177e4 732 *
c66a14d0
KO
733 * Attempt to add a page to the bio_vec maplist. This can fail for a
734 * number of reasons, such as the bio being full or target block device
735 * limitations. The target block device must allow bio's up to PAGE_SIZE,
736 * so it is always possible to add a single page to an empty bio.
737 *
5a8ce240 738 * This should only be used by passthrough bios.
1da177e4 739 */
4713839d 740static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
19047087 741 struct page *page, unsigned int len, unsigned int offset,
d1916c86 742 bool *same_page)
1da177e4 743{
1da177e4
LT
744 struct bio_vec *bvec;
745
746 /*
747 * cloned bio must not modify vec list
748 */
749 if (unlikely(bio_flagged(bio, BIO_CLONED)))
750 return 0;
751
c66a14d0 752 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
753 return 0;
754
80cfd548 755 if (bio->bi_vcnt > 0) {
d1916c86 756 if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page))
384209cd 757 return len;
320ea869
CH
758
759 /*
760 * If the queue doesn't support SG gaps and adding this segment
761 * would create a gap, disallow it.
762 */
384209cd 763 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
764 if (bvec_gap_to_prev(q, bvec, offset))
765 return 0;
80cfd548
JA
766 }
767
79d08f89 768 if (bio_full(bio, len))
1da177e4
LT
769 return 0;
770
14ccb66b 771 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
772 return 0;
773
fcbf6a08
ML
774 bvec = &bio->bi_io_vec[bio->bi_vcnt];
775 bvec->bv_page = page;
776 bvec->bv_len = len;
777 bvec->bv_offset = offset;
778 bio->bi_vcnt++;
dcdca753 779 bio->bi_iter.bi_size += len;
1da177e4
LT
780 return len;
781}
19047087
ML
782
783int bio_add_pc_page(struct request_queue *q, struct bio *bio,
784 struct page *page, unsigned int len, unsigned int offset)
785{
d1916c86
CH
786 bool same_page = false;
787 return __bio_add_pc_page(q, bio, page, len, offset, &same_page);
19047087 788}
a112a71d 789EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 790
1da177e4 791/**
0aa69fd3
CH
792 * __bio_try_merge_page - try appending data to an existing bvec.
793 * @bio: destination bio
551879a4 794 * @page: start page to add
0aa69fd3 795 * @len: length of the data to add
551879a4 796 * @off: offset of the data relative to @page
ff896738 797 * @same_page: return if the segment has been merged inside the same page
1da177e4 798 *
0aa69fd3
CH
799 * Try to add the data at @page + @off to the last bvec of @bio. This is a
800 * a useful optimisation for file systems with a block size smaller than the
801 * page size.
802 *
551879a4
ML
803 * Warn if (@len, @off) crosses pages in case that @same_page is true.
804 *
0aa69fd3 805 * Return %true on success or %false on failure.
1da177e4 806 */
0aa69fd3 807bool __bio_try_merge_page(struct bio *bio, struct page *page,
ff896738 808 unsigned int len, unsigned int off, bool *same_page)
1da177e4 809{
c66a14d0 810 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 811 return false;
762380ad 812
cc90bc68 813 if (bio->bi_vcnt > 0) {
0aa69fd3 814 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
815
816 if (page_is_mergeable(bv, page, len, off, same_page)) {
cc90bc68
AG
817 if (bio->bi_iter.bi_size > UINT_MAX - len)
818 return false;
5919482e
ML
819 bv->bv_len += len;
820 bio->bi_iter.bi_size += len;
821 return true;
822 }
c66a14d0 823 }
0aa69fd3
CH
824 return false;
825}
826EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 827
0aa69fd3 828/**
551879a4 829 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 830 * @bio: destination bio
551879a4
ML
831 * @page: start page to add
832 * @len: length of the data to add, may cross pages
833 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
834 *
835 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
836 * that @bio has space for another bvec.
837 */
838void __bio_add_page(struct bio *bio, struct page *page,
839 unsigned int len, unsigned int off)
840{
841 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 842
0aa69fd3 843 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 844 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
845
846 bv->bv_page = page;
847 bv->bv_offset = off;
848 bv->bv_len = len;
c66a14d0 849
c66a14d0 850 bio->bi_iter.bi_size += len;
0aa69fd3 851 bio->bi_vcnt++;
b8e24a93
JW
852
853 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
854 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
855}
856EXPORT_SYMBOL_GPL(__bio_add_page);
857
858/**
551879a4 859 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 860 * @bio: destination bio
551879a4
ML
861 * @page: start page to add
862 * @len: vec entry length, may cross pages
863 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 864 *
551879a4 865 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
866 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
867 */
868int bio_add_page(struct bio *bio, struct page *page,
869 unsigned int len, unsigned int offset)
870{
ff896738
CH
871 bool same_page = false;
872
873 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 874 if (bio_full(bio, len))
0aa69fd3
CH
875 return 0;
876 __bio_add_page(bio, page, len, offset);
877 }
c66a14d0 878 return len;
1da177e4 879}
a112a71d 880EXPORT_SYMBOL(bio_add_page);
1da177e4 881
d241a95f 882void bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
883{
884 struct bvec_iter_all iter_all;
885 struct bio_vec *bvec;
7321ecbf 886
b2d0d991
CH
887 if (bio_flagged(bio, BIO_NO_PAGE_REF))
888 return;
889
d241a95f
CH
890 bio_for_each_segment_all(bvec, bio, iter_all) {
891 if (mark_dirty && !PageCompound(bvec->bv_page))
892 set_page_dirty_lock(bvec->bv_page);
7321ecbf 893 put_page(bvec->bv_page);
d241a95f 894 }
7321ecbf
CH
895}
896
6d0c48ae
JA
897static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
898{
899 const struct bio_vec *bv = iter->bvec;
900 unsigned int len;
901 size_t size;
902
903 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
904 return -EINVAL;
905
906 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
907 size = bio_add_page(bio, bv->bv_page, len,
908 bv->bv_offset + iter->iov_offset);
a10584c3
CH
909 if (unlikely(size != len))
910 return -EINVAL;
a10584c3
CH
911 iov_iter_advance(iter, size);
912 return 0;
6d0c48ae
JA
913}
914
576ed913
CH
915#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
916
2cefe4db 917/**
17d51b10 918 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
919 * @bio: bio to add pages to
920 * @iter: iov iterator describing the region to be mapped
921 *
17d51b10 922 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 923 * pages will have to be released using put_page() when done.
17d51b10
MW
924 * For multi-segment *iter, this function only adds pages from the
925 * the next non-empty segment of the iov iterator.
2cefe4db 926 */
17d51b10 927static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 928{
576ed913
CH
929 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
930 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
931 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
932 struct page **pages = (struct page **)bv;
45691804 933 bool same_page = false;
576ed913
CH
934 ssize_t size, left;
935 unsigned len, i;
b403ea24 936 size_t offset;
576ed913
CH
937
938 /*
939 * Move page array up in the allocated memory for the bio vecs as far as
940 * possible so that we can start filling biovecs from the beginning
941 * without overwriting the temporary page array.
942 */
943 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
944 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
945
946 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
947 if (unlikely(size <= 0))
948 return size ? size : -EFAULT;
2cefe4db 949
576ed913
CH
950 for (left = size, i = 0; left > 0; left -= len, i++) {
951 struct page *page = pages[i];
2cefe4db 952
576ed913 953 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
954
955 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
956 if (same_page)
957 put_page(page);
958 } else {
79d08f89 959 if (WARN_ON_ONCE(bio_full(bio, len)))
45691804
CH
960 return -EINVAL;
961 __bio_add_page(bio, page, len, offset);
962 }
576ed913 963 offset = 0;
2cefe4db
KO
964 }
965
2cefe4db
KO
966 iov_iter_advance(iter, size);
967 return 0;
968}
17d51b10
MW
969
970/**
6d0c48ae 971 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 972 * @bio: bio to add pages to
6d0c48ae
JA
973 * @iter: iov iterator describing the region to be added
974 *
975 * This takes either an iterator pointing to user memory, or one pointing to
976 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
977 * map them into the kernel. On IO completion, the caller should put those
399254aa
JA
978 * pages. If we're adding kernel pages, and the caller told us it's safe to
979 * do so, we just have to add the pages to the bio directly. We don't grab an
980 * extra reference to those pages (the user should already have that), and we
981 * don't put the page on IO completion. The caller needs to check if the bio is
982 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
983 * released.
17d51b10 984 *
17d51b10 985 * The function tries, but does not guarantee, to pin as many pages as
6d0c48ae
JA
986 * fit into the bio, or are requested in *iter, whatever is smaller. If
987 * MM encounters an error pinning the requested pages, it stops. Error
988 * is returned only if 0 pages could be pinned.
17d51b10
MW
989 */
990int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
991{
6d0c48ae 992 const bool is_bvec = iov_iter_is_bvec(iter);
14eacf12
CH
993 int ret;
994
995 if (WARN_ON_ONCE(bio->bi_vcnt))
996 return -EINVAL;
17d51b10
MW
997
998 do {
6d0c48ae
JA
999 if (is_bvec)
1000 ret = __bio_iov_bvec_add_pages(bio, iter);
1001 else
1002 ret = __bio_iov_iter_get_pages(bio, iter);
79d08f89 1003 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 1004
b6207430 1005 if (is_bvec)
7321ecbf 1006 bio_set_flag(bio, BIO_NO_PAGE_REF);
14eacf12 1007 return bio->bi_vcnt ? 0 : ret;
17d51b10 1008}
2cefe4db 1009
4246a0b6 1010static void submit_bio_wait_endio(struct bio *bio)
9e882242 1011{
65e53aab 1012 complete(bio->bi_private);
9e882242
KO
1013}
1014
1015/**
1016 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1017 * @bio: The &struct bio which describes the I/O
1018 *
1019 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1020 * bio_endio() on failure.
3d289d68
JK
1021 *
1022 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1023 * result in bio reference to be consumed. The caller must drop the reference
1024 * on his own.
9e882242 1025 */
4e49ea4a 1026int submit_bio_wait(struct bio *bio)
9e882242 1027{
e319e1fb 1028 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
de6a78b6 1029 unsigned long hang_check;
9e882242 1030
65e53aab 1031 bio->bi_private = &done;
9e882242 1032 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1033 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1034 submit_bio(bio);
de6a78b6
ML
1035
1036 /* Prevent hang_check timer from firing at us during very long I/O */
1037 hang_check = sysctl_hung_task_timeout_secs;
1038 if (hang_check)
1039 while (!wait_for_completion_io_timeout(&done,
1040 hang_check * (HZ/2)))
1041 ;
1042 else
1043 wait_for_completion_io(&done);
9e882242 1044
65e53aab 1045 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1046}
1047EXPORT_SYMBOL(submit_bio_wait);
1048
054bdf64
KO
1049/**
1050 * bio_advance - increment/complete a bio by some number of bytes
1051 * @bio: bio to advance
1052 * @bytes: number of bytes to complete
1053 *
1054 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1055 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1056 * be updated on the last bvec as well.
1057 *
1058 * @bio will then represent the remaining, uncompleted portion of the io.
1059 */
1060void bio_advance(struct bio *bio, unsigned bytes)
1061{
1062 if (bio_integrity(bio))
1063 bio_integrity_advance(bio, bytes);
1064
4550dd6c 1065 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1066}
1067EXPORT_SYMBOL(bio_advance);
1068
45db54d5
KO
1069void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1070 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1071{
1cb9dda4 1072 struct bio_vec src_bv, dst_bv;
16ac3d63 1073 void *src_p, *dst_p;
1cb9dda4 1074 unsigned bytes;
16ac3d63 1075
45db54d5
KO
1076 while (src_iter->bi_size && dst_iter->bi_size) {
1077 src_bv = bio_iter_iovec(src, *src_iter);
1078 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1079
1080 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1081
1cb9dda4
KO
1082 src_p = kmap_atomic(src_bv.bv_page);
1083 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1084
1cb9dda4
KO
1085 memcpy(dst_p + dst_bv.bv_offset,
1086 src_p + src_bv.bv_offset,
16ac3d63
KO
1087 bytes);
1088
1089 kunmap_atomic(dst_p);
1090 kunmap_atomic(src_p);
1091
6e6e811d
KO
1092 flush_dcache_page(dst_bv.bv_page);
1093
45db54d5
KO
1094 bio_advance_iter(src, src_iter, bytes);
1095 bio_advance_iter(dst, dst_iter, bytes);
16ac3d63
KO
1096 }
1097}
38a72dac
KO
1098EXPORT_SYMBOL(bio_copy_data_iter);
1099
1100/**
45db54d5
KO
1101 * bio_copy_data - copy contents of data buffers from one bio to another
1102 * @src: source bio
1103 * @dst: destination bio
38a72dac
KO
1104 *
1105 * Stops when it reaches the end of either @src or @dst - that is, copies
1106 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1107 */
1108void bio_copy_data(struct bio *dst, struct bio *src)
1109{
45db54d5
KO
1110 struct bvec_iter src_iter = src->bi_iter;
1111 struct bvec_iter dst_iter = dst->bi_iter;
1112
1113 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1114}
16ac3d63
KO
1115EXPORT_SYMBOL(bio_copy_data);
1116
45db54d5
KO
1117/**
1118 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1119 * another
1120 * @src: source bio list
1121 * @dst: destination bio list
1122 *
1123 * Stops when it reaches the end of either the @src list or @dst list - that is,
1124 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1125 * bios).
1126 */
1127void bio_list_copy_data(struct bio *dst, struct bio *src)
1128{
1129 struct bvec_iter src_iter = src->bi_iter;
1130 struct bvec_iter dst_iter = dst->bi_iter;
1131
1132 while (1) {
1133 if (!src_iter.bi_size) {
1134 src = src->bi_next;
1135 if (!src)
1136 break;
1137
1138 src_iter = src->bi_iter;
1139 }
1140
1141 if (!dst_iter.bi_size) {
1142 dst = dst->bi_next;
1143 if (!dst)
1144 break;
1145
1146 dst_iter = dst->bi_iter;
1147 }
1148
1149 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1150 }
1151}
1152EXPORT_SYMBOL(bio_list_copy_data);
1153
1da177e4 1154struct bio_map_data {
152e283f 1155 int is_our_pages;
26e49cfc
KO
1156 struct iov_iter iter;
1157 struct iovec iov[];
1da177e4
LT
1158};
1159
0e5b935d 1160static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
76029ff3 1161 gfp_t gfp_mask)
1da177e4 1162{
0e5b935d
AV
1163 struct bio_map_data *bmd;
1164 if (data->nr_segs > UIO_MAXIOV)
f3f63c1c 1165 return NULL;
1da177e4 1166
f1f8f292 1167 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
0e5b935d
AV
1168 if (!bmd)
1169 return NULL;
1170 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1171 bmd->iter = *data;
1172 bmd->iter.iov = bmd->iov;
1173 return bmd;
1da177e4
LT
1174}
1175
9124d3fe
DP
1176/**
1177 * bio_copy_from_iter - copy all pages from iov_iter to bio
1178 * @bio: The &struct bio which describes the I/O as destination
1179 * @iter: iov_iter as source
1180 *
1181 * Copy all pages from iov_iter to bio.
1182 * Returns 0 on success, or error on failure.
1183 */
98a09d61 1184static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
c5dec1c3 1185{
c5dec1c3 1186 struct bio_vec *bvec;
6dc4f100 1187 struct bvec_iter_all iter_all;
c5dec1c3 1188
2b070cfe 1189 bio_for_each_segment_all(bvec, bio, iter_all) {
9124d3fe 1190 ssize_t ret;
c5dec1c3 1191
9124d3fe
DP
1192 ret = copy_page_from_iter(bvec->bv_page,
1193 bvec->bv_offset,
1194 bvec->bv_len,
98a09d61 1195 iter);
9124d3fe 1196
98a09d61 1197 if (!iov_iter_count(iter))
9124d3fe
DP
1198 break;
1199
1200 if (ret < bvec->bv_len)
1201 return -EFAULT;
c5dec1c3
FT
1202 }
1203
9124d3fe
DP
1204 return 0;
1205}
1206
1207/**
1208 * bio_copy_to_iter - copy all pages from bio to iov_iter
1209 * @bio: The &struct bio which describes the I/O as source
1210 * @iter: iov_iter as destination
1211 *
1212 * Copy all pages from bio to iov_iter.
1213 * Returns 0 on success, or error on failure.
1214 */
1215static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1216{
9124d3fe 1217 struct bio_vec *bvec;
6dc4f100 1218 struct bvec_iter_all iter_all;
9124d3fe 1219
2b070cfe 1220 bio_for_each_segment_all(bvec, bio, iter_all) {
9124d3fe
DP
1221 ssize_t ret;
1222
1223 ret = copy_page_to_iter(bvec->bv_page,
1224 bvec->bv_offset,
1225 bvec->bv_len,
1226 &iter);
1227
1228 if (!iov_iter_count(&iter))
1229 break;
1230
1231 if (ret < bvec->bv_len)
1232 return -EFAULT;
1233 }
1234
1235 return 0;
c5dec1c3
FT
1236}
1237
491221f8 1238void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1239{
1240 struct bio_vec *bvec;
6dc4f100 1241 struct bvec_iter_all iter_all;
1dfa0f68 1242
2b070cfe 1243 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1244 __free_page(bvec->bv_page);
1245}
491221f8 1246EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1247
1da177e4
LT
1248/**
1249 * bio_uncopy_user - finish previously mapped bio
1250 * @bio: bio being terminated
1251 *
ddad8dd0 1252 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1253 * to user space in case of a read.
1254 */
1255int bio_uncopy_user(struct bio *bio)
1256{
1257 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1258 int ret = 0;
1da177e4 1259
35dc2483
RD
1260 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1261 /*
1262 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1263 * don't copy into a random user address space, just free
1264 * and return -EINTR so user space doesn't expect any data.
35dc2483 1265 */
2d99b55d
HR
1266 if (!current->mm)
1267 ret = -EINTR;
1268 else if (bio_data_dir(bio) == READ)
9124d3fe 1269 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1270 if (bmd->is_our_pages)
1271 bio_free_pages(bio);
35dc2483 1272 }
c8db4448 1273 kfree(bmd);
1da177e4
LT
1274 bio_put(bio);
1275 return ret;
1276}
1277
1278/**
c5dec1c3 1279 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1280 * @q: destination block queue
1281 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1282 * @iter: iovec iterator
1283 * @gfp_mask: memory allocation flags
1da177e4
LT
1284 *
1285 * Prepares and returns a bio for indirect user io, bouncing data
1286 * to/from kernel pages as necessary. Must be paired with
1287 * call bio_uncopy_user() on io completion.
1288 */
152e283f
FT
1289struct bio *bio_copy_user_iov(struct request_queue *q,
1290 struct rq_map_data *map_data,
e81cef5d 1291 struct iov_iter *iter,
26e49cfc 1292 gfp_t gfp_mask)
1da177e4 1293{
1da177e4 1294 struct bio_map_data *bmd;
1da177e4
LT
1295 struct page *page;
1296 struct bio *bio;
d16d44eb
AV
1297 int i = 0, ret;
1298 int nr_pages;
26e49cfc 1299 unsigned int len = iter->count;
bd5cecea 1300 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1301
0e5b935d 1302 bmd = bio_alloc_map_data(iter, gfp_mask);
1da177e4
LT
1303 if (!bmd)
1304 return ERR_PTR(-ENOMEM);
1305
26e49cfc
KO
1306 /*
1307 * We need to do a deep copy of the iov_iter including the iovecs.
1308 * The caller provided iov might point to an on-stack or otherwise
1309 * shortlived one.
1310 */
1311 bmd->is_our_pages = map_data ? 0 : 1;
26e49cfc 1312
d16d44eb
AV
1313 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1314 if (nr_pages > BIO_MAX_PAGES)
1315 nr_pages = BIO_MAX_PAGES;
26e49cfc 1316
1da177e4 1317 ret = -ENOMEM;
a9e9dc24 1318 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1319 if (!bio)
1320 goto out_bmd;
1321
1da177e4 1322 ret = 0;
56c451f4
FT
1323
1324 if (map_data) {
e623ddb4 1325 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1326 i = map_data->offset / PAGE_SIZE;
1327 }
1da177e4 1328 while (len) {
e623ddb4 1329 unsigned int bytes = PAGE_SIZE;
1da177e4 1330
56c451f4
FT
1331 bytes -= offset;
1332
1da177e4
LT
1333 if (bytes > len)
1334 bytes = len;
1335
152e283f 1336 if (map_data) {
e623ddb4 1337 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1338 ret = -ENOMEM;
1339 break;
1340 }
e623ddb4
FT
1341
1342 page = map_data->pages[i / nr_pages];
1343 page += (i % nr_pages);
1344
1345 i++;
1346 } else {
152e283f 1347 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1348 if (!page) {
1349 ret = -ENOMEM;
1350 break;
1351 }
1da177e4
LT
1352 }
1353
a3761c3c
JG
1354 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1355 if (!map_data)
1356 __free_page(page);
1da177e4 1357 break;
a3761c3c 1358 }
1da177e4
LT
1359
1360 len -= bytes;
56c451f4 1361 offset = 0;
1da177e4
LT
1362 }
1363
1364 if (ret)
1365 goto cleanup;
1366
2884d0be
AV
1367 if (map_data)
1368 map_data->offset += bio->bi_iter.bi_size;
1369
1da177e4
LT
1370 /*
1371 * success
1372 */
00e23707 1373 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1374 (map_data && map_data->from_user)) {
98a09d61 1375 ret = bio_copy_from_iter(bio, iter);
c5dec1c3
FT
1376 if (ret)
1377 goto cleanup;
98a09d61 1378 } else {
f55adad6
KB
1379 if (bmd->is_our_pages)
1380 zero_fill_bio(bio);
98a09d61 1381 iov_iter_advance(iter, bio->bi_iter.bi_size);
1da177e4
LT
1382 }
1383
26e49cfc 1384 bio->bi_private = bmd;
2884d0be
AV
1385 if (map_data && map_data->null_mapped)
1386 bio_set_flag(bio, BIO_NULL_MAPPED);
1da177e4
LT
1387 return bio;
1388cleanup:
152e283f 1389 if (!map_data)
1dfa0f68 1390 bio_free_pages(bio);
1da177e4
LT
1391 bio_put(bio);
1392out_bmd:
c8db4448 1393 kfree(bmd);
1da177e4
LT
1394 return ERR_PTR(ret);
1395}
1396
37f19e57
CH
1397/**
1398 * bio_map_user_iov - map user iovec into bio
1399 * @q: the struct request_queue for the bio
1400 * @iter: iovec iterator
1401 * @gfp_mask: memory allocation flags
1402 *
1403 * Map the user space address into a bio suitable for io to a block
1404 * device. Returns an error pointer in case of error.
1405 */
1406struct bio *bio_map_user_iov(struct request_queue *q,
e81cef5d 1407 struct iov_iter *iter,
37f19e57 1408 gfp_t gfp_mask)
1da177e4 1409{
26e49cfc 1410 int j;
1da177e4 1411 struct bio *bio;
076098e5 1412 int ret;
1da177e4 1413
b282cc76 1414 if (!iov_iter_count(iter))
1da177e4
LT
1415 return ERR_PTR(-EINVAL);
1416
b282cc76 1417 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1da177e4
LT
1418 if (!bio)
1419 return ERR_PTR(-ENOMEM);
1420
0a0f1513 1421 while (iov_iter_count(iter)) {
629e42bc 1422 struct page **pages;
076098e5
AV
1423 ssize_t bytes;
1424 size_t offs, added = 0;
1425 int npages;
1da177e4 1426
0a0f1513 1427 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
076098e5
AV
1428 if (unlikely(bytes <= 0)) {
1429 ret = bytes ? bytes : -EFAULT;
f1970baf 1430 goto out_unmap;
99172157 1431 }
f1970baf 1432
076098e5 1433 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
f1970baf 1434
98f0bc99
AV
1435 if (unlikely(offs & queue_dma_alignment(q))) {
1436 ret = -EINVAL;
1437 j = 0;
1438 } else {
1439 for (j = 0; j < npages; j++) {
1440 struct page *page = pages[j];
1441 unsigned int n = PAGE_SIZE - offs;
d1916c86 1442 bool same_page = false;
f1970baf 1443
98f0bc99
AV
1444 if (n > bytes)
1445 n = bytes;
95d78c28 1446
19047087 1447 if (!__bio_add_pc_page(q, bio, page, n, offs,
d1916c86
CH
1448 &same_page)) {
1449 if (same_page)
1450 put_page(page);
98f0bc99 1451 break;
d1916c86 1452 }
1da177e4 1453
98f0bc99
AV
1454 added += n;
1455 bytes -= n;
1456 offs = 0;
1457 }
0a0f1513 1458 iov_iter_advance(iter, added);
f1970baf 1459 }
1da177e4 1460 /*
f1970baf 1461 * release the pages we didn't map into the bio, if any
1da177e4 1462 */
629e42bc 1463 while (j < npages)
09cbfeaf 1464 put_page(pages[j++]);
629e42bc 1465 kvfree(pages);
e2e115d1
AV
1466 /* couldn't stuff something into bio? */
1467 if (bytes)
1468 break;
1da177e4
LT
1469 }
1470
b7c44ed9 1471 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1472
1473 /*
5fad1b64 1474 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1475 * it would normally disappear when its bi_end_io is run.
1476 * however, we need it for the unmap, so grab an extra
1477 * reference to it
1478 */
1479 bio_get(bio);
1da177e4 1480 return bio;
f1970baf
JB
1481
1482 out_unmap:
506e0798 1483 bio_release_pages(bio, false);
1da177e4
LT
1484 bio_put(bio);
1485 return ERR_PTR(ret);
1486}
1487
1da177e4
LT
1488/**
1489 * bio_unmap_user - unmap a bio
1490 * @bio: the bio being unmapped
1491 *
5fad1b64
BVA
1492 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1493 * process context.
1da177e4
LT
1494 *
1495 * bio_unmap_user() may sleep.
1496 */
1497void bio_unmap_user(struct bio *bio)
1498{
163cc2d3
CH
1499 bio_release_pages(bio, bio_data_dir(bio) == READ);
1500 bio_put(bio);
1da177e4
LT
1501 bio_put(bio);
1502}
1503
b4c5875d
DLM
1504static void bio_invalidate_vmalloc_pages(struct bio *bio)
1505{
1506#ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1507 if (bio->bi_private && !op_is_write(bio_op(bio))) {
1508 unsigned long i, len = 0;
1509
1510 for (i = 0; i < bio->bi_vcnt; i++)
1511 len += bio->bi_io_vec[i].bv_len;
1512 invalidate_kernel_vmap_range(bio->bi_private, len);
1513 }
1514#endif
1515}
1516
4246a0b6 1517static void bio_map_kern_endio(struct bio *bio)
b823825e 1518{
b4c5875d 1519 bio_invalidate_vmalloc_pages(bio);
b823825e 1520 bio_put(bio);
b823825e
JA
1521}
1522
75c72b83
CH
1523/**
1524 * bio_map_kern - map kernel address into bio
1525 * @q: the struct request_queue for the bio
1526 * @data: pointer to buffer to map
1527 * @len: length in bytes
1528 * @gfp_mask: allocation flags for bio allocation
1529 *
1530 * Map the kernel address into a bio suitable for io to a block
1531 * device. Returns an error pointer in case of error.
1532 */
1533struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1534 gfp_t gfp_mask)
df46b9a4
MC
1535{
1536 unsigned long kaddr = (unsigned long)data;
1537 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1538 unsigned long start = kaddr >> PAGE_SHIFT;
1539 const int nr_pages = end - start;
b4c5875d
DLM
1540 bool is_vmalloc = is_vmalloc_addr(data);
1541 struct page *page;
df46b9a4
MC
1542 int offset, i;
1543 struct bio *bio;
1544
a9e9dc24 1545 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1546 if (!bio)
1547 return ERR_PTR(-ENOMEM);
1548
b4c5875d
DLM
1549 if (is_vmalloc) {
1550 flush_kernel_vmap_range(data, len);
1551 bio->bi_private = data;
1552 }
1553
df46b9a4
MC
1554 offset = offset_in_page(kaddr);
1555 for (i = 0; i < nr_pages; i++) {
1556 unsigned int bytes = PAGE_SIZE - offset;
1557
1558 if (len <= 0)
1559 break;
1560
1561 if (bytes > len)
1562 bytes = len;
1563
b4c5875d
DLM
1564 if (!is_vmalloc)
1565 page = virt_to_page(data);
1566 else
1567 page = vmalloc_to_page(data);
1568 if (bio_add_pc_page(q, bio, page, bytes,
75c72b83
CH
1569 offset) < bytes) {
1570 /* we don't support partial mappings */
1571 bio_put(bio);
1572 return ERR_PTR(-EINVAL);
1573 }
df46b9a4
MC
1574
1575 data += bytes;
1576 len -= bytes;
1577 offset = 0;
1578 }
1579
b823825e 1580 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1581 return bio;
1582}
df46b9a4 1583
4246a0b6 1584static void bio_copy_kern_endio(struct bio *bio)
68154e90 1585{
1dfa0f68
CH
1586 bio_free_pages(bio);
1587 bio_put(bio);
1588}
1589
4246a0b6 1590static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1591{
42d2683a 1592 char *p = bio->bi_private;
1dfa0f68 1593 struct bio_vec *bvec;
6dc4f100 1594 struct bvec_iter_all iter_all;
68154e90 1595
2b070cfe 1596 bio_for_each_segment_all(bvec, bio, iter_all) {
1dfa0f68 1597 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1598 p += bvec->bv_len;
68154e90
FT
1599 }
1600
4246a0b6 1601 bio_copy_kern_endio(bio);
68154e90
FT
1602}
1603
1604/**
1605 * bio_copy_kern - copy kernel address into bio
1606 * @q: the struct request_queue for the bio
1607 * @data: pointer to buffer to copy
1608 * @len: length in bytes
1609 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1610 * @reading: data direction is READ
68154e90
FT
1611 *
1612 * copy the kernel address into a bio suitable for io to a block
1613 * device. Returns an error pointer in case of error.
1614 */
1615struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1616 gfp_t gfp_mask, int reading)
1617{
42d2683a
CH
1618 unsigned long kaddr = (unsigned long)data;
1619 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1620 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1621 struct bio *bio;
1622 void *p = data;
1dfa0f68 1623 int nr_pages = 0;
68154e90 1624
42d2683a
CH
1625 /*
1626 * Overflow, abort
1627 */
1628 if (end < start)
1629 return ERR_PTR(-EINVAL);
68154e90 1630
42d2683a
CH
1631 nr_pages = end - start;
1632 bio = bio_kmalloc(gfp_mask, nr_pages);
1633 if (!bio)
1634 return ERR_PTR(-ENOMEM);
68154e90 1635
42d2683a
CH
1636 while (len) {
1637 struct page *page;
1638 unsigned int bytes = PAGE_SIZE;
68154e90 1639
42d2683a
CH
1640 if (bytes > len)
1641 bytes = len;
1642
1643 page = alloc_page(q->bounce_gfp | gfp_mask);
1644 if (!page)
1645 goto cleanup;
1646
1647 if (!reading)
1648 memcpy(page_address(page), p, bytes);
1649
1650 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1651 break;
1652
1653 len -= bytes;
1654 p += bytes;
68154e90
FT
1655 }
1656
1dfa0f68
CH
1657 if (reading) {
1658 bio->bi_end_io = bio_copy_kern_endio_read;
1659 bio->bi_private = data;
1660 } else {
1661 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1662 }
76029ff3 1663
68154e90 1664 return bio;
42d2683a
CH
1665
1666cleanup:
1dfa0f68 1667 bio_free_pages(bio);
42d2683a
CH
1668 bio_put(bio);
1669 return ERR_PTR(-ENOMEM);
68154e90
FT
1670}
1671
1da177e4
LT
1672/*
1673 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1674 * for performing direct-IO in BIOs.
1675 *
1676 * The problem is that we cannot run set_page_dirty() from interrupt context
1677 * because the required locks are not interrupt-safe. So what we can do is to
1678 * mark the pages dirty _before_ performing IO. And in interrupt context,
1679 * check that the pages are still dirty. If so, fine. If not, redirty them
1680 * in process context.
1681 *
1682 * We special-case compound pages here: normally this means reads into hugetlb
1683 * pages. The logic in here doesn't really work right for compound pages
1684 * because the VM does not uniformly chase down the head page in all cases.
1685 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1686 * handle them at all. So we skip compound pages here at an early stage.
1687 *
1688 * Note that this code is very hard to test under normal circumstances because
1689 * direct-io pins the pages with get_user_pages(). This makes
1690 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1691 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1692 * pagecache.
1693 *
1694 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1695 * deferred bio dirtying paths.
1696 */
1697
1698/*
1699 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1700 */
1701void bio_set_pages_dirty(struct bio *bio)
1702{
cb34e057 1703 struct bio_vec *bvec;
6dc4f100 1704 struct bvec_iter_all iter_all;
1da177e4 1705
2b070cfe 1706 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1707 if (!PageCompound(bvec->bv_page))
1708 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1709 }
1710}
1711
1da177e4
LT
1712/*
1713 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1714 * If they are, then fine. If, however, some pages are clean then they must
1715 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1716 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1717 *
1718 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1719 * here on. It will run one put_page() against each page and will run one
1720 * bio_put() against the BIO.
1da177e4
LT
1721 */
1722
65f27f38 1723static void bio_dirty_fn(struct work_struct *work);
1da177e4 1724
65f27f38 1725static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1726static DEFINE_SPINLOCK(bio_dirty_lock);
1727static struct bio *bio_dirty_list;
1728
1729/*
1730 * This runs in process context
1731 */
65f27f38 1732static void bio_dirty_fn(struct work_struct *work)
1da177e4 1733{
24d5493f 1734 struct bio *bio, *next;
1da177e4 1735
24d5493f
CH
1736 spin_lock_irq(&bio_dirty_lock);
1737 next = bio_dirty_list;
1da177e4 1738 bio_dirty_list = NULL;
24d5493f 1739 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1740
24d5493f
CH
1741 while ((bio = next) != NULL) {
1742 next = bio->bi_private;
1da177e4 1743
d241a95f 1744 bio_release_pages(bio, true);
1da177e4 1745 bio_put(bio);
1da177e4
LT
1746 }
1747}
1748
1749void bio_check_pages_dirty(struct bio *bio)
1750{
cb34e057 1751 struct bio_vec *bvec;
24d5493f 1752 unsigned long flags;
6dc4f100 1753 struct bvec_iter_all iter_all;
1da177e4 1754
2b070cfe 1755 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1756 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1757 goto defer;
1da177e4
LT
1758 }
1759
d241a95f 1760 bio_release_pages(bio, false);
24d5493f
CH
1761 bio_put(bio);
1762 return;
1763defer:
1764 spin_lock_irqsave(&bio_dirty_lock, flags);
1765 bio->bi_private = bio_dirty_list;
1766 bio_dirty_list = bio;
1767 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1768 schedule_work(&bio_dirty_work);
1da177e4
LT
1769}
1770
2b8bd423 1771void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
5b18b5a7
MP
1772{
1773 unsigned long stamp;
1774again:
1775 stamp = READ_ONCE(part->stamp);
1776 if (unlikely(stamp != now)) {
1777 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
2b8bd423 1778 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
5b18b5a7
MP
1779 }
1780 }
1781 if (part->partno) {
1782 part = &part_to_disk(part)->part0;
1783 goto again;
1784 }
1785}
1da177e4 1786
ddcf35d3 1787void generic_start_io_acct(struct request_queue *q, int op,
d62e26b3 1788 unsigned long sectors, struct hd_struct *part)
394ffa50 1789{
ddcf35d3 1790 const int sgrp = op_stat_group(op);
394ffa50 1791
112f158f
MS
1792 part_stat_lock();
1793
2b8bd423 1794 update_io_ticks(part, jiffies, false);
112f158f
MS
1795 part_stat_inc(part, ios[sgrp]);
1796 part_stat_add(part, sectors[sgrp], sectors);
ddcf35d3 1797 part_inc_in_flight(q, part, op_is_write(op));
394ffa50
GZ
1798
1799 part_stat_unlock();
1800}
1801EXPORT_SYMBOL(generic_start_io_acct);
1802
ddcf35d3 1803void generic_end_io_acct(struct request_queue *q, int req_op,
d62e26b3 1804 struct hd_struct *part, unsigned long start_time)
394ffa50 1805{
5b18b5a7
MP
1806 unsigned long now = jiffies;
1807 unsigned long duration = now - start_time;
ddcf35d3 1808 const int sgrp = op_stat_group(req_op);
394ffa50 1809
112f158f
MS
1810 part_stat_lock();
1811
2b8bd423 1812 update_io_ticks(part, now, true);
112f158f 1813 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
ddcf35d3 1814 part_dec_in_flight(q, part, op_is_write(req_op));
394ffa50
GZ
1815
1816 part_stat_unlock();
1817}
1818EXPORT_SYMBOL(generic_end_io_acct);
1819
c4cf5261
JA
1820static inline bool bio_remaining_done(struct bio *bio)
1821{
1822 /*
1823 * If we're not chaining, then ->__bi_remaining is always 1 and
1824 * we always end io on the first invocation.
1825 */
1826 if (!bio_flagged(bio, BIO_CHAIN))
1827 return true;
1828
1829 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1830
326e1dbb 1831 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1832 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1833 return true;
326e1dbb 1834 }
c4cf5261
JA
1835
1836 return false;
1837}
1838
1da177e4
LT
1839/**
1840 * bio_endio - end I/O on a bio
1841 * @bio: bio
1da177e4
LT
1842 *
1843 * Description:
4246a0b6
CH
1844 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1845 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1846 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1847 *
1848 * bio_endio() can be called several times on a bio that has been chained
1849 * using bio_chain(). The ->bi_end_io() function will only be called the
1850 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1851 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1852 **/
4246a0b6 1853void bio_endio(struct bio *bio)
1da177e4 1854{
ba8c6967 1855again:
2b885517 1856 if (!bio_remaining_done(bio))
ba8c6967 1857 return;
7c20f116
CH
1858 if (!bio_integrity_endio(bio))
1859 return;
1da177e4 1860
67b42d0b
JB
1861 if (bio->bi_disk)
1862 rq_qos_done_bio(bio->bi_disk->queue, bio);
1863
ba8c6967
CH
1864 /*
1865 * Need to have a real endio function for chained bios, otherwise
1866 * various corner cases will break (like stacking block devices that
1867 * save/restore bi_end_io) - however, we want to avoid unbounded
1868 * recursion and blowing the stack. Tail call optimization would
1869 * handle this, but compiling with frame pointers also disables
1870 * gcc's sibling call optimization.
1871 */
1872 if (bio->bi_end_io == bio_chain_endio) {
1873 bio = __bio_chain_endio(bio);
1874 goto again;
196d38bc 1875 }
ba8c6967 1876
74d46992
CH
1877 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1878 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1879 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1880 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1881 }
1882
9e234eea 1883 blk_throtl_bio_endio(bio);
b222dd2f
SL
1884 /* release cgroup info */
1885 bio_uninit(bio);
ba8c6967
CH
1886 if (bio->bi_end_io)
1887 bio->bi_end_io(bio);
1da177e4 1888}
a112a71d 1889EXPORT_SYMBOL(bio_endio);
1da177e4 1890
20d0189b
KO
1891/**
1892 * bio_split - split a bio
1893 * @bio: bio to split
1894 * @sectors: number of sectors to split from the front of @bio
1895 * @gfp: gfp mask
1896 * @bs: bio set to allocate from
1897 *
1898 * Allocates and returns a new bio which represents @sectors from the start of
1899 * @bio, and updates @bio to represent the remaining sectors.
1900 *
f3f5da62 1901 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1902 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1903 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1904 */
1905struct bio *bio_split(struct bio *bio, int sectors,
1906 gfp_t gfp, struct bio_set *bs)
1907{
f341a4d3 1908 struct bio *split;
20d0189b
KO
1909
1910 BUG_ON(sectors <= 0);
1911 BUG_ON(sectors >= bio_sectors(bio));
1912
f9d03f96 1913 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1914 if (!split)
1915 return NULL;
1916
1917 split->bi_iter.bi_size = sectors << 9;
1918
1919 if (bio_integrity(split))
fbd08e76 1920 bio_integrity_trim(split);
20d0189b
KO
1921
1922 bio_advance(bio, split->bi_iter.bi_size);
1923
fbbaf700 1924 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1925 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1926
20d0189b
KO
1927 return split;
1928}
1929EXPORT_SYMBOL(bio_split);
1930
6678d83f
KO
1931/**
1932 * bio_trim - trim a bio
1933 * @bio: bio to trim
1934 * @offset: number of sectors to trim from the front of @bio
1935 * @size: size we want to trim @bio to, in sectors
1936 */
1937void bio_trim(struct bio *bio, int offset, int size)
1938{
1939 /* 'bio' is a cloned bio which we need to trim to match
1940 * the given offset and size.
6678d83f 1941 */
6678d83f
KO
1942
1943 size <<= 9;
4f024f37 1944 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1945 return;
1946
6678d83f 1947 bio_advance(bio, offset << 9);
4f024f37 1948 bio->bi_iter.bi_size = size;
376a78ab
DM
1949
1950 if (bio_integrity(bio))
fbd08e76 1951 bio_integrity_trim(bio);
376a78ab 1952
6678d83f
KO
1953}
1954EXPORT_SYMBOL_GPL(bio_trim);
1955
1da177e4
LT
1956/*
1957 * create memory pools for biovec's in a bio_set.
1958 * use the global biovec slabs created for general use.
1959 */
8aa6ba2f 1960int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1961{
ed996a52 1962 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1963
8aa6ba2f 1964 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1965}
1966
917a38c7
KO
1967/*
1968 * bioset_exit - exit a bioset initialized with bioset_init()
1969 *
1970 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1971 * kzalloc()).
1972 */
1973void bioset_exit(struct bio_set *bs)
1da177e4 1974{
df2cb6da
KO
1975 if (bs->rescue_workqueue)
1976 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1977 bs->rescue_workqueue = NULL;
df2cb6da 1978
8aa6ba2f
KO
1979 mempool_exit(&bs->bio_pool);
1980 mempool_exit(&bs->bvec_pool);
9f060e22 1981
7878cba9 1982 bioset_integrity_free(bs);
917a38c7
KO
1983 if (bs->bio_slab)
1984 bio_put_slab(bs);
1985 bs->bio_slab = NULL;
1986}
1987EXPORT_SYMBOL(bioset_exit);
1da177e4 1988
917a38c7
KO
1989/**
1990 * bioset_init - Initialize a bio_set
dad08527 1991 * @bs: pool to initialize
917a38c7
KO
1992 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1993 * @front_pad: Number of bytes to allocate in front of the returned bio
1994 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1995 * and %BIOSET_NEED_RESCUER
1996 *
dad08527
KO
1997 * Description:
1998 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1999 * to ask for a number of bytes to be allocated in front of the bio.
2000 * Front pad allocation is useful for embedding the bio inside
2001 * another structure, to avoid allocating extra data to go with the bio.
2002 * Note that the bio must be embedded at the END of that structure always,
2003 * or things will break badly.
2004 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
2005 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
2006 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
2007 * dispatch queued requests when the mempool runs out of space.
2008 *
917a38c7
KO
2009 */
2010int bioset_init(struct bio_set *bs,
2011 unsigned int pool_size,
2012 unsigned int front_pad,
2013 int flags)
2014{
2015 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
2016
2017 bs->front_pad = front_pad;
2018
2019 spin_lock_init(&bs->rescue_lock);
2020 bio_list_init(&bs->rescue_list);
2021 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
2022
2023 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
2024 if (!bs->bio_slab)
2025 return -ENOMEM;
2026
2027 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2028 goto bad;
2029
2030 if ((flags & BIOSET_NEED_BVECS) &&
2031 biovec_init_pool(&bs->bvec_pool, pool_size))
2032 goto bad;
2033
2034 if (!(flags & BIOSET_NEED_RESCUER))
2035 return 0;
2036
2037 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2038 if (!bs->rescue_workqueue)
2039 goto bad;
2040
2041 return 0;
2042bad:
2043 bioset_exit(bs);
2044 return -ENOMEM;
2045}
2046EXPORT_SYMBOL(bioset_init);
2047
28e89fd9
JA
2048/*
2049 * Initialize and setup a new bio_set, based on the settings from
2050 * another bio_set.
2051 */
2052int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2053{
2054 int flags;
2055
2056 flags = 0;
2057 if (src->bvec_pool.min_nr)
2058 flags |= BIOSET_NEED_BVECS;
2059 if (src->rescue_workqueue)
2060 flags |= BIOSET_NEED_RESCUER;
2061
2062 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2063}
2064EXPORT_SYMBOL(bioset_init_from_src);
2065
852c788f 2066#ifdef CONFIG_BLK_CGROUP
1d933cf0 2067
74b7c02a 2068/**
2268c0fe 2069 * bio_disassociate_blkg - puts back the blkg reference if associated
74b7c02a 2070 * @bio: target bio
74b7c02a 2071 *
2268c0fe 2072 * Helper to disassociate the blkg from @bio if a blkg is associated.
74b7c02a 2073 */
2268c0fe 2074void bio_disassociate_blkg(struct bio *bio)
74b7c02a 2075{
2268c0fe
DZ
2076 if (bio->bi_blkg) {
2077 blkg_put(bio->bi_blkg);
2078 bio->bi_blkg = NULL;
2079 }
74b7c02a 2080}
892ad71f 2081EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
74b7c02a 2082
a7b39b4e 2083/**
2268c0fe 2084 * __bio_associate_blkg - associate a bio with the a blkg
a7b39b4e 2085 * @bio: target bio
b5f2954d 2086 * @blkg: the blkg to associate
b5f2954d 2087 *
beea9da0
DZ
2088 * This tries to associate @bio with the specified @blkg. Association failure
2089 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2090 * be anything between @blkg and the root_blkg. This situation only happens
2091 * when a cgroup is dying and then the remaining bios will spill to the closest
2092 * alive blkg.
a7b39b4e 2093 *
beea9da0
DZ
2094 * A reference will be taken on the @blkg and will be released when @bio is
2095 * freed.
a7b39b4e 2096 */
2268c0fe 2097static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
a7b39b4e 2098{
2268c0fe
DZ
2099 bio_disassociate_blkg(bio);
2100
7754f669 2101 bio->bi_blkg = blkg_tryget_closest(blkg);
a7b39b4e
DZF
2102}
2103
d459d853 2104/**
fd42df30 2105 * bio_associate_blkg_from_css - associate a bio with a specified css
d459d853 2106 * @bio: target bio
fd42df30 2107 * @css: target css
d459d853 2108 *
fd42df30 2109 * Associate @bio with the blkg found by combining the css's blkg and the
fc5a828b
DZ
2110 * request_queue of the @bio. This falls back to the queue's root_blkg if
2111 * the association fails with the css.
d459d853 2112 */
fd42df30
DZ
2113void bio_associate_blkg_from_css(struct bio *bio,
2114 struct cgroup_subsys_state *css)
d459d853 2115{
fc5a828b
DZ
2116 struct request_queue *q = bio->bi_disk->queue;
2117 struct blkcg_gq *blkg;
2118
2119 rcu_read_lock();
2120
2121 if (!css || !css->parent)
2122 blkg = q->root_blkg;
2123 else
2124 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2125
2126 __bio_associate_blkg(bio, blkg);
2127
2128 rcu_read_unlock();
d459d853 2129}
fd42df30 2130EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
d459d853 2131
6a7f6d86 2132#ifdef CONFIG_MEMCG
852c788f 2133/**
6a7f6d86 2134 * bio_associate_blkg_from_page - associate a bio with the page's blkg
852c788f 2135 * @bio: target bio
6a7f6d86
DZ
2136 * @page: the page to lookup the blkcg from
2137 *
2138 * Associate @bio with the blkg from @page's owning memcg and the respective
fc5a828b
DZ
2139 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2140 * root_blkg.
852c788f 2141 */
6a7f6d86 2142void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
852c788f 2143{
6a7f6d86
DZ
2144 struct cgroup_subsys_state *css;
2145
6a7f6d86
DZ
2146 if (!page->mem_cgroup)
2147 return;
2148
fc5a828b
DZ
2149 rcu_read_lock();
2150
2151 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2152 bio_associate_blkg_from_css(bio, css);
2153
2154 rcu_read_unlock();
6a7f6d86
DZ
2155}
2156#endif /* CONFIG_MEMCG */
2157
2268c0fe
DZ
2158/**
2159 * bio_associate_blkg - associate a bio with a blkg
2160 * @bio: target bio
2161 *
2162 * Associate @bio with the blkg found from the bio's css and request_queue.
2163 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2164 * already associated, the css is reused and association redone as the
2165 * request_queue may have changed.
2166 */
2167void bio_associate_blkg(struct bio *bio)
2168{
fc5a828b 2169 struct cgroup_subsys_state *css;
2268c0fe
DZ
2170
2171 rcu_read_lock();
2172
db6638d7 2173 if (bio->bi_blkg)
fc5a828b 2174 css = &bio_blkcg(bio)->css;
db6638d7 2175 else
fc5a828b 2176 css = blkcg_css();
2268c0fe 2177
fc5a828b 2178 bio_associate_blkg_from_css(bio, css);
2268c0fe
DZ
2179
2180 rcu_read_unlock();
852c788f 2181}
5cdf2e3f 2182EXPORT_SYMBOL_GPL(bio_associate_blkg);
852c788f 2183
20bd723e 2184/**
db6638d7 2185 * bio_clone_blkg_association - clone blkg association from src to dst bio
20bd723e
PV
2186 * @dst: destination bio
2187 * @src: source bio
2188 */
db6638d7 2189void bio_clone_blkg_association(struct bio *dst, struct bio *src)
20bd723e 2190{
6ab21879
DZ
2191 rcu_read_lock();
2192
fc5a828b 2193 if (src->bi_blkg)
2268c0fe 2194 __bio_associate_blkg(dst, src->bi_blkg);
6ab21879
DZ
2195
2196 rcu_read_unlock();
20bd723e 2197}
db6638d7 2198EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
852c788f
TH
2199#endif /* CONFIG_BLK_CGROUP */
2200
1da177e4
LT
2201static void __init biovec_init_slabs(void)
2202{
2203 int i;
2204
ed996a52 2205 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2206 int size;
2207 struct biovec_slab *bvs = bvec_slabs + i;
2208
a7fcd37c
JA
2209 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2210 bvs->slab = NULL;
2211 continue;
2212 }
a7fcd37c 2213
1da177e4
LT
2214 size = bvs->nr_vecs * sizeof(struct bio_vec);
2215 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2216 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2217 }
2218}
2219
2220static int __init init_bio(void)
2221{
bb799ca0
JA
2222 bio_slab_max = 2;
2223 bio_slab_nr = 0;
6396bb22
KC
2224 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2225 GFP_KERNEL);
2b24e6f6
JT
2226
2227 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2228
bb799ca0
JA
2229 if (!bio_slabs)
2230 panic("bio: can't allocate bios\n");
1da177e4 2231
7878cba9 2232 bio_integrity_init();
1da177e4
LT
2233 biovec_init_slabs();
2234
f4f8154a 2235 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
2236 panic("bio: can't allocate bios\n");
2237
f4f8154a 2238 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
2239 panic("bio: can't create integrity pool\n");
2240
1da177e4
LT
2241 return 0;
2242}
1da177e4 2243subsys_initcall(init_bio);