bfq: don't duplicate code for different paths
[linux-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
de6a78b6 20#include <linux/sched/sysctl.h>
a892c8d5 21#include <linux/blk-crypto.h>
1da177e4 22
55782138 23#include <trace/events/block.h>
9e234eea 24#include "blk.h"
67b42d0b 25#include "blk-rq-qos.h"
0bfc2455 26
392ddc32
JA
27/*
28 * Test patch to inline a certain number of bi_io_vec's inside the bio
29 * itself, to shrink a bio data allocation from two mempool calls to one
30 */
31#define BIO_INLINE_VECS 4
32
1da177e4
LT
33/*
34 * if you change this list, also change bvec_alloc or things will
35 * break badly! cannot be bigger than what you can fit into an
36 * unsigned short
37 */
bd5c4fac 38#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 39static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 40 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
41};
42#undef BV
43
1da177e4
LT
44/*
45 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
46 * IO code that does not need private memory pools.
47 */
f4f8154a 48struct bio_set fs_bio_set;
3f86a82a 49EXPORT_SYMBOL(fs_bio_set);
1da177e4 50
bb799ca0
JA
51/*
52 * Our slab pool management
53 */
54struct bio_slab {
55 struct kmem_cache *slab;
56 unsigned int slab_ref;
57 unsigned int slab_size;
58 char name[8];
59};
60static DEFINE_MUTEX(bio_slab_lock);
61static struct bio_slab *bio_slabs;
62static unsigned int bio_slab_nr, bio_slab_max;
63
64static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
65{
66 unsigned int sz = sizeof(struct bio) + extra_size;
67 struct kmem_cache *slab = NULL;
389d7b26 68 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 69 unsigned int new_bio_slab_max;
bb799ca0
JA
70 unsigned int i, entry = -1;
71
72 mutex_lock(&bio_slab_lock);
73
74 i = 0;
75 while (i < bio_slab_nr) {
f06f135d 76 bslab = &bio_slabs[i];
bb799ca0
JA
77
78 if (!bslab->slab && entry == -1)
79 entry = i;
80 else if (bslab->slab_size == sz) {
81 slab = bslab->slab;
82 bslab->slab_ref++;
83 break;
84 }
85 i++;
86 }
87
88 if (slab)
89 goto out_unlock;
90
91 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 92 new_bio_slab_max = bio_slab_max << 1;
389d7b26 93 new_bio_slabs = krealloc(bio_slabs,
386bc35a 94 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
95 GFP_KERNEL);
96 if (!new_bio_slabs)
bb799ca0 97 goto out_unlock;
386bc35a 98 bio_slab_max = new_bio_slab_max;
389d7b26 99 bio_slabs = new_bio_slabs;
bb799ca0
JA
100 }
101 if (entry == -1)
102 entry = bio_slab_nr++;
103
104 bslab = &bio_slabs[entry];
105
106 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
107 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
108 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
109 if (!slab)
110 goto out_unlock;
111
bb799ca0
JA
112 bslab->slab = slab;
113 bslab->slab_ref = 1;
114 bslab->slab_size = sz;
115out_unlock:
116 mutex_unlock(&bio_slab_lock);
117 return slab;
118}
119
120static void bio_put_slab(struct bio_set *bs)
121{
122 struct bio_slab *bslab = NULL;
123 unsigned int i;
124
125 mutex_lock(&bio_slab_lock);
126
127 for (i = 0; i < bio_slab_nr; i++) {
128 if (bs->bio_slab == bio_slabs[i].slab) {
129 bslab = &bio_slabs[i];
130 break;
131 }
132 }
133
134 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
135 goto out;
136
137 WARN_ON(!bslab->slab_ref);
138
139 if (--bslab->slab_ref)
140 goto out;
141
142 kmem_cache_destroy(bslab->slab);
143 bslab->slab = NULL;
144
145out:
146 mutex_unlock(&bio_slab_lock);
147}
148
7ba1ba12
MP
149unsigned int bvec_nr_vecs(unsigned short idx)
150{
d6c02a9b 151 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
152}
153
9f060e22 154void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 155{
ed996a52
CH
156 if (!idx)
157 return;
158 idx--;
159
160 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 161
ed996a52 162 if (idx == BVEC_POOL_MAX) {
9f060e22 163 mempool_free(bv, pool);
ed996a52 164 } else {
bb799ca0
JA
165 struct biovec_slab *bvs = bvec_slabs + idx;
166
167 kmem_cache_free(bvs->slab, bv);
168 }
169}
170
9f060e22
KO
171struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
172 mempool_t *pool)
1da177e4
LT
173{
174 struct bio_vec *bvl;
1da177e4 175
7ff9345f
JA
176 /*
177 * see comment near bvec_array define!
178 */
179 switch (nr) {
180 case 1:
181 *idx = 0;
182 break;
183 case 2 ... 4:
184 *idx = 1;
185 break;
186 case 5 ... 16:
187 *idx = 2;
188 break;
189 case 17 ... 64:
190 *idx = 3;
191 break;
192 case 65 ... 128:
193 *idx = 4;
194 break;
195 case 129 ... BIO_MAX_PAGES:
196 *idx = 5;
197 break;
198 default:
199 return NULL;
200 }
201
202 /*
203 * idx now points to the pool we want to allocate from. only the
204 * 1-vec entry pool is mempool backed.
205 */
ed996a52 206 if (*idx == BVEC_POOL_MAX) {
7ff9345f 207fallback:
9f060e22 208 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
209 } else {
210 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 211 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 212
0a0d96b0 213 /*
7ff9345f
JA
214 * Make this allocation restricted and don't dump info on
215 * allocation failures, since we'll fallback to the mempool
216 * in case of failure.
0a0d96b0 217 */
7ff9345f 218 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 219
0a0d96b0 220 /*
d0164adc 221 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 222 * is set, retry with the 1-entry mempool
0a0d96b0 223 */
7ff9345f 224 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 225 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 226 *idx = BVEC_POOL_MAX;
7ff9345f
JA
227 goto fallback;
228 }
229 }
230
ed996a52 231 (*idx)++;
1da177e4
LT
232 return bvl;
233}
234
9ae3b3f5 235void bio_uninit(struct bio *bio)
1da177e4 236{
db9819c7
CH
237#ifdef CONFIG_BLK_CGROUP
238 if (bio->bi_blkg) {
239 blkg_put(bio->bi_blkg);
240 bio->bi_blkg = NULL;
241 }
242#endif
ece841ab
JT
243 if (bio_integrity(bio))
244 bio_integrity_free(bio);
a892c8d5
ST
245
246 bio_crypt_free_ctx(bio);
4254bba1 247}
9ae3b3f5 248EXPORT_SYMBOL(bio_uninit);
7ba1ba12 249
4254bba1
KO
250static void bio_free(struct bio *bio)
251{
252 struct bio_set *bs = bio->bi_pool;
253 void *p;
254
9ae3b3f5 255 bio_uninit(bio);
4254bba1
KO
256
257 if (bs) {
8aa6ba2f 258 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
259
260 /*
261 * If we have front padding, adjust the bio pointer before freeing
262 */
263 p = bio;
bb799ca0
JA
264 p -= bs->front_pad;
265
8aa6ba2f 266 mempool_free(p, &bs->bio_pool);
4254bba1
KO
267 } else {
268 /* Bio was allocated by bio_kmalloc() */
269 kfree(bio);
270 }
3676347a
PO
271}
272
9ae3b3f5
JA
273/*
274 * Users of this function have their own bio allocation. Subsequently,
275 * they must remember to pair any call to bio_init() with bio_uninit()
276 * when IO has completed, or when the bio is released.
277 */
3a83f467
ML
278void bio_init(struct bio *bio, struct bio_vec *table,
279 unsigned short max_vecs)
1da177e4 280{
2b94de55 281 memset(bio, 0, sizeof(*bio));
c4cf5261 282 atomic_set(&bio->__bi_remaining, 1);
dac56212 283 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
284
285 bio->bi_io_vec = table;
286 bio->bi_max_vecs = max_vecs;
1da177e4 287}
a112a71d 288EXPORT_SYMBOL(bio_init);
1da177e4 289
f44b48c7
KO
290/**
291 * bio_reset - reinitialize a bio
292 * @bio: bio to reset
293 *
294 * Description:
295 * After calling bio_reset(), @bio will be in the same state as a freshly
296 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
297 * preserved are the ones that are initialized by bio_alloc_bioset(). See
298 * comment in struct bio.
299 */
300void bio_reset(struct bio *bio)
301{
302 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
303
9ae3b3f5 304 bio_uninit(bio);
f44b48c7
KO
305
306 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 307 bio->bi_flags = flags;
c4cf5261 308 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
309}
310EXPORT_SYMBOL(bio_reset);
311
38f8baae 312static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 313{
4246a0b6
CH
314 struct bio *parent = bio->bi_private;
315
4e4cbee9
CH
316 if (!parent->bi_status)
317 parent->bi_status = bio->bi_status;
196d38bc 318 bio_put(bio);
38f8baae
CH
319 return parent;
320}
321
322static void bio_chain_endio(struct bio *bio)
323{
324 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
325}
326
327/**
328 * bio_chain - chain bio completions
1051a902 329 * @bio: the target bio
5b874af6 330 * @parent: the parent bio of @bio
196d38bc
KO
331 *
332 * The caller won't have a bi_end_io called when @bio completes - instead,
333 * @parent's bi_end_io won't be called until both @parent and @bio have
334 * completed; the chained bio will also be freed when it completes.
335 *
336 * The caller must not set bi_private or bi_end_io in @bio.
337 */
338void bio_chain(struct bio *bio, struct bio *parent)
339{
340 BUG_ON(bio->bi_private || bio->bi_end_io);
341
342 bio->bi_private = parent;
343 bio->bi_end_io = bio_chain_endio;
c4cf5261 344 bio_inc_remaining(parent);
196d38bc
KO
345}
346EXPORT_SYMBOL(bio_chain);
347
df2cb6da
KO
348static void bio_alloc_rescue(struct work_struct *work)
349{
350 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
351 struct bio *bio;
352
353 while (1) {
354 spin_lock(&bs->rescue_lock);
355 bio = bio_list_pop(&bs->rescue_list);
356 spin_unlock(&bs->rescue_lock);
357
358 if (!bio)
359 break;
360
ed00aabd 361 submit_bio_noacct(bio);
df2cb6da
KO
362 }
363}
364
365static void punt_bios_to_rescuer(struct bio_set *bs)
366{
367 struct bio_list punt, nopunt;
368 struct bio *bio;
369
47e0fb46
N
370 if (WARN_ON_ONCE(!bs->rescue_workqueue))
371 return;
df2cb6da
KO
372 /*
373 * In order to guarantee forward progress we must punt only bios that
374 * were allocated from this bio_set; otherwise, if there was a bio on
375 * there for a stacking driver higher up in the stack, processing it
376 * could require allocating bios from this bio_set, and doing that from
377 * our own rescuer would be bad.
378 *
379 * Since bio lists are singly linked, pop them all instead of trying to
380 * remove from the middle of the list:
381 */
382
383 bio_list_init(&punt);
384 bio_list_init(&nopunt);
385
f5fe1b51 386 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 387 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 388 current->bio_list[0] = nopunt;
df2cb6da 389
f5fe1b51
N
390 bio_list_init(&nopunt);
391 while ((bio = bio_list_pop(&current->bio_list[1])))
392 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
393 current->bio_list[1] = nopunt;
df2cb6da
KO
394
395 spin_lock(&bs->rescue_lock);
396 bio_list_merge(&bs->rescue_list, &punt);
397 spin_unlock(&bs->rescue_lock);
398
399 queue_work(bs->rescue_workqueue, &bs->rescue_work);
400}
401
1da177e4
LT
402/**
403 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 404 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 405 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 406 * @bs: the bio_set to allocate from.
1da177e4
LT
407 *
408 * Description:
3f86a82a
KO
409 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
410 * backed by the @bs's mempool.
411 *
d0164adc
MG
412 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
413 * always be able to allocate a bio. This is due to the mempool guarantees.
414 * To make this work, callers must never allocate more than 1 bio at a time
415 * from this pool. Callers that need to allocate more than 1 bio must always
416 * submit the previously allocated bio for IO before attempting to allocate
417 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 418 *
ed00aabd 419 * Note that when running under submit_bio_noacct() (i.e. any block
df2cb6da 420 * driver), bios are not submitted until after you return - see the code in
ed00aabd 421 * submit_bio_noacct() that converts recursion into iteration, to prevent
df2cb6da
KO
422 * stack overflows.
423 *
424 * This would normally mean allocating multiple bios under
ed00aabd 425 * submit_bio_noacct() would be susceptible to deadlocks, but we have
df2cb6da
KO
426 * deadlock avoidance code that resubmits any blocked bios from a rescuer
427 * thread.
428 *
429 * However, we do not guarantee forward progress for allocations from other
430 * mempools. Doing multiple allocations from the same mempool under
ed00aabd 431 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
df2cb6da
KO
432 * for per bio allocations.
433 *
3f86a82a
KO
434 * RETURNS:
435 * Pointer to new bio on success, NULL on failure.
436 */
7a88fa19
DC
437struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
438 struct bio_set *bs)
1da177e4 439{
df2cb6da 440 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
441 unsigned front_pad;
442 unsigned inline_vecs;
34053979 443 struct bio_vec *bvl = NULL;
451a9ebf
TH
444 struct bio *bio;
445 void *p;
446
3f86a82a
KO
447 if (!bs) {
448 if (nr_iovecs > UIO_MAXIOV)
449 return NULL;
450
1f4fe21c 451 p = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
3f86a82a
KO
452 front_pad = 0;
453 inline_vecs = nr_iovecs;
454 } else {
d8f429e1 455 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
456 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
457 nr_iovecs > 0))
d8f429e1 458 return NULL;
df2cb6da 459 /*
ed00aabd 460 * submit_bio_noacct() converts recursion to iteration; this
df2cb6da
KO
461 * means if we're running beneath it, any bios we allocate and
462 * submit will not be submitted (and thus freed) until after we
463 * return.
464 *
465 * This exposes us to a potential deadlock if we allocate
466 * multiple bios from the same bio_set() while running
ed00aabd 467 * underneath submit_bio_noacct(). If we were to allocate
df2cb6da
KO
468 * multiple bios (say a stacking block driver that was splitting
469 * bios), we would deadlock if we exhausted the mempool's
470 * reserve.
471 *
472 * We solve this, and guarantee forward progress, with a rescuer
473 * workqueue per bio_set. If we go to allocate and there are
474 * bios on current->bio_list, we first try the allocation
d0164adc
MG
475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 * bios we would be blocking to the rescuer workqueue before
477 * we retry with the original gfp_flags.
df2cb6da
KO
478 */
479
f5fe1b51
N
480 if (current->bio_list &&
481 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
482 !bio_list_empty(&current->bio_list[1])) &&
483 bs->rescue_workqueue)
d0164adc 484 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 485
8aa6ba2f 486 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
487 if (!p && gfp_mask != saved_gfp) {
488 punt_bios_to_rescuer(bs);
489 gfp_mask = saved_gfp;
8aa6ba2f 490 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
491 }
492
3f86a82a
KO
493 front_pad = bs->front_pad;
494 inline_vecs = BIO_INLINE_VECS;
495 }
496
451a9ebf
TH
497 if (unlikely(!p))
498 return NULL;
1da177e4 499
3f86a82a 500 bio = p + front_pad;
3a83f467 501 bio_init(bio, NULL, 0);
34053979 502
3f86a82a 503 if (nr_iovecs > inline_vecs) {
ed996a52
CH
504 unsigned long idx = 0;
505
8aa6ba2f 506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
507 if (!bvl && gfp_mask != saved_gfp) {
508 punt_bios_to_rescuer(bs);
509 gfp_mask = saved_gfp;
8aa6ba2f 510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
511 }
512
34053979
IM
513 if (unlikely(!bvl))
514 goto err_free;
a38352e0 515
ed996a52 516 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
517 } else if (nr_iovecs) {
518 bvl = bio->bi_inline_vecs;
1da177e4 519 }
3f86a82a
KO
520
521 bio->bi_pool = bs;
34053979 522 bio->bi_max_vecs = nr_iovecs;
34053979 523 bio->bi_io_vec = bvl;
1da177e4 524 return bio;
34053979
IM
525
526err_free:
8aa6ba2f 527 mempool_free(p, &bs->bio_pool);
34053979 528 return NULL;
1da177e4 529}
a112a71d 530EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 531
38a72dac 532void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
533{
534 unsigned long flags;
7988613b
KO
535 struct bio_vec bv;
536 struct bvec_iter iter;
1da177e4 537
38a72dac 538 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
539 char *data = bvec_kmap_irq(&bv, &flags);
540 memset(data, 0, bv.bv_len);
541 flush_dcache_page(bv.bv_page);
1da177e4
LT
542 bvec_kunmap_irq(data, &flags);
543 }
544}
38a72dac 545EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4 546
83c9c547
ML
547/**
548 * bio_truncate - truncate the bio to small size of @new_size
549 * @bio: the bio to be truncated
550 * @new_size: new size for truncating the bio
551 *
552 * Description:
553 * Truncate the bio to new size of @new_size. If bio_op(bio) is
554 * REQ_OP_READ, zero the truncated part. This function should only
555 * be used for handling corner cases, such as bio eod.
556 */
85a8ce62
ML
557void bio_truncate(struct bio *bio, unsigned new_size)
558{
559 struct bio_vec bv;
560 struct bvec_iter iter;
561 unsigned int done = 0;
562 bool truncated = false;
563
564 if (new_size >= bio->bi_iter.bi_size)
565 return;
566
83c9c547 567 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
568 goto exit;
569
570 bio_for_each_segment(bv, bio, iter) {
571 if (done + bv.bv_len > new_size) {
572 unsigned offset;
573
574 if (!truncated)
575 offset = new_size - done;
576 else
577 offset = 0;
578 zero_user(bv.bv_page, offset, bv.bv_len - offset);
579 truncated = true;
580 }
581 done += bv.bv_len;
582 }
583
584 exit:
585 /*
586 * Don't touch bvec table here and make it really immutable, since
587 * fs bio user has to retrieve all pages via bio_for_each_segment_all
588 * in its .end_bio() callback.
589 *
590 * It is enough to truncate bio by updating .bi_size since we can make
591 * correct bvec with the updated .bi_size for drivers.
592 */
593 bio->bi_iter.bi_size = new_size;
594}
595
29125ed6
CH
596/**
597 * guard_bio_eod - truncate a BIO to fit the block device
598 * @bio: bio to truncate
599 *
600 * This allows us to do IO even on the odd last sectors of a device, even if the
601 * block size is some multiple of the physical sector size.
602 *
603 * We'll just truncate the bio to the size of the device, and clear the end of
604 * the buffer head manually. Truly out-of-range accesses will turn into actual
605 * I/O errors, this only handles the "we need to be able to do I/O at the final
606 * sector" case.
607 */
608void guard_bio_eod(struct bio *bio)
609{
309dca30 610 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
611
612 if (!maxsector)
613 return;
614
615 /*
616 * If the *whole* IO is past the end of the device,
617 * let it through, and the IO layer will turn it into
618 * an EIO.
619 */
620 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
621 return;
622
623 maxsector -= bio->bi_iter.bi_sector;
624 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
625 return;
626
627 bio_truncate(bio, maxsector << 9);
628}
629
1da177e4
LT
630/**
631 * bio_put - release a reference to a bio
632 * @bio: bio to release reference to
633 *
634 * Description:
635 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 636 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
637 **/
638void bio_put(struct bio *bio)
639{
dac56212 640 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 641 bio_free(bio);
dac56212
JA
642 else {
643 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
644
645 /*
646 * last put frees it
647 */
648 if (atomic_dec_and_test(&bio->__bi_cnt))
649 bio_free(bio);
650 }
1da177e4 651}
a112a71d 652EXPORT_SYMBOL(bio_put);
1da177e4 653
59d276fe
KO
654/**
655 * __bio_clone_fast - clone a bio that shares the original bio's biovec
656 * @bio: destination bio
657 * @bio_src: bio to clone
658 *
659 * Clone a &bio. Caller will own the returned bio, but not
660 * the actual data it points to. Reference count of returned
661 * bio will be one.
662 *
663 * Caller must ensure that @bio_src is not freed before @bio.
664 */
665void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
666{
ed996a52 667 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
668
669 /*
309dca30 670 * most users will be overriding ->bi_bdev with a new target,
59d276fe
KO
671 * so we don't set nor calculate new physical/hw segment counts here
672 */
309dca30 673 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 674 bio_set_flag(bio, BIO_CLONED);
111be883
SL
675 if (bio_flagged(bio_src, BIO_THROTTLED))
676 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 677 bio->bi_opf = bio_src->bi_opf;
ca474b73 678 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 679 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
680 bio->bi_iter = bio_src->bi_iter;
681 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 682
db6638d7 683 bio_clone_blkg_association(bio, bio_src);
e439bedf 684 blkcg_bio_issue_init(bio);
59d276fe
KO
685}
686EXPORT_SYMBOL(__bio_clone_fast);
687
688/**
689 * bio_clone_fast - clone a bio that shares the original bio's biovec
690 * @bio: bio to clone
691 * @gfp_mask: allocation priority
692 * @bs: bio_set to allocate from
693 *
694 * Like __bio_clone_fast, only also allocates the returned bio
695 */
696struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
697{
698 struct bio *b;
699
700 b = bio_alloc_bioset(gfp_mask, 0, bs);
701 if (!b)
702 return NULL;
703
704 __bio_clone_fast(b, bio);
705
07560151
EB
706 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
707 goto err_put;
a892c8d5 708
07560151
EB
709 if (bio_integrity(bio) &&
710 bio_integrity_clone(b, bio, gfp_mask) < 0)
711 goto err_put;
59d276fe
KO
712
713 return b;
07560151
EB
714
715err_put:
716 bio_put(b);
717 return NULL;
59d276fe
KO
718}
719EXPORT_SYMBOL(bio_clone_fast);
720
5cbd28e3
CH
721const char *bio_devname(struct bio *bio, char *buf)
722{
309dca30 723 return bdevname(bio->bi_bdev, buf);
5cbd28e3
CH
724}
725EXPORT_SYMBOL(bio_devname);
726
5919482e
ML
727static inline bool page_is_mergeable(const struct bio_vec *bv,
728 struct page *page, unsigned int len, unsigned int off,
ff896738 729 bool *same_page)
5919482e 730{
d8166519
MWO
731 size_t bv_end = bv->bv_offset + bv->bv_len;
732 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
733 phys_addr_t page_addr = page_to_phys(page);
734
735 if (vec_end_addr + 1 != page_addr + off)
736 return false;
737 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
738 return false;
52d52d1c 739
ff896738 740 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
d8166519
MWO
741 if (*same_page)
742 return true;
743 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
5919482e
ML
744}
745
e4581105
CH
746/*
747 * Try to merge a page into a segment, while obeying the hardware segment
748 * size limit. This is not for normal read/write bios, but for passthrough
749 * or Zone Append operations that we can't split.
750 */
751static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
752 struct page *page, unsigned len,
753 unsigned offset, bool *same_page)
489fbbcb 754{
384209cd 755 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
756 unsigned long mask = queue_segment_boundary(q);
757 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
758 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
759
760 if ((addr1 | mask) != (addr2 | mask))
761 return false;
489fbbcb
ML
762 if (bv->bv_len + len > queue_max_segment_size(q))
763 return false;
384209cd 764 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
765}
766
1da177e4 767/**
e4581105
CH
768 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
769 * @q: the target queue
770 * @bio: destination bio
771 * @page: page to add
772 * @len: vec entry length
773 * @offset: vec entry offset
774 * @max_sectors: maximum number of sectors that can be added
775 * @same_page: return if the segment has been merged inside the same page
c66a14d0 776 *
e4581105
CH
777 * Add a page to a bio while respecting the hardware max_sectors, max_segment
778 * and gap limitations.
1da177e4 779 */
e4581105 780int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 781 struct page *page, unsigned int len, unsigned int offset,
e4581105 782 unsigned int max_sectors, bool *same_page)
1da177e4 783{
1da177e4
LT
784 struct bio_vec *bvec;
785
e4581105 786 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
787 return 0;
788
e4581105 789 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
790 return 0;
791
80cfd548 792 if (bio->bi_vcnt > 0) {
e4581105 793 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 794 return len;
320ea869
CH
795
796 /*
797 * If the queue doesn't support SG gaps and adding this segment
798 * would create a gap, disallow it.
799 */
384209cd 800 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
801 if (bvec_gap_to_prev(q, bvec, offset))
802 return 0;
80cfd548
JA
803 }
804
79d08f89 805 if (bio_full(bio, len))
1da177e4
LT
806 return 0;
807
14ccb66b 808 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
809 return 0;
810
fcbf6a08
ML
811 bvec = &bio->bi_io_vec[bio->bi_vcnt];
812 bvec->bv_page = page;
813 bvec->bv_len = len;
814 bvec->bv_offset = offset;
815 bio->bi_vcnt++;
dcdca753 816 bio->bi_iter.bi_size += len;
1da177e4
LT
817 return len;
818}
19047087 819
e4581105
CH
820/**
821 * bio_add_pc_page - attempt to add page to passthrough bio
822 * @q: the target queue
823 * @bio: destination bio
824 * @page: page to add
825 * @len: vec entry length
826 * @offset: vec entry offset
827 *
828 * Attempt to add a page to the bio_vec maplist. This can fail for a
829 * number of reasons, such as the bio being full or target block device
830 * limitations. The target block device must allow bio's up to PAGE_SIZE,
831 * so it is always possible to add a single page to an empty bio.
832 *
833 * This should only be used by passthrough bios.
834 */
19047087
ML
835int bio_add_pc_page(struct request_queue *q, struct bio *bio,
836 struct page *page, unsigned int len, unsigned int offset)
837{
d1916c86 838 bool same_page = false;
e4581105
CH
839 return bio_add_hw_page(q, bio, page, len, offset,
840 queue_max_hw_sectors(q), &same_page);
19047087 841}
a112a71d 842EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 843
1da177e4 844/**
0aa69fd3
CH
845 * __bio_try_merge_page - try appending data to an existing bvec.
846 * @bio: destination bio
551879a4 847 * @page: start page to add
0aa69fd3 848 * @len: length of the data to add
551879a4 849 * @off: offset of the data relative to @page
ff896738 850 * @same_page: return if the segment has been merged inside the same page
1da177e4 851 *
0aa69fd3 852 * Try to add the data at @page + @off to the last bvec of @bio. This is a
3cf14889 853 * useful optimisation for file systems with a block size smaller than the
0aa69fd3
CH
854 * page size.
855 *
551879a4
ML
856 * Warn if (@len, @off) crosses pages in case that @same_page is true.
857 *
0aa69fd3 858 * Return %true on success or %false on failure.
1da177e4 859 */
0aa69fd3 860bool __bio_try_merge_page(struct bio *bio, struct page *page,
ff896738 861 unsigned int len, unsigned int off, bool *same_page)
1da177e4 862{
c66a14d0 863 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 864 return false;
762380ad 865
cc90bc68 866 if (bio->bi_vcnt > 0) {
0aa69fd3 867 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
868
869 if (page_is_mergeable(bv, page, len, off, same_page)) {
2cd896a5
RH
870 if (bio->bi_iter.bi_size > UINT_MAX - len) {
871 *same_page = false;
cc90bc68 872 return false;
2cd896a5 873 }
5919482e
ML
874 bv->bv_len += len;
875 bio->bi_iter.bi_size += len;
876 return true;
877 }
c66a14d0 878 }
0aa69fd3
CH
879 return false;
880}
881EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 882
0aa69fd3 883/**
551879a4 884 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 885 * @bio: destination bio
551879a4
ML
886 * @page: start page to add
887 * @len: length of the data to add, may cross pages
888 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
889 *
890 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
891 * that @bio has space for another bvec.
892 */
893void __bio_add_page(struct bio *bio, struct page *page,
894 unsigned int len, unsigned int off)
895{
896 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 897
0aa69fd3 898 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 899 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
900
901 bv->bv_page = page;
902 bv->bv_offset = off;
903 bv->bv_len = len;
c66a14d0 904
c66a14d0 905 bio->bi_iter.bi_size += len;
0aa69fd3 906 bio->bi_vcnt++;
b8e24a93
JW
907
908 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
909 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
910}
911EXPORT_SYMBOL_GPL(__bio_add_page);
912
913/**
551879a4 914 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 915 * @bio: destination bio
551879a4
ML
916 * @page: start page to add
917 * @len: vec entry length, may cross pages
918 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 919 *
551879a4 920 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
921 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
922 */
923int bio_add_page(struct bio *bio, struct page *page,
924 unsigned int len, unsigned int offset)
925{
ff896738
CH
926 bool same_page = false;
927
928 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 929 if (bio_full(bio, len))
0aa69fd3
CH
930 return 0;
931 __bio_add_page(bio, page, len, offset);
932 }
c66a14d0 933 return len;
1da177e4 934}
a112a71d 935EXPORT_SYMBOL(bio_add_page);
1da177e4 936
d241a95f 937void bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
938{
939 struct bvec_iter_all iter_all;
940 struct bio_vec *bvec;
7321ecbf 941
b2d0d991
CH
942 if (bio_flagged(bio, BIO_NO_PAGE_REF))
943 return;
944
d241a95f
CH
945 bio_for_each_segment_all(bvec, bio, iter_all) {
946 if (mark_dirty && !PageCompound(bvec->bv_page))
947 set_page_dirty_lock(bvec->bv_page);
7321ecbf 948 put_page(bvec->bv_page);
d241a95f 949 }
7321ecbf 950}
29b2a3aa 951EXPORT_SYMBOL_GPL(bio_release_pages);
7321ecbf 952
6d0c48ae
JA
953static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
954{
955 const struct bio_vec *bv = iter->bvec;
956 unsigned int len;
957 size_t size;
958
959 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
960 return -EINVAL;
961
962 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
963 size = bio_add_page(bio, bv->bv_page, len,
964 bv->bv_offset + iter->iov_offset);
a10584c3
CH
965 if (unlikely(size != len))
966 return -EINVAL;
a10584c3
CH
967 iov_iter_advance(iter, size);
968 return 0;
6d0c48ae
JA
969}
970
576ed913
CH
971#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
972
2cefe4db 973/**
17d51b10 974 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
975 * @bio: bio to add pages to
976 * @iter: iov iterator describing the region to be mapped
977 *
17d51b10 978 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 979 * pages will have to be released using put_page() when done.
17d51b10 980 * For multi-segment *iter, this function only adds pages from the
3cf14889 981 * next non-empty segment of the iov iterator.
2cefe4db 982 */
17d51b10 983static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 984{
576ed913
CH
985 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
986 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
987 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
988 struct page **pages = (struct page **)bv;
45691804 989 bool same_page = false;
576ed913
CH
990 ssize_t size, left;
991 unsigned len, i;
b403ea24 992 size_t offset;
576ed913
CH
993
994 /*
995 * Move page array up in the allocated memory for the bio vecs as far as
996 * possible so that we can start filling biovecs from the beginning
997 * without overwriting the temporary page array.
998 */
999 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1000 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
1001
1002 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1003 if (unlikely(size <= 0))
1004 return size ? size : -EFAULT;
2cefe4db 1005
576ed913
CH
1006 for (left = size, i = 0; left > 0; left -= len, i++) {
1007 struct page *page = pages[i];
2cefe4db 1008
576ed913 1009 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
1010
1011 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1012 if (same_page)
1013 put_page(page);
1014 } else {
79d08f89 1015 if (WARN_ON_ONCE(bio_full(bio, len)))
45691804
CH
1016 return -EINVAL;
1017 __bio_add_page(bio, page, len, offset);
1018 }
576ed913 1019 offset = 0;
2cefe4db
KO
1020 }
1021
2cefe4db
KO
1022 iov_iter_advance(iter, size);
1023 return 0;
1024}
17d51b10 1025
0512a75b
KB
1026static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1027{
1028 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1029 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
309dca30 1030 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
0512a75b
KB
1031 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1032 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1033 struct page **pages = (struct page **)bv;
1034 ssize_t size, left;
1035 unsigned len, i;
1036 size_t offset;
4977d121 1037 int ret = 0;
0512a75b
KB
1038
1039 if (WARN_ON_ONCE(!max_append_sectors))
1040 return 0;
1041
1042 /*
1043 * Move page array up in the allocated memory for the bio vecs as far as
1044 * possible so that we can start filling biovecs from the beginning
1045 * without overwriting the temporary page array.
1046 */
1047 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1048 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1049
1050 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1051 if (unlikely(size <= 0))
1052 return size ? size : -EFAULT;
1053
1054 for (left = size, i = 0; left > 0; left -= len, i++) {
1055 struct page *page = pages[i];
1056 bool same_page = false;
1057
1058 len = min_t(size_t, PAGE_SIZE - offset, left);
1059 if (bio_add_hw_page(q, bio, page, len, offset,
4977d121
NA
1060 max_append_sectors, &same_page) != len) {
1061 ret = -EINVAL;
1062 break;
1063 }
0512a75b
KB
1064 if (same_page)
1065 put_page(page);
1066 offset = 0;
1067 }
1068
4977d121
NA
1069 iov_iter_advance(iter, size - left);
1070 return ret;
0512a75b
KB
1071}
1072
17d51b10 1073/**
6d0c48ae 1074 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1075 * @bio: bio to add pages to
6d0c48ae
JA
1076 * @iter: iov iterator describing the region to be added
1077 *
1078 * This takes either an iterator pointing to user memory, or one pointing to
1079 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1080 * map them into the kernel. On IO completion, the caller should put those
399254aa
JA
1081 * pages. If we're adding kernel pages, and the caller told us it's safe to
1082 * do so, we just have to add the pages to the bio directly. We don't grab an
1083 * extra reference to those pages (the user should already have that), and we
1084 * don't put the page on IO completion. The caller needs to check if the bio is
1085 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
1086 * released.
17d51b10 1087 *
17d51b10 1088 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1089 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1090 * MM encounters an error pinning the requested pages, it stops. Error
1091 * is returned only if 0 pages could be pinned.
17d51b10
MW
1092 */
1093int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1094{
6d0c48ae 1095 const bool is_bvec = iov_iter_is_bvec(iter);
14eacf12
CH
1096 int ret;
1097
1098 if (WARN_ON_ONCE(bio->bi_vcnt))
1099 return -EINVAL;
17d51b10
MW
1100
1101 do {
0512a75b
KB
1102 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1103 if (WARN_ON_ONCE(is_bvec))
1104 return -EINVAL;
1105 ret = __bio_iov_append_get_pages(bio, iter);
1106 } else {
1107 if (is_bvec)
1108 ret = __bio_iov_bvec_add_pages(bio, iter);
1109 else
1110 ret = __bio_iov_iter_get_pages(bio, iter);
1111 }
79d08f89 1112 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 1113
b6207430 1114 if (is_bvec)
7321ecbf 1115 bio_set_flag(bio, BIO_NO_PAGE_REF);
14eacf12 1116 return bio->bi_vcnt ? 0 : ret;
17d51b10 1117}
29b2a3aa 1118EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1119
4246a0b6 1120static void submit_bio_wait_endio(struct bio *bio)
9e882242 1121{
65e53aab 1122 complete(bio->bi_private);
9e882242
KO
1123}
1124
1125/**
1126 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1127 * @bio: The &struct bio which describes the I/O
1128 *
1129 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1130 * bio_endio() on failure.
3d289d68
JK
1131 *
1132 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1133 * result in bio reference to be consumed. The caller must drop the reference
1134 * on his own.
9e882242 1135 */
4e49ea4a 1136int submit_bio_wait(struct bio *bio)
9e882242 1137{
309dca30
CH
1138 DECLARE_COMPLETION_ONSTACK_MAP(done,
1139 bio->bi_bdev->bd_disk->lockdep_map);
de6a78b6 1140 unsigned long hang_check;
9e882242 1141
65e53aab 1142 bio->bi_private = &done;
9e882242 1143 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1144 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1145 submit_bio(bio);
de6a78b6
ML
1146
1147 /* Prevent hang_check timer from firing at us during very long I/O */
1148 hang_check = sysctl_hung_task_timeout_secs;
1149 if (hang_check)
1150 while (!wait_for_completion_io_timeout(&done,
1151 hang_check * (HZ/2)))
1152 ;
1153 else
1154 wait_for_completion_io(&done);
9e882242 1155
65e53aab 1156 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1157}
1158EXPORT_SYMBOL(submit_bio_wait);
1159
054bdf64
KO
1160/**
1161 * bio_advance - increment/complete a bio by some number of bytes
1162 * @bio: bio to advance
1163 * @bytes: number of bytes to complete
1164 *
1165 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1166 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1167 * be updated on the last bvec as well.
1168 *
1169 * @bio will then represent the remaining, uncompleted portion of the io.
1170 */
1171void bio_advance(struct bio *bio, unsigned bytes)
1172{
1173 if (bio_integrity(bio))
1174 bio_integrity_advance(bio, bytes);
1175
a892c8d5 1176 bio_crypt_advance(bio, bytes);
4550dd6c 1177 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1178}
1179EXPORT_SYMBOL(bio_advance);
1180
45db54d5
KO
1181void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1182 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1183{
1cb9dda4 1184 struct bio_vec src_bv, dst_bv;
16ac3d63 1185 void *src_p, *dst_p;
1cb9dda4 1186 unsigned bytes;
16ac3d63 1187
45db54d5
KO
1188 while (src_iter->bi_size && dst_iter->bi_size) {
1189 src_bv = bio_iter_iovec(src, *src_iter);
1190 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1191
1192 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1193
1cb9dda4
KO
1194 src_p = kmap_atomic(src_bv.bv_page);
1195 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1196
1cb9dda4
KO
1197 memcpy(dst_p + dst_bv.bv_offset,
1198 src_p + src_bv.bv_offset,
16ac3d63
KO
1199 bytes);
1200
1201 kunmap_atomic(dst_p);
1202 kunmap_atomic(src_p);
1203
6e6e811d
KO
1204 flush_dcache_page(dst_bv.bv_page);
1205
22b56c29
PB
1206 bio_advance_iter_single(src, src_iter, bytes);
1207 bio_advance_iter_single(dst, dst_iter, bytes);
16ac3d63
KO
1208 }
1209}
38a72dac
KO
1210EXPORT_SYMBOL(bio_copy_data_iter);
1211
1212/**
45db54d5
KO
1213 * bio_copy_data - copy contents of data buffers from one bio to another
1214 * @src: source bio
1215 * @dst: destination bio
38a72dac
KO
1216 *
1217 * Stops when it reaches the end of either @src or @dst - that is, copies
1218 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1219 */
1220void bio_copy_data(struct bio *dst, struct bio *src)
1221{
45db54d5
KO
1222 struct bvec_iter src_iter = src->bi_iter;
1223 struct bvec_iter dst_iter = dst->bi_iter;
1224
1225 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1226}
16ac3d63
KO
1227EXPORT_SYMBOL(bio_copy_data);
1228
45db54d5
KO
1229/**
1230 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1231 * another
1232 * @src: source bio list
1233 * @dst: destination bio list
1234 *
1235 * Stops when it reaches the end of either the @src list or @dst list - that is,
1236 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1237 * bios).
1238 */
1239void bio_list_copy_data(struct bio *dst, struct bio *src)
1240{
1241 struct bvec_iter src_iter = src->bi_iter;
1242 struct bvec_iter dst_iter = dst->bi_iter;
1243
1244 while (1) {
1245 if (!src_iter.bi_size) {
1246 src = src->bi_next;
1247 if (!src)
1248 break;
1249
1250 src_iter = src->bi_iter;
1251 }
1252
1253 if (!dst_iter.bi_size) {
1254 dst = dst->bi_next;
1255 if (!dst)
1256 break;
1257
1258 dst_iter = dst->bi_iter;
1259 }
1260
1261 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1262 }
1263}
1264EXPORT_SYMBOL(bio_list_copy_data);
1265
491221f8 1266void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1267{
1268 struct bio_vec *bvec;
6dc4f100 1269 struct bvec_iter_all iter_all;
1dfa0f68 1270
2b070cfe 1271 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1272 __free_page(bvec->bv_page);
1273}
491221f8 1274EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1275
1da177e4
LT
1276/*
1277 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1278 * for performing direct-IO in BIOs.
1279 *
1280 * The problem is that we cannot run set_page_dirty() from interrupt context
1281 * because the required locks are not interrupt-safe. So what we can do is to
1282 * mark the pages dirty _before_ performing IO. And in interrupt context,
1283 * check that the pages are still dirty. If so, fine. If not, redirty them
1284 * in process context.
1285 *
1286 * We special-case compound pages here: normally this means reads into hugetlb
1287 * pages. The logic in here doesn't really work right for compound pages
1288 * because the VM does not uniformly chase down the head page in all cases.
1289 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1290 * handle them at all. So we skip compound pages here at an early stage.
1291 *
1292 * Note that this code is very hard to test under normal circumstances because
1293 * direct-io pins the pages with get_user_pages(). This makes
1294 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1295 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1296 * pagecache.
1297 *
1298 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1299 * deferred bio dirtying paths.
1300 */
1301
1302/*
1303 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1304 */
1305void bio_set_pages_dirty(struct bio *bio)
1306{
cb34e057 1307 struct bio_vec *bvec;
6dc4f100 1308 struct bvec_iter_all iter_all;
1da177e4 1309
2b070cfe 1310 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1311 if (!PageCompound(bvec->bv_page))
1312 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1313 }
1314}
1315
1da177e4
LT
1316/*
1317 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1318 * If they are, then fine. If, however, some pages are clean then they must
1319 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1320 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1321 *
1322 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1323 * here on. It will run one put_page() against each page and will run one
1324 * bio_put() against the BIO.
1da177e4
LT
1325 */
1326
65f27f38 1327static void bio_dirty_fn(struct work_struct *work);
1da177e4 1328
65f27f38 1329static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1330static DEFINE_SPINLOCK(bio_dirty_lock);
1331static struct bio *bio_dirty_list;
1332
1333/*
1334 * This runs in process context
1335 */
65f27f38 1336static void bio_dirty_fn(struct work_struct *work)
1da177e4 1337{
24d5493f 1338 struct bio *bio, *next;
1da177e4 1339
24d5493f
CH
1340 spin_lock_irq(&bio_dirty_lock);
1341 next = bio_dirty_list;
1da177e4 1342 bio_dirty_list = NULL;
24d5493f 1343 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1344
24d5493f
CH
1345 while ((bio = next) != NULL) {
1346 next = bio->bi_private;
1da177e4 1347
d241a95f 1348 bio_release_pages(bio, true);
1da177e4 1349 bio_put(bio);
1da177e4
LT
1350 }
1351}
1352
1353void bio_check_pages_dirty(struct bio *bio)
1354{
cb34e057 1355 struct bio_vec *bvec;
24d5493f 1356 unsigned long flags;
6dc4f100 1357 struct bvec_iter_all iter_all;
1da177e4 1358
2b070cfe 1359 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1360 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1361 goto defer;
1da177e4
LT
1362 }
1363
d241a95f 1364 bio_release_pages(bio, false);
24d5493f
CH
1365 bio_put(bio);
1366 return;
1367defer:
1368 spin_lock_irqsave(&bio_dirty_lock, flags);
1369 bio->bi_private = bio_dirty_list;
1370 bio_dirty_list = bio;
1371 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1372 schedule_work(&bio_dirty_work);
1da177e4
LT
1373}
1374
c4cf5261
JA
1375static inline bool bio_remaining_done(struct bio *bio)
1376{
1377 /*
1378 * If we're not chaining, then ->__bi_remaining is always 1 and
1379 * we always end io on the first invocation.
1380 */
1381 if (!bio_flagged(bio, BIO_CHAIN))
1382 return true;
1383
1384 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1385
326e1dbb 1386 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1387 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1388 return true;
326e1dbb 1389 }
c4cf5261
JA
1390
1391 return false;
1392}
1393
1da177e4
LT
1394/**
1395 * bio_endio - end I/O on a bio
1396 * @bio: bio
1da177e4
LT
1397 *
1398 * Description:
4246a0b6
CH
1399 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1400 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1401 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1402 *
1403 * bio_endio() can be called several times on a bio that has been chained
1404 * using bio_chain(). The ->bi_end_io() function will only be called the
1405 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1406 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1407 **/
4246a0b6 1408void bio_endio(struct bio *bio)
1da177e4 1409{
ba8c6967 1410again:
2b885517 1411 if (!bio_remaining_done(bio))
ba8c6967 1412 return;
7c20f116
CH
1413 if (!bio_integrity_endio(bio))
1414 return;
1da177e4 1415
309dca30
CH
1416 if (bio->bi_bdev)
1417 rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
67b42d0b 1418
ba8c6967
CH
1419 /*
1420 * Need to have a real endio function for chained bios, otherwise
1421 * various corner cases will break (like stacking block devices that
1422 * save/restore bi_end_io) - however, we want to avoid unbounded
1423 * recursion and blowing the stack. Tail call optimization would
1424 * handle this, but compiling with frame pointers also disables
1425 * gcc's sibling call optimization.
1426 */
1427 if (bio->bi_end_io == bio_chain_endio) {
1428 bio = __bio_chain_endio(bio);
1429 goto again;
196d38bc 1430 }
ba8c6967 1431
309dca30
CH
1432 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1433 trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
fbbaf700
N
1434 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1435 }
1436
9e234eea 1437 blk_throtl_bio_endio(bio);
b222dd2f
SL
1438 /* release cgroup info */
1439 bio_uninit(bio);
ba8c6967
CH
1440 if (bio->bi_end_io)
1441 bio->bi_end_io(bio);
1da177e4 1442}
a112a71d 1443EXPORT_SYMBOL(bio_endio);
1da177e4 1444
20d0189b
KO
1445/**
1446 * bio_split - split a bio
1447 * @bio: bio to split
1448 * @sectors: number of sectors to split from the front of @bio
1449 * @gfp: gfp mask
1450 * @bs: bio set to allocate from
1451 *
1452 * Allocates and returns a new bio which represents @sectors from the start of
1453 * @bio, and updates @bio to represent the remaining sectors.
1454 *
f3f5da62 1455 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1456 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1457 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1458 */
1459struct bio *bio_split(struct bio *bio, int sectors,
1460 gfp_t gfp, struct bio_set *bs)
1461{
f341a4d3 1462 struct bio *split;
20d0189b
KO
1463
1464 BUG_ON(sectors <= 0);
1465 BUG_ON(sectors >= bio_sectors(bio));
1466
0512a75b
KB
1467 /* Zone append commands cannot be split */
1468 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1469 return NULL;
1470
f9d03f96 1471 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1472 if (!split)
1473 return NULL;
1474
1475 split->bi_iter.bi_size = sectors << 9;
1476
1477 if (bio_integrity(split))
fbd08e76 1478 bio_integrity_trim(split);
20d0189b
KO
1479
1480 bio_advance(bio, split->bi_iter.bi_size);
1481
fbbaf700 1482 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1483 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1484
20d0189b
KO
1485 return split;
1486}
1487EXPORT_SYMBOL(bio_split);
1488
6678d83f
KO
1489/**
1490 * bio_trim - trim a bio
1491 * @bio: bio to trim
1492 * @offset: number of sectors to trim from the front of @bio
1493 * @size: size we want to trim @bio to, in sectors
1494 */
1495void bio_trim(struct bio *bio, int offset, int size)
1496{
1497 /* 'bio' is a cloned bio which we need to trim to match
1498 * the given offset and size.
6678d83f 1499 */
6678d83f
KO
1500
1501 size <<= 9;
4f024f37 1502 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1503 return;
1504
6678d83f 1505 bio_advance(bio, offset << 9);
4f024f37 1506 bio->bi_iter.bi_size = size;
376a78ab
DM
1507
1508 if (bio_integrity(bio))
fbd08e76 1509 bio_integrity_trim(bio);
376a78ab 1510
6678d83f
KO
1511}
1512EXPORT_SYMBOL_GPL(bio_trim);
1513
1da177e4
LT
1514/*
1515 * create memory pools for biovec's in a bio_set.
1516 * use the global biovec slabs created for general use.
1517 */
8aa6ba2f 1518int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1519{
ed996a52 1520 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1521
8aa6ba2f 1522 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1523}
1524
917a38c7
KO
1525/*
1526 * bioset_exit - exit a bioset initialized with bioset_init()
1527 *
1528 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1529 * kzalloc()).
1530 */
1531void bioset_exit(struct bio_set *bs)
1da177e4 1532{
df2cb6da
KO
1533 if (bs->rescue_workqueue)
1534 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1535 bs->rescue_workqueue = NULL;
df2cb6da 1536
8aa6ba2f
KO
1537 mempool_exit(&bs->bio_pool);
1538 mempool_exit(&bs->bvec_pool);
9f060e22 1539
7878cba9 1540 bioset_integrity_free(bs);
917a38c7
KO
1541 if (bs->bio_slab)
1542 bio_put_slab(bs);
1543 bs->bio_slab = NULL;
1544}
1545EXPORT_SYMBOL(bioset_exit);
1da177e4 1546
917a38c7
KO
1547/**
1548 * bioset_init - Initialize a bio_set
dad08527 1549 * @bs: pool to initialize
917a38c7
KO
1550 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1551 * @front_pad: Number of bytes to allocate in front of the returned bio
1552 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1553 * and %BIOSET_NEED_RESCUER
1554 *
dad08527
KO
1555 * Description:
1556 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1557 * to ask for a number of bytes to be allocated in front of the bio.
1558 * Front pad allocation is useful for embedding the bio inside
1559 * another structure, to avoid allocating extra data to go with the bio.
1560 * Note that the bio must be embedded at the END of that structure always,
1561 * or things will break badly.
1562 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1563 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1564 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1565 * dispatch queued requests when the mempool runs out of space.
1566 *
917a38c7
KO
1567 */
1568int bioset_init(struct bio_set *bs,
1569 unsigned int pool_size,
1570 unsigned int front_pad,
1571 int flags)
1572{
1573 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1574
1575 bs->front_pad = front_pad;
1576
1577 spin_lock_init(&bs->rescue_lock);
1578 bio_list_init(&bs->rescue_list);
1579 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1580
1581 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1582 if (!bs->bio_slab)
1583 return -ENOMEM;
1584
1585 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1586 goto bad;
1587
1588 if ((flags & BIOSET_NEED_BVECS) &&
1589 biovec_init_pool(&bs->bvec_pool, pool_size))
1590 goto bad;
1591
1592 if (!(flags & BIOSET_NEED_RESCUER))
1593 return 0;
1594
1595 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1596 if (!bs->rescue_workqueue)
1597 goto bad;
1598
1599 return 0;
1600bad:
1601 bioset_exit(bs);
1602 return -ENOMEM;
1603}
1604EXPORT_SYMBOL(bioset_init);
1605
28e89fd9
JA
1606/*
1607 * Initialize and setup a new bio_set, based on the settings from
1608 * another bio_set.
1609 */
1610int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1611{
1612 int flags;
1613
1614 flags = 0;
1615 if (src->bvec_pool.min_nr)
1616 flags |= BIOSET_NEED_BVECS;
1617 if (src->rescue_workqueue)
1618 flags |= BIOSET_NEED_RESCUER;
1619
1620 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1621}
1622EXPORT_SYMBOL(bioset_init_from_src);
1623
1da177e4
LT
1624static void __init biovec_init_slabs(void)
1625{
1626 int i;
1627
ed996a52 1628 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
1629 int size;
1630 struct biovec_slab *bvs = bvec_slabs + i;
1631
a7fcd37c
JA
1632 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1633 bvs->slab = NULL;
1634 continue;
1635 }
a7fcd37c 1636
1da177e4
LT
1637 size = bvs->nr_vecs * sizeof(struct bio_vec);
1638 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1639 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1640 }
1641}
1642
1643static int __init init_bio(void)
1644{
bb799ca0
JA
1645 bio_slab_max = 2;
1646 bio_slab_nr = 0;
6396bb22
KC
1647 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
1648 GFP_KERNEL);
2b24e6f6
JT
1649
1650 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
1651
bb799ca0
JA
1652 if (!bio_slabs)
1653 panic("bio: can't allocate bios\n");
1da177e4 1654
7878cba9 1655 bio_integrity_init();
1da177e4
LT
1656 biovec_init_slabs();
1657
f4f8154a 1658 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1659 panic("bio: can't allocate bios\n");
1660
f4f8154a 1661 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1662 panic("bio: can't create integrity pool\n");
1663
1da177e4
LT
1664 return 0;
1665}
1da177e4 1666subsys_initcall(init_bio);